WO2007074854A1 - Non-contact delivery device - Google Patents

Non-contact delivery device Download PDF

Info

Publication number
WO2007074854A1
WO2007074854A1 PCT/JP2006/326019 JP2006326019W WO2007074854A1 WO 2007074854 A1 WO2007074854 A1 WO 2007074854A1 JP 2006326019 W JP2006326019 W JP 2006326019W WO 2007074854 A1 WO2007074854 A1 WO 2007074854A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical chamber
concave cylindrical
fluid
nozzle
contact
Prior art date
Application number
PCT/JP2006/326019
Other languages
French (fr)
Japanese (ja)
Inventor
Hitoshi Iwasaka
Hideyuki Tokunaga
Kotaro Kobayashi
Yuji Kasai
Original Assignee
Harmotec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harmotec Co., Ltd. filed Critical Harmotec Co., Ltd.
Publication of WO2007074854A1 publication Critical patent/WO2007074854A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/061Lifting, gripping, or carrying means, for one or more sheets forming independent means of transport, e.g. suction cups, transport frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6838Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping with gripping and holding devices using a vacuum; Bernoulli devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2249/00Aspects relating to conveying systems for the manufacture of fragile sheets
    • B65G2249/04Arrangements of vacuum systems or suction cups
    • B65G2249/045Details of suction cups suction cups

Definitions

  • the present invention relates to a non-contact conveyance device used for holding, conveying, rotating, etc. a plate-like body in a non-contact manner.
  • Patent Document 1 JP 2005-51260 A
  • the present invention has been made in view of the above-mentioned circumstances, paying attention to microscopic energy loss that has not been paid attention to in the conventional non-contact transfer device, and effectively using the energy of the fluid, thereby improving the energy efficiency.
  • the purpose is to improve and save energy.
  • the present invention is formed on a substantially columnar main body having a concave cylindrical chamber having an inner circumferential surface formed on the opening side of the concave cylindrical chamber.
  • two nozzles may be arranged at positions that are point-symmetric with respect to the center of the circumference of the concave cylindrical chamber.
  • the nozzle may be disposed in the middle of the concave cylindrical chamber.
  • the nozzle is provided so as to have a predetermined angle ⁇ with respect to a tangent that is in contact with the inner periphery at the discharge point P.
  • the angle ⁇ is a fluid from the discharge point P.
  • the opening edge of the concave cylindrical chamber may be smoothly curved from the inner peripheral surface of the concave cylindrical chamber and extend to the outer edge of the concave cylindrical chamber opening.
  • FIG. 1 is a perspective view showing a configuration of a non-contact transfer device 1 according to a first embodiment, and (a) is an oblique view From below, (b) is a perspective view of the oblique upward force.
  • FIG. 2 is a cross-sectional view of the non-contact transfer apparatus 1 according to the embodiment, (a) is a cross-sectional view taken along line II in FIG. 1 (a), and (b) is II II in FIG. 1 (a). It is line sectional drawing.
  • FIG. 3 is a diagram showing the relationship between the position of the short offset nozzle 5 and the suction force.
  • FIG. 4 (a) is a diagram showing the pressure distribution when two short offset nozzles 5 are arranged point-symmetrically, and (b) is a diagram showing the velocity distribution.
  • FIG. 5 (a) is a diagram showing a pressure distribution when only one short offset nozzle 5 is arranged, and (b) is a diagram showing a velocity distribution.
  • FIG. 6 is a diagram showing the relationship between the number of short offset nozzles 5 and the suction force.
  • FIG. 7 is a diagram showing energy efficiency of the non-contact conveyance device 1 according to the first embodiment with respect to the non-contact conveyance device according to the prior art using the concept of air power.
  • FIG. 8 is a view showing energy efficiency of the non-contact conveyance device 1 according to the first embodiment with respect to the non-contact conveyance device according to the prior art using the concept of air power.
  • FIG. 9 is a diagram showing the energy efficiency of the non-contact conveyance device 1 according to the first embodiment with respect to the non-contact conveyance device according to the prior art using the concept of air power.
  • FIG. 10 is a perspective view showing a configuration of a non-contact transfer device 10 according to a second embodiment.
  • FIG. 11 is a view showing the configuration of the non-contact transfer apparatus 10 according to the embodiment, wherein (a) is a top view, (b) is a side view, and (c) is a bottom view.
  • FIG. 12 is a drive explanatory diagram of a centering mechanism provided in the non-contact transfer apparatus 10 according to the embodiment.
  • FIG. 13 is a perspective view showing a configuration of a non-contact transfer device 20 according to a third embodiment.
  • FIG. 14 is a view showing a configuration of a non-contact transfer device 20 according to the embodiment, wherein (a) is a top view and (b) is a side view.
  • FIG. 15 is a drive explanatory diagram of a centering mechanism 22 provided in the non-contact transport apparatus 10 according to the same embodiment.
  • Non-contact transfer device 2... Swirl flow forming body, 3... Recessed cylindrical chamber, 4... Flat facing surface, 5... Short offset nozzle, 6... Belmouth fluid passage, ⁇ ⁇ Open edge, 8 ... flow Body conductor Pl, 11 ⁇ Base 12, ⁇ ⁇ Centering mechanism, 121, 221 ⁇ Cylinder, 122 ⁇ Link arm, 222 ⁇ Zinc pre-clamp, 123, 213, 223 ⁇ ⁇ Centering guide ⁇ Fluid supply port, 21 ⁇ •
  • FIG. 1 is a perspective view showing a configuration of a non-contact transport apparatus 1 according to the present embodiment.
  • (A) is an oblique view from below, and (b) is a view of the oblique upward force.
  • FIG. 2 is a cross-sectional view of the non-contact conveyance device 1.
  • (A) is a cross-sectional view taken along line II in FIG. 1 (a)
  • (b) is a cross-sectional view taken along line II-II in FIG. 1 (a).
  • the non-contact conveyance device 1 has a substantially columnar swirl flow forming body 2.
  • a concave cylindrical chamber 3 is formed in the swirl flow forming body 2 so as to form a columnar space and its lower end is an opening.
  • the opening side of the concave cylindrical chamber 3 faces a plate-like body (a plate-like workpiece such as a wafer) and is a flat facing surface 4 in which the facing surface is formed flat.
  • the opening edge 7 that forms the periphery of the opening of the concave cylindrical chamber 3 has a curved shape with a smooth cross section. That is, the cross-sectional shape of the opening edge 7 is a shape that smoothly curves from the inner peripheral surface of the recessed cylindrical chamber 3 and extends to the outer edge of the opening as shown in FIG. 2 (b). In this case, the curvature of the opening edge 7 is, for example, about R2.5, and the surface is preferably extremely smooth.
  • reference numeral 5 in FIGS. 1 and 2 denotes a short offset nozzle that discharges fluid into the concave cylindrical chamber 3, and is formed so as to face the concave cylindrical chamber 3.
  • the short offset nozzle 5 is connected to a bell mouth-like fluid passage 6 for supplying fluid into the concave cylindrical chamber 3 through the nozzle.
  • the short offset nozzle 5 is provided so as to have a predetermined angle ⁇ with respect to a tangent line that is in contact with the inner periphery at the discharge point P.
  • This angle ⁇ is determined by subtracting the radius rl perpendicular to the line L1 extending in the fluid discharge direction and the point P2 between the radius rl and the line L1 and the point P3 between the radius rl and the circumference P3.
  • the offset ⁇ When the offset ⁇ is provided in this way, the shear resistance force on the wall surface of the concave cylindrical chamber 3 when fluid is discharged from the short offset nozzle 5 into the concave cylindrical chamber 3 can be suppressed, and the entrainment effect can be increased. Therefore, the input energy can be more efficiently converted into rotational momentum.
  • the short offset nozzle 5 is arranged so as to face the middle of the concave cylindrical chamber 3 in the vertical direction.
  • the fluid discharged into the concave cylindrical chamber 3 causes friction with the upper surface of the concave cylindrical chamber 3 due to its viscosity, and the boundary layer develops.
  • the nozzle position is located in the middle of the concave cylindrical chamber 3, friction between the upper surface of the concave cylindrical chamber 3 can be suppressed, and as a result, it can be efficiently converted into rotational force. Can reduce energy loss.
  • two short offset nozzles 5 are arranged at positions that are point-symmetric with respect to the center 0 of the circumference as shown in FIG. 2 (a).
  • the fluid discharged from the short-offset nozzle 5 facing the point symmetry into the concave cylindrical chamber 3 is a force that decelerates and gradually decelerates along the inner wall of the concave cylindrical chamber 3. Increase the mentament effect and centrifugal force.
  • FIG. 4 (a) is a diagram showing the pressure distribution when two short offset nozzles 5 are arranged point-symmetrically
  • FIG. 4 (b) is a diagram showing the velocity distribution.
  • FIG. 5 (a) is a diagram showing the pressure distribution when only one short offset nozzle 5 is arranged
  • FIG. 5 (b) is a diagram showing the velocity distribution.
  • the pressure distribution and velocity distribution are biased. This is because the wall flow that forms a swirling flow along the inner wall of the concave cylindrical chamber 3 causes friction due to the centrifugal force and the entrainment effect of the fluid with a high flow velocity discharged from the short offset nozzle 5 and the viscosity of the fluid. It happens because of the slowdown due to the development of the boundary layer. If the plate is sucked in this state, the plate will tilt. It will be sucked and held, resulting in an unstable state.
  • the short offset nozzle 5 is shorter in length than the nozzles according to the prior art in order to minimize the pressure loss in the nozzle.
  • the bell mouth-like fluid passage 6 is drilled horizontally from the fluid inlet 8 formed on the side surface of the swirling flow forming body 2 to the closed end surface 7 and faces the inner peripheral surface of the concave cylindrical chamber 3. It communicates with offset nozzle 5. As shown in Fig. 2 (a), the bellmouth fluid passage 6 communicates with the short offset nozzle 5 with a smooth curved surface, so that loss due to separation when fluid flows into the nozzle Can be greatly reduced.
  • the non-contact transfer device 1 having the above-described configuration, when a fluid is supplied from an air supply device (not shown) to the fluid introduction port 8, the fluid is short-circuited via the bell mouth fluid passage 6. It is blown into the concave cylindrical chamber 3 from the offset nozzle 5. The fluid blown into the concave cylindrical chamber 3 is rectified as a swirling flow in the internal space of the concave cylindrical chamber 3 and then flows out of the concave cylindrical chamber 3.
  • the energy consumption of pneumatic equipment including the non-contact conveyance device as described above is expressed by air consumption, and has been evaluated by being converted into power consumption through the specific energy of the compressor used.
  • air consumption is not directly linked to energy, it is desirable to define and quantify energy flow with compressed air flow. Therefore, in this specification, we focus on the energy of compressed air flowing and introduce the concept of effective energy and air power in evaluating energy efficiency.
  • Air power is expressed in units of kw (kilowatts), as is electric power. Air power is defined as the effective energy flux of compressed air and is expressed as:
  • a is the absolute pressure and atmospheric pressure of compressed air, Q and Q, respectively
  • a is the volumetric flow rate in the compressed state and the volumetric flow rate converted to the atmospheric pressure state. Even if the pressure is different, the energy consumption varies greatly even with the same consumption flow rate, and these must be handled appropriately.
  • the compressed air can be handled in the same way as electric power in the energy quantification process.
  • FIGS. 7 to 9 show a non-contact conveyance device according to the prior art of the non-contact conveyance device 1 according to the present embodiment (specifically, a non-contact conveyance device disclosed in Japanese Patent Laid-Open No. 2005-51260). It is a figure which displays the energy efficiency with respect to using the concept of air power.
  • the non-contact conveyance device 1 formed with a smooth curved surface at the opening ridge angle prevents non-contact conveyance according to the conventional technique in which the opening edge is chamfered as a result of suppressing the separation due to the ridge angle.
  • An average 12% improvement in efficiency was seen compared to the equipment.
  • the stability of holding the plate-like body is increased as compared with the non-contact transfer device according to the prior art.
  • FIG. 7 as a result of the short offset nozzle 5 being arranged so as to face the middle of the concave cylindrical chamber 3, it is generated by friction due to the viscosity of the fluid and the upper surface of the concave cylindrical chamber 3. As a result, energy loss was suppressed, and an average 21% improvement in efficiency was seen compared to the non-contact transfer device according to the prior art in which the nozzles are arranged on the bottom surface of the concave cylindrical chamber 3.
  • the non-contact transfer device 1 in which the short offset nozzle 5 is disposed at a position farther inward than the inner peripheral surface of the concave cylindrical chamber 3 includes the inner peripheral surface of the concave cylindrical chamber 3
  • the nozzle is arranged along the inner wall of the recessed cylindrical chamber 3 as a result of energy attenuation due to the large shearing force in the cylinder being avoided, and the input energy is more efficiently converted into rotational momentum. An average improvement of 17% was seen compared to the equipment.
  • FIG. 9 shows a result obtained by integrating the efficiency improvements shown in FIGS.
  • the non-contact conveyance device 1 showed a significant improvement in efficiency of 41% on average in comparison with the non-contact conveyance device according to the prior art.
  • the force in which the two short offset nozzles 5 are arranged in a point-symmetrical position with respect to the center O of the circumference of the concave cylindrical chamber 3 The arrangement method of the two nozzles is limited to this. There is no need to be done. Further, the number of the short offset nozzles 5 is not limited to two as in the above example, and may be any number of two or more that allows the fluid to rotate efficiently and in a balanced manner.
  • FIG. 10 is a perspective view showing the configuration of the non-contact transport apparatus 10 according to the present embodiment.
  • FIG. 11 is a view showing the configuration of the non-contact transfer apparatus 10, where (a) is a top view, (b) is a side view, and (c) is a bottom view.
  • FIG. 12 is an explanatory view of driving of the centering mechanism 12 provided in the non-contact transport apparatus 10.
  • the non-contact transfer device 10 according to the present embodiment is configured by using a plurality of swirl flow forming bodies 2 according to the first embodiment. Specifically, the non-contact transfer device 10 is attached to the base 11 and the base 11. 6 swirl flow forming bodies 2 provided, and a centering mechanism 12 mounted on the base 11 to prevent the plate-like body from being detached.
  • the six swirling flow forming bodies 2 are supported so that the closed end surface side is attached to the inner surface of the base portion 11, and the flat opposing surfaces 4 are all the same surface.
  • the outer surface of the base 11 The body supply port 13 is provided, and a base passage (not shown) that connects the fluid supply port 13 and the fluid introduction port 8 of the swirl flow forming body 2 corresponding to the fluid supply port 13 is provided in the wall body. Branching out.
  • a centering mechanism 12 is mounted on the outer surface of the base 11 for positioning and preventing the plate-like body held in a non-contact manner. As shown in FIG. 12, the centering mechanism 12 includes six cylinders 121 whose one ends communicate with each other, and six link arms each having one end connected to the other end of each cylinder 121.
  • each link arm 122 and six centering guides 123 suspended from the other end of each link arm 122. Since the six cylinders 121 communicate with each other at one end, they can be pressurized or depressurized by a single system of fluid. When the pressure inside the cylinder 121 is reduced by the fluid, the six centering guides 123 are driven in the center direction via the six link arms 122. Due to the movement in the center direction by the centering guide 123, the outer periphery of the plate-like body held in a non-contact manner by the non-contact conveying device 10 is regulated, and the center of the plate-like body is the center of the internal space of the base portion 11. Is positioned so as to match.
  • the six centering guides 123 are driven through the six link arms 122 in a direction in which the central force is also separated.
  • the restriction on the plate-like body is released, and the plate-like body becomes free.
  • the non-contact conveyance device 10 having the above-described configuration, when a fluid is supplied from an air supply device (not shown) to the fluid supply port 13, the fluid passes through a passage in the base portion 11 (not shown), and then passes through each passage. It is sent to the swirl flow forming body 2.
  • the fluid sent to each swirl flow forming body 2 is blown into the concave cylindrical chamber 3 from the short offset nozzle 5 through the fluid inlet 8 and the bell mouth fluid passage 6.
  • the fluid blown into the concave cylindrical chamber 3 is rectified as a swirling flow in the internal space of the concave cylindrical chamber 3 and then flows out of the concave cylindrical chamber 3.
  • each swirling flow forming body 2 is adjusted in advance so that the swirling flow is not rotated when the plate-like body is held in a non-contact manner.
  • the non-contact transfer device 10 among the six swirl flow forming bodies 2, three swirl swirl flows clockwise, and the remaining three swirl counterclockwise. It has been adjusted.
  • each swirl flow forming body 2 When the fluid flows out from the concave cylindrical chamber 3 of each swirl flow forming body 2, each swirl flow forming body 2
  • a plate-like body is arranged at a position facing the flat opposed surface 4, the atmospheric pressure supply from the outside to the inside of the recessed cylindrical chamber 3 is limited, and gradually per unit area due to the entrainment effect and centrifugal force. As a result, the density of the fluid molecules decreases, the pressure in the center of the swirling flow in the concave cylindrical chamber 3 decreases, and negative pressure is generated.
  • the plate-like body is pressed by the ambient atmospheric pressure and sucked toward the flat opposed surface 4 side, while when the distance between the flat opposed surface 4 and the plate-like body approaches, the discharge from the concave cylindrical chamber 3 is performed.
  • the pressure at the center of the swirl flow in the concave cylindrical chamber 3 rises and the plate-like body does not come into contact with the flat opposed surface 4 and the plate.
  • the distance of the body is maintained.
  • the plate-like body is stably held in a non-contact state by the air interposed between the flat opposed surface 4 and the plate-like body.
  • the plate-like body is sucked by the swirling flow formed by the six swirling flow forming bodies 2, so that the suction force can be made extremely strong. Further, in this non-contact conveyance device 10, since a swirling flow is formed at six locations, even a plate-like body having a large diameter is sucked throughout. Therefore, even if the plate-like body is warped, it is possible to correct the warp throughout. Furthermore, since the non-contact conveying apparatus 10 uses the swirl flow forming body 2 similar to the non-contact conveying apparatus 1 according to the first embodiment, it is the same as the non-contact conveying apparatus 1 according to the first embodiment. In addition, significant energy efficiency and energy savings can be realized.
  • FIG. 13 is a perspective view showing a configuration of the non-contact transport device 20 according to the present embodiment.
  • FIG. 14 is a diagram showing the configuration of the non-contact transport device 20, where (a) is a top view and (b) is a side view.
  • FIG. 15 is an explanatory view of driving of the centering mechanism 22 provided in the non-contact transport device 20.
  • the non-contact conveyance device 20 is configured by using a plurality of swirl flow forming bodies 2 according to the first embodiment, and specifically, a plate having a flat surface facing the plate-like body.
  • the base 21, the six swirling flow forming bodies 2 attached to the base 21, the centering mechanism 22 provided below the base 21, and the base 21 are fixed so that the base 21 can be moved. And a gripping portion 23 for the purpose.
  • the base 21 is composed of a base 211 and two arms 212 branched from the base 211 in a bifurcated manner.
  • a protruding centering guide 213 is provided at the protruding end of each arm 212.
  • the six swirling flow forming bodies 2 are supported so that the closed end face side is attached to the upper surface of the base body 21, and the flat opposed faces 4 are all the same face.
  • a fluid supply port 24 is provided on the side surface of the grip portion 23, and a fluid (not shown) that communicates the fluid supply port 24 with the fluid introduction port 8 of the swirling flow forming body 2 inside the base body 21.
  • a passage is formed by branching from the fluid supply port 24.
  • a centering mechanism 22 is provided below the base 21 for positioning and preventing separation of the plate-like body held in a non-contact manner. As shown in FIG. 15, the centering mechanism 22 includes a cylinder 221 provided in the gripping portion 23, one end connected to one end of the cylinder 221 and two centering guides provided to the other end.
  • the two centering guides 223 are driven through the link plate 222 in a direction in which the plate-like body force is also separated.
  • the restriction on the plate-like body is released, and the plate-like body becomes free.
  • the non-contact conveyance device 20 having the above configuration, when a fluid is supplied from an air supply device (not shown) to the fluid supply port 24, the fluid passes through a fluid passage in the base body 21 (not shown). And is sent to each swirl flow forming body 2.
  • the fluid sent to each swirling flow forming body 2 is blown into the concave cylindrical chamber 3 from the short offset nozzle 5 via the fluid introducing port 8 and the bell mouth fluid passage 6.
  • the fluid blown into the concave cylindrical chamber 3 is rectified as a swirling flow in the internal space of the concave cylindrical chamber 3 and then flows out of the concave cylindrical chamber 3.
  • each swirling flow forming body 2 has its swirling direction adjusted in advance so as not to rotate when the plate-like body is held in a non-contact manner.
  • the non-contact conveyance device 20 among the six swirl flow forming bodies 2, three swirl swirl flows clockwise, and the remaining three swirl counterclockwise. Adjusted.
  • the pressure at the center of the swirl flow in the concave cylindrical chamber 3 rises and the plate-like body does not come into contact with the flat opposed surface 4 and the plate.
  • the distance of the body is maintained.
  • the plate-like body is stably held in a non-contact state by the air interposed between the flat opposed surface 4 and the plate-like body.
  • this non-contact conveyance device 20 since the plate-like body is sucked by the swirling flow formed by the six swirling flow forming bodies 2, the suction force can be made extremely strong. Further, in this non-contact conveyance device 20, since a swirl flow is formed at six locations, even a plate-like body having a large diameter is sucked throughout. Therefore, even if the plate-like body is warped, it is possible to correct the warp throughout. Further, since the non-contact transfer device 20 is configured in a plate shape, it can freely access even the wafers in the stacked wafer cassettes that have been difficult to access. Further, in this non-contact conveying apparatus 20, the same swirling flow as that in the non-contact conveying apparatus 1 according to the first embodiment is used. Since the formed body 2 is used, as in the non-contact transfer apparatus 1 according to the first embodiment, a great improvement in energy efficiency and energy saving can be realized.

Abstract

Attention is paid on a micro energy loss which has not been considered in a conventional non-contact delivery device so as to effectively utilize energy of a fluid to realize improvement of energy efficiency and energy saving. The non-contact delivery device holds a plate-shaped body in a non-contact way and delivers it. The non-contact delivery device includes a columnar body having an indented cylindrical chamber formed with a circumference-shaped inner circumferential surface; a flat end surface formed at the indented cylindrical chamber opening side of the body; a nozzle formed over the inner circumference of the indented cylindrical chamber for discharging a supply fluid into the indented cylindrical chamber; and a fluid path communicating with the nozzle for supplying a fluid via the nozzle into the indented cylindrical chamber. The nozzle is arranged at a position apart inwardly from the indented cylindrical chamber inner circumferential surface.

Description

明 細 書  Specification
非接触搬送装置  Non-contact transfer device
技術分野  Technical field
[0001] 本発明は板状体を非接触で保持、搬送、回転等するために用いられる非接触搬送 装置に関する。  TECHNICAL FIELD [0001] The present invention relates to a non-contact conveyance device used for holding, conveying, rotating, etc. a plate-like body in a non-contact manner.
背景技術  Background art
[0002] 従来、半導体ゥヱーハゃガラス基板等のワークを搬送、移載する際、またはそのプ ロセスステージでは、エンドエフェクターやバキュームステージと 、つた真空吸着や、 機械的なチヤッキング等によってワークの保持を行ってきた。これらの方法はワークと 真空吸着部もしくはチヤッキング部が直接接触するため、接触部分力 ワークへのパ 一ティクル転写や金属汚染、接触による傷、真空破壊に伴う剥離による静電気発生 等の問題が生じるおそれがある。  [0002] Conventionally, when a workpiece such as a semiconductor wafer glass substrate is transported or transferred, or at its process stage, the workpiece is held by vacuum suction, mechanical chucking, etc. with an end effector or vacuum stage. I went. Since these methods are in direct contact between the workpiece and the vacuum suction section or chucking section, problems such as particle transfer to the workpiece, metal contamination, scratches due to contact, and generation of static electricity due to peeling due to vacuum breakage may occur. There is.
こうした問題点を解決するために、圧縮空気を用いべルヌーィの定理を利用した非 接触搬送装置が現在実用化されつつある。この非接触搬送装置によれば、非接触 でワークを保持することは可能であるが、一般に、保持力が弱いという問題があった。 特許文献 1に開示される非接触搬送装置では、流体を旋回させることで板状体を吸 弓 Iし保持する力は向上して 、るものの、流体力学的観点力 見るとエネルギー効率 や消費流量という点で改良の余地がある。  In order to solve these problems, non-contact transfer devices using compressed air and the Bernoulli's theorem are now being put into practical use. According to this non-contact conveying apparatus, it is possible to hold a workpiece in a non-contact manner, but there is a problem that the holding force is generally weak. In the non-contact conveyance device disclosed in Patent Document 1, although the force for sucking and holding the plate-like body is improved by turning the fluid, the energy efficiency and consumption flow rate are seen from the viewpoint of hydrodynamic viewpoint. There is room for improvement in that regard.
特許文献 1:特開 2005— 51260号公報  Patent Document 1: JP 2005-51260 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] このように従来の非接触搬送装置では、コストや取扱!、の容易さが重視され、エネ ルギー効率が考慮されることが少な力つた。しかし、大口径化、薄片化する半導体ゥ ェハゃ大型化するガラス基板を搬送'保持するために消費流量が増加する方向にあ ることを鑑みると、本技術分野の装置についてエネルギー効率の向上、省エネルギ 一化は大きな課題となって 、る。 [0003] As described above, in the conventional non-contact conveyance device, the importance of cost and ease of handling is emphasized, and energy efficiency is considered little. However, in view of the fact that the consumption flow rate is increasing in order to transport and hold large-sized and thinned semiconductor wafers, the energy efficiency of devices in this technical field is improved. Energy conservation is a major issue.
1999年 4月より従来の省エネ法が大幅に強化され、「改正省エネ法」が施行された 。また、国内の事業者が温暖化ガスの排出量の取引を行う「国内排出取引制度」も追 加的措置として導入することが検討されている。さらに、世界では国レベルの温暖化 ガスの排出権取引への整備も進みつつあることを鑑みると省エネルギー化は世界的 な課題である。 From April 1999, the conventional energy conservation law was significantly strengthened, and the “Revised Energy Conservation Law” was enforced. . In addition, the introduction of a “domestic emissions trading system” in which domestic businesses trade greenhouse gas emissions is being considered as an additional measure. In addition, energy conservation is a global issue in light of the ongoing development of greenhouse gas emissions trading at the national level.
本発明は上述した事情に鑑みてなされたものであり、従来の非接触搬送装置では 着目されていなかった微視的なエネルギー損失に着目し、流体の持つエネルギーを 有効に利用して、エネルギー効率向上、省エネルギー化を実現することを目的として いる。  The present invention has been made in view of the above-mentioned circumstances, paying attention to microscopic energy loss that has not been paid attention to in the conventional non-contact transfer device, and effectively using the energy of the fluid, thereby improving the energy efficiency. The purpose is to improve and save energy.
課題を解決するための手段  Means for solving the problem
[0004] 上述の課題を解決するために、本発明は、内周面が円周状の凹部円筒室が形成 された略柱状の本体と、前記本体の、前記凹部円筒室開口側に形成された平坦状 端面と、前記凹部円筒室の内周面に臨むように形成され、供給流体を凹部円筒室内 に吐出させるためのノズルと、前記ノズルと連通し、当該ノズルを介して前記凹部円 筒室内に流体を供給する流体通路とを備え、前記ノズルは、前記凹部円筒室内周面 よりも内側へ離れた位置に配置されることを特徴とする非接触搬送装置を提供する。  [0004] In order to solve the above-mentioned problems, the present invention is formed on a substantially columnar main body having a concave cylindrical chamber having an inner circumferential surface formed on the opening side of the concave cylindrical chamber. A flat end surface, a nozzle for discharging a supply fluid into the concave cylindrical chamber, and a nozzle that communicates with the nozzle, and is formed through the nozzle. And a fluid passage for supplying fluid into the chamber, wherein the nozzle is disposed at a position farther inward than the inner circumferential surface of the concave cylindrical chamber.
[0005] 上記の構成において、前記ノズルは、前記凹部円筒室の円周の中心に対して互い に点対称となる位置に 2つ配置されてもよい。  [0005] In the above configuration, two nozzles may be arranged at positions that are point-symmetric with respect to the center of the circumference of the concave cylindrical chamber.
[0006] また上記の構成において、前記ノズルは、前記凹部円筒室の中腹に配置されても よい。 [0006] In the above configuration, the nozzle may be disposed in the middle of the concave cylindrical chamber.
[0007] また上記の構成において、前記ノズルは、その吐出点 Pにおいて内周に接する接 線に対して所定の角度 Θを持つように設けられ、この角度 Θは、前記吐出点 Pから流 体の吐出方向に延びる線 L 1と直交する半径 r 1を引いたとき、当該半径 r 1と前記線 L 1の交点 P2と、半径 rlと前記凹部円筒室円周の交点 P3との間の距離 δが δ Zrl = 5%〜25%を満たすように設定されてもよ!、。  [0007] In the above configuration, the nozzle is provided so as to have a predetermined angle Θ with respect to a tangent that is in contact with the inner periphery at the discharge point P. The angle Θ is a fluid from the discharge point P. When the radius r 1 orthogonal to the line L 1 extending in the discharge direction is drawn, the distance between the intersection point P 2 of the radius r 1 and the line L 1, and the intersection point P 3 of the radius rl and the circumference of the concave cylindrical chamber δ may be set to satisfy δ Zrl = 5% to 25%!
[0008] また上記の構成において、前記凹部円筒室の開口縁は、当該凹部円筒室の内周 面から滑らかに湾曲し、当該凹部円筒室開口部の外縁に延びる形状としてもよい。 図面の簡単な説明  [0008] In the above configuration, the opening edge of the concave cylindrical chamber may be smoothly curved from the inner peripheral surface of the concave cylindrical chamber and extend to the outer edge of the concave cylindrical chamber opening. Brief Description of Drawings
[0009] [図 1]第 1実施形態に係る非接触搬送装置 1の構成を示す斜視図であり、(a)は斜め 下方から、(b)は斜め上方力も見た斜視図である。 FIG. 1 is a perspective view showing a configuration of a non-contact transfer device 1 according to a first embodiment, and (a) is an oblique view From below, (b) is a perspective view of the oblique upward force.
[図 2]同実施形態に係る非接触搬送装置 1の断面図であり、(a)は図 1 (a)の I I線断 面図であり、 (b)は図 1 (a)の II II線断面図である。  FIG. 2 is a cross-sectional view of the non-contact transfer apparatus 1 according to the embodiment, (a) is a cross-sectional view taken along line II in FIG. 1 (a), and (b) is II II in FIG. 1 (a). It is line sectional drawing.
[図 3]ショートオフセットノズル 5の位置と吸引力との関係を示す図である。  FIG. 3 is a diagram showing the relationship between the position of the short offset nozzle 5 and the suction force.
[図 4] (a)は、ショートオフセットノズル 5を点対称に 2つ配置した場合の圧力分布を示 す図であり、(b)は、速度分布を示す図である。  [FIG. 4] (a) is a diagram showing the pressure distribution when two short offset nozzles 5 are arranged point-symmetrically, and (b) is a diagram showing the velocity distribution.
[図 5] (a)は、ショートオフセットノズル 5を 1つだけ配置した場合の圧力分布を示す図 であり、(b)は、速度分布を示す図である。  [Fig. 5] (a) is a diagram showing a pressure distribution when only one short offset nozzle 5 is arranged, and (b) is a diagram showing a velocity distribution.
[図 6]ショートオフセットノズル 5の本数と吸引力との関係を示す図である。  FIG. 6 is a diagram showing the relationship between the number of short offset nozzles 5 and the suction force.
[図 7]第 1実施形態に係る非接触搬送装置 1の、従来技術に係る非接触搬送装置に 対するエネルギー効率をエアパワーの概念を使って表示する図である。  FIG. 7 is a diagram showing energy efficiency of the non-contact conveyance device 1 according to the first embodiment with respect to the non-contact conveyance device according to the prior art using the concept of air power.
[図 8]第 1実施形態に係る非接触搬送装置 1の、従来技術に係る非接触搬送装置に 対するエネルギー効率をエアパワーの概念を使って表示する図である。  FIG. 8 is a view showing energy efficiency of the non-contact conveyance device 1 according to the first embodiment with respect to the non-contact conveyance device according to the prior art using the concept of air power.
[図 9]第 1実施形態に係る非接触搬送装置 1の、従来技術に係る非接触搬送装置に 対するエネルギー効率をエアパワーの概念を使って表示する図である。  FIG. 9 is a diagram showing the energy efficiency of the non-contact conveyance device 1 according to the first embodiment with respect to the non-contact conveyance device according to the prior art using the concept of air power.
[図 10]第 2実施形態に係る非接触搬送装置 10の構成を示す斜視図である。  FIG. 10 is a perspective view showing a configuration of a non-contact transfer device 10 according to a second embodiment.
[図 11]同実施形態に係る非接触搬送装置 10の構成を示す図であり、 (a)は上面図 であり、(b)は側面図であり、(c)は下面図である。  FIG. 11 is a view showing the configuration of the non-contact transfer apparatus 10 according to the embodiment, wherein (a) is a top view, (b) is a side view, and (c) is a bottom view.
[図 12]同実施形態に係る非接触搬送装置 10が備えるセンタリング機構 の駆動説明 図である。  FIG. 12 is a drive explanatory diagram of a centering mechanism provided in the non-contact transfer apparatus 10 according to the embodiment.
[図 13]第 3実施形態に係る非接触搬送装置 20の構成を示す斜視図である。  FIG. 13 is a perspective view showing a configuration of a non-contact transfer device 20 according to a third embodiment.
[図 14]同実施形態に係る非接触搬送装置 20の構成を示す図であり、 (a)は上面図 であり、(b)は側面図である。  FIG. 14 is a view showing a configuration of a non-contact transfer device 20 according to the embodiment, wherein (a) is a top view and (b) is a side view.
[図 15]同実施形態に係る非接触搬送装置 10が備えるセンタリング機構 22の駆動説 明図である。  FIG. 15 is a drive explanatory diagram of a centering mechanism 22 provided in the non-contact transport apparatus 10 according to the same embodiment.
符号の説明 Explanation of symbols
1、 10、 20· · ·非接触搬送装置、 2…旋回流形成体、 3…凹部円筒室、 4…平坦状対 向面、 5…ショートオフセットノズル、 6…ベルマウス状流体通路、 7· · ·開口縁、 8…流 体導人 Pl、 11· ··基底咅^ 12、 22· ··センタリング機構、 121、 221· ··シリンダ、 122· ·· リンクアーム、 222· ··ジンクプレ一卜、 123、 213、 223· ··センタリングガイド、、 13、 24· ·· 流体供給口、 21· ··基体、 211…基部、 212…腕部、 23…把持部。 1, 10, 20 ··· Non-contact transfer device, 2… Swirl flow forming body, 3… Recessed cylindrical chamber, 4… Flat facing surface, 5… Short offset nozzle, 6… Belmouth fluid passage, · · Open edge, 8 ... flow Body conductor Pl, 11 ········· Base 12, ^ ··· Centering mechanism, 121, 221 ··· Cylinder, 122 ··· Link arm, 222 ··· Zinc pre-clamp, 123, 213, 223 ··· ··· Centering guide ····································· Fluid supply port, 21 ·········································· •
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] <第 1実施形態 > [0011] <First embodiment>
図 1〜9を参照して本発明の第 1実施形態について説明する。  A first embodiment of the present invention will be described with reference to FIGS.
図 1は、本実施形態に係る非接触搬送装置 1の構成を示す斜視図である。(a)は、 斜め下方から、(b)は、斜め上方力も見た図である。図 2は、非接触搬送装置 1の断 面図である。(a)は、図 1 (a)の I I線断面図であり、(b)は、図 1 (a)の II II線断面 図である。  FIG. 1 is a perspective view showing a configuration of a non-contact transport apparatus 1 according to the present embodiment. (A) is an oblique view from below, and (b) is a view of the oblique upward force. FIG. 2 is a cross-sectional view of the non-contact conveyance device 1. (A) is a cross-sectional view taken along line II in FIG. 1 (a), and (b) is a cross-sectional view taken along line II-II in FIG. 1 (a).
これらの図に示されるように、非接触搬送装置 1は、略柱状の旋回流形成体 2を有 している。この旋回流形成体 2の内部には、円柱状の空間を形成し、その下端が開 口部になっている凹部円筒室 3が形成されている。凹部円筒室 3の開口側は、板状 体 (ウェハ等の板状のワーク)と対向し、その対向面が平坦に形成されている平坦状 対向面 4となっている。  As shown in these drawings, the non-contact conveyance device 1 has a substantially columnar swirl flow forming body 2. A concave cylindrical chamber 3 is formed in the swirl flow forming body 2 so as to form a columnar space and its lower end is an opening. The opening side of the concave cylindrical chamber 3 faces a plate-like body (a plate-like workpiece such as a wafer) and is a flat facing surface 4 in which the facing surface is formed flat.
凹部円筒室 3の開口部の周縁を形成する開口縁 7は、その断面が滑らかな曲線状 の形状となっている。すなわち、開口縁 7の断面形状は、図 2 (b)に示すように凹部円 筒室 3の内周面から滑らかに湾曲して開口部の外縁に延びる形状となっている。この 場合の開口縁 7の曲率は、例えば R2. 5程度でその表面は極めて滑らかであること が好ましい。  The opening edge 7 that forms the periphery of the opening of the concave cylindrical chamber 3 has a curved shape with a smooth cross section. That is, the cross-sectional shape of the opening edge 7 is a shape that smoothly curves from the inner peripheral surface of the recessed cylindrical chamber 3 and extends to the outer edge of the opening as shown in FIG. 2 (b). In this case, the curvature of the opening edge 7 is, for example, about R2.5, and the surface is preferably extremely smooth.
[0012] 次に、図 1および図 2における 5は、流体を凹部円筒室 3内に吐出させるショートォ フセットノズルであり、凹部円筒室 3内に臨むように形成されている。このショートオフ セットノズル 5〖こは、当該ノズルを介して凹部円筒室 3内に流体を供給するベルマウス 状流体通路 6が連通して 、る。  Next, reference numeral 5 in FIGS. 1 and 2 denotes a short offset nozzle that discharges fluid into the concave cylindrical chamber 3, and is formed so as to face the concave cylindrical chamber 3. The short offset nozzle 5 is connected to a bell mouth-like fluid passage 6 for supplying fluid into the concave cylindrical chamber 3 through the nozzle.
ショートオフセットノズル 5は、図 2 (a)に示すように、吐出点 Pにおいて内周に接す る接線に対して所定の角度 Θを持つように設けられている。この角度 Θは、吐出点 P 力も流体の吐出方向に延びる線 L1と直交する半径 rlを引いたとき、この半径 rlと線 L1の交点 P2と、半径 rlと円周の交点 P3との間の距離(以下、オフセットという) δが δ Zrl = 5%〜25%を満たすように設定される。 As shown in FIG. 2 (a), the short offset nozzle 5 is provided so as to have a predetermined angle Θ with respect to a tangent line that is in contact with the inner periphery at the discharge point P. This angle Θ is determined by subtracting the radius rl perpendicular to the line L1 extending in the fluid discharge direction and the point P2 between the radius rl and the line L1 and the point P3 between the radius rl and the circumference P3. Distance (hereinafter referred to as offset) δ is It is set to satisfy δ Zrl = 5% to 25%.
このようにオフセット δを設けると、ショートオフセットノズル 5から凹部円筒室 3内に 流体が吐出された際の凹部円筒室 3壁面でのせん断抵抗力が抑えられ、ェントレイ ンメント効果を大きくすることができるため、入力されるエネルギーをより効率的に回 転の運動量に変換することができる。  When the offset δ is provided in this way, the shear resistance force on the wall surface of the concave cylindrical chamber 3 when fluid is discharged from the short offset nozzle 5 into the concave cylindrical chamber 3 can be suppressed, and the entrainment effect can be increased. Therefore, the input energy can be more efficiently converted into rotational momentum.
[0013] また、ショートオフセットノズル 5は、図 2 (b)に示されるように、凹部円筒室 3の上下 方向中腹に臨むように配置されている。この場合のショートオフセットノズル 5の位置 は、例えば、凹部円筒室 3の高さ hに対する凹部円筒室 3上面からの距離 hiが hlZ h= 35%〜75%を満たすように設定されることが好まし ヽ。ショートオフセットノズル 5 が凹部円筒室 3内の上方に配置された場合、凹部円筒室 3内に吐出された流体が、 その粘性によって凹部円筒室 3上面との間で摩擦を生じ、境界層の発達によってェ ネルギー損失が生じるが、ノズル位置を凹部円筒室 3の中腹に配置された場合には 、凹部円筒室 3上面との間の摩擦が抑えられ、結果として効率よく回転力に変換が可 能でエネルギー損失を抑えることができる。 [0013] Further, as shown in FIG. 2 (b), the short offset nozzle 5 is arranged so as to face the middle of the concave cylindrical chamber 3 in the vertical direction. In this case, the position of the short offset nozzle 5 is preferably set such that the distance hi from the upper surface of the concave cylindrical chamber 3 with respect to the height h of the concave cylindrical chamber 3 satisfies hlZ h = 35% to 75%. Masashi. When the short offset nozzle 5 is arranged above the concave cylindrical chamber 3, the fluid discharged into the concave cylindrical chamber 3 causes friction with the upper surface of the concave cylindrical chamber 3 due to its viscosity, and the boundary layer develops. However, if the nozzle position is located in the middle of the concave cylindrical chamber 3, friction between the upper surface of the concave cylindrical chamber 3 can be suppressed, and as a result, it can be efficiently converted into rotational force. Can reduce energy loss.
[0014] また、ショートオフセットノズル 5は、この実施例の場合、図 2 (a)に示されるように、 互いに円周の中心 0に対して点対称となる位置に 2つ配置される。点対称に向かい 合うショートオフセットノズル 5から凹部円筒室 3内へと吐出された流体は、凹部円筒 室 3内壁に沿って旋回し次第に減速する力 お互いの吐出流体によってモーメントバ ランスがとれ、ェントレインメント効果と遠心力が増大する。図 4 (a)は、ショートオフセ ットノズル 5を点対称に 2つ配置した場合の圧力分布を示す図であり、図 4 (b)は、速 度分布を示す図である。  In this embodiment, two short offset nozzles 5 are arranged at positions that are point-symmetric with respect to the center 0 of the circumference as shown in FIG. 2 (a). The fluid discharged from the short-offset nozzle 5 facing the point symmetry into the concave cylindrical chamber 3 is a force that decelerates and gradually decelerates along the inner wall of the concave cylindrical chamber 3. Increase the mentament effect and centrifugal force. FIG. 4 (a) is a diagram showing the pressure distribution when two short offset nozzles 5 are arranged point-symmetrically, and FIG. 4 (b) is a diagram showing the velocity distribution.
これに対して図 5 (a)は、ショートオフセットノズル 5を 1つだけ配置した場合の圧力 分布を示す図であり、図 5 (b)は、速度分布を示す図である。これらの図に示されるよ うに、ショートオフセットノズル 5を 1つだけ配置した場合には、圧力分布、速度分布と もに偏りをみせている。これは、ショートオフセットノズル 5から吐出された流速の速い 流体のェントレインメント効果と、流体の持つ粘性により、遠心力によって凹部円筒室 3内壁に沿って旋回流を形成する壁面流れが摩擦を生じ、境界層の発達により次第 に減速するために起こるのである。この状態で板状体を吸引すると、板状体は傾いて 吸引、保持されることになり、不安定な状態となる。極薄加工 (50 m以下)された半 導体ウェハを保持する場合には、圧力、速度分布の偏りによってウェハに大きなスト レスを与えてしまい、クラックや割れを生ずる可能性がある。これに対して、ショートォ フセットノズル 5を点対称に 2つ配置すると、上記のような問題が解消され、また、図 6 に示されるよう〖こ、ノズル 1つあたりの流量は同じであってもノズル 2つをバランス良く 配置することにより、 2倍ではなく 2. 5倍以上の吸引力を実現することができる。 On the other hand, FIG. 5 (a) is a diagram showing the pressure distribution when only one short offset nozzle 5 is arranged, and FIG. 5 (b) is a diagram showing the velocity distribution. As shown in these figures, when only one short offset nozzle 5 is arranged, the pressure distribution and velocity distribution are biased. This is because the wall flow that forms a swirling flow along the inner wall of the concave cylindrical chamber 3 causes friction due to the centrifugal force and the entrainment effect of the fluid with a high flow velocity discharged from the short offset nozzle 5 and the viscosity of the fluid. It happens because of the slowdown due to the development of the boundary layer. If the plate is sucked in this state, the plate will tilt. It will be sucked and held, resulting in an unstable state. When holding a semiconductor wafer that has been ultra-thin processed (50 m or less), the stress and bias in the pressure distribution can cause large stress on the wafer, which can lead to cracks and cracks. On the other hand, if two short-offset nozzles 5 are arranged point-symmetrically, the above problem is solved, and the flow rate per nozzle is the same as shown in FIG. However, by arranging two nozzles in a well-balanced manner, it is possible to achieve a suction force of 2.5 times or more, not twice.
なお、図 4及び図 5のカラー図面を別途参考資料として提出する。  In addition, the color drawings in Fig. 4 and Fig. 5 will be submitted for reference.
[0015] また、ショートオフセットノズル 5は、ノズル内における圧力損失を極力小さくするた めに従来技術に係るノズルと比較して長さが短くなつて 、る。  [0015] Further, the short offset nozzle 5 is shorter in length than the nozzles according to the prior art in order to minimize the pressure loss in the nozzle.
[0016] ベルマウス状流体通路 6は、旋回流形成体 2の側面に形成された流体導入口 8から 閉端面 7に対して水平に穿設され、凹部円筒室 3の内周面に臨むショートオフセットノ ズル 5に連通している。ベルマウス状流体通路 6は、図 2 (a)〖こ示されるよう〖こ、ショー トオフセットノズル 5へと滑らかな曲面で連通して 、るため、流体がノズルに流入する 際のはく離による損失を大幅に抑えることができる。  The bell mouth-like fluid passage 6 is drilled horizontally from the fluid inlet 8 formed on the side surface of the swirling flow forming body 2 to the closed end surface 7 and faces the inner peripheral surface of the concave cylindrical chamber 3. It communicates with offset nozzle 5. As shown in Fig. 2 (a), the bellmouth fluid passage 6 communicates with the short offset nozzle 5 with a smooth curved surface, so that loss due to separation when fluid flows into the nozzle Can be greatly reduced.
[0017] 上記の構成を備える非接触搬送装置 1において、図示せぬ空気供給装置から流体 導入口 8へ流体が供給されると、その流体は、ベルマウス状流体通路 6を介してショ ートオフセットノズル 5から凹部円筒室 3内へ吹き込まれる。凹部円筒室 3内へ吹き込 まれた流体は、凹部円筒室 3の内部空間において旋回流となって整流され、その後 凹部円筒室 3から流出する。その際、旋回流形成体 2の平坦状対向面 4に対向する 位置に板状体が配されていると、凹部円筒室 3内への外部力 の大気圧供給が制限 され、ェントレインメント効果と遠心力により次第に単位面積当りの流体分子の密度が 小さくなり、凹部円筒室 3内の旋回流中心部の圧力が低下し負圧が発生する。この結 果、板状体は周囲の大気圧によって押圧されて平坦状対向面 4側に吸引される一方 、平坦状対向面 4と板状体の距離が近づくと凹部円筒室 3内からの排出流体が制限 され、ショートオフセットノズル 5から吹き込まれる流体の流速が遅くなるため凹部円筒 室 3内の旋回流中心部の圧力は上昇し板状体は接触せず、平坦状対向面 4と板状 体の距離は保たれる。また、平坦状対向面 4と板状体の間に介在する空気により板 状体は安定し非接触状態で保持されることになる。 [0018] この非接触搬送装置 1によれば、従来の非接触搬送装置と比較して大幅なエネル ギー効率の向上、省エネルギー化を実現可能となるのであるが、具体的な改善効率 につ 、て説明する前に、その評価方法にっ 、て説明する。 In the non-contact transfer device 1 having the above-described configuration, when a fluid is supplied from an air supply device (not shown) to the fluid introduction port 8, the fluid is short-circuited via the bell mouth fluid passage 6. It is blown into the concave cylindrical chamber 3 from the offset nozzle 5. The fluid blown into the concave cylindrical chamber 3 is rectified as a swirling flow in the internal space of the concave cylindrical chamber 3 and then flows out of the concave cylindrical chamber 3. At that time, if a plate-like body is arranged at a position facing the flat opposed surface 4 of the swirling flow forming body 2, the atmospheric pressure supply of the external force into the concave cylindrical chamber 3 is restricted, and the entrainment effect Due to the centrifugal force, the density of fluid molecules per unit area gradually decreases, and the pressure at the center of the swirling flow in the concave cylindrical chamber 3 decreases, generating negative pressure. As a result, the plate-like body is pressed by the ambient atmospheric pressure and sucked toward the flat opposing surface 4 side, while when the distance between the flat opposing surface 4 and the plate-like body approaches, the plate body is discharged from the concave cylindrical chamber 3. Since the fluid is restricted and the flow velocity of the fluid blown from the short offset nozzle 5 becomes slow, the pressure at the center of the swirl flow in the concave cylindrical chamber 3 rises and the plate-like body does not come into contact with the flat opposed surface 4 and the plate-like shape. Body distance is maintained. Further, the plate-like body is stably held in a non-contact state by the air interposed between the flat opposing surface 4 and the plate-like body. [0018] According to this non-contact conveyance device 1, it is possible to realize a significant improvement in energy efficiency and energy saving as compared with the conventional non-contact conveyance device. Before explaining this, the evaluation method will be explained.
従来、上記のような非接触搬送装置を含む空気圧機器のエネルギー消費は空気 消費量で示され、使用される圧縮機の比エネルギーを介して消費電力に変換される ことにより評価されてきた。しかし、空気消費量はエネルギーと直結したものではない ため、圧縮空気の流動を伴うエネルギーの流れの定義、定量化が望ましい。そのた め、本明細書では、流れている圧縮空気の持つエネルギーに注目し、エネルギー効 率を評価するにあたって有効エネルギーとエアパワーの概念を導入する。  Conventionally, the energy consumption of pneumatic equipment including the non-contact conveyance device as described above is expressed by air consumption, and has been evaluated by being converted into power consumption through the specific energy of the compressor used. However, since air consumption is not directly linked to energy, it is desirable to define and quantify energy flow with compressed air flow. Therefore, in this specification, we focus on the energy of compressed air flowing and introduce the concept of effective energy and air power in evaluating energy efficiency.
周知のように、空気圧機器では、圧縮空気がエネルギー 'トランスミッションの媒体と して存在している。圧縮空気が運ぶパワーがエアパワーと呼ばれる。エアパワーは電 力パワーと同様に kw (キロワット)の単位で表される。エアパワーは圧縮空気の有効 エネルギーの流束と定義され、次式で表示される。  As is well known, in pneumatic equipment, compressed air exists as an energy 'transmission medium. The power carried by the compressed air is called air power. Air power is expressed in units of kw (kilowatts), as is electric power. Air power is defined as the effective energy flux of compressed air and is expressed as:
P - Jd = pQ In丄 U In丄 ただし、 pと p P- Jd = pQ In 丄 U In 丄 where p and p
aはそれぞれ圧縮空気の絶対圧力と大気圧、 Qと Q  a is the absolute pressure and atmospheric pressure of compressed air, Q and Q, respectively
aは圧縮状態下での 体積流量と大気圧状態に換算した体積流量であり、同一の消費流量でも圧力が相 違すれば消費エネルギーが大きく異なり、これらを適切に扱う必要がある。  a is the volumetric flow rate in the compressed state and the volumetric flow rate converted to the atmospheric pressure state. Even if the pressure is different, the energy consumption varies greatly even with the same consumption flow rate, and these must be handled appropriately.
このエアパワーの概念を導入することにより、エネルギーの定量ィ匕において圧縮空 気を電力と同様に扱えるようになる。  By introducing this concept of air power, the compressed air can be handled in the same way as electric power in the energy quantification process.
[0019] 図 7〜9は、本実施形態に係る非接触搬送装置 1の、従来技術に係る非接触搬送 装置 (具体的には、特開 2005-51260号公報に開示の非接触搬送装置)に対する エネルギー効率を、エアパワーの概念を使って表示する図である。 FIGS. 7 to 9 show a non-contact conveyance device according to the prior art of the non-contact conveyance device 1 according to the present embodiment (specifically, a non-contact conveyance device disclosed in Japanese Patent Laid-Open No. 2005-51260). It is a figure which displays the energy efficiency with respect to using the concept of air power.
まず、図 7に示されるように、開口稜角が滑らかな曲面状に形成された非接触搬送 装置 1は、稜角によるはく離が抑えられる結果、開口縁が面取りされた従来技術に係 る非接触搬送装置と比して平均 12%の効率改善が見られた。また、図示せぬ効果と して、従来技術に係る非接触搬送装置と比して板状体を保持する安定度が増した。 また、図 7に示されるように、ショートオフセットノズル 5が凹部円筒室 3の中腹に臨 むように配置される結果、凹部円筒室 3上面と流体の持つ粘性による摩擦によって生 ずるエネルギー損失が抑えられ、ノズルが凹部円筒室 3底面に配置される従来技術 に係る非接触搬送装置と比して平均で 21%の効率改善が見られた。 First, as shown in FIG. 7, the non-contact conveyance device 1 formed with a smooth curved surface at the opening ridge angle prevents non-contact conveyance according to the conventional technique in which the opening edge is chamfered as a result of suppressing the separation due to the ridge angle. An average 12% improvement in efficiency was seen compared to the equipment. Further, as an effect (not shown), the stability of holding the plate-like body is increased as compared with the non-contact transfer device according to the prior art. Further, as shown in FIG. 7, as a result of the short offset nozzle 5 being arranged so as to face the middle of the concave cylindrical chamber 3, it is generated by friction due to the viscosity of the fluid and the upper surface of the concave cylindrical chamber 3. As a result, energy loss was suppressed, and an average 21% improvement in efficiency was seen compared to the non-contact transfer device according to the prior art in which the nozzles are arranged on the bottom surface of the concave cylindrical chamber 3.
[0020] また、図 8に示されるように、凹部円筒室 3内周面よりも内側へ離れた位置にショート オフセットノズル 5が配置される非接触搬送装置 1は、凹部円筒室 3内周面における 大きなせん断力によるエネルギーの減衰が回避され、入力されるエネルギーがより効 率的に回転の運動量に変換される結果、凹部円筒室 3内壁沿いにノズルが配置され る従来技術に係る非接触搬送装置と比して平均 17%の効率改善が見られた。  In addition, as shown in FIG. 8, the non-contact transfer device 1 in which the short offset nozzle 5 is disposed at a position farther inward than the inner peripheral surface of the concave cylindrical chamber 3 includes the inner peripheral surface of the concave cylindrical chamber 3 In the non-contact conveyance according to the prior art in which the nozzle is arranged along the inner wall of the recessed cylindrical chamber 3 as a result of energy attenuation due to the large shearing force in the cylinder being avoided, and the input energy is more efficiently converted into rotational momentum. An average improvement of 17% was seen compared to the equipment.
[0021] 以上図 7及び 8に示される効率改善を総合した結果が図 9である。同図に示される ように、非接触搬送装置 1は、従来技術に係る非接触搬送装置と比して合計で平均 4 1%の大幅な効率改善が見られた。  [0021] FIG. 9 shows a result obtained by integrating the efficiency improvements shown in FIGS. As shown in the figure, the non-contact conveyance device 1 showed a significant improvement in efficiency of 41% on average in comparison with the non-contact conveyance device according to the prior art.
[0022] 尚、上記の説明では、 2つのショートオフセットノズル 5を凹部円筒室 3の円周の中 心 Oに対して点対称となる位置に配置した力 2つのノズルの配置方法はこれに限定 される必要はない。また、ショートオフセットノズル 5の個数も、上記の例のように 2個に 限られる必要はなく流体を効率及びバランス良く旋回させる 2以上の任意の個数でも よい。  In the above description, the force in which the two short offset nozzles 5 are arranged in a point-symmetrical position with respect to the center O of the circumference of the concave cylindrical chamber 3 The arrangement method of the two nozzles is limited to this. There is no need to be done. Further, the number of the short offset nozzles 5 is not limited to two as in the above example, and may be any number of two or more that allows the fluid to rotate efficiently and in a balanced manner.
[0023] <第 2実施形態 >  [0023] <Second Embodiment>
図 10〜13を参照して本発明の第 2実施形態について説明する。  A second embodiment of the present invention will be described with reference to FIGS.
図 10は、本実施形態に係る非接触搬送装置 10の構成を示す斜視図である。図 11 は、非接触搬送装置 10の構成を示す図であり、(a)は上面図であり、(b)は側面図で あり、(c)は下面図である。図 12は、非接触搬送装置 10が備えるセンタリング機構 12 の駆動説明図である。尚、以下の説明では、第 1の実施形態の構成要素と略同一の 構成要素については、同一の符号を付し、その説明を省略する。本実施形態に係る 非接触搬送装置 10は、第 1実施形態に係る旋回流形成体 2を複数個用いて構成し たものであり、具体的には、基底部 11と、基底部 11に着設された 6個の旋回流形成 体 2と、基底部 11に載設された、板状体の離脱を防止するセンタリング機構 12とを備 えている。  FIG. 10 is a perspective view showing the configuration of the non-contact transport apparatus 10 according to the present embodiment. FIG. 11 is a view showing the configuration of the non-contact transfer apparatus 10, where (a) is a top view, (b) is a side view, and (c) is a bottom view. FIG. 12 is an explanatory view of driving of the centering mechanism 12 provided in the non-contact transport apparatus 10. In the following description, components that are substantially the same as those of the first embodiment are given the same reference numerals, and descriptions thereof are omitted. The non-contact transfer device 10 according to the present embodiment is configured by using a plurality of swirl flow forming bodies 2 according to the first embodiment. Specifically, the non-contact transfer device 10 is attached to the base 11 and the base 11. 6 swirl flow forming bodies 2 provided, and a centering mechanism 12 mounted on the base 11 to prevent the plate-like body from being detached.
[0024] 6個の旋回流形成体 2は、その閉端面側が基底部 11の内面に着設され、その平坦 状対向面 4がいずれも同一面となるように支持されている。基底部 11の外面には、流 体供給口 13が設けられており、その壁体内部には、流体供給口 13と対応する旋回 流形成体 2の流体導入口 8とを連通する図示せぬ基底部内通路が流体供給口 13か ら分岐して形成されている。また、基底部 11の外面には、非接触で保持した板状体 の位置決めおよび離脱防止用のセンタリング機構 12が載設されている。このセンタリ ング機構 12は、図 12に示されるように、その一端が相互に連通している 6本のシリン ダ 121と、各シリンダ 121の他端にその一端が連結された 6本のリンクアーム 122と、 各リンクアーム 122の他端に垂設された 6個のセンタリングガイド 123から構成されて いる。 6本のシリンダ 121は、その一端において相互に連通しているため、一系統の 流体によって加圧または減圧が可能である。このシリンダ 121内が流体によって減圧 されると、 6本のリンクアーム 122を介して 6個のセンタリングガイド 123が中心方向に 駆動される。このセンタリングガイド 123による中心方向への移動により、非接触搬送 装置 10によって非接触で保持されている板状体は、その外周が規制され、板状体の 中心が基底部 11の内部空間の中心に一致するように位置決めされる。逆に、シリン ダ 121内が流体によって加圧されると、 6本のリンクアーム 122を介して 6個のセンタリ ングガイド 123が中心力も離れる方向に駆動される。このセンタリングガイド 123によ る中心から離れる方向への移動により、板状体に対する規制が解除され、板状体は 自由状態となる。 [0024] The six swirling flow forming bodies 2 are supported so that the closed end surface side is attached to the inner surface of the base portion 11, and the flat opposing surfaces 4 are all the same surface. The outer surface of the base 11 The body supply port 13 is provided, and a base passage (not shown) that connects the fluid supply port 13 and the fluid introduction port 8 of the swirl flow forming body 2 corresponding to the fluid supply port 13 is provided in the wall body. Branching out. A centering mechanism 12 is mounted on the outer surface of the base 11 for positioning and preventing the plate-like body held in a non-contact manner. As shown in FIG. 12, the centering mechanism 12 includes six cylinders 121 whose one ends communicate with each other, and six link arms each having one end connected to the other end of each cylinder 121. 122 and six centering guides 123 suspended from the other end of each link arm 122. Since the six cylinders 121 communicate with each other at one end, they can be pressurized or depressurized by a single system of fluid. When the pressure inside the cylinder 121 is reduced by the fluid, the six centering guides 123 are driven in the center direction via the six link arms 122. Due to the movement in the center direction by the centering guide 123, the outer periphery of the plate-like body held in a non-contact manner by the non-contact conveying device 10 is regulated, and the center of the plate-like body is the center of the internal space of the base portion 11. Is positioned so as to match. On the other hand, when the inside of the cylinder 121 is pressurized by the fluid, the six centering guides 123 are driven through the six link arms 122 in a direction in which the central force is also separated. By the movement in the direction away from the center by the centering guide 123, the restriction on the plate-like body is released, and the plate-like body becomes free.
上記の構成を備える非接触搬送装置 10において、図示せぬ空気供給装置から流 体供給口 13に流体が供給されると、その流体は、図示せぬ基底部 11内の通路を通 つて、各旋回流形成体 2に送られる。各旋回流形成体 2に送られた流体は、その流体 導入口 8とベルマウス状流体通路 6を介してショートオフセットノズル 5から凹部円筒 室 3内へ吹き込まれる。凹部円筒室 3内へ吹き込まれた流体は、凹部円筒室 3の内 部空間において旋回流となって整流され、その後凹部円筒室 3から流出する。ここで 、各旋回流形成体 2で形成される旋回流は、板状体を非接触で保持する際に回転さ せないように予めその旋回方向が調節されている。本実施形態に係る非接触搬送装 置 10の場合、 6個の旋回流形成体 2のうち、 3個では時計方向に旋回流を旋回させ、 残りの 3個では反時計方向に旋回するように調節されている。  In the non-contact conveyance device 10 having the above-described configuration, when a fluid is supplied from an air supply device (not shown) to the fluid supply port 13, the fluid passes through a passage in the base portion 11 (not shown), and then passes through each passage. It is sent to the swirl flow forming body 2. The fluid sent to each swirl flow forming body 2 is blown into the concave cylindrical chamber 3 from the short offset nozzle 5 through the fluid inlet 8 and the bell mouth fluid passage 6. The fluid blown into the concave cylindrical chamber 3 is rectified as a swirling flow in the internal space of the concave cylindrical chamber 3 and then flows out of the concave cylindrical chamber 3. Here, the swirling flow formed by each swirling flow forming body 2 is adjusted in advance so that the swirling flow is not rotated when the plate-like body is held in a non-contact manner. In the case of the non-contact transfer device 10 according to the present embodiment, among the six swirl flow forming bodies 2, three swirl swirl flows clockwise, and the remaining three swirl counterclockwise. It has been adjusted.
各旋回流形成体 2の凹部円筒室 3から流体が流出する際に、各旋回流形成体 2の 平坦状対向面 4に対向する位置に板状体が配されていると、凹部円筒室 3内への外 部からの大気圧供給が制限され、ェントレインメント効果と遠心力により次第に単位 面積当りの流体分子の密度が小さくなり、凹部円筒室 3内の旋回流中心部の圧力が 低下し負圧が発生する。この結果、板状体は周囲の大気圧によって押圧されて平坦 状対向面 4側に吸引される一方、平坦状対向面 4と板状体の距離が近づくと凹部円 筒室 3内からの排出流体が制限され、ショートオフセットノズル 5から吹き込まれる流 体の流速が遅くなるため凹部円筒室 3内の旋回流中心部の圧力は上昇し板状体は 接触せず、平坦状対向面 4と板状体の距離は保たれる。また、平坦状対向面 4と板 状体の間に介在する空気により板状体は安定し非接触状態で保持されることになる 。この状態で基底部 11を移動させると、移動とともに板状体もセンタリングガイド 123 によってガイドされつつ移動する。 When the fluid flows out from the concave cylindrical chamber 3 of each swirl flow forming body 2, each swirl flow forming body 2 If a plate-like body is arranged at a position facing the flat opposed surface 4, the atmospheric pressure supply from the outside to the inside of the recessed cylindrical chamber 3 is limited, and gradually per unit area due to the entrainment effect and centrifugal force. As a result, the density of the fluid molecules decreases, the pressure in the center of the swirling flow in the concave cylindrical chamber 3 decreases, and negative pressure is generated. As a result, the plate-like body is pressed by the ambient atmospheric pressure and sucked toward the flat opposed surface 4 side, while when the distance between the flat opposed surface 4 and the plate-like body approaches, the discharge from the concave cylindrical chamber 3 is performed. Since the fluid is restricted and the flow velocity of the fluid blown from the short offset nozzle 5 becomes slow, the pressure at the center of the swirl flow in the concave cylindrical chamber 3 rises and the plate-like body does not come into contact with the flat opposed surface 4 and the plate. The distance of the body is maintained. In addition, the plate-like body is stably held in a non-contact state by the air interposed between the flat opposed surface 4 and the plate-like body. When the base portion 11 is moved in this state, the plate-like body is moved while being guided by the centering guide 123 along with the movement.
[0026] この非接触搬送装置 10では、 6個の旋回流形成体 2によって形成された旋回流で 板状体を吸引するため、その吸引力を格段に強力なものにすることができる。また、こ の非接触搬送装置 10では、 6箇所で旋回流が形成されるため、大きな径を有する板 状体であってもその全体にわたって吸引されることになる。従って、板状体に反りがあ つたとしても、その反りを全体にわたって矯正することが可能となる。さらに、この非接 触搬送装置 10では、第 1実施形態に係る非接触搬送装置 1と同様の旋回流形成体 2が用いられているため、第 1実施形態に係る非接触搬送装置 1と同様に、大幅なェ ネルギー効率の向上、省エネルギー化が実現可能となる。 [0026] In this non-contact transfer device 10, the plate-like body is sucked by the swirling flow formed by the six swirling flow forming bodies 2, so that the suction force can be made extremely strong. Further, in this non-contact conveyance device 10, since a swirling flow is formed at six locations, even a plate-like body having a large diameter is sucked throughout. Therefore, even if the plate-like body is warped, it is possible to correct the warp throughout. Furthermore, since the non-contact conveying apparatus 10 uses the swirl flow forming body 2 similar to the non-contact conveying apparatus 1 according to the first embodiment, it is the same as the non-contact conveying apparatus 1 according to the first embodiment. In addition, significant energy efficiency and energy savings can be realized.
尚、上記の説明では旋回流形成 2を 6個設ける構成としたが、 6個に限定される必 要はなぐ 2個以上の任意の個数を設けてよい。これは、センタリングガイド 123につ いても同様である。  In the above description, six swirl flow formations 2 are provided. However, it is not necessary to be limited to six, and an arbitrary number of two or more may be provided. The same applies to the centering guide 123.
[0027] <第 3実施形態 > [0027] <Third embodiment>
図 13〜15を参照して本発明の第 3実施形態について説明する。  A third embodiment of the present invention will be described with reference to FIGS.
図 13は、本実施形態に係る非接触搬送装置 20の構成を示す斜視図である。図 14 は、非接触搬送装置 20の構成を示す図であり、(a)は上面図であり、(b)は側面図で ある。図 15は、非接触搬送装置 20が備えるセンタリング機構 22の駆動説明図である 。尚、以下の説明では、第 1の実施形態の構成要素と略同一の構成要素については 、同一の符号を付し、その説明を省略する。 FIG. 13 is a perspective view showing a configuration of the non-contact transport device 20 according to the present embodiment. FIG. 14 is a diagram showing the configuration of the non-contact transport device 20, where (a) is a top view and (b) is a side view. FIG. 15 is an explanatory view of driving of the centering mechanism 22 provided in the non-contact transport device 20. In the following description, components that are substantially the same as those of the first embodiment are described. The same reference numerals are given and the description thereof is omitted.
本実施形態に係る非接触搬送装置 20は、第 1実施形態に係る旋回流形成体 2を 複数個用いて構成したものであり、具体的には、板状体に対向する平坦面を有する 板状の基体 21と、基体 21に着設された 6個の旋回流形成体 2と、基体 21の下方に 設けられたセンタリング機構 22と、基体 21に固着され、基体 21を移動可能とするた めの把持部 23とを備えて 、る。  The non-contact conveyance device 20 according to the present embodiment is configured by using a plurality of swirl flow forming bodies 2 according to the first embodiment, and specifically, a plate having a flat surface facing the plate-like body. The base 21, the six swirling flow forming bodies 2 attached to the base 21, the centering mechanism 22 provided below the base 21, and the base 21 are fixed so that the base 21 can be moved. And a gripping portion 23 for the purpose.
基体 21は、基部 211と、基部 211から二股状に分岐する 2つの腕部 212から構成 されている。各腕部 212の突端には、突状のセンタリングガイド 213が設けられている  The base 21 is composed of a base 211 and two arms 212 branched from the base 211 in a bifurcated manner. A protruding centering guide 213 is provided at the protruding end of each arm 212.
[0028] 6個の旋回流形成体 2は、その閉端面側が基体 21の上面に着設され、その平坦状 対向面 4がいずれも同一面となるように支持されている。把持部 23の側面には、流体 供給口 24が設けられており、基体 21の内部には、流体供給口 24と対応する旋回流 形成体 2の流体導入口 8とを連通する図示せぬ流体通路が流体供給口 24から分岐 して形成されている。また基体 21の下方には、非接触で保持した板状体の位置決め および離脱防止用のセンタリング機構 22が設けられている。このセンタリング機構 22 は、図 15に示されるように、把持部 23内に設けられたシリンダ 221と、シリンダ 221の 一端にその一端が連結され、その他端には 2個のセンタリングガイドが設けられたリン クプレート 222から構成されている。このシリンダ 221内が流体によって加圧されると、 リンクプレート 222を介して 2個のセンタリングガイド 22が板状体に向けて駆動される 。このセンタリングガイド 223による板状体に向力う移動により、非接触搬送装置 20に よって非接触で保持されている板状体は、リンクプレート 222上のセンタリングガイド 2 23と、腕部 212の突端に設けられたセンタリングガイド 213によってその外周が規制 され、位置決めされる。逆に、シリンダ 221内が流体によって減圧されると、リンクプレ ート 222を介して 2個のセンタリングガイド 223が板状体力も離れる方向に駆動される 。このセンタリングガイド 223よる板状体力 離れる方向への移動により、板状体に対 する規制が解除され、板状体は自由状態となる。 [0028] The six swirling flow forming bodies 2 are supported so that the closed end face side is attached to the upper surface of the base body 21, and the flat opposed faces 4 are all the same face. A fluid supply port 24 is provided on the side surface of the grip portion 23, and a fluid (not shown) that communicates the fluid supply port 24 with the fluid introduction port 8 of the swirling flow forming body 2 inside the base body 21. A passage is formed by branching from the fluid supply port 24. A centering mechanism 22 is provided below the base 21 for positioning and preventing separation of the plate-like body held in a non-contact manner. As shown in FIG. 15, the centering mechanism 22 includes a cylinder 221 provided in the gripping portion 23, one end connected to one end of the cylinder 221 and two centering guides provided to the other end. It consists of a link plate 222. When the inside of the cylinder 221 is pressurized by the fluid, the two centering guides 22 are driven toward the plate-like body via the link plate 222. As a result of the centering guide 223 moving toward the plate-like body, the plate-like body held in a non-contact manner by the non-contact conveying device 20 is moved to the centering guide 222 on the link plate 222 and the protruding end of the arm portion 212. The centering guide 213 provided on the outer periphery restricts its outer periphery and positions it. On the other hand, when the pressure in the cylinder 221 is reduced by the fluid, the two centering guides 223 are driven through the link plate 222 in a direction in which the plate-like body force is also separated. By the movement of the centering guide 223 in the direction of separating the plate-like body force, the restriction on the plate-like body is released, and the plate-like body becomes free.
[0029] 上記の構成を備える非接触搬送装置 20において、図示せぬ空気供給装置から流 体供給口 24に流体が供給されると、その流体は、図示せぬ基体 21内の流体通路を 通って、各旋回流形成体 2に送られる。各旋回流形成体 2に送られた流体は、その流 体導入口 8とベルマウス状流体通路 6を介してショートオフセットノズル 5から凹部円 筒室 3内へ吹き込まれる。凹部円筒室 3内へ吹き込まれた流体は、凹部円筒室 3の 内部空間において旋回流となって整流され、その後凹部円筒室 3から流出する。ここ で、各旋回流形成体 2で形成される旋回流は、板状体を非接触で保持する際に回転 させないように予めその旋回方向が調節されている。本実施形態に係る非接触搬送 装置 20の場合、 6個の旋回流形成体 2のうち、 3個では時計方向に旋回流を旋回さ せ、残りの 3個では反時計方向に旋回するように調節されて 、る。 In the non-contact conveyance device 20 having the above configuration, when a fluid is supplied from an air supply device (not shown) to the fluid supply port 24, the fluid passes through a fluid passage in the base body 21 (not shown). And is sent to each swirl flow forming body 2. The fluid sent to each swirling flow forming body 2 is blown into the concave cylindrical chamber 3 from the short offset nozzle 5 via the fluid introducing port 8 and the bell mouth fluid passage 6. The fluid blown into the concave cylindrical chamber 3 is rectified as a swirling flow in the internal space of the concave cylindrical chamber 3 and then flows out of the concave cylindrical chamber 3. Here, the swirling flow formed by each swirling flow forming body 2 has its swirling direction adjusted in advance so as not to rotate when the plate-like body is held in a non-contact manner. In the case of the non-contact conveyance device 20 according to the present embodiment, among the six swirl flow forming bodies 2, three swirl swirl flows clockwise, and the remaining three swirl counterclockwise. Adjusted.
各旋回流形成体 2の凹部円筒室 3から流体が流出する際に、各旋回流形成体 2の 平坦状対向面 4に対向する位置に板状体が配されていると、凹部円筒室 3内への外 部からの大気圧供給が制限され、ェントレインメント効果と遠心力により次第に単位 面積当りの流体分子の密度が小さくなり、凹部円筒室 3内の旋回流中心部の圧力が 低下し負圧が発生する。この結果、板状体は周囲の大気圧によって押圧されて平坦 状対向面 4側に吸引される一方、平坦状対向面 4と板状体の距離が近づくと凹部円 筒室 3内からの排出流体が制限され、ショートオフセットノズル 5から吹き込まれる流 体の流速が遅くなるため凹部円筒室 3内の旋回流中心部の圧力は上昇し板状体は 接触せず、平坦状対向面 4と板状体の距離は保たれる。また、平坦状対向面 4と板 状体の間に介在する空気により板状体は安定し非接触状態で保持されることになる 。この状態で基体 21を移動させると、移動とともに板状体もセンタリングガイド 213、 2 23によってガイドされつつ移動する。  When a fluid flows out from the concave cylindrical chamber 3 of each swirl flow forming body 2, if a plate-like body is disposed at a position facing the flat opposed surface 4 of each swirl flow forming body 2, the concave cylindrical chamber 3 The supply of atmospheric pressure from the outside to the inside is limited, the density of fluid molecules per unit area gradually decreases due to the entrainment effect and centrifugal force, and the pressure at the center of the swirling flow in the concave cylindrical chamber 3 decreases. Negative pressure is generated. As a result, the plate-like body is pressed by the ambient atmospheric pressure and sucked toward the flat opposed surface 4 side, while when the distance between the flat opposed surface 4 and the plate-like body approaches, the discharge from the concave cylindrical chamber 3 is performed. Since the fluid is restricted and the flow velocity of the fluid blown from the short offset nozzle 5 becomes slow, the pressure at the center of the swirl flow in the concave cylindrical chamber 3 rises and the plate-like body does not come into contact with the flat opposed surface 4 and the plate. The distance of the body is maintained. In addition, the plate-like body is stably held in a non-contact state by the air interposed between the flat opposed surface 4 and the plate-like body. When the base 21 is moved in this state, the plate-like body is moved while being guided by the centering guides 213 and 223 together with the movement.
この非接触搬送装置 20では、 6個の旋回流形成体 2によって形成された旋回流で 板状体を吸引するため、その吸引力を格段に強力なものにすることができる。また、こ の非接触搬送装置 20では、 6箇所で旋回流が形成されるため、大きな径を有する板 状体であってもその全体にわたって吸引されることになる。従って、板状体に反りがあ つたとしても、その反りを全体にわたって矯正することが可能となる。また、この非接触 搬送装置 20は、板状に構成されているため、従来アクセスが困難であった段積みさ れたウェハカセット内のウェハに対しても自在にアクセスすることができる。さらに、こ の非接触搬送装置 20では、第 1実施形態に係る非接触搬送装置 1と同様の旋回流 形成体 2が用いられているため、第 1実施形態に係る非接触搬送装置 1と同様に、大 幅なエネルギー効率の向上、省エネルギー化が実現可能となる。 In this non-contact conveyance device 20, since the plate-like body is sucked by the swirling flow formed by the six swirling flow forming bodies 2, the suction force can be made extremely strong. Further, in this non-contact conveyance device 20, since a swirl flow is formed at six locations, even a plate-like body having a large diameter is sucked throughout. Therefore, even if the plate-like body is warped, it is possible to correct the warp throughout. Further, since the non-contact transfer device 20 is configured in a plate shape, it can freely access even the wafers in the stacked wafer cassettes that have been difficult to access. Further, in this non-contact conveying apparatus 20, the same swirling flow as that in the non-contact conveying apparatus 1 according to the first embodiment is used. Since the formed body 2 is used, as in the non-contact transfer apparatus 1 according to the first embodiment, a great improvement in energy efficiency and energy saving can be realized.
尚、上記の説明では旋回流形成 2を 6個設ける構成としたが、 6個に限定される必 要はなぐ 2個以上の任意の個数を設けてよい。これは、センタリングガイド 213、 223 についても同様である。  In the above description, six swirl flow formations 2 are provided. However, it is not necessary to be limited to six, and an arbitrary number of two or more may be provided. The same applies to the centering guides 213 and 223.

Claims

請求の範囲 The scope of the claims
[1] 内周面が円周状の凹部円筒室が形成された略柱状の本体と、  [1] a substantially columnar body having a concave cylindrical chamber having an inner circumferential surface formed in a circumferential shape;
前記本体の、前記凹部円筒室開口側に形成された平坦状端面と、  A flat end surface of the main body formed on the opening side of the concave cylindrical chamber;
前記凹部円筒室の内周面に臨むように形成され、供給流体を凹部円筒室内に吐 出させるためのノズルと、  A nozzle that is formed so as to face the inner peripheral surface of the concave cylindrical chamber and discharges the supply fluid into the concave cylindrical chamber;
前記ノズルと連通し、当該ノズルを介して前記凹部円筒室内に流体を供給する流 体通路と  A fluid passage communicating with the nozzle and supplying a fluid into the concave cylindrical chamber through the nozzle;
を備え、  With
前記ノズルは、前記凹部円筒室内周面よりも内側へ離れた位置に配置されることを 特徴とする非接触搬送装置。  The non-contact transfer device, wherein the nozzle is disposed at a position farther inward than the inner circumferential surface of the concave cylindrical chamber.
[2] 前記ノズルは、前記凹部円筒室の円周の中心に対して互いに点対称となる位置に 2つ配置されることを特徴とする請求項 1に記載の非接触搬送装置。  2. The non-contact transfer device according to claim 1, wherein two nozzles are arranged at positions that are point-symmetric with respect to the center of the circumference of the concave cylindrical chamber.
[3] 前記ノズルは、前記凹部円筒室の中腹に配置されることを特徴とする請求項 1また は 2に記載の非接触搬送装置。  [3] The non-contact transfer device according to claim 1 or 2, wherein the nozzle is disposed in the middle of the concave cylindrical chamber.
[4] 前記ノズルは、その吐出点 Pにおいて内周に接する接線に対して所定の角度 Θを 持つように設けられ、この角度 Θは、前記吐出点 Pから流体の吐出方向に延びる線 L 1と直交する半径 rlを引いたとき、当該半径 rlと前記線 L1の交点 P2と、半径 rlと前 記凹部円筒室円周の交点 P3との間の距離 δが δ Zrl = 5%〜25%を満たすように 設定されることを特徴とする請求項 1乃至 3のいずれかに記載の非接触搬送装置。  [4] The nozzle is provided so as to have a predetermined angle Θ with respect to a tangent that is in contact with the inner periphery at the discharge point P. The angle Θ is a line L 1 extending from the discharge point P in the fluid discharge direction. When the radius rl perpendicular to the line is drawn, the distance δ between the intersection P2 of the radius rl and the line L1 and the intersection P3 of the radius rl and the circumference of the concave cylindrical chamber is δ Zrl = 5% to 25% 4. The non-contact transfer device according to claim 1, wherein the non-contact transfer device is set so as to satisfy the above.
[5] 前記凹部円筒室の開口縁は、当該凹部円筒室の内周面力も滑らかに湾曲し、当 該凹部円筒室開口部の外縁に延びる形状となっていることを特徴とする請求項 1乃 至 4の 、ずれかに記載の非接触搬送装置。  5. The opening edge of the concave cylindrical chamber is characterized in that the inner peripheral surface force of the concave cylindrical chamber smoothly curves and extends to the outer edge of the concave cylindrical chamber opening. Non-contact transfer device as described in No.4.
PCT/JP2006/326019 2005-12-27 2006-12-27 Non-contact delivery device WO2007074854A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005375623A JP2007176637A (en) 2005-12-27 2005-12-27 Non-contact conveying device
JP2005-375623 2005-12-27

Publications (1)

Publication Number Publication Date
WO2007074854A1 true WO2007074854A1 (en) 2007-07-05

Family

ID=38218075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/326019 WO2007074854A1 (en) 2005-12-27 2006-12-27 Non-contact delivery device

Country Status (3)

Country Link
JP (1) JP2007176637A (en)
TW (1) TW200804160A (en)
WO (1) WO2007074854A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101422904B (en) * 2008-12-09 2011-04-13 友达光电股份有限公司 Load-bearing element
EP2750175B1 (en) * 2011-08-24 2020-03-25 Harmotec Co., Ltd. Non contact conveyance device
US10410906B2 (en) 2012-11-27 2019-09-10 Acm Research (Shanghai) Inc. Substrate supporting apparatus
JP2014165217A (en) 2013-02-21 2014-09-08 Tokyo Electron Ltd Substrate transfer device and peeling system
US9202738B2 (en) * 2013-09-26 2015-12-01 Applied Materials, Inc. Pneumatic end effector apparatus and substrate transportation systems with annular flow channel
JP2015076469A (en) * 2013-10-08 2015-04-20 株式会社ディスコ Wafer transfer apparatus
WO2018006283A1 (en) * 2016-07-06 2018-01-11 Acm Research (Shanghai) Inc. Substrate supporting apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04199732A (en) * 1990-11-29 1992-07-20 Shin Meiwa Ind Co Ltd Noncontact type chuck device
JPH0676985A (en) * 1983-01-21 1994-03-18 Plasma Energ Corp Device for starting and maintaining of plasma arc
JPH11254369A (en) * 1998-03-06 1999-09-21 Seibu Giken Co Ltd Non-contact carrier device
JPH11330203A (en) * 1998-03-11 1999-11-30 Trusi Technol Llc Article holder and holding method
JP2002064130A (en) * 2000-06-09 2002-02-28 Harmotec Corp Non-contact transfer device
JP2006114748A (en) * 2004-10-15 2006-04-27 Taiheiyo Cement Corp Noncontact sucking fixture and noncontact chucking device
JP2006339234A (en) * 2005-05-31 2006-12-14 Murata Mach Ltd Non-contact holding device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0676985A (en) * 1983-01-21 1994-03-18 Plasma Energ Corp Device for starting and maintaining of plasma arc
JPH04199732A (en) * 1990-11-29 1992-07-20 Shin Meiwa Ind Co Ltd Noncontact type chuck device
JPH11254369A (en) * 1998-03-06 1999-09-21 Seibu Giken Co Ltd Non-contact carrier device
JPH11330203A (en) * 1998-03-11 1999-11-30 Trusi Technol Llc Article holder and holding method
JP2002064130A (en) * 2000-06-09 2002-02-28 Harmotec Corp Non-contact transfer device
JP2006114748A (en) * 2004-10-15 2006-04-27 Taiheiyo Cement Corp Noncontact sucking fixture and noncontact chucking device
JP2006339234A (en) * 2005-05-31 2006-12-14 Murata Mach Ltd Non-contact holding device

Also Published As

Publication number Publication date
JP2007176637A (en) 2007-07-12
TW200804160A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
WO2007074855A1 (en) Non-contact delivery device
WO2007074854A1 (en) Non-contact delivery device
JP5219173B2 (en) Non-contact type vacuum pad
JP5887469B2 (en) HOLDING DEVICE, HOLDING SYSTEM, CONTROL METHOD, AND CONVEYING DEVICE
JP3981241B2 (en) Swirl flow forming body and non-contact transfer device
JP4669252B2 (en) Swirl flow forming body and non-contact transfer device
TWI481542B (en) Non - contact conveyor
JP4954728B2 (en) Gate valve cleaning method and substrate processing system
JP4684171B2 (en) Swirl flow forming body and non-contact transfer device
CN202296379U (en) Discharging device for solar battery assembly line
JP2006216710A (en) Semiconductor manufacturing equipment
CN1783450A (en) Non-contact transport apparatus
JPWO2015083613A1 (en) Holding device
US9656368B2 (en) Device for gripping substrate without contact
JP2011138948A (en) Noncontact chuck
KR101733283B1 (en) Non-contact transfer hand
JP5239564B2 (en) Chuck device and suction holding hand
CN106191990A (en) A kind of air intake installation of boiler tube
CN100440427C (en) Plasma processing chamber
TWI543853B (en) Handling device
KR20130085925A (en) Suction chuck and trasfering apparatus
JP2007216329A (en) Robotic hand
JP3445138B2 (en) Non-contact transfer device
US6647791B1 (en) Device for contactlessly gripping and positioning components
KR100630360B1 (en) Non contact transfer unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06843401

Country of ref document: EP

Kind code of ref document: A1