WO2007077832A1 - 磁気共鳴イメージング装置 - Google Patents
磁気共鳴イメージング装置 Download PDFInfo
- Publication number
- WO2007077832A1 WO2007077832A1 PCT/JP2006/325933 JP2006325933W WO2007077832A1 WO 2007077832 A1 WO2007077832 A1 WO 2007077832A1 JP 2006325933 W JP2006325933 W JP 2006325933W WO 2007077832 A1 WO2007077832 A1 WO 2007077832A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic resonance
- subject
- signal
- imaging apparatus
- magnetic field
- Prior art date
Links
- 238000002595 magnetic resonance imaging Methods 0.000 title claims abstract description 59
- 238000003384 imaging method Methods 0.000 claims abstract description 75
- 230000033001 locomotion Effects 0.000 claims abstract description 46
- 238000012545 processing Methods 0.000 claims description 30
- 238000001514 detection method Methods 0.000 claims description 27
- 238000005481 NMR spectroscopy Methods 0.000 claims description 18
- 230000005540 biological transmission Effects 0.000 claims description 10
- 238000012937 correction Methods 0.000 claims description 10
- 230000003068 static effect Effects 0.000 claims description 9
- 239000000126 substance Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 4
- 230000004044 response Effects 0.000 abstract description 2
- 238000000034 method Methods 0.000 description 53
- 238000010586 diagram Methods 0.000 description 17
- 238000001208 nuclear magnetic resonance pulse sequence Methods 0.000 description 10
- 238000002592 echocardiography Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 230000005284 excitation Effects 0.000 description 6
- 244000126211 Hericium coralloides Species 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 210000001015 abdomen Anatomy 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 210000004204 blood vessel Anatomy 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 210000003414 extremity Anatomy 0.000 description 2
- 210000002414 leg Anatomy 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000000241 respiratory effect Effects 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000000746 body region Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 210000002310 elbow joint Anatomy 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 210000000629 knee joint Anatomy 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000001936 parietal effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 210000002027 skeletal muscle Anatomy 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/56375—Intentional motion of the sample during MR, e.g. moving table imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/70—Means for positioning the patient in relation to the detecting, measuring or recording means
- A61B5/704—Tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/567—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution gated by physiological signals, i.e. synchronization of acquired MR data with periodical motion of an object of interest, e.g. monitoring or triggering system for cardiac or respiratory gating
- G01R33/5676—Gating or triggering based on an MR signal, e.g. involving one or more navigator echoes for motion monitoring and correction
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
- A61B5/7257—Details of waveform analysis characterised by using transforms using Fourier transforms
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/563—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
- G01R33/56375—Intentional motion of the sample during MR, e.g. moving table imaging
- G01R33/56383—Intentional motion of the sample during MR, e.g. moving table imaging involving motion of the sample as a whole, e.g. multistation MR or MR with continuous table motion
Definitions
- the present invention relates to a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus), and more particularly to an image quality improvement technique in an imaging method for imaging a wide part of a subject while moving a table.
- an MRI apparatus magnetic resonance imaging apparatus
- An MRI apparatus utilizes a nuclear magnetic resonance (hereinafter referred to as NMR) phenomenon that occurs in the nucleus of atoms that constitute a subject when the subject placed in a uniform static magnetic field is irradiated with electromagnetic waves.
- NMR nuclear magnetic resonance
- a magnetic resonance image (hereinafter referred to as a magnetic resonance image) representing the physical properties of the subject is obtained. , MR image).
- a technique for imaging a wide, range, or whole body of a subject while placing the subject on a table and moving the table within the gantry of the MRI apparatus is known for MRI.
- the With this technology there are two ways to power the table.
- One is a multi-station imaging method in which the wide area or the whole body region is divided into a plurality of blocks, and the table is moved step by step for each block (for example, see Patent Document 1).
- One is a moving table imaging method in which imaging is performed simultaneously while continuously powering a table to image a wide range or the entire subject (see, for example, Patent Document 2;).
- Patent Document 1 US Pat. No. 6311085
- Patent Document 2 Japanese Patent Laid-Open No. 2004-611
- Patent Document 3 discloses a technique that corrects image artifacts obtained when a moving subject is imaged using navigator echo.
- the force table has low movement accuracy (a subject different from the originally intended location).
- a technique relating to how to detect the error when the data of the position on the specimen is acquired) to reduce image quality degradation.
- Patent Document 3 Japanese Patent Laid-Open No. 8-173396
- An object of the present invention is to reduce image quality degradation due to low movement accuracy of a table in an MRI apparatus or method for imaging while moving a table on which a subject is placed step by step or continuously. It is in.
- a subject mounting means for mounting a subject and placing the subject in an imaging space, and the subject mounting means being continuous in an arbitrary direction 1
- a moving means for moving the subject in an arbitrary direction by moving the object each time, and a static magnetic field, a gradient magnetic field, and a high-frequency magnetic field are generated in the imaging space
- Magnetic field generating means for exciting a desired position of the subject
- signal detecting means for detecting a magnetic resonance signal generated from the subject, arranged around the imaging space, and magnetic detected by the signal detecting means
- a signal processing unit that performs signal processing on the resonance signal and generates a magnetic resonance image of the subject, and controls the moving unit, the magnetic field generation unit, the signal detection unit, and the signal processing unit to control the subject.
- an error with respect to a set value of the position or speed in an MRI apparatus comprising a control unit that performs control to obtain a magnetic resonance image of the subject while moving to a predetermined position continuously at a predetermined speed or step by step
- an MRI apparatus comprising a movement error detecting means for detecting the error and a correcting means for correcting an error detected by the position movement detecting means.
- FIG. 1 is a block diagram showing an overall configuration of an MRI apparatus constituting the present invention.
- FIG. 2 is a diagram showing a specific configuration of the MRI apparatus in Example 1.
- FIG. 3 is a diagram showing a specific example of a signal detection system in the first embodiment.
- FIG. 4 is a diagram showing a more detailed description of Example 1.
- FIG. 5 is a diagram showing a 3D dalient echo sequence that is an example of a typical imaging sequence for acquiring a subject image.
- FIG. 6 is a diagram for explaining a sequence by a navigator sequence.
- FIG. 7 is a diagram for explaining the scale 44 so that the signal intensity (amplitude) of the acquired one-dimensional profile changes periodically.
- FIG. 8 is a graph showing an example of the relationship between the position of the table 37 acquired by the navigator echo of Example 1 and the table position when there is no table movement error in the apparatus coordinate system.
- FIG. 9 is an explanatory diagram in the case where scales are arranged parallel to the X-axis direction at predetermined intervals in the table movement direction (y-axis direction).
- FIG. 10 is a diagram illustrating an MRI apparatus of Example 2.
- FIG. 11 is a diagram illustrating an MRI apparatus of Example 3.
- FIG. 12 is a diagram illustrating a sequence diagram of the third embodiment.
- Phase encoding for image acquisition is not applied in part of the normal imaging sequence, but instead, flow encoding is performed to acquire echoes, which are used to detect table moving speed. It is a figure explaining a case.
- FIG. 14 is a diagram for explaining an MRI apparatus of Example 4.
- FIG. 1 is a block diagram showing the overall configuration of an MRI apparatus constituting the present invention.
- this MRI apparatus mainly includes a static magnetic field generation system 1, a gradient magnetic field generation system 2, a transmission system 3, a reception system 4, a signal processing system 5, a control system (sequencer 6 and CPU7).
- the static magnetic field generation system 1 generates a uniform static magnetic field in the space around the subject 8 (imaging space), and includes a permanent magnet system, a normal conduction system, or a superconducting system.
- the gradient magnetic field generation system 2 has, for example, three gradient magnetic fields that generate gradient magnetic field pulses in these three axial directions when the direction of the static magnetic field is the Z direction and the two orthogonal directions are the X direction and the Y direction. It comprises a coil 9 and a gradient magnetic field power source 10 for driving them. By driving the gradient magnetic field power supply 10, the gradient magnetic field pulses can be generated in the three axes of X, ⁇ , and Z, or the direction in which these are combined. The gradient magnetic field pulse is applied for specifying an imaging position in the subject 8 and for giving position information to an NMR signal generated from the subject 8.
- the transmission system 3 includes a high-frequency oscillator 11, a modulator 12, a high-frequency amplifier 13, and a high-frequency irradiation coil 14 for transmission.
- the RF pulse generated by the high-frequency oscillator 11 is modulated into a signal with a predetermined envelope by the modulator 12, amplified by the high-frequency amplifier 13, and applied to the high-frequency irradiation coil 14.
- the subject is irradiated with an electromagnetic wave (high frequency signal, RF pulse) that causes magnetic resonance.
- the high-frequency irradiation coil 14 is usually disposed in the vicinity of the subject.
- the reception system 4 includes a high-frequency reception coil 15 for reception, an amplifier 16, a quadrature detector 17, and an A / D conversion 18.
- the high frequency irradiation coil for transmission The NMR signal generated by the subject as a response to the RF pulse irradiated by 14 pulses is detected by the high frequency reception coil 15 for reception, amplified by the amplifier 16, and then the quadrature detector 17 is converted to a digital amount by A / D conversion l8 and sent to the signal processing system 5 as two series of collected data.
- the signal processing system 5 includes a CPU 7, a storage device 19, and an operation unit 20.
- Various signals such as Fourier transform, correction coefficient calculation, and image reconstruction are converted into digital signals received by the reception system 4 in the CPU 7.
- the storage device 19 includes a ROM 21, a RAM 22, an optical disk 23, a magnetic disk 24, and the like.
- a program for performing image analysis processing and measurement over time and an invariant parameter used for the execution are stored in the ROM 21 for all measurements
- the measurement parameters obtained in step 1 and echo signals detected by the receiving system are stored in the RAM 22 and the reconstructed image data is stored in the optical disk 23 and the magnetic disk 24, respectively.
- the operation unit 20 includes input means such as a trackball or mouse 25 and a keyboard 26, and a display 27 for displaying a GUI necessary for input and displaying processing results in the signal processing system 5. Information necessary for various processing and control performed by the CPU 7 is input via the operation unit 20. An image obtained by shooting is displayed on the display 27.
- the control system includes a sequencer 6 and a CPU 7, and includes the gradient magnetic field generation system 2, the transmission system 3, and the like described above. Controls the operations of the reception system 4 and signal processing system 5.
- the application timing of the gradient magnetic field pulse and RF pulse generated by the gradient magnetic field generation system 2 and the transmission system 3 and the acquisition timing of the echo signal by the reception system 4 are determined by a predetermined pulse sequence determined by the imaging method via the sequencer 6. Be controlled.
- the MRI apparatus includes a bed 28 on which a subject 8 is mounted, a magnet 29 that generates a static magnetic field around the subject 8, and a gradient magnetic field coil that generates a gradient magnetic field in an imaging space within the static magnetic field space. 9, a high frequency (RF) irradiation coil 14 that generates a high frequency magnetic field in the imaging space, and a high frequency receiving coil (RF probe) 15 that detects an NMR signal generated by the subject 8.
- RF radio frequency
- the MRI apparatus includes a gradient magnetic field power supply 10, an RF transmission unit 30, a signal detection unit 31, a monitor device 32, a bed control unit 33, a signal processing unit 34, a control unit 35, and a display unit 36.
- the gradient magnetic field coil 9 includes three gradient magnetic field coils of X, ⁇ , and Z, and generates a gradient magnetic field according to a signal from the gradient magnetic field power supply 10, respectively.
- the high frequency irradiation coil 14 generates a high frequency magnetic field in accordance with a signal from the RF transmission unit 30.
- the output signal of the high-frequency receiving coil 15 is detected by the signal detection unit 31, processed by the signal processing unit 34, and converted into an image signal by calculation.
- the image is displayed on the display unit 36.
- the gradient magnetic field power source 10, the RF transmission unit 30, and the signal detection unit 31 are controlled by the control unit 35.
- the control time chart is generally called an imaging pulse sequence.
- the main constituent material of the subject 8 proton
- the spatial distribution of proton density and the relaxation state of the excited state are imaged, thereby imaging the human head, abdomen, Capable of imaging two-dimensional or three-dimensional imaging of limbs or blood vessels (blood, blood flow)
- the bed 28 includes a table 37 for a subject to lie down and a drive mechanism 38 for the table 37.
- the drive mechanism 38 moves the table 37 in the parietal foot (H—F) direction (arrow 39 in FIG. 2) of the subject 8 under the control of the bed control unit 33.
- the bed control unit 33 links the position of the subject 8 while matching the execution of the imaging pulse sequence under the control of the control unit 35. Continue to move.
- This realizes a moving bed imaging method that performs imaging while continuously moving the subject.
- the moving speed of a typical table 37 is 0.5 cmZs to 2.0 cmZs in the moving speed from the top of the head toward the foot.
- the monitor device 32 is a device for monitoring the pulsation or pulse wave, cardiac radio wave, and respiratory motion of the subject 8, and converts the biological information into an electric signal or an optical signal and sends it to the control unit 35 in real time. .
- FIG. 3 shows a specific example of the signal detection system in the first embodiment.
- 15 is a high-frequency receiving coil.
- Reference numeral 40 denotes a preamplifier (corresponding to 16 in FIG. 1) connected to the high-frequency receiving coil 15.
- Reference numeral 41 denotes an AD conversion / quadrature detection circuit (corresponding to 17 and 18 in FIG. 1) connected to the preamplifier 40 and disposed inside the signal detection unit 31.
- 42 is a Fourier transform unit (built in 5 and 7 in Fig. 1) connected to the output of the AD conversion / orthogonal detection circuit 41 and arranged inside the signal processing unit 34 to obtain an image by Fourier transform.
- . 43 is an arithmetic unit (incorporated in 5 and 7 in Fig. 1) that is arranged in the signal processing unit 34 and connected to the Fourier transform unit 42, and performs post-processing, synthesis processing, etc. of the images obtained by them. .
- FIG. 4 (a) is a view of the side of the subject lying on the outline of the apparatus configuration in this embodiment.
- the scale 44 is fixed to the table 37.
- Reference numeral 45 denotes an imaging section when the subject is imaged by an imaging sequence described later.
- the scale 44 has a rectangular parallelepiped shape, and is arranged so that its longitudinal direction is the moving direction of the table.
- the scale 44 is a bar-shaped member (4 cm X 4 cm X 200 cm as an example) formed of a non-magnetic material that generates NMR signals, and is cut into a comb tooth shape along the longitudinal direction. Alternatively, it is configured such that a substance that gives a strong resonance signal and a substance that makes a resonance signal weak or no! / Are alternately arranged.
- the distance between the comb teeth (or the distance between the material layers that strongly generate NMR signals) is designed in advance according to the moving speed of the table 37.
- the echo signal of the scale 44 is obtained by a navigator sequence in which the table moving direction is the reading gradient magnetic field application direction, and an NMR signal intensity pattern representing the shape of the comb teeth of the scale 44 is obtained.
- the navigator echo sequence executed here is a sequence in which areas 47 and 48 are excited on the captured cross-sectional image 46 in FIG. Also obtained By performing one-dimensional Fourier transform on the navigator echo in the longitudinal direction of the scale 44, an NMR signal intensity pattern (one-dimensional profile) in that direction is obtained as shown by the graph 50 in FIG.
- the one-dimensional profile 51 obtained on the graph 50 corresponds to the shape of the substance that generates the NMR signal constituting the scale 44, and has, for example, a comb-like shape as shown in FIG. 4 (c).
- the shape of one comb's teeth is a sharp triangular shape.This is due to the effect of the edge being rounded by the partial volume effect, and the width of the comb's teeth is wider. Is considered to be trapezoidal signal with rounded edges
- the position where the scale 44 is attached to the table 37 is the position where the scale 44 does not interfere with the imaging of the subject 8, and the navigator sequence for acquiring the echo of the scale 44 is executed. By doing so, it is attached at a position that does not unnecessarily excite the subject. For example, it is preferable to attach to the left or right side of the table 37.
- FIG. 5 a generally well-known 3D gradient echo sequence will be described with reference to FIG. 5 as an example of a typical imaging sequence for acquiring a subject image.
- the high-frequency pulse 52 irradiated by the high-frequency irradiation coil 14 and the slice selection gradient magnetic field pulse 53 generated by the gradient coil 9 are simultaneously applied to a predetermined slice (FIG. 4 (a)).
- the magnetic field of 45) is excited to a predetermined flip angle.
- an echo signal 57 generated in the vicinity of the echo time TE is applied while applying a readout gradient magnetic field pulse 56. Acquired by the receiving coil 15.
- This sequence is repeated at a repetition time (TR) 59 to acquire echo signals necessary for reconstruction of a single 3D image.
- TR repetition time
- the slice Z phase encoding gradient magnetic field pulse 54Z55 is changed for each repetition 59 to give different slice Z phase encoding.
- each echo signal is sampled by the signal detector 31.
- 128, 256, 512 or 1024 sampling data can be converted into a time series signal.
- the signal processing unit 34 performs a three-dimensional Fourier transform on the time series signal to create one 3D MR image.
- the slice direction s, the phase encoding direction p , and the reading direction r are forces that can be set in any direction.
- the xyz axis (y axis: body shown in FIG. 4 (a) Axial direction, X and z axes are set in the direction that is slightly different from the direction perpendicular to y axis.
- a navigator sequence for acquiring a subject image while executing the navigator echo and grasping the position of the table 37 by the MRI apparatus according to the present embodiment will be described.
- a navigator sequence is executed at a predetermined timing, navigator echoes are acquired, and the table moving position is continuously monitored.
- the execution timing of the navigator sequence is between the imaging panoramic sequences for acquiring images of the subject (for example, after acquiring the number of echo signals necessary for reconstruction of one image), or the TR of the imaging pulse sequence (for example, 10 ms). ) Or a predetermined number of times (for example, every 10 TR) (for each segment).
- FIG. 6 A sequence diagram based on the navigator sequence will be described with reference to FIG.
- the navigator echo acquisition area 49 in Fig. 4 (b)
- the navigator echo acquisition area 49 in Fig. 4 (b)
- the navigator echo acquisition area 49 in Fig. 4 (b)
- the navigator echo acquisition area 49 in Fig. 4 (b)
- the 90 degree RF pulse 61 and the gradient magnetic field pulses 62 and 63 in the X direction for slice selection were applied simultaneously, and the high-frequency irradiation coil 14 and the gradient magnetic field coil 9 were applied simultaneously.
- the magnetization of the first slice 47 set in advance is excited by 90 degrees.
- the 180 ° RF pulse 64 and gradient magnetic field pulses 65 and 66 for slice selection are simultaneously applied, so that the magnetic field of the preset second slice 48 is 180 °.
- an echo signal 69 is generated from a columnar region 49 where the first slice 47 and the second slice 48 intersect, and this is generated. Obtained by the high-frequency receiving coil 15.
- a one-dimensional profile 51 is obtained as shown in the graph 50 of FIG. 4 (c). . Obtained
- the one-dimensional profile 51 shows the shape of the substance that generates the NMR signal constituting the scale 44, in this case the shape of the teeth of a comb.
- the resolution of typical profile data is about 256 points Z256 mm. Therefore, the position resolution per data is lmm.
- the resolution can be increased to the resolution of 1Z10 by reading the edge position of the edge or the pixel value at the edge position from the graph 50 or by performing simple data processing. Therefore, the typical position accuracy of the position monitoring method according to the scale 44 of the present embodiment is 0.1 mm.
- the moving speed of the table 37 is typically about 0.5 cmZs to 2.0 cmZs, for example, assuming that the moving speed is 2 cmZs and the speed fluctuation rate is about 5%, a single navigator for each Is If this is obtained, the position variation of ImmZs between echoes will be measured.
- the edge processing detects at a resolution of 1Z10, it is possible to accurately detect table position fluctuations with a position detection accuracy of 0.1 mm, so the table position measurement accuracy using the scale 44 of this embodiment Therefore, it can be said that the moving bed imaging method for continuously moving the table 37 is sufficiently accurate.
- the navigator echo acquisition interval can be arbitrarily set after the imaging pulse sequence ends, every TR (eg, 10 ms), or every predetermined number of TRs (eg, 10) (each segment). Considering the purpose of detecting 37 speed fluctuations (or position fluctuations), it may be about Is (or 0.1s-2s). Since the time required to execute a typical navigator sequence as described above is about 20 ms, the extent to which the navigator sequence extends the imaging pulse sequence is 2% (or 20% —1%) In practice, the imaging time is not extended and is negligible.
- the interval between the comb teeth of the scale 44 is set longer than the distance that the table 37 moves between the navigator echoes, so that the adjacent comb teeth can be distinguished from each other and the table 37 moves. It is possible to prevent an error in calculating the quantity or speed. For example, if the movement amount of the table 37 per acquisition interval of the navigation echo is the same as the interval of the comb teeth, the one-dimensional profile will be the same even though the table 37 is moving. It is better to avoid such a comb tooth arrangement interval. However, the shape of the adjacent comb teeth In other words, if the width of the combs can be changed to prevent confusion between adjacent comb teeth, the amount of movement of the table 37 can be calculated accurately even if the interval between the comb teeth is shortened.
- the scale 44 when the scale 44 is configured such that the signal intensity (amplitude) of the acquired one-dimensional profile changes periodically, or in Fig. 7 (b) As shown in Fig. 7 (c), the peak width of the one-dimensional profile changes periodically when the scale 44 is configured such that the interval between the signal intensity peaks of the one-dimensional profile changes periodically. If the scale 44 is configured so that the adjacent peaks (comb teeth) can be distinguished by detecting the amplitude, peak interval, and peak width, respectively, the interval between the comb teeth Can be arbitrarily set shorter than the table moving distance per 1TR. For example, if the amplitude, peak interval, and peak width change period in Figs.
- examples of the configuration of the scale 44 in which the signal intensity (amplitude) is periodically changed include those in which the length of the comb teeth is periodically changed, and the generation of NMR signals. It is possible to use a material in which the concentration of the substance to be periodically changed for each comb tooth.
- a configuration in which the interval between the comb teeth (in the y-axis direction) is periodically changed can be used.
- a structure in which the thickness of the comb in the y-axis direction is periodically changed can be used.
- the navigator sequence for monitoring the scale 44 emits a 90 degree RF pulse 61 and a 180 degree RF pulse 64. Therefore, if the navigator sequence is executed immediately before the imaging sequence, the navigator sequence is acquired by the imaging sequence.
- the signal intensity of the echo signal 57 decreases at the portions of the irradiation slices 47 and 48 in FIG. 4 (b). For this reason, if the slices 47 and 48 overlap with the portion where the subject 9 exists in the photographed cross-sectional image 46 of FIG. 4B, a dark band artifact occurs. Therefore, as shown in the image display example 46 in FIG.
- the slices 47 and 48 are removed from the position of the subject, and the navigator echo acquisition area 49 of the scale 44 is arranged at a position shifted from the subject 8. good. By doing so, it is possible to acquire the echo data from the region 49 by irradiating the slices 47 and 48 with the RF pulse in the navigator sequence that does not affect the cross-sectional image of the subject 8.
- the actual shooting position has a deviation due to the effect of fluctuations in the motor current due to the speed error and position error of the table.
- what is represented by 84 or 85 in Fig. 8 indicates that the shooting sequence and the navigator sequence are executed alternately.
- the calculation of the position error or speed error of the table shown in FIG. 8 is specifically performed by the following method.
- the first method when the table is accurately moved to a preset position, the position of the comb teeth on the scale fixed to the predetermined position of the table is obtained as a one-dimensional profile.
- This is a method in which the difference between the position detected by the actually obtained one-dimensional profile and the position detected by the storage device is obtained.
- the second method for example, when the entire image of the subject is imaged by the moving table imaging method or the multi-station imaging method while moving the imaging range from the head of the subject to the leg, How to memorize a one-dimensional profile of a part of the scale and how to measure the one-dimensional profile of the scale at the downstream abdomen and legs when the table movement is accurate based on this
- the position error or the speed error is calculated based on how much the position of the comb tooth in the predicted one-dimensional profile differs from the actual position of the comb tooth.
- the MRI apparatus having the above-described configuration and its method can detect navigator echo and measure the table position and speed in real time.
- the force measurement result is displaced from the originally set position and speed.
- the front end system (measurement control system) of the MRI apparatus is immediately subjected to feedback or feedforward correction processing.
- the slice to be excited may be excited by adjusting the frequency of the RF excitation pulse and the phase of the RF excitation pulse in consideration of the positional deviation amount in the table 37. As a result, the displacement of the excitation slice due to the displacement of the table 37 can be compensated.
- the imaging sequence is performed as it is to acquire the echo signal, but a specific offset is added to the reference frequency at the time of acquiring the echo signal. Or adding a specific phase to the acquired signal to correct the position in the readout direction or the phase encoding direction.
- the positional deviation can be compensated at the time of acquisition or by correction processing of the acquired signal.
- the second method is misaligned during signal processing after acquisition or after acquisition without having to change the frequency or phase of the RF excitation pulse of the imaging pulse sequence in the middle of the imaging sequence. There is an advantage that it is compensation.
- the bed control unit 33 is feedback-controlled to correct the position of the table 37, so that the position of the table 37 is further increased by the error. It is to avoid having.
- the above three correction methods measure and process position fluctuations with the MRI front end, so that the results can be used immediately in the same front end system to compensate for position and speed fluctuations in real time. Is easy. However, it is necessary to pay attention to the type of imaging sequence executed when taking an image of the subject, etc., as to which of the above three methods to correct position variation is used. .
- the method of changing the reference frequency in the second method is considered to be a useful technique when the direction of the read gradient magnetic field in the imaging sequence is the moving direction of the table.
- the method of covering a specific phase is, for example, when the table position is shifted in the direction of slice encoding or phase encoding, and the strength of the slice encoding gradient magnetic field (or phase encoding gradient magnetic field) is too high. Since there is an error in the frequency that rotates while the printing force [] is too small, the phase of the entire echo shifts by the time integral of the error, so the idea is to correct that amount. It is good if you can capture a specific phase. Which correction method is used depending on which shooting sequence is executed as appropriate Needless to say, it is necessary to consider this.
- the difference between the navigator echo of the present embodiment and the conventional navigator echo is that the table moving speed is detected because the movement of the human body is detected.
- one of the conventional techniques using the navidata echo is a technique that gates whether the obtained echo data is used for image reconstruction according to the detected position of the diaphragm.
- the method according to the present embodiment is a technique for detecting the position / velocity error of the table and correcting it by several methods, it is different from the conventional method for detecting the body movement (respiration movement etc.) of the human body.
- the scale 44 attached to the force table 37 described in the example in which only one type of scale 44 is fixed to the table 37 can be configured to be replaceable. Accordingly, for example, a plurality of types of scales 44 having different intervals between comb teeth and a plurality of different types of scales 44 as shown in FIGS.
- the optimum scale 44 according to the type of sequence and the table moving speed can be selected and the table 37 can be attached.
- the method of selecting the scale according to the type of sequence is different from the method in which the TR of the table is constant and the sequence TR is different, for example.
- the scale 44 is arranged in parallel to the moving direction (y-axis) of the table 37.
- the direction in which the scale 44 is arranged is not always the same as the table 37. It may not be parallel to the moving direction (y-axis direction).
- a scale is placed parallel to the X-axis direction from 91a in Fig. 9 (a) at predetermined intervals in the movement direction (y-axis direction) of the table 37, the positional accuracy of the table in the X-axis direction is detected. it can.
- This technology is particularly useful for open MRI systems in which a pair of magnets are placed facing each other. Because open MRI equipment In this case, as shown in FIG.
- FIG. 9 (c) a sequence diagram as shown in FIG. 9 (c) may be used.
- the application direction of the readout gradient magnetic field is the X-axis direction (Gx)
- the area where the echo signal is collected at that time is the scale 91a ⁇ ! ⁇ Includes the area that was placed.
- the table is moved in the vertical direction (z) with the open-type MRI device shown in Fig.
- the longitudinal force axis direction It is thought that the navigator eco-sequence should be executed so that the z-axis direction is the readout gradient magnetic field application direction.
- the force described above is divided into a plurality of regions (stations), and the table 37 is stopped at each station. Even in the multi-station imaging method for performing imaging, position detection at each station can be performed using the scale of this embodiment.
- the MRI apparatus of Example 2 is configured to acquire the subject image while grasping the position of the table 37 by navigator echo as in Example 1, but unlike the first embodiment, the MRI apparatus is fixed to the table 37.
- the structure of the subject 8 itself is used as an index for grasping the position without using a scale.
- FIG. 10 (a) is a view of the lateral force of the subject who has laid the outline of the apparatus configuration in the present embodiment.
- the navigator echo acquisition area 101 is set inside the subject 8 as shown in FIG. 10 (a), and the navigator echo signal is acquired by the same navigator sequence as in the first embodiment.
- FIG. 10B shows a photographed cross-sectional image 102, and a navigator echo acquisition area 101 is arranged inside the subject 8 inside the subject 8.
- the echo signal is A / D converted into a time-series signal by the signal detection unit 31, and is subjected to a one-dimensional Fourier transform in the y-axis direction (body axis direction) by the signal processing unit 34 to obtain a graph as shown in FIG.
- the obtained one-dimensional profile 104 has a shape reflecting the structure in the subject 8. This As the table 37 moves in the y-axis direction, the profile of the image shifts momentarily in the y-axis direction, and the profile acquired by the next navigator echo is, for example, the one-dimensional profile 105 of FIG. It becomes like this. Therefore, by calculating the shift amount in the y-axis direction between profiles 104 and 105, the distance traveled by table 37 is calculated for the elapsed time from the acquisition of the echo signal of profile 104 to the acquisition of the echo signal of profile 105. Can be obtained simply and accurately.
- the shift amount of the one-dimensional profile represented by 104 and 105 can be easily obtained by obtaining a correlation while shifting both profiles.
- feature points appearing on the one-dimensional profile can be used as an index for calculating the shift amount.
- the position of the top of the head, the diaphragm in the chest imaging, and the vertebra in the spine imaging can be used as an index for calculating the shift amount.
- the edge obtained at the knee joint and elbow joint can be used as an index.
- a scanogram that is used as a positioning image of the subject is photographed in advance, thereby grasping and storing the relative positional relationship between the characteristic portions of the subject and storing the information.
- the table movement error may be obtained by determining how much the characteristic part on the one-dimensional profile obtained by actually moving the table differs from the case where the table movement is accurate. It is considered good.
- the moving distance of the table 37 can be monitored with high accuracy without using a scale. Further, since no scale is used, there is an advantage that the cross section of the scale is not displayed on the photographed cross-sectional image 102.
- navigator echoes may be acquired by the navigator sequence and used for grasping the position and speed of the table.
- the signals acquired in the imaging sequence It is also possible to use it for grasping the position and speed of the.
- the imaging sequence shown in FIG. 5 when the direction of the readout gradient magnetic field 56 is set to coincide with the moving direction (y-axis direction) of Table 37, and the encoding amount by the phase encoding gradient magnetic field is 0
- the acquired echo signal 57 is used to determine the table position and speed. Use for.
- the obtained echo signal is converted into a time-series signal by the signal detection unit 34, and then subjected to a one-dimensional Fourier transform in the y-axis direction (body axis direction) by the signal processing unit 34, whereby 104 and 105 in FIG.
- a one-dimensional profile similar to that shown in FIG. it is possible to acquire a profile that reflects the structure in the subject 8 without executing the navigator sequence, so that it is possible to acquire the amount of table movement without extending the imaging time depending on the execution time of the navigator sequence.
- ⁇ ⁇ effect Example 3
- the object image is acquired while grasping the position of the table 37 by navigator echo as in the first embodiment.
- the phase contrast Monitor the table movement position continuously using the PC method.
- FIG. 11 (a) is a view of the outline of the apparatus configuration in the present embodiment as viewed from the side of the subject lying on the side.
- the table 37 is provided with a scale 111 made of a substance that generates an NMR signal.
- the scale in Example 3 has a prismatic shape that is uniform in the longitudinal direction as in Example 1, but not in a comb shape.
- the movement of the table 37 is obtained by acquiring an echo signal (hereinafter referred to as a navigator PC echo) for the scale 111 by a one-dimensional PC sequence as shown in FIG. Measure the amount.
- the acquisition area of the navigator PC echo is set so as to include the scale 113 as indicated by 111 in the photographed cross-sectional image 112 of FIG.
- FIG. 12 shows a sequence diagram in the present embodiment. According to FIG. 12, it is similar to the navigator sequence of FIG. 6 described in Example 1, except that the negative gradient magnetic field pulse 121a and the positive gradient magnetic field pulse 121b are velocity encoded in the readout gradient magnetic field in the y-axis direction. This is different from the navigator sequence in Fig. 5 in that it is added as a pulse (primary dephase pulse) 121.
- the positive and negative gradient magnetic field pulses 121a and 121b are set so that the absolute value of the product of the gradient magnetic field pulse intensity and the application time is equal.
- the phase rotation amount generated in the scale 121 is opposite in direction and equal in magnitude when the target substance is stationary.
- phase rotation amounts applied by the positive and negative gradient magnetic field pulses 121 cancel each other, so that the acquired echo signal 122 has a phase in the y-axis direction of 0. is there.
- the phase rotation amount generated by the positive and negative gradient magnetic field pulses 121 is different, so the phase component in the y-axis direction of the detected echo signal does not cancel out, It is not zero.
- the phase rotation of the echo signal is proportional to the speed of the table 37.
- the navigator PC echo can be used to measure the moving speed of the table by detecting the amount of phase rotation in the y-axis direction of the detected echo signal, and by calculating the difference between this value and the set value, Movement error can be detected and used for correction.
- the phase rotation amount in the y-axis direction of the navigator PC echo is detected by the signal processing unit 34.
- the detected phase rotation amount is, for example, as shown in the graph 114 in FIG.
- the vertical axis represents the phase rotation amount, which is proportional to the table moving speed.
- the horizontal axis is the position in the y-axis direction, but the scale 113 has a single velocity, so it has a flat profile. If the amount of phase rotation detected from the navigator PC echo performed later increases from 115 to 116 with time as shown in graph 114, the speed at this time may have fluctuated (increased). It can be detected.
- the moving speed of the table to be detected is usually about 1-5 cmZ. PC sequence flow encoding is determined based on this.
- the gradient magnetic field strength G and A flow-encoded gradient magnetic field that satisfies the gradient magnetic field application time t may be applied.
- Equation 1 ⁇ is each frequency, ⁇ is the magnetic rotation speed, G is the gradient magnetic field strength, V is the table moving speed, and t is the positive and negative gradient magnetic field application time. is there.
- a cross section of the scale 111 is displayed at the lower right of the image together with the tomographic image 112 of the subject 8 as shown by the captured cross sectional image 112 in FIG.
- echo may be obtained by flow encoding, and this may be used for detecting the moving speed of the table.
- a sequence can be represented graphically as shown in FIG. More specifically, the example of FIG. 13 is an example in which the sequence is executed while applying five RF irradiation pulses 131a to 131e in order from the left.
- the first, second, and fourth sequences from the left are the forces that acquire the echo signal for magnetic resonance imaging by applying a phase encoding gradient magnetic field for magnetic resonance imaging.
- the gradient magnetic field for the phase contrast (PC) method that is, two gradient magnetic field pulses with positive and negative polarities and the same absolute value of the product of intensity and application time are Applied.
- PC phase contrast
- the example in Fig. 13 has the advantage that navigator PC echoes can be incorporated with only a slight change in the method of applying the gradient magnetic field in the phase encoding direction between normal imaging sequences.
- Example 4 the configuration is such that the table moving position is continuously monitored using the phase contrast (PC) method as in Example 3, but unlike Example 3, the test is performed instead of the scale.
- the structure itself of the body 8 is used to grasp the phase amount. More specifically, it is an example in which the part of the brain parenchyma, skeletal muscle, etc. that does not move due to respiratory heartbeat etc. is used for phase amount measurement, and the resulting force also obtains the table moving speed .
- FIG. 14 (a) is a view of the outline of the apparatus configuration in the present embodiment as viewed from the side of the subject lying on the side.
- the navigator PC echo acquisition area 141 is set in the subject 8 as shown in FIG. 14 (a), and the navigator PC echo is acquired by the sequence shown in FIG. FIG. 14 (b) shows a photographed cross-sectional image 142, and a navigator echo acquisition area 141 is arranged inside the subject 8.
- the profile of the phase amount acquired by the navigator PC echo is shown as 144 in graph 143 in Fig. 14 (c).
- the vertical axis represents the phase amount (that is, the speed of the substance constituting a part of the subject), and is equal to the moving speed of the table 37 in a part of the subject that does not move.
- the horizontal axis is the position in the y-axis direction.
- the phase amount profile obtained by the navigator-one PC echo measured after a predetermined time is as shown in graph 145, the position fluctuations that occurred between the two navigator-PC echoes (horizontal direction) It is possible to detect that the speed also fluctuates (shift in the vertical direction).
- This vertical shift amount can be obtained by using the value of the part with no movement as an index.
- an average value (value 144a, value 145a) of the phase amount (speed) for each measurement is obtained by the signal processing unit 34, and the speed change amount can be easily detected by taking the difference between them.
- the movement error of the table 37 can be measured with a navigator PC even without using a scale, and can be used for correction.
- the tomographic image acquired in the imaging sequence for example, only the tomographic image of the subject 8 is displayed as shown in the imaging cross-sectional image 142 of FIG. 14B, and the cross section of the scale is not displayed.
- the phase encoding for image acquisition is not added in the normal imaging sequence as shown in FIG. 13, and instead, the echo is acquired by Floen coding. This may be used for detecting the moving speed of the table.
- the present invention is not limited to the above-described embodiments, and does not depart from the gist of the present invention. It can be implemented with various modifications.
- the force by which the position or velocity of the table is measured using the magnetic resonance signal detected by the navigator sequence or navigator PC echo sequence is not limited to this.
- the method using the encoder since the method using the encoder is considered to be complicated and expensive, the method using the magnetic resonance signal has an advantage that the MRI apparatus can be provided at low cost.
- two control means such as a CPU
- the control means is a pulse Since it can be used for both sequence control and encoder control, in that sense, there is an advantage that the computer implementation can be simplified.
- the method using an encoder has the advantage that the encoder itself may be a noise source, but the method using a magnetic resonance signal has the advantage that an unnecessary noise source may not be generated.
- a method of adding an offset to the reference frequency, adding a specific phase to the acquired signal (second method), or a table position or velocity deviation is detected.
- the force for which the method of feeding back to the bed control unit 33 (third method) was shown The present invention is not limited to this.
- the arrangement position may be shifted in consideration of the influence of the table position and the speed deviation.
- the force two-dimensional selective excitation method using the spin echo method in which the 90 ° pulse and the 180 ° pulse are first applied is used. It is also possible to use the method.
- the above example shows the force only when detecting the position of the table or the deviation of the speed by one scale in one shooting. Two scales installed simultaneously in one shooting (even if both are parallel) Or vertical)) It is considered that the above-mentioned problem that adjacent teeth are detected in a mixed manner can be suitably dealt with.
- Example 3 and Example 4 above in the navigator PC sequence, positive and negative gradient magnetic field pulses with the same absolute value of the product of gradient magnetic field pulse intensity and application time are applied to detect the moving speed of the table.
- the present invention is not limited to this.
- the moving speed of the table can be detected, for example, to generate a diffusion weighted image. Is possible.
- the shape of the scale does not have to be a rectangular parallelepiped.
Landscapes
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- High Energy & Nuclear Physics (AREA)
- Biophysics (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Pulmonology (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Power Engineering (AREA)
- Physiology (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
前記被検体を撮影空間へ配置するための被検体搭載手段と、前記被検体搭載手段を任意の方向へ連続的あるいはステップ毎に移動させることにより、前記被検体を任意の方向へ移動させるための移動手段と、前記撮影空間に静磁場及び傾斜磁場及び高周波磁場を発生させ、前記被検体の所望の位置を励起する磁場発生手段と、前記被検体から発生する磁気共鳴信号を検出する信号検出手段と、前記移動手段と前記磁場発生手段と前記信号検出手段を制御して、前記被検体を予め設定された所定の位置へ所定の速度で連続的にあるいはステップ毎に移動させながら、前記被検体の磁気共鳴画像を得る制御をする制御部とを備えた磁気共鳴イメージング装置において、前記位置あるいは速度の設定値に対する誤差を検出する移動誤差検出手段と、前記位置移動検出手段により検出された誤差を補正する補正手段を備える。
Description
明 細 書
磁気共鳴イメージング装置
技術分野
[0001] 本発明は、磁気共鳴イメージング装置 (以下、 MRI装置という。)に係わり、特に、テ 一ブルを移動させながら被検体の広い部位を撮像する撮像法における画質改善技 術に関する。
背景技術
[0002] MRI装置は、均一な静磁場内に置かれた被検体に電磁波を照射したときに、被検 体を構成する原子の原子核に生じる核磁気共鳴 (以下、 NMRという。)現象を利用し、 被検体からの核磁気共鳴信号 (以下、 NMR信号という。)を検出し、この NMR信号を使 つて画像を再構成することにより、被検体の物理的性質をあらわす磁気共鳴画像 (以 下、 MR画像という。)を得るものである。
[0003] MRIにお!/、て、被検体をテーブルの上に載せて、該テーブルを MRI装置のガントリ 内で移動させながら被検体の広 、範囲又は全身を撮影する技術が知られて 、る。こ のような技術では、テーブルの動力し方に次の 2つがある。一つは、前記広い範囲又 は全身の領域を複数のブロックに分割し、各ブロック毎にテーブルをステップ移動し て撮影するマルチステーション撮像方法である (例えば、特許文献 1参照。 )oもう一つ は、テーブルを連続的に動力しながら同時に撮影を行い、被検体の広い範囲又は全 身を撮影するムービングテーブル撮像方法である (例えば特許文献 2参照。;)。
特許文献 1:米国特許第 6311085号公報
特許文献 2:特開 2004-611号公報
[0004] し力しながら、本発明者らは上記従来技術を検討した結果以下の問題点を見出し た。
すなわち、上記従来技術において、テーブルをステップ毎、あるいは連続的に移動 させて撮像する場合、テーブルの移動精度が低い場合には、本来意図した位置とは 異なる被検体上の位置で取得した信号のデータをフーリエ変換等して被検体の画像 を再構成するため、ムービングテーブル撮像方法の場合画像全体に流れ状アーチ
ファクトが生じる問題があり、マルチステーション撮像方法の場合には、テーブルの移 動量が多すぎた場合には隣合うステーション間で隙間 (磁気共鳴信号を得られなかつ た空間的領域)が生じるという問題がある。特許文献 3では、移動する被検体を撮像 する場合に得られる画像のアーチファクトを、ナビゲーターエコーを用いて補正する 技術が開示されている力 テーブルの移動精度の低さ (本来意図した場所と異なる被 検体上の位置のデータを取得した場合にその誤差)をどのように検出して画質劣化を 低減するかに関する技術は開示されていない。
特許文献 3:特開平 8-173396号公報
発明の開示
[0005] 本発明の目的は、被検体を載せたテーブルをステップ毎あるいは連続的に移動さ せながら撮像する MRI装置あるいは方法において、テーブルの移動精度の低さによ る画質劣化を低減することにある。
[0006] 本発明によれば、被検体を搭載して、前記被検体を撮影空間へ配置するための被 検体搭載手段と、前記被検体搭載手段を任意の方向へ連続的ある 1、はステップ毎 に移動させることにより、前記被検体を任意の方向へ移動させるための移動手段と、 前記撮影空間の周囲に配置され、前記撮影空間に静磁場及び傾斜磁場及び高周 波磁場を発生させ、前記被検体の所望の位置を励起する磁場発生手段と、前記撮 影空間の周囲に配置され、前記被検体から発生する磁気共鳴信号を検出する信号 検出手段と、前記信号検出手段で検出した磁気共鳴信号に信号処理を行い、前記 被検体の磁気共鳴画像を生成する信号処理手段と、前記移動手段と前記磁場発生 手段と前記信号検出手段と前記信号処理手段を制御して、前記被検体を予め設定 された所定の位置へ所定の速度で連続的にあるいはステップ毎に移動させながら、 前記被検体の磁気共鳴画像を得る制御をする制御部とを備えた MRI装置において、 前記位置あるいは速度の設定値に対する誤差を検出する移動誤差検出手段と、 前記位置移動検出手段により検出された誤差を補正する補正手段を備えたことを特 徴とする MRI装置が提供される。
図面の簡単な説明
[0007] [図 1]本発明を構成する MRI装置の全体構成を示すブロック図である。
[図 2]実施例 1における MRI装置の具体的構成を示す図である。
[図 3]実施例 1における信号検出系の具体例を示す図である。
[図 4]実施例 1のより詳細な説明を示す図である。
[図 5]被検体画像取得のための典型的な撮像シーケンスの一例である 3Dダラディエ ントエコーシーケンスを示す図である。
[図 6]ナビゲーターシーケンスによるシーケンスを説明する図である。
[図 7]取得した一次元プロファイルの信号強度 (振幅)が周期的に変化するようにスケ ール 44を説明する図である。
[図 8]実施例 1のナビゲーターエコーにより取得されたテーブル 37の位置と、テーブル の移動誤差がないとした場合にテーブル位置との関係の一例を装置座標系でグラフ に示した図である。
[図 9]テーブルの移動方向 (y軸方向)に所定の間隔で、 X軸方向に平行にスケールを 配置する場合の説明図である。
[図 10]実施例 2の MRI装置を説明する図である。
[図 11]実施例 3の MRI装置を説明する図である。
[図 12]実施例 3のシーケンス図を説明する図である。
[図 13]通常の撮像シーケンスの一部において画像取得のための位相エンコードを付 与しないで、その代わりに、フローエンコードして、エコーを取得し、これをテーブル の移動速度検出のために用いる場合を説明する図である。
[図 14]実施例 4の MRI装置を説明する図である。
発明を実施するための最良の形態
[0008] 図 1は、本発明を構成する MRI装置の全体構成を示すブロック図である。図 1に示す ように、この MRI装置は、主として、静磁場発生系 1と、傾斜磁場発生系 2と、送信系 3 と、受信系 4と、信号処理系 5と、制御系 (シーケンサ 6と CPU7)とを備えている。
静磁場発生系 1は、被検体 8の周りの空間 (撮影空間)に均一な静磁場を発生させる もので、永久磁石方式、常電導方式或いは超電導方式等の磁石装置からなる。
[0009] 傾斜磁場発生系 2は、例えば静磁場の方向を Z方向とし、それと直交する 2方向を X 方向, Y方向とするとき、これら 3軸方向に傾斜磁場パルスを発生する 3つの傾斜磁場
コイル 9と、それらをそれぞれ駆動する傾斜磁場電源 10とからなる。傾斜磁場電源 10 を駆動することにより、 X, Υ, Zの 3軸あるいはこれらを合成した方向に傾斜磁場パル スを発生することができる。傾斜磁場パルスは、被検体 8における撮像位置の特定の ために、そして、被検体 8から発生する NMR信号に位置情報を付与するために印加さ れる。
[0010] 送信系 3は、高周波発振器 11と、変調器 12と、高周波増幅器 13と、送信用の高周波 照射コイル 14とから成る。高周波発振器 11が発生した RFパルスを変調器 12で所定の エンベロープの信号に変調した後、高周波増幅器 13で増幅し、高周波照射コイル 14 に印加することにより、被検体を構成する原子の原子核に核磁気共鳴を起こさせる電 磁波 (高周波信号、 RFパルス)が被検体に照射される。高周波照射コイル 14は、通常 、被検体に近接して配置されている。
[0011] 受信系 4は、受信用の高周波受信コイル 15と、増幅器 16と、直交位相検波器 17と、 A/D変翻 18とから成る。送信用の高周波照射コイル 14カゝら照射された RFパルスの 応答として被検体が発生した NMR信号は、受信用の高周波受信コイル 15により検出 され、増幅器 16で増幅された後、直交位相検波器を 17介して A/D変 l8によりデ ジタル量に変換され、二系列の収集データとして信号処理系 5に送られる。
[0012] 信号処理系 5は、 CPU7と、記憶装置 19と、操作部 20とから成り、 CPU7において受信 系 4が受信したデジタル信号にフーリエ変換、補正係数計算、画像再構成等の種々 の信号処理を行う。記憶装置 19は、 ROM21, RAM22,光ディスク 23、磁気ディスク 24 等を備え、例えば、経時的な画像解析処理および計測を行うプロプラムやその実行 にお 、て用いる不変のパラメータなどを ROM21に、全計測で得た計測パラメータや 受信系で検出したエコー信号などを RAM22に、再構成された画像データを光デイス ク 23や磁気ディスク 24にそれぞれ格納する。操作部 20は、トラックボール又はマウス 2 5、キーボード 26などの入力手段と、入力に必要な GUIを表示するとともに信号処理 系 5における処理結果などを表示するディスプレイ 27とを備えている。 CPU7が行う各 種処理や制御に必要な情報は、操作部 20を介して入力される。また撮影により得ら れた画像はディスプレイ 27に表示される。
[0013] 制御系は、シーケンサ 6と CPU7とから成り、上述した傾斜磁場発生系 2、送信系 3、
受信系 4および信号処理系 5の動作を制御する。特に傾斜磁場発生系 2および送信 系 3が発生する傾斜磁場パルスおよび RFパルスの印加タイミングならびに受信系 4に よるエコー信号の取得タイミングは、シーケンサ 6を介して撮影方法によって決まる所 定のパルスシーケンスにより制御される。
実施例 1
[0014] 次に、実施例 1における MRI装置の具体的構成について図 2を用いて説明する。
図 2において、この MRI装置は、被検体 8を搭載するベッド 28と、被検体 8の周囲に 静磁場を発生する磁石 29と、静磁場空間内の撮像空間に傾斜磁場を発生する傾斜 磁場コイル 9と、撮像空間に高周波磁場を発生する高周波 (RF)照射コイル 14と、被検 体 8が発生する NMR信号を検出する高周波受信コイル (RFプローブ) 15とを備えてい る。
さらに、 MRI装置は、傾斜磁場電源 10、 RF送信部 30、信号検出部 31、モニタ機器 32 、ベッド制御部 33、信号処理部 34、制御部 35および表示部 36を備えている。
[0015] 傾斜磁場コイル 9は、 X, Υ, Zの 3方向の傾斜磁場コイルを備え、傾斜磁場電源 10か らの信号に応じてそれぞれ傾斜磁場を発生する。高周波照射コイル 14は、 RF送信部 30からの信号に応じて高周波磁場を発生する。高周波受信コイル 15の出力信号は、 信号検出部 31で検出され、信号処理部 34で信号処理され、また計算により画像信号 に変換される。画像は、表示部 36に表示される。傾斜磁場電源 10、 RF送信部 30、信 号検出部 31は、制御部 35によって制御される。制御のタイムチャートは一般に撮像パ ルスシーケンスと呼ばれている。この撮像パルスシーケンスにより、例えば、被検体 8 の主たる構成物質、プロトンを撮像対象とし、プロトン密度の空間分布や、励起状態 の緩和現象の空間分布を画像化することで、人体頭部、腹部、四肢等の形態または 、血管 (血液、血流)などの機能を 2次元もしくは 3次元的に撮像することが可能である
[0016] ベッド 28は、被検体が横たわるためのテーブル 37と、テーブル 37の駆動機構 38とを 備えている。駆動機構 38は、ベッド制御部 33の制御にしたがって、被検体 8の頭頂 足 (H— F)方向 (図 2中矢印 39)にテーブル 37を移動させる。ベッド制御部 33は、制御部 35の制御下で撮像パルスシーケンスの実行と整合を取りつつ、被検体 8の位置を連
続移動させる。これにより、被検体を連続移動させながら撮像を行うムービングベッド 撮像法を実現する。典型的なテーブル 37の移動速度は、頭頂部から足方向へ向け た移動速度で 0.5cmZs〜2.0cmZsである。モニタ機器 32は、被検体 8の拍動もしくは 脈波、心電波、呼吸動をモニタする装置であり、これらの生態情報を電気信号もしく は光信号に変換し、制御部 35へリアルタイムで送る。
[0017] 次に、実施例 1における信号検出系の具体例を図 3に示す。図 3において、 15は高 周波受信コイルである。 40は高周波受信コイル 15に接続されたプリアンプ (図 1におけ る 16に相当)である。 41はプリアンプ 40に接続され、信号検出部 31の内部に配置され た AD変換 ·直交検波回路 (図 1における 17, 18に相当)である。 42は AD変換 ·直交検 波回路 41の出力に接続され、信号処理部 34の内部に配置されフーリエ変換により画 像を得るためのフーリエ変換部 (図 1における 5や 7内に内臓)である。 43は信号処理部 34内に配置されフーリエ変換部 42に接続され、それらにより得られた画像の後処理、 合成処理等を行うための演算部 (図 1における 5や 7内に内臓)である。
[0018] 次に、本実施例のより詳細な説明を図 4(a)〜(c)を用い説明する。先ず図 4(a)は、本 実施例における装置構成の概略を横たわされた被検体の横側カゝら見た図である。
[0019] 図 4(a)によれば、実施例 1では、テーブル 37にスケール 44が固定されている。 45は 被検体を後述する撮影シーケンスにより撮影する際の撮影断面である。スケール 44 は直方体の形状をして 、て、その長手方向がテーブルの移動方向になるように配置 されている。スケール 44は、 NMR信号を発生する非磁性体の物質で形成された棒状 部材 (一例として 4cm X 4cm X 200cm)に、長手方向に沿って所定の間隔の切り込みを 櫛の歯状に入れられ、あるいは共鳴信号を強く出す物質と、共鳴信号を弱く出すある いは出さな!/、物質とが交互に配置されるようにして構成されたものである。櫛の歯の 間隔 (もしくは NMR信号を強く発生する物質層の間隔)は、テーブル 37の移動速度に 合わせて予め設計されている。このスケール 44のエコー信号を、テーブル移動方向 が読み出し傾斜磁場の印加方向であるナビゲーターシーケンスにより得て、スケール 44の櫛の歯の形状を表す NMR信号強度パターンを得る。ここで実行されるナビゲー ターエコーシーケンスは、図 4(b)の撮影断面画像 46上で、領域 47と 48を励起して、そ れらの重なった領域 49よりナビゲーターエコーを得るシーケンスである。また、得られ
たナビゲーターエコーをスケール 44の長手方向について 1次元フーリエ変換すること により、該方向についての NMR信号強度パターン (一次元プロファイル)を図 4(c)のグ ラフ 50のように得る。グラフ 50上で得られた一次元プロファイル 51は、スケール 44を構 成する NMR信号を発生する物質の形状に対応されており、例えば図 4(c)に示す櫛の 歯状になっている。この一次元プロファイルのピーク等を検出することにより、スケー ル 44の位置とともにそれが設定されたテーブルの位置をナビゲーターシーケンスごと に把握することができる。ただし、図 4(c)において 1つの櫛の歯の形状は尖った三角 の形状をしている力 これはパーシャルボリューム効果によりエッジがなまる影響であ り、櫛の歯の幅がさらに太い場合には、エッジがなまり信号は台形になると考えられる
[0020] スケール 44がテーブル 37に取り付けられている位置は、スケール 44が被検体 8の撮 影の妨げにならな 、位置であって、スケール 44のエコーを取得するためのナビゲー ターシーケンスを実行することにより、不必要に被検体を励起することのない位置に 取り付けられている。例えばテーブル 37の左右いずれかの側方に取り付けることが好 ましい。
[0021] 次に、被検体画像取得のための典型的な撮像シーケンスの一例として、一般的に よく知られた 3Dグラディエントエコーシーケンスを図 5を用いて説明する。図 5のシーケ ンスでは、高周波照射コイル 14の照射する高周波パルス 52と、傾斜磁場コイル 9が発 生するスライス選択傾斜磁場パルス 53とを同時に印加して、所定のスライス (図 4(a)に おける 45)の磁ィ匕を所定のフリップ角に励起する。次に、所定のエンコード量のスライ スエンコード傾斜磁場パルス 54および位相エンコード傾斜磁場パルス 55を印加した 後、読み出し傾斜磁場パルス 56を印加しながら、エコー時間 TE付近において発生す るエコー信号 57を高周波受信コイル 15により取得する。このシーケンスを繰り返し時 間 (TR)59で繰り返し行い、 1枚の 3D画像再構成に必要なエコー信号を取得する。こ のとき、繰り返し 59毎にスライス Z位相エンコード傾斜磁場パルス 54Z55の量を変え 、異なるスライス Z位相エンコードを与える。
[0022] スライスエンコードと位相エンコードの数は、通常 1枚の 3D画像あたり 32、 64、 128、 2 56、 512等の値の組み合わせが選ばれる。各エコー信号は、信号検出部 31により例
えば 128、 256、 512または 1024個のサンプリングデータ力もなる時系列信号に変換さ れる。信号処理部 34は、この時系列信号を 3次元フーリエ変換して 1枚の 3Dの MR画 像を作成する。なお、図 5において、スライス方向 s、位相エンコード方向 p、および読 み出し方向 rは、任意の方向に設定することができる力 ここでは図 4(a)に示した xyz 軸 (y軸:体軸方向、 Xおよび z軸は y軸にそれぞれ直交する方向)の ヽずれかの方向に 設定している。
[0023] 次に、本実施例に係る MRI装置により、ナビゲーターエコーを実行してテーブル 37 の位置を把握しながら被検体画像を取得するナビゲーターシーケンスを説明する。 本撮像方法では、所定のタイミングでナビゲーターシーケンスを実行して、ナビゲー ターエコーを取得し、テーブル移動位置を連続的にモニタする。ナビゲーターシーケ ンスの実行タイミングは、被検体の画像取得のための撮像パノレスシーケンスの合間( 例えば 1枚の画像再構成に必要な数のエコー信号取得後)、もしくは撮像パルスシー ケンスの TR (例えば 10ms)毎、または所定数 (例えば 10)の TRごと (セグメントごと)等、予 め定めたタイミングである。
[0024] ナビゲーターシーケンスによるシーケンス図を図 6を用いて説明する。ナビゲーター シーケンスでは、撮像空間内に位置するスケール 44(ここでは 3cm X 3cm X 2.5m)の一 部を含むように予め設定された角柱のナビゲーターエコー取得領域 (図 4(b)における 49)について、ナビゲーターエコーを取得する。まず、図 6のように、 90度の RFパルス 6 1とスライス選択のための X方向の傾斜磁場パルス 62、 63を、高周波照射コイル 14と傾 斜磁場コイル 9を同時に印加することにより、図 4(b)のように予め設定された第 1のスラ イス 47の磁化を 90度励起する。つぎに、 180度の RFパルス 64とスライス選択のための X 方向および z方向の傾斜磁場パルス 65、 66を同時に印加することにより、予め設定さ れた第 2のスライス 48の磁ィ匕を 180度励起する。更に読み出しのための y軸方向の傾 斜磁場パルス 67、 68を印加することにより、第 1のスライス 47と第 2のスライス 48の交差 する柱状の領域 49からエコー信号 69を生じさせ、これを高周波受信コイル 15により取 得する。
[0025] 得られたエコー信号 69を y軸方向 (スケール 44の長手方向)に 1次元フーリエ変換す ることにより、図 4(c)のグラフ 50に示したように、 1次元プロファイル 51を得る。得られた
1次元プロファイル 51は、スケール 44を構成する NMR信号を発生する物質の形状、こ こでは櫛の歯状の形状を示す。この形状のエッジを読み取ることで、スケール 44の設 定されたテーブル 37の位置がナビゲーターエコー信号毎に時々刻々と把握できる。
[0026] ここで、典型的なプロファイルデータの分解能は 256点 Z256mm程度である。したが つて、データあたりの位置分解能は lmmである。し力も、エッジの端の位置あるいは、 端の位置の画素値をグラフ 50から読み取ったり、あるいは簡便なデータ処理を行うこ とにより、 1Z10の分解能にまで高分解能化できる。したがって、本実施の形態のスケ ール 44による位置モニター方法の典型的な位置精度は、 0.1mmである。
[0027] 一方、テーブル 37の移動速度は、典型的には 0.5cmZs〜2.0cmZs程度であるから 、例えば移動速度を 2cmZsとし、速度変動率を約 5%と考えると、 Isごとのナビゲータ 一エコーを取得した場合、エコー間で ImmZsの計測すべき位置変動となる。本実施 例では、エッジ処理により 1Z10の分解能で検出すると 0.1mmの位置検出精度により テーブル位置の変動を正確に検出することができるため、本実施の形態のスケール 4 4を用いたテーブル位置計測精度は、テーブル 37を連続移動させるムービングベッド 撮像方法を実現するために十分な精度があると言える。
[0028] ナビゲーターエコーの取得間隔は、撮像パルスシーケンス終了後、もしくは TR (例 えば 10ms)ごと、または所定数 (例えば 10)の TRごと (セグメントごと)等任意に設定する ことができるが、テーブル 37の速度変動 (あるいは位置変動)の検出という目的から考 えると、 Is (もしくは 0.1s— 2s)毎程度で良い。上述したような典型的なナビゲーターシ 一ケンスの実行に必要な時間は、 20ms程度であるので、ナビゲーターシーケンスが 撮像パルスシーケンスを延長する程度は、 2% (もしくは 20%— 1%)であり、実質的に は撮像時間の延長にはつながらず無視できる範囲である。
[0029] なお、スケール 44の櫛の歯の間隔は、ナビゲーターエコー間にテーブル 37が移動 する距離よりも長く設定することにより、隣合う櫛の歯の区別がっカゝなくなりテーブル 3 7の移動量あるいは速度の計算に誤りが生じるのを防ぐことができる。例えば、ナビゲ 一ターエコーの取得間隔当たりのテーブル 37の移動量が櫛の歯の間隔と同一であ れば、テーブル 37が移動しているにもかかわらず一次元プロファイルが同じになるの で、そのような櫛の歯の配列間隔は避けた方がよい。ただし、隣合う櫛の歯の形状あ
るいは幅を変えるようにして、隣合う櫛の歯の混同を防止できるような場合には、櫛の 歯の間隔を短くしてもテーブル 37の移動量が正確に計算できると考えられる。
[0030] 例えば、図 7(a)に示したように、取得した一次元プロファイルの信号強度 (振幅)が周 期的に変化するようにスケール 44を構成した場合や、図 7(b)のように一次元プロファ ィルの信号強度のピークの間隔が周期的に変化するようにスケール 44を構成した場 合や、図 7(c)のように一次元プロファイルのピーク幅が周期的に変化するようにスケー ル 44を構成した場合には、それぞれ、振幅、ピーク間隔、ピーク幅を検出することによ り、隣接するピーク (櫛の歯)を見分けることができるため、櫛の歯の間隔を、 1TR当たり のテーブル移動距離より短く任意に設定することができる。例えば、図 7(a)〜(c)の振 幅、ピーク間隔、ピーク幅の変化の周期は、ナビゲーターエコー取得領域 49の y軸方 向の長さ (例えば 20cm)と同程度に設定すれば良い。なお、図 7(a)のように信号強度( 振幅)を周期的に変化させたスケール 44の構成例としては、櫛の歯の長さを周期的に 変化させたものや、 NMR信号を発生する物質の濃度を櫛の歯毎に周期的に変化さ せたものを用いることができる。図 7(b)のようにピーク間隔を周期的に変化させたスケ ール 44の構成としては、櫛の歯の間隔 (y軸方向)を周期的に変化させたものを用いる ことができる。図 7(c)のようにピーク幅を周期的に変化させたスケール 44の構成として は、櫛の y軸方向の厚さを周期的に変化させたものを用いることができる。
[0031] また、上記スケール 44のモニタのためのナビゲーターシーケンスは、 90度 RFパルス 61と 180度 RFパルス 64を照射するため、撮像シーケンスの直前にナビゲーターシー ケンスを実行すると、撮像シーケンスで取得されるエコー信号 57は、図 4(b)における 照射スライス 47, 48の部位において信号強度が低下する。このため、もしスライス 47, 48が図 4(b)の撮影断面画像 46の被検体 9が存在する部分と重なるとダークバンドア一 チファクトが生じる。そこで、図 4(b)の画像表示例 46に示すように、スライス 47、 48を被 検体の位置から外し、スケール 44のナビゲーターエコー取得領域 49を、被検体 8から ずれた位置に配置すれば良い。このようにすることで、被検体 8の断面像には影響を 与えることなぐナビゲーターシーケンスにおいて RFパルスをスライス 47、 48に照射し て、領域 49からのエコーデータを取得することができる。
[0032] 上述した本実施例のナビゲーターエコーにより取得されたテーブル 37の位置と、テ
一ブルの移動誤差がないとした場合にテーブル位置との関係の一例を装置座標系 でグラフに示すと図 8のようになる。図 8の例では、テーブル移動速度の設定値は時 間的に一定であり、テーブル位置はグラフ 81のように一直線に変化するはずであるが 、ナビゲーターエコーにより実測したテープノレ位置はグラフ 82のように、例えばテー ブル 37を駆動するモーターの電流の変動等により階段状に変化しており、速度変動 が生じていることがわかる。一方、グラフ 82を、テーブルの速度誤差や位置誤差がな いとした場合のテーブルの移動座標系を表すと 83のようになる。これによれば、実際 に撮影すべき位置は、テーブルの速度誤差や位置誤差によってモーターの電流の 変動等の影響で偏差を持っていることがわかる。ただし、図 8において 84あるいは 85 で表したものは、撮影シーケンス及びナビゲーターシーケンスを交互に実行すること を示している。
[0033] 本実施例では、図 8で示したテーブルの位置誤差あるいは速度誤差の算出を、具 体的に次の方法により行う。その第 1の方法は、テーブルが予め設定された位置へ正 確に移動された場合に、テーブル所定の位置へ固定されたスケールの櫛の歯の位 置がどのように一次元プロファイルとして得られるかを予め記憶装置に記憶し、それと 、実際に得られた一次元プロファイルにより検出された位置との差を求める方法であ る。その第 2の方法は、例えば被検体の頭部から脚部へ撮像範囲を移動させながら、 ムービングテーブル撮像方法やマルチステーション撮像方法で被検体の全体の画 像を撮像する場合、頭部にぉ 、てスケールの一部の一次元プロファイルを記憶して おき、それを基にテーブルの移動が正確だった場合に下流である腹部や脚部でどの ようにスケールの一次元プロファイルが計測されるかを予測し、その予測された一次 元プロファイルの櫛の歯の位置と実際の櫛の歯の位置がどの程度異なるかを基に、 位置誤差あるいは速度誤差を算出する方法である。
[0034] 本実施例では、上述した構成の MRI装置とその方法によりナビゲーターエコーを検 出してテーブル位置や速度をリアルタイムに計測することができる力 計測結果が本 来設定した位置や速度から位置ずれもしくは速度の揺らぎがあった場合、本実施例 では直ちに MRI装置のフロントエンドシステム (計測制御システム)にフィードバックもし くはフィードフォワードの補正の処理を行う。例えば、その補正の第 1の方法としては、
、て、テーブル 37の位置ずれ量 を考慮して、 RF励起パルスの周波数や RF励起パルスの位相を調整することにより、 本来励起するべきスライスを励起することがある。これにより、テーブル 37の位置ずれ に起因する励起スライスの位置ずれを補償することができる。その第 2の方法としては 、テーブル 37の位置がずれて 、た場合であってもそのまま撮像シーケンスを行って エコー信号を取得するが、エコー信号取得の際の参照周波数に特定のオフセットを 加算したり、あるいは取得した信号に特定の位相を付加し、読み出し方向または、位 相エンコード方向の位置を補正することがある。これにより、取得する際あるいは取得 した信号の補正処理により、位置ずれを補償することができる。第 2の方法は、第 1の 方法に比べて撮像パルスシーケンスの RF励起パルスの周波数や位相を撮像シーケ ンスの途中で変更する必要がなぐ取得する際あるいは取得した後の信号処理で位 置ずれ補償であるという利点がある。その第 3の方法としては、テーブル 37の位置に ずれが生じていた場合には、ベッド制御部 33をフィードバック制御して、テーブル 37 の位置を補正することにより、テーブル 37の位置がそれ以上誤差を持たないようにす ることである。
上記 3つの補正方法は、位置変動を MRIフロントエンドで計測 '処理するので、その 結果を直ちに同じフロントエンドシステム内で活用し、リアルタイムで位置 ·速度の摇 らぎを補償する点で、極めて実装が容易であるという特徴を有する。ただし、上記 3つ の方法による位置変動の補正のどれをどのように用いるかにつ 、ては、被検体の画 像を撮影する際に実行される撮像シーケンスの種類等に注意が必要である。例えば 、第 2の方法における参照周波数を変更する方法は、撮像シーケンスにおける読み 出し傾斜磁場の方向が、テーブルの移動方向である場合に有用な技術と考えられる 。また、特定の位相をカ卩える方法は、例えば、スライスエンコードや位相エンコードの 方向にテーブルの位置がずれた場合に、スライスエンコード傾斜磁場 (あるいは位相 エンコード傾斜磁場)の強度が本来より大きすぎたり少なすぎたりして、印力 []している 間に回転する周波数に誤差が出るので、誤差の時間積分の分だけ、エコー全体の 位相がシフトするので、その分を補正するような考え方で特定の位相をカ卩えれば良 ヽ 。このように適宜どの撮影シーケンスを実行するかに応じてどの補正方法を用いるか
の考慮が必要なことは言うまでもな 、。
[0036] 本実施例のナビゲーターエコーが、従来のナビゲーターエコーと異なる点は、人体 の体動を検知するのでなぐテーブル移動速度を検知する点である。また、従来のナ ビデーターエコーによる技術の一つは、検出した横隔膜の位置に応じて、得られた エコーデータを画像再構成のために用いるかのゲートをかけるという技術であった。 一方、本実施例による方法はテーブルの位置速度誤差を検出していくつかの方法に より補正する技術であるので、人体の体動 (呼吸動等)を検出する従来の方法とは異 なる。
[0037] なお、上記実施例では、 1種類のスケール 44のみをテーブル 37に固定した例につ V、て説明した力 テーブル 37に取り付けるスケール 44を交換可能な構成にすることも 可能である。これにより、例えば、櫛の歯の間隔の異なる複数種類のスケール 44や、 図 7(a)〜(; c)のように異なる種類の複数のスケール 44を予め用意しておき、オペレータ が撮像パルスシーケンスの種類や、テーブル移動速度に合わせて最適なスケール 4 4を選択し、テーブル 37に取り付けられる構成にすれば良い。(ここで、シーケンスの 種類に応じたスケールの選択する方法とは、例えばテーブルの移動速度が一定でシ 一ケンスの TRが異なり、 1TRごとにナビゲータエコ一を収集する場合には、 TRが長い 場合には櫛の歯の間隔の長いものを用い、 TRが短い場合には櫛の歯の間隔を短い ものを用いる等の方法等である。)また、これら複数種類のスケール 44をテーブル 37 の異なる部位 (例えば、上向きに横たわされた被検体の右脇と左脇)に予め固定して おくことも可能である。これにより、撮像パルスシーケンスの種類や、テーブル移動速 度に合わせて、最適なスケール 44を選択し、その位置にナビゲーターエコー取得領 域 49を設定することにより、スケールを交換することなぐ選択することができる。
[0038] また、上記実施例では、テーブル 37の移動方向 (y軸)に平行にスケール 44を配置し て 、るが、必ずしもスケール 44を配置する方向 (スケール 44の長手方向)がテーブル 3 7の移動方向 (y軸方向)に平行でなくても良い。例えば、テーブル 37の移動方向 (y軸 方向)に所定の間隔で、図 9(a)の 91a〜はうに X軸方向に平行にスケールを配置すると 、テーブルの X軸方向への位置精度を検出できる。この技術は一対の磁石が対向し て配置されたオープン型 MRI装置で特に有用である。なぜなら、オープン型 MRI装置
の場合には図 9(b)のように、 y軸方向のみならず、 X軸方向へもテーブルを移動させな 力 撮影と伴に手術等を行う場合があるからである。ただし、 X軸方向に配置されたス ケールにより X軸方向へのテーブルの移動を検出するためには、図 9(c)のようなシー ケンス図を用いれば良いと考えられる。ここで、読み出し傾斜磁場の印加方向は X軸 方向 (Gx)であり、その際にェコ一信号が収集される領域がスケール 91 a〜!^配置さ れた領域を含んでいる。また、図 9(b)のオープン型 MRI装置でテーブルを鉛直方向( z)方向に移動させる場合 (あるいはテーブルの z方向の位置精度あるいは移動精度を 検出したい場合)には、長手方向力 軸方向になるようにスケールを配置して、 z軸方 向が読み出し傾斜磁場の印加方向になるようなナビゲータエコ一シーケンスを実行 すれば良いと考えられる。
[0039] また、上記実施例では、テーブル 37を連続的に移動させる場合にっ 、て説明した 力 撮像すべき部位を複数の領域 (ステーション)に分け、各ステーションでテーブル 3 7を停止させて撮像を行うマルチステーション撮像法にぉ 、ても、各ステーションでの 位置検出を本実施例のスケールを用いて行うことが可能である。
実施例 2
[0040] 本発明の実施例 2の MRI装置を、図 10(a), (b), (c)を用いて説明する。
実施例 2の MRI装置は、実施例 1と同様にナビゲーターエコーによりテーブル 37の 位置を把握しながら被検体画像を取得する構成であるが、第 1の実施の形態と異なり テーブル 37に固定されたスケールを用いず、被検体 8の構造そのものを位置把握の 指標に用いる例である。
[0041] 先ず、図 10(a)は、本実施例における装置構成の概略を横たわされた被検体の横側 力も見た図である。図 10(a)によれば、ナビゲーターエコー取得領域 101を図 10(a)のよ うに被検体 8の内部に設定し、実施例 1と同様のナビゲーターシーケンスによりナビゲ 一ターエコー信号を取得する。図 10(b)には撮影断面画像 102が示されており、被検 体 8の内部にナビゲーターエコー取得領域 101が被検体の内部に配置されている。 エコー信号は、信号検出部 31により時系列信号に A/D変換され、信号処理部 34によ り y軸方向 (体軸方向)について 1次元フーリエ変換して図 10(c)のようなグラフ 103を得 る。得られた一次元プロファイル 104は、被検体 8内の構造を反映した形状になる。こ
のプロファイルは、テーブル 37が y軸方向に移動するのにしたがって、 y軸方向に時 々刻々とシフトし、次のナビゲーターエコーで取得したプロファイルは、例えば図 9(c) の一次元プロファイル 105のようになる。よって、プロファイル 104及び 105同士の y軸方 向についてのシフト量を求めることにより、プロファイル 104のエコー信号取得時から プロファイル 105のエコー信号取得時までの経過時間において、テーブル 37の移動 した距離を計算により簡便かつ正確に求めることができる。
[0042] より具体的に 104及び 105で表される 1次元プロファイルのシフト量を求める場合には 、両プロファイルをシフトさせながら相関を取ることにより容易にシフト量を求めること ができる。このとき、 1次元プロファイル上に現れる特徴点をシフト量算出の指標にす ることもできる。例えば、頭部撮像では、頭頂部の位置を、胸部撮像では、横隔膜を、 脊椎撮像では、椎骨によって、シフト量算出の指標とすることもできる。また、四肢で は、膝関節や肘関節で得られるエッジを指標とすることもできる。また、予め被検体の 位置決め画像をして用いられるスキヤノグラムを撮影しておき、それにより被検体の特 徴部位が互いにどのような相対的位置関係にあるかを把握して記憶し、その情報を 基に、実際にテーブルを移動させて得られた一次元プロファイル上の特徴部位がテ 一ブル移動が正確である場合に対してどの程度異なるかを求めてテーブルの移動 誤差を求めるようにしても良 ヽと考えられる。
[0043] なお、領域 101を被検体 8内に設定すること以外は、第 1の実施の形態と同様である のでその他の説明を省略する。
このように実施例 2では、実施例 1とは異なり、スケールを用いることなくテーブル 37 の移動距離を高精度でモニターできる。また、スケールを用いないため、撮影断面画 像 102上に、スケールの断面が表示されないという利点もある。
[0044] また、実施例 2では、ナビゲーターシーケンスによりナビゲーターエコーを取得して テーブルの位置や速度の把握のために用いても良 、が、撮像シーケンスにお!/ヽて取 得した信号をテーブルの位置や速度の把握のために用いることも可能である。例え ば、図 5に示した撮像シーケンスにおいて、読み出し傾斜磁場 56の方向をテーブル 3 7の移動方向 (y軸方向)に一致させるように設定し、位相エンコード用傾斜磁場による エンコード量が 0の時に取得されたエコー信号 57をテーブルの位置や速度の把握の
ために用いる。得られたエコー信号は、信号検出部 34により時系列信号に変換し、 信号処理部 34により y軸方向 (体軸方向)について 1次元フーリエ変換することにより、 図 10(c)の 104、 105で示したものと同様な一次元プロファイルを取得することができる。 この場合、ナビゲーターシーケンスを実施することなぐ被検体 8内の構造を反映し たプロファイルを取得することができるため、ナビゲーターシーケンスの実行時間によ り撮像時間を延長することなぐテーブル移動量を取得できると ヽぅ効果が得られる。 実施例 3
[0045] 本発明の実施例 3の MRI装置を、図 11(a)〜(: c)および図 12を用いて説明する。
実施例 3では、実施例 1と同様にナビゲーターエコーによりテーブル 37の位置を把 握しながら被検体画像を取得する構成であるが、実施例 1と異なりナビゲーターシー ケンスにお 、て、フェイズコントラスト (PC)法を使ってテーブル移動位置を連続的にモ ニタする。
[0046] 先ず図 11(a)は、本実施例における装置構成の概略を横たわされた被検体の横側 から見た図である。
図 11(a)に示したようにテーブル 37には、 NMR信号を発生する物質により構成された スケール 111が取り付けられている。ただし、実施例 3におけるスケールは、実施例 1の ように櫛形ではなぐ長手方向に一様な角柱形状である。本実施例では、このスケー ル 111について図 12に示したような 1次元の PCシーケンスによりエコー信号 (以後、ナ ピゲ一ター PCエコーと呼ぶことにする)を取得することにより、テーブル 37の移動量を 計測する。ナビゲーター PCエコーの取得領域は、図 11(b)の撮影断面画像 112の 111 に示すようにスケール 113を含むように設定される。
[0047] 本実施例におけるシーケンス図を図 12に示す。図 12によれば、実施例 1で説明した 図 6のナビゲーターシーケンスと類似しているが、 y軸方向の読み出し傾斜磁場に負 の傾斜磁場パルス 121 aおよび正の傾斜磁場パルス 121 bが速度エンコードパルス (1 次のディフェイズパルス) 121として追加されている点で図 5のナビゲーターシーケンス とは異なる。正負の傾斜磁場パルス 121a, bは、傾斜磁場パルスの強度と印加時間の 積の絶対値が等しくなるように設定されている。すなわち、負の傾斜磁場パルス 121a によりスケール 121に生じる磁ィ匕の y軸方向の位相回転量と正の傾斜磁場パルス 121b
によりスケール 121に生じる位相回転量とは、対象となる物質が静止している場合向 きが反対で大きさが等しくなる。
[0048] スケール 121が静止している場合には、正負の傾斜磁場パルス 121で付与された位 相回転量が相互に打ち消し合うため、取得されるエコー信号 122は y軸方向の位相が 0である。しかしながら、テーブル 37の移動によりスケール 111が y軸方向に移動すると 、正負の傾斜磁場パルス 121で生じる位相回転量が異なるため、検出されるエコー信 号の y軸方向の位相成分が打ち消し合わず、ゼロでなくなる。また、エコー信号の位 相回転量は、テーブル 37の速度に比例する。よって、ナビゲーター PCエコーにより、 検出したェコ一信号の y軸方向の位相回転量を検出することによりテーブルの移動 速度を計測でき、この値の設定値との差を算出することにより、テーブルの移動誤差 を検出し、補正のために用いることができる。
[0049] ナビゲーター PCエコーの y軸方向の位相回転量は、信号処理部 34により検出する 。検出された位相回転量は、例えば図 11(c)のグラフ 114のようになる。縦軸は、位相 回転量であり、これはテーブル移動速度に比例する量である。横軸は、 y軸方向位置 であるが、スケール 113は全体で 1つの速度を持つので、平坦なプロファイルとなる。 また、後に行ったナビゲーター PCエコーから検出した位相回転量が、グラフ 114のよ うに時間とともに 115から 116へ増加を示している場合には、このときの速度は変動し た (増した)ことが検出できる。ここで、検出すべきテーブルの移動速度は、通常 1— 5c mZs程度である。 PCシーケンスのフローエンコードはこれを目安に決定する。例えば 、検出すべきテーブルの移動速度が Vであり、その移動速度を位相量 φ ( φく 180° ) で検出した!/ヽ場合には、次式で表されるような傾斜磁場強度 Gと傾斜磁場印加時間 t を満たすようなフローエンコードの傾斜磁場を印加すれば良い。
[0050] [数 1]
ø = J cudt = ^ ( r Q v t)0t= -^- r v t ω :角周波数
:磁気回転数
G :傾斜磁場強度
V :テーブル移動速度
t : 正負の傾斜磁場の印加時間 ただし、式 1において ωは各周波数、 γは磁気回転数、 Gは傾斜磁場強度、 Vはテ ーブ ル移動速度、 tは正負の傾斜磁場の印加時間である。
なお、撮影シーケンスで取得される断層像は、例えば図 11(b)の撮像断面画像 112 で示したように被検体 8の断層とともに画像の右下にスケール 111の断面が表示され る。
[0051] 実施例 3では、図 12のシーケンスによりナビゲーター PCエコーを取得している力 通 常の撮像シーケンスの一部にぉ 、て画像取得のための位相エンコードを付与しな ヽ で、その代わりに、フローエンコードして、エコーを取得し、これをテーブルの移動速 度検出のために用いてもよい。例えば、そのようなシーケンスを図で表すと図 13のよう になる。より具体的に、図 13の例は、左から順に 5つの RF照射パルス 131a〜eを印加 しながらシーケンスを実行する例である。そして、左から 1、 2、 4番目のシーケンスは、 磁気共鳴画像撮影のために位相エンコード傾斜磁場を印加して磁気共鳴画像作成 のためのエコー信号を取得している力 左から 3、 5番目のシーケンスでは、位相ェン コード傾斜磁場の代わりに、フェイズコントラスト (PC)法のための傾斜磁場、すなわち 正負に極性が異なり、強度と印加時間の積の絶対値が等しい 2つの傾斜磁場パルス が印加されている。図 13の例では通常の撮影シーケンスの合間に、位相エンコード 方向の傾斜磁場の印加方法を少し変更するだけで、ナビゲーター PCエコーを組み 込むことができるという利点がある。
実施例 4
[0052] 本発明の実施例 4の MRI装置を、図 14(a)〜(: c)を用いて説明する。
実施例 4では、実施例 3と同様にフェイズコントラスト (PC)法を使ってテーブル移動位 置を連続的にモニタする構成であるが、実施例 3と異なり、スケールの代わりに被検
体 8の構造そのものを位相量把握に用いることである。より具体的には脳実質や、骨 格筋、など被検体として呼吸心拍等により動きがな 、部位を位相量計測のために利 用し、得られた結果力もテーブル移動速度を得る例である。
[0053] 先ず図 14(a)は、本実施例における装置構成の概略を横たわされた被検体の横側 から見た図である。本実施例では、ナビゲーター PCエコー取得領域 141を図 14(a)の ように被検体 8内に設定して、図 12のシーケンスによりナビゲーター PCエコーを取得 する。図 14(b)には撮影断面画像 142が示されており、被検体 8の内部にナビゲーター エコー取得領域 141が配置されて!、る。ナビゲーター PCエコーで取得した位相量の プロファイルは、図 14(c)のグラフ 143の 144のようになる。縦軸は、位相量 (すなわち被 検体の一部分を構成する物質の速度)であり、動きがない被検体の一部分ではテー ブル 37の移動速度に等しくなつている。横軸は、 y軸方向の位置である。実際の生体 を被検体として用いる場合には、血管内の血流や呼吸により臓器が動き、それが計 測すべきテーブル移動速度に付加されるので、プロファイル 144に示される位相量( 速度)は必ずしも平坦ではない。しかし、所定の時間の後に計測されたたナビゲータ 一 PCエコーによって得た位相量のプロファイルがグラフ 145のようであれば、 2回のナ ピゲ一ター PCエコー間に生じた位置の変動 (横方向のシフト)とともに速度も変動した ( 縦方向のシフト)ことが検出できる。この縦方向のシフト量は、動きがない部位の値を 指標として求めるができる。もしくは、例えば、信号処理部 34により計測ごとの位相量 ( 速度)の平均値 (値 144a,値 145a)を求め、その差をとることにより、容易に速度変化量 を検出することもできる。本実施例ではスケールを用いなくても、ナビゲーター PCェコ 一でテーブル 37の移動誤差を計測でき、補正のために用いることができる。
[0054] なお、撮像シーケンスで取得される断層像は、例えば図 14(b)の撮像断面画像 142 を示したように被検体 8の断層画像のみが表示され、スケールの断面が表示されな ヽ 実施例 4においても、実施例 3と同様に、図 13のように通常の撮像シーケンスにおい て画像取得のための位相エンコードを付与しないで、その代わりに、フローェンコ一 ドして、エコーを取得し、これをテーブルの移動速度検出のために用いてもよい。
[0055] 本発明は上記実施例に限定されるものではなぐ本発明の要旨を逸脱しない範囲
で種々に変形して実施できる。
例えば、上記実施例においては、ナビゲーターシーケンスあるいはナビゲーター P Cエコーシーケンスで検出した磁気共鳴信号を用いてテーブルの位置あるいは速度 を測定した力 本発明はこれに限定されない。例えば、エンコーダを用いてテーブル の位置ある 、は速度を測定するようにしても良 、と考えられる。し力しながらェンコ一 ダを用いる方法は、装置が複雑になり高価になると考えられるので、上記磁気共鳴信 号を用いる方法は、廉価に MRI装置を提供できるという利点がある。また、エンコーダ を用いる方法により装置を構成すると、パルスシーケンス制御用とエンコーダ制御用 に 2つの制御手段 (CPU等)が必要となるが、上述した実施例の磁気共鳴信号による 方法では制御手段がパルスシーケンス制御用とエンコーダ制御用の共用とできるの で、その意味ではコンピュータの実装を簡易化できるというメリットがある。また、ェンコ ーダを用いる方法はエンコーダ自体がノイズ源となるおそれがあるが、磁気共鳴信号 による方法では不必要なノイズ源が生じるおそれがな ヽと 、う利点もある。
[0056] また、上記実施例では、ナビゲーターエコーにより得たテーブルの位置や速度のず れを補償する方法として、照射する RF励起パルスの周波数や位相を調整する方法( 第 1の方法)、高周波受信コイル 15により検出した磁気共鳴信号を検出する際に、参 照周波数にオフセットを加えたり、取得した信号に特定の位相を付加する方法 (第 2の 方法)、テーブルの位置や速度のずれをベッド制御部 33にフィードバックする方法 (第 3の方法)が示されていた力 本発明はこれに限定されない。例えば撮影のために得 られた磁気共鳴信号をフーリエ変換してハイブリッド空間に配置する際に、テーブル の位置や速度のずれの影響を考慮して配置の位置をずらす方法でも良いと考えられ る。
[0057] また、上記実施例ではナビゲータシーケンスあるいはナビゲータ PCシーケンスにお いて、最初に 90° パルスと 180° パルスを印加するスピンエコー法を用いていた力 2 次元選択励起法を用 ヽ、グラジェントェコ一法を用いることも可能である。
また、上記実施例は、 1つの撮影において 1つのスケールによりテーブルの位置ある いは速度のずれを検出する場合のみを示した力 1つの撮影において同時に設置さ れた 2つのスケール (両者が平行でも、垂直でも良い。)を用いる等の手法を用いれば
、隣り合う歯が混同して検出されてしまうといった上述の問題に、好適に対応できると 考えられる。
また、上記実施例 3及び実施例 4では、ナビゲータ PCシーケンスにおいて、テープ ルの移動速度検出のため、傾斜磁場パルスの強度と印加時間の積の絶対値が等し い正負の傾斜磁場パルスを印加する例を示したが、本発明はこれに限られない。例 えば、 180° パルスを挟んで同じ方向に強度と印加時間の積の絶対値が等しい傾斜 磁場を印加することにより、例えば拡散強調画像を生成するようにテーブルの移動速 度を検出することも可能である。
また、上記スケールの形状は直方体でなくてもよ 、ことは言うまでもな 、。
Claims
[1] 被検体を搭載して、前記被検体を撮影空間へ配置するための被検体搭載手段と、 前記被検体搭載手段を任意の方向へ連続的ある 、はステップ毎に移動させることに より、前記被検体を任意の方向へ移動させるための移動手段と、前記撮影空間の周 囲に配置され、前記撮影空間に静磁場及び傾斜磁場及び高周波磁場を発生させ、 前記被検体の所望の位置を励起する磁場発生手段と、前記撮影空間の周囲に配置 され、前記被検体力 発生する磁気共鳴信号を検出する信号検出手段と、前記信号 検出手段で検出した磁気共鳴信号に信号処理を行 ヽ、前記被検体の磁気共鳴画 像を生成する信号処理手段と、
前記移動手段と前記磁場発生手段と前記信号検出手段と前記信号処理手段を制 御して、前記被検体を予め設定された所定の位置へ所定の速度で連続的にある 、 はステップ毎に移動させながら、前記被検体の磁気共鳴画像を得る制御をする制御 手段とを備えた磁気共鳴イメージング装置において、
前記位置あるいは速度の設定値に対する誤差を検出する移動誤差検出手段と、 前記移動誤差検出手段により検出された誤差を補正する補正手段を備えたことを特 徴とする磁気共鳴イメージング装置。
[2] 前記移動誤差検出手段は、前記信号検出手段により検出した磁気共鳴信号を基 に、前記誤差を検出することを特徴とする請求項 1記載の磁気共鳴イメージング装置
[3] 前記被検体搭載手段には、前記被検体搭載手段の位置を磁気共鳴信号により発 信する少なくとも一つの被検体搭載手段位置発信手段が備えられ、前記移動誤差 検出手段は、前記被検体搭載手段位置発信手段の発生する磁気共鳴信号を基に、 前記誤差を検出することを特徴とする請求項 2記載の磁気共鳴イメージング装置。
[4] 前記被検体搭載手段位置発信手段は、前記磁気共鳴信号を所定の一次元的な 空間的強度パターンで発生するスケールより構成され、前記移動誤差検出手段は、 前記磁気共鳴信号を一次元フーリエ変換したデータを基に、前記空間的強度パター ンの位置を認識する認識手段と、前記認識手段により認識された位置を基に前記設 定値との差を求め、前記被検体搭載手段の前記位置あるいは速度の誤差を算出す
る算出手段を備えたことを特徴とする請求項 3記載の磁気共鳴イメージング装置。
[5] 前記スケールは、前記核磁気共鳴信号を出す物質と、前記核磁気共鳴信号を弱く 出すあるいは出さない物質を、一定間隔で交互に前記一次元方向に配置したもので あることを特徴とする請求項 4記載の磁気共鳴イメージング装置。
[6] 前記移動誤差検出手段は、所定の時間間隔で、複数個の磁気共鳴信号を検出し 、各磁気共鳴信号により求められた前記スケールの前記所定の一次元的な空間的 強度パターンの位置を基に、前記被検体搭載手段の位置を求め、その位置の設定 値との差を基に、前記誤差を検出することを特徴とする請求項 4記載の磁気共鳴ィメ 一ジング装置。
[7] 前記移動誤差検出手段は、前記被検体の内部より発生する磁気共鳴信号を基に、 前記誤差を検出することを特徴とする請求項 2記載の磁気共鳴イメージング装置。
[8] 前記移動誤差検出手段は、前記被検体の内部より発生する磁気共鳴信号を基に 前記誤差を検出する際に、時間的に所定の間隔をおいて得られた複数個の前記磁 気共鳴信号を 1次元フーリエ変換して複数個の 1次元プロファイルを得る手段と、 前記複数個の磁気共鳴信号に対応して得られた 1次元プロファイルが前記所定の 時間間隔とともにどの程度前記被検体搭載手段の移動方向にシフトしているかのシ フト量を計算する手段と、前記シフト量をもとに前記誤差を検出する手段を備えたこと を特徴とする請求項 7記載の磁気共鳴イメージング装置。
[9] 前記制御手段は、前記移動誤差検出手段による誤差検出のための磁気共鳴信号 を前記被検体搭載手段位置発信手段より発生させて検出するためのナビゲーター シーケンスを実行する手段を備え、前記制御手段により実行されるナビゲーターシー ケンスでは、第 1の高周波パルスにより励起される第 1のスライス面と、第 2の高周波パ ルスにより励起される第 2のスライス面は交差し、前記第 1のスライス面と前記第 2のス ライス面が交わる部分は、前記被検体搭載手段位置発信手段が設置された位置で あることを特徴とする請求項 3記載の磁気共鳴イメージング装置。
[10] 前記制御手段は、前記移動誤差検出手段による誤差検出のための磁気共鳴信号 を前記被検体の内部より発生させて検出するためのナビゲーターシーケンスを実行 する手段を備え、前記制御手段により実行されるナビゲーターシーケンスでは、第 1
の高周波パルスにより励起される第 1のスライス面と、第 2の高周波パルスにより励起 される第 2のスライス面は交差し、前記第 1のスライス面と前記第 2のスライス面が交わ る部分は、被検体の内部であることを特徴とする請求項 7記載の磁気共鳴イメージン グ装置。
[11] 前記被検体搭載手段位置発信手段は、前記磁気共鳴信号を空間的に一様の強 度で発生する一様な物質力 成ることを特徴とする請求項 3記載の磁気共鳴イメージ ング装置。
[12] 前記制御手段は、前記移動誤差検出手段による誤差検出のための磁気共鳴信号 を生成するためのナビゲーターシーケンスに速度エンコードパルスを付カ卩したナビゲ ート PCシーケンスを実行する手段を備え、前記制御手段により実行されるナビグータ 一シーケンスでは、第 1の高周波パルスにより励起される第 1のスライス面と、第 2の高 周波パルスにより励起される第 2のスライス面は交差し、前記第 1のスライス面と前記 第 2のスライス面が交わる部分は、前記被検体搭載手段位置発信手段が設置された 位置であることを特徴とする請求項 11記載の磁気共鳴イメージング装置。
[13] 前記制御手段は、前記移動誤差検出手段による誤差検出のための磁気共鳴信号 を生成するためのナビゲーターシーケンスに速度エンコードパルスを付カ卩したナビゲ ート PCシーケンスを実行する手段を備え、前記制御手段により実行されるナビグータ 一シーケンスでは、第 1の高周波パルスにより励起される第 1のスライス面と、第 2の高 周波パルスにより励起される第 2のスライス面は交差し、前記第 1のスライス面と前記 第 2のスライス面が交わる部分は、前記被検体の内部であることを特徴とする請求項 7 記載の磁気共鳴イメージング装置。
[14] 前記ナビゲーターシーケンスに付加される速度エンコードパルスは、極性が反対で 、強度と印加時間の積の絶対値が等しい 2つの傾斜磁場パルスより成り、前記 2つの 傾斜磁場パルスによる磁場の傾斜の方向は、前記被検体搭載手段の移動の方向で あることを特徴とする請求項 12又は 13記載の磁気共鳴イメージング装置。
[15] 速度エンコードパルスの付加されたナビゲーターエコーにより得られた磁気共鳴信 号を基にその位相量のプロファイルを求める手段と、その位相量の大きさを基に前記 被検体搭載手段の速度を検出する手段を備えたことを特徴とする請求項 12又は 13
記載の磁気共鳴イメージング装置。
[16] 速度エンコードパルスの付加されたナビゲーターエコーにより得られた磁気共鳴信 号を基にその位相量のプロファイルを求める手段と、前記プロファイルが時間とともに どの程度前記被検体搭載手段の移動の方向にシフトするかのシフト量を求める手段 と、前記シフト量を基に前記被検体搭載手段の速度を検出する手段を備えたことを 特徴とする請求項 12又は 13記載の磁気共鳴イメージング装置。
[17] 前記少なくとも一つ以上の被検体搭載手段位置発信手段は、直方体の形状をして いて、その長手方向が、前記被検体搭載手段の長手方向と平行であるものを含むこ とを特徴とする請求項 3記載の磁気共鳴イメージング装置。
[18] 前記磁場発生手段は、前記撮影空間を挟んで対向して配置され、前記被検体搭 載手段はその長手方向のみならず、その長手方向に垂直な水平方向にも移動可能 であり、前記少なくとも一つ以上の被検体搭載手段位置発信手段は、直方体の形状 をしていて、その長手方向が、前記被検体搭載手段の長手方向のみならず、前記被 検体搭載手段の長手方向に垂直で水平な方向にも配置されて ヽるものを含む、ある いは鉛直方向に配置されて ヽるものも含むことを特徴とする請求項 3記載の磁気共 鳴イメージング装置。
[19] 前記補正手段は、発生する高周波磁場の周波数や位相を調整して前記誤差の補 正をする、あるいは前記信号検出手段により磁気共鳴信号を検出する際に、参照周 波数にオフセットを加えたり、検出した磁気共鳴信号に特定の位相を加えることにより 、前記誤差を補正することを特徴とする請求項 1記載の磁気共鳴イメージング装置。
[20] 前記補正手段は、前記移動手段による前記被検体搭載手段の移動に補正を加え ることにより、前記誤差を補正することを特徴とする請求項 1記載の磁気共鳴イメージ ング装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/159,177 US7847549B2 (en) | 2006-01-05 | 2006-12-26 | Magnetic resonance imaging apparatus |
JP2007552940A JP5074211B2 (ja) | 2006-01-05 | 2006-12-26 | 磁気共鳴イメージング装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-000652 | 2006-01-05 | ||
JP2006000652 | 2006-01-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007077832A1 true WO2007077832A1 (ja) | 2007-07-12 |
Family
ID=38228185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/325933 WO2007077832A1 (ja) | 2006-01-05 | 2006-12-26 | 磁気共鳴イメージング装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US7847549B2 (ja) |
JP (1) | JP5074211B2 (ja) |
WO (1) | WO2007077832A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102565736A (zh) * | 2010-10-15 | 2012-07-11 | 西门子公司 | 确定层关于相对其运动的部位的位置的方法和磁共振设备 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5105586B2 (ja) * | 2007-05-11 | 2012-12-26 | 株式会社日立メディコ | 磁気共鳴イメージング装置 |
JP5189203B2 (ja) * | 2009-03-30 | 2013-04-24 | 株式会社日立製作所 | 磁気共鳴装置 |
US8164333B2 (en) * | 2009-05-28 | 2012-04-24 | International Business Machines Corporation | Magnetic resonance force detection apparatus and associated methods |
US8362776B2 (en) * | 2009-09-30 | 2013-01-29 | General Electric Company | Apparatus for tuning magnetic resonance coil elements and method of making same |
US8207736B2 (en) * | 2009-09-30 | 2012-06-26 | General Electric Company | Apparatus for feeding a magnetic resonance coil element and method of making same |
DE102011007825B4 (de) * | 2011-04-20 | 2012-11-22 | Bruker Biospin Mri Gmbh | Verfahren zur Bestimmung der räumlichen Verteilung von Magnetresonanzsignalen in Subvolumen eines Untersuchungsobjektes |
JP2013228226A (ja) * | 2012-04-24 | 2013-11-07 | Toshiba Corp | Pet−mri装置 |
JP6108953B2 (ja) | 2012-06-15 | 2017-04-05 | キヤノン株式会社 | 医療用装置 |
US9782005B2 (en) * | 2014-07-25 | 2017-10-10 | Stryker Corporation | Medical support apparatus |
WO2016077438A2 (en) | 2014-11-11 | 2016-05-19 | Hyperfine Research, Inc. | Pulse sequences for low field magnetic resonance |
TW202012951A (zh) | 2018-07-31 | 2020-04-01 | 美商超精細研究股份有限公司 | 低場漫射加權成像 |
WO2021108216A1 (en) | 2019-11-27 | 2021-06-03 | Hyperfine Research, Inc. | Techniques for noise suppression in an environment of a magnetic resonance imaging system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11276454A (ja) * | 1998-03-26 | 1999-10-12 | Hitachi Medical Corp | 磁気共鳴イメージング装置 |
WO2002004970A1 (en) * | 2000-07-10 | 2002-01-17 | Koninklijke Philips Electronics N.V. | Stepping-table mra |
US20030216637A1 (en) * | 2002-05-16 | 2003-11-20 | Ho Vincent B. | Whole body MRI scanning with moving table and interactive control |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08299323A (ja) * | 1995-04-27 | 1996-11-19 | Line Seiki Kk | 撓み補正装置 |
US8190234B2 (en) * | 2000-07-28 | 2012-05-29 | Fonar Corporation | Movable patient support with spatial locating feature |
JP4838124B2 (ja) * | 2003-06-30 | 2011-12-14 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 磁気共鳴イメージングのためのテーブル位置センシング装置及び方法 |
DE102004061591B3 (de) * | 2004-12-21 | 2006-08-03 | Siemens Ag | Verfahren zum Betrieb eines bildgebenden medizinischen Gerätes |
-
2006
- 2006-12-26 JP JP2007552940A patent/JP5074211B2/ja not_active Expired - Fee Related
- 2006-12-26 US US12/159,177 patent/US7847549B2/en not_active Expired - Fee Related
- 2006-12-26 WO PCT/JP2006/325933 patent/WO2007077832A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11276454A (ja) * | 1998-03-26 | 1999-10-12 | Hitachi Medical Corp | 磁気共鳴イメージング装置 |
WO2002004970A1 (en) * | 2000-07-10 | 2002-01-17 | Koninklijke Philips Electronics N.V. | Stepping-table mra |
US20030216637A1 (en) * | 2002-05-16 | 2003-11-20 | Ho Vincent B. | Whole body MRI scanning with moving table and interactive control |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102565736A (zh) * | 2010-10-15 | 2012-07-11 | 西门子公司 | 确定层关于相对其运动的部位的位置的方法和磁共振设备 |
Also Published As
Publication number | Publication date |
---|---|
JP5074211B2 (ja) | 2012-11-14 |
JPWO2007077832A1 (ja) | 2009-06-11 |
US20100219828A1 (en) | 2010-09-02 |
US7847549B2 (en) | 2010-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5074211B2 (ja) | 磁気共鳴イメージング装置 | |
US7358732B2 (en) | System, method, software arrangement and computer-accessible medium for providing real-time motion correction by utilizing clover leaf navigators | |
US9305376B2 (en) | Magnetic resonance imaging apparatus and method of acquiring functional image | |
US20080024127A1 (en) | Magnetic Resonance Imaging Apparatus and Method | |
US9713449B2 (en) | Magnetic resonance imaging device and magnetic resonance imaging method | |
JP5726203B2 (ja) | 磁気共鳴撮像装置、照射磁場計測方法 | |
US8290566B2 (en) | Magnetic resonance imaging apparatus and image generating method | |
US20150157277A1 (en) | Magnetic resonance imaging apparatus and magnetic resonance imaging method | |
JPS6311895B2 (ja) | ||
JP4711732B2 (ja) | 磁気共鳴撮影装置 | |
JPWO2010058732A1 (ja) | 磁気共鳴イメージング装置及び磁気共鳴イメージング方法 | |
JP5372015B2 (ja) | 磁気共鳴イメージング装置および同期撮像方法 | |
JP3967210B2 (ja) | 磁気共鳴イメージング装置 | |
JP5337406B2 (ja) | 磁気共鳴イメージング装置 | |
JP2004209084A (ja) | 核磁気共鳴を用いた検査装置 | |
JP2018033691A (ja) | 磁気共鳴測定装置および画像処理方法 | |
JP5336731B2 (ja) | 磁気共鳴イメージング装置 | |
WO2016021440A1 (ja) | 磁気共鳴イメージング装置 | |
KR101541290B1 (ko) | 자기 공명 신호 측정 방법 및 장치 | |
JP6718764B2 (ja) | 磁気共鳴イメージング装置及びその制御方法 | |
JP2004305454A (ja) | 磁気共鳴イメージング装置 | |
JP7487061B2 (ja) | 磁気共鳴イメージング装置、および、被検体位置合わせ方法 | |
JP6230882B2 (ja) | 磁気共鳴イメージング装置及びエコー時間設定方法 | |
JP5421600B2 (ja) | 核磁気共鳴イメージング装置および核磁気共鳴イメージング装置の作動方法 | |
JP5371620B2 (ja) | 核磁気共鳴イメージング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2007552940 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12159177 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06843317 Country of ref document: EP Kind code of ref document: A1 |