WO2007074696A1 - Ion scattering spectroscopic analyzer - Google Patents

Ion scattering spectroscopic analyzer Download PDF

Info

Publication number
WO2007074696A1
WO2007074696A1 PCT/JP2006/325410 JP2006325410W WO2007074696A1 WO 2007074696 A1 WO2007074696 A1 WO 2007074696A1 JP 2006325410 W JP2006325410 W JP 2006325410W WO 2007074696 A1 WO2007074696 A1 WO 2007074696A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
detector
angle
scattering
dimensional position
Prior art date
Application number
PCT/JP2006/325410
Other languages
French (fr)
Japanese (ja)
Inventor
Takane Kobayashi
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Publication of WO2007074696A1 publication Critical patent/WO2007074696A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Definitions

  • the present invention relates to an ion scattering spectroscopic analyzer that examines “strain (structure)” of a crystalline material using ion scattering by a sample.
  • ME-CAICISS medium energy single-coaxial direct collision ion scattering spectroscopy
  • MEIS medium energy ion scattering
  • MEIS Spectroscopy
  • ME-CAICISS is a method for examining the crystal structure or strain by measuring the incident angle dependence of the scattering intensity by making an ion beam incident on the crystal material and rotating the crystal material.
  • MEIS is a method for examining the crystal structure or strain by measuring the output angle dependence of scattering intensity using a one-dimensional position detector (electrostatic analyzer).
  • Non-Patent Document 1 Physical Review B 67, 035319 (2003)
  • ME-CAICISS requires a long time because it measures the incident angle dependence of the scattering intensity while rotating the crystal material, and a certain amount of incident beam for each angle of incident beam, crystal material, and angle to be measured.
  • the electrostatic analyzer is large because it has two electrodes opposite to each other, and it is impossible to make a hole for the incident beam to pass through the electrode, so the scattering angle is 180 ° (observation angle 0 °). The neighborhood cannot be measured.
  • the “observation angle” in this specification is an angle with respect to the ion beam.
  • the present invention does not require frequent sample rotation and does not require accurate sample surface alignment, and ion scattering spectroscopy that can measure the structure or strain of a crystal material with high accuracy.
  • An object is to provide an apparatus.
  • the angle of the blocking cone detected by the detector placed in the direction surrounding the observation angle is the angle reference (angle 0 ° direction).
  • the strain information (structure information) of the sample can be obtained by the deviation from the position of the blocking cone detected by the detector arranged in the direction surrounding the observation angle of 45 °.
  • an ion scattering spectroscopic analyzer includes a sample holding unit that holds a sample, a pulsed ion beam source that irradiates a pulsed ion beam toward the sample, and ions scattered by the sample.
  • a first two-dimensional position sensitive detector for detecting and a second two-dimensional position sensitive detector.
  • the first two-dimensional position sensitive detector detects ions scattered in a direction surrounding an observation angle of 0 °.
  • the second two-dimensional position sensitive detector is arranged between the pulsed ion beam source and the sample held by the sample holder so as to detect ions scattered in a direction surrounding an observation angle of 45 °. Arranged to be.
  • the first two-dimensional position sensitive detector may have a structure having a hole through which an ion beam emitted from the pulse ion beam source passes in a central portion.
  • the instrument is preferably a time-resolved detector because it can measure at high count rates.
  • the ion scattering apparatus of the present invention can be resolved in position, it can measure scattered or recoiled particles at a large solid angle as necessary.
  • the “strain (structure)” of a crystal material can be examined most sensitively and with high accuracy in ion scattering spectroscopic analysis.
  • FIG. 1 is a schematic diagram showing how incident ions are scattered by crystal atoms.
  • FIG. 2 is an explanatory diagram showing minute displacements of atoms on an atomic row.
  • FIG. 3 is a schematic configuration diagram of an ion scattering spectroscopic analyzer according to the present invention. Explanation of symbols
  • Two-dimensional position sensitive, time-analyzing detector measuring direction surrounding observation angle 0 °
  • Two-dimensional position-sensitive, time-analyzing detector measuring direction surrounding observation angle 45 °
  • Direction surrounding observation angle 45 ° 2D position sensitive 'time analysis type detector measuring signal processing unit
  • FIG. 1 is a schematic diagram showing how incident ions are scattered by crystal atoms.
  • a conical shadow is formed behind the atoms that make up the crystal material, where the incident ions cannot enter.
  • This shadow is called a shadow cone.
  • another atom is in this shadow, it does not contribute to ion scattering. This is called the shadowing effect.
  • a conical shadow is created behind which the scattered ion cannot enter. This shadow is called a blocking cone. In the direction where the blocking cone is stretched, the scattered particles due to the first scattered atoms are not observed. This is called a blocking effect.
  • the arrangement of atoms (crystallographic axis) can be determined by examining the shadowing effect or blocking effect.
  • the strain of a thin film grown on a substrate can be evaluated from the crystallographic axis direction of the thin film.
  • the shift amount of the observation angle ( ⁇ ) is given by the following equation (1).
  • Two units installed in the direction surrounding the observation angle 0 ° (scattering angle 180 °) (or near the observation angle 0 °) and in the direction surrounding the observation angle 45 ° (scattering angle 135 °).
  • Two-dimensional position sensitive 'time analysis type detector or the direction surrounding the observation angle 0 ° (scattering angle 180 °) (or near the observation angle 0 °) and the direction surrounding the observation angle 45 ° (scattering angle 135 °) are the same.
  • FIG. 3 is a schematic configuration diagram of an ion scattering spectrometer according to the present invention.
  • This device consists of a pulsed ion beam source 11, a goniometer 13 holding the sample 12, a two-dimensional position sensitive 'time analysis type detector 14 measuring the direction surrounding the observation angle 0 °, and the direction surrounding the observation angle 45 °. It consists of two-dimensional position sensitive and time-analyzing detectors 15 and 16 to be measured, and a signal processing unit 17 for processing signals from the detectors.
  • a nors ion beam source 11, a goometer 13, and two-dimensional position sensitive 'time analysis type detectors 14, 15, 16 are arranged in a vacuum vessel 18. The inside of the vacuum chamber is evacuated to a working vacuum of the detector (2 X 10 _4 Pa) or less.
  • the two-dimensional position sensitive 'time analysis type detector 15 has a fixed distance from the sample force, and the two-dimensional position sensitive' time analysis type detector 16 has a variable distance from the sample force. It is only necessary to have at least one that does not necessarily need to have both.
  • the strain can be measured by absolute measurement, that is, the thin film alone on the substrate. Also, the relative measurement of strain with a single detector, i.e. how the thin film is against the substrate You can evaluate whether it is distorted!
  • a pulsed ion beam having a parallelism for example, an energy source of lOOkeV (velocity 2.196 X 10 8 cm / s) and a pulsed beam width of 2 ns Is extracted and made incident on the sample 12.
  • a position sensitive and time analysis type MCP detector (RoentDek Hexl20 / o) with a center hole made by RoentDek was used as the detector 14 for measuring the direction surrounding the scattering angle of 180 °.
  • a position sensitive and time analysis type MCP detector (RoentDek DLD120) manufactured by RoentDek was used as the detector 15 (and 16) for measuring the direction surrounding the scattering angle of 135 °.
  • Hexl20 / o has an effective diameter of 120mm, a center hole in the center, and three delay lines spirally wound without contacting each other with a microchannel plate (MCP) at a 120 ° angle. (Delay line) It is constituted by an anode.
  • the pulsed ion beam emitted from the pulsed ion beam source 11 passes through the center hole of the detector 14 and enters the sample 12.
  • the DLD 120 has an effective diameter of 120 mm, and is composed of two delay line anodes wound spirally without making contact with the MCP at an angle of 90 °. Scattered (or recoiled) particles enter the MCP, secondary electrons are emitted from the MCP, and secondary electrons are multiplied in the MCP. The multiplied secondary electrons enter the delay anode and are directed to both ends of the delay line anode.
  • the delay line By measuring the time difference between the arrival of the signal at both ends of the delay line, the delay line is wound. The ion incident position in the direction is calculated. Also, the time of flight of the scattered (recoil) particles is calculated from the sum of the timing (start) signal that pulses the ion beam and the time that appears at both ends of the delay line. The flight time of this particle corresponds to the energy of the particle, and it is possible to know which element in the sample collided with the element and from which depth of the sample it was scattered (recoiled). Note that the start signal does not necessarily have to be a timing timing signal. For example, the measurement signal of the secondary electrons that come out of the sample force when ions enter the sample may be used as the start signal.
  • the Hexl20 / o used as the detector 14 achieves a position resolution of 0.2 mm or less, and it is assumed that the position resolution is 0.2 mm.
  • 0 0120 used as the detector 15 (16) achieves a position resolution of 0.1 mm or less, and it is assumed that the position resolution is 0.1 mm.
  • the detector 14 and the detector 15 are installed 500 mm from the sample.
  • the angular resolution of detector 15 is tan — 1 (0.
  • the apparatus shown in Fig. 3 must naturally take into account the statistical dispersion of the scattering intensity, but if the statistical dispersion of the scattering intensity is not taken into account, a strain (structural change) of 0.1% can be obtained. I can catch it. Of course, if the distance between the detector and the sample is increased, the strain (structure) can be captured more accurately.
  • both detector 14 (Hexl20 / o) and detector 15 (DLD120) is 120 mm
  • the output that can be detected by the detector when the distance between the detector and the sample is 500 mm.
  • Both angles are in the range of tan _ 1 (120Z500) 13. 4 ° ( ⁇ 6.7 °), and the solid angle can be captured in the following formula for the blocking pattern in the range of 0.045sr.
  • the beam is incident from the SiGe ⁇ 00-1> (or SiGe 0-1-1>) axial direction.
  • the scattering angle is Strain can be measured by aligning the SiGe 011> axis to the detector 15 installed in the direction surrounding 135 °, and if the incident direction is SiGe 0-1-1>, the scattering angle is 135 °. Strain can be measured by aligning the SiGe 001> axis with the detector 15 installed in the surrounding direction.
  • the detector 16 for measuring the direction surrounding the scattering angle of 135 ° is installed 300 mm from the sample.
  • the pulsed ion beam is incident from the SiGe 1- 1-1 axis, and the SiG e ⁇ 011> axis is! /,
  • the angular resolution in which the position resolution capability is also calculated is as follows.
  • the measurable emission angle can be changed by placing the detector on a linear moving mechanism and adjusting the distance between the detector and the sample by the linear moving mechanism.
  • detectors are installed in two different scattering angles of 135 °, and on the one hand, the distance between the detector and the sample is increased to increase the angular resolution, depth resolution, and mass resolution. It is possible to measure a large solid angle by shortening the distance between the detector and the sample.
  • This measuring apparatus can analyze strain and structure even in other systems including a strained Si system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

An ion spectroscopic analyzer that without frequent sample rotation and without the need of accurate sample surface matching, is capable of measuring the structure or strain of crystal material with high precision. Two-dimensional position sensitive/time analyzing detectors (14, 15) are disposed in the direction surrounding a scattering angle of 180° (observation angle 0°) and the direction surrounding a scattering angle of 135° (observation angle 45°).

Description

明 細 書  Specification
イオン散乱分光分析装置  Ion scattering spectrometer
技術分野  Technical field
[0001] 本発明は、試料によるイオン散乱を利用して結晶材料の"ひずみ (構造) "を調べる イオン散乱分光分析装置に関する。  The present invention relates to an ion scattering spectroscopic analyzer that examines “strain (structure)” of a crystalline material using ion scattering by a sample.
背景技術  Background art
[0002] 従来、イオン散乱を利用して結晶材料の"ひずみ (構造) "を調べる方法には、中ェ ネルギ一同軸型直衝突イオン散乱分光法 (ME-CAICISS)や、中エネルギーイオン散 乱分光法 (MEIS)が知られている。 ME-CAICISSは、イオンビームを結晶材料に入射 させ、結晶材料を回転することによって散乱強度の入射角依存性を測定することによ つて結晶構造あるいはひずみを調べる方法である。 MEISは、一次元位置検出器 (静 電アナライザ)を用いて散乱強度の出射角依存性を測定することにより、結晶構造あ るいはひずみを調べる方法である。  [0002] Conventionally, methods for investigating the "strain (structure)" of a crystalline material using ion scattering include medium energy single-coaxial direct collision ion scattering spectroscopy (ME-CAICISS), medium energy ion scattering, and so on. Spectroscopy (MEIS) is known. ME-CAICISS is a method for examining the crystal structure or strain by measuring the incident angle dependence of the scattering intensity by making an ion beam incident on the crystal material and rotating the crystal material. MEIS is a method for examining the crystal structure or strain by measuring the output angle dependence of scattering intensity using a one-dimensional position detector (electrostatic analyzer).
非特許文献 1 : Physical Review B 67, 035319 (2003)  Non-Patent Document 1: Physical Review B 67, 035319 (2003)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] ME-CAICISSは、結晶材料を回転しながら、散乱強度の入射角依存性を測定する ことから長時間を要すると共に、測定する入射ビームと結晶材料と角度毎に、一定量 の入射ビームを入射させる力、あるいはビーム入射量で規格ィ匕できる方法が必要とさ れるが、違う入射条件のもとで正確に入射量を測定あるいは規格ィ匕することは難しい 。 MEISの場合には、静電アナライザは対極する 2つの電極をもつことから大型であり 、また電極に入射ビームを通す穴を開けることもできないことから、散乱角 180° (観 察角 0° )近傍の測定ができない。また、一次元位置であることから正確な結晶材料 の面合わせが必要である。なお、本明細書でいう「観察角」とはイオンビームに対する 角である。 [0003] ME-CAICISS requires a long time because it measures the incident angle dependence of the scattering intensity while rotating the crystal material, and a certain amount of incident beam for each angle of incident beam, crystal material, and angle to be measured. However, it is difficult to accurately measure or standardize the amount of incident light under different incident conditions. In the case of MEIS, the electrostatic analyzer is large because it has two electrodes opposite to each other, and it is impossible to make a hole for the incident beam to pass through the electrode, so the scattering angle is 180 ° (observation angle 0 °). The neighborhood cannot be measured. In addition, since it is a one-dimensional position, it is necessary to accurately align the crystal material. The “observation angle” in this specification is an angle with respect to the ion beam.
[0004] 本発明は、頻繁に試料を回転させることなぐまた正確な試料の面合わせを必要と せず、高精度に結晶材料の構造あるいはひずみを測定できるイオン散乱分光分析 装置を提供することを目的とする。 [0004] The present invention does not require frequent sample rotation and does not require accurate sample surface alignment, and ion scattering spectroscopy that can measure the structure or strain of a crystal material with high accuracy. An object is to provide an apparatus.
課題を解決するための手段  Means for solving the problem
[0005] 本発明では、散乱角 180° (観察角 0° ) (あるいは観察角 0° 近傍)を取り囲む方 向と散乱角 135° (観察角 45° )を取り囲む方向に二次元位置敏感 '時間分析型検 出器を配置する。散乱角 180° (観察角 0° ) (あるいは観察角 0° 近傍)を取り囲む 方向に配置した検出器が検出するブロッキングコーンの角度位置を角度基準 (角度 0° 方向)として、散乱角 135° (観察角 45° )を取り囲む方向に配置した検出器が 検出するブロッキングコーンの位置からのずれにより試料のひずみ情報 (構造情報) を得ることができる。  [0005] In the present invention, a two-dimensional position sensitive 'time in the direction surrounding the scattering angle 180 ° (observation angle 0 °) (or near the observation angle 0 °) and the direction surrounding the scattering angle 135 ° (observation angle 45 °). Install an analytical detector. Scattering angle: 135 ° (Observation angle 0 °) (or near observation angle 0 °) The angle of the blocking cone detected by the detector placed in the direction surrounding the observation angle is the angle reference (angle 0 ° direction). The strain information (structure information) of the sample can be obtained by the deviation from the position of the blocking cone detected by the detector arranged in the direction surrounding the observation angle of 45 °.
[0006] すなわち、本発明によるイオン散乱分光分析装置は、試料を保持する試料保持部 と、試料に向けてパルスイオンビームを照射するパルスイオンビーム源と、試料によつ て散乱されたイオンを検出する第 1の二次元位置敏感検出器及び第 2の二次元位置 敏感検出器とを備え、第 1の二次元位置敏感検出器は、観察角 0° を取り囲む方向 に散乱されたイオンを検出するように前記パルスイオンビーム源と前記試料保持部に 保持された試料との間に配置され、第 2の二次元位置敏感検出器は、観察角 45° を 取り囲む方向に散乱されたイオンを検出するように配置されて 、る。  That is, an ion scattering spectroscopic analyzer according to the present invention includes a sample holding unit that holds a sample, a pulsed ion beam source that irradiates a pulsed ion beam toward the sample, and ions scattered by the sample. A first two-dimensional position sensitive detector for detecting and a second two-dimensional position sensitive detector.The first two-dimensional position sensitive detector detects ions scattered in a direction surrounding an observation angle of 0 °. The second two-dimensional position sensitive detector is arranged between the pulsed ion beam source and the sample held by the sample holder so as to detect ions scattered in a direction surrounding an observation angle of 45 °. Arranged to be.
[0007] ここで、前記第 1の二次元位置敏感検出器は、中央部に前記パルスイオンビーム 源から出射されたイオンビームを通過させる穴を有する構造にしてもよぐ二次元位 置敏感検出器は高計数率で測定するのが可能なため時間分解型検出器であるのが 好ましい。また、本発明のイオン散乱装置は、位置分解することが可能なため必要に 応じ大立体角で散乱あるいは反跳粒子を測定できる。  [0007] Here, the first two-dimensional position sensitive detector may have a structure having a hole through which an ion beam emitted from the pulse ion beam source passes in a central portion. The instrument is preferably a time-resolved detector because it can measure at high count rates. In addition, since the ion scattering apparatus of the present invention can be resolved in position, it can measure scattered or recoiled particles at a large solid angle as necessary.
発明の効果  The invention's effect
[0008] 本発明によると、イオン散乱分光分析において最も敏感にかつ高精度に結晶材料 の"ひずみ (構造) "を調べることができる。  According to the present invention, the “strain (structure)” of a crystal material can be examined most sensitively and with high accuracy in ion scattering spectroscopic analysis.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1は、入射イオンが結晶の原子により散乱される様子を示す模式図である。  FIG. 1 is a schematic diagram showing how incident ions are scattered by crystal atoms.
[図 2]図 2は、原子列上の原子の微小変位を示す説明図である。  FIG. 2 is an explanatory diagram showing minute displacements of atoms on an atomic row.
[図 3]図 3は、本発明によるイオン散乱分光分析装置の概略構成図である。 符号の説明 FIG. 3 is a schematic configuration diagram of an ion scattering spectroscopic analyzer according to the present invention. Explanation of symbols
[0010] 11 パルスイオンビーム源  [0010] 11 Pulsed ion beam source
12 試料  12 samples
13 ゴニォメータ  13 Goniometer
14 観察角 0° を取り囲む方向を測定する二次元位置敏感,時間分析型検出器 15 観察角 45° を取り囲む方向を測定する二次元位置敏感,時間分析型検出器 16 観察角 45° を取り囲む方向を測定する二次元位置敏感 '時間分析型検出器 17 信号処理部  14 Two-dimensional position sensitive, time-analyzing detector measuring direction surrounding observation angle 0 ° 15 Two-dimensional position-sensitive, time-analyzing detector measuring direction surrounding observation angle 45 ° 16 Direction surrounding observation angle 45 ° 2D position sensitive 'time analysis type detector 17 measuring signal processing unit
18 真空容器  18 Vacuum container
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、図面を参照して本発明の実施の形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012] 図 1は、入射イオンが結晶の原子により散乱される様子を示す模式図である。結晶 材料にエネルギーが揃 、平行性のょ ヽイオンビームが入射すると、結晶材料を構成 する原子の後方には、入射イオンが進入できない円錐状の影が生じる。この影をシャ ドーコーンと呼ぶ。また、別の原子がこの影の中にあるとすると、その原子はイオンの 散乱には寄与しない。これをシャドーイング効果と呼ぶ。一方、ある原子によって散乱 された粒子に着目するとき、その散乱軌道上に別の原子が存在する場合、その原子 の後方に散乱イオンが進入できない円錐状の影が生じる。この影をブロッキングコー ンと呼ぶ。このブロッキングコーンが張る方向では、最初に散乱した原子による散乱 粒子の観察がされない。これをブロッキング効果と呼ぶ。結晶性の材料であればこの シャドーイング効果あるいはブロッキング効果を調べることにより原子の並び (結晶学 的軸)を知ることができる。  FIG. 1 is a schematic diagram showing how incident ions are scattered by crystal atoms. When energy is aligned in the crystal material and parallel ion beams are incident, a conical shadow is formed behind the atoms that make up the crystal material, where the incident ions cannot enter. This shadow is called a shadow cone. And if another atom is in this shadow, it does not contribute to ion scattering. This is called the shadowing effect. On the other hand, when focusing on particles scattered by an atom, if another atom is present on the scattering trajectory, a conical shadow is created behind which the scattered ion cannot enter. This shadow is called a blocking cone. In the direction where the blocking cone is stretched, the scattered particles due to the first scattered atoms are not observed. This is called a blocking effect. In the case of a crystalline material, the arrangement of atoms (crystallographic axis) can be determined by examining the shadowing effect or blocking effect.
[0013] イオン散乱では、基板に成長した薄膜のひずみは薄膜の結晶学的軸方向から評 価することができる。観察角( Θ )の方向に存在する原子列上の原子が図 2に示すよう に微小変位したとき、観察角のシフト量( Δ Θ )は次式 (1)によって与えられる。 In ion scattering, the strain of a thin film grown on a substrate can be evaluated from the crystallographic axis direction of the thin film. When the atoms on the atomic column existing in the direction of the observation angle (Θ) are slightly displaced as shown in Fig. 2, the shift amount of the observation angle (ΔΘ) is given by the following equation (1).
[数 1]
Figure imgf000005_0001
[0014] ここで、 aと cはそれぞれ原子が変位する前の原子列の原子間距離の x成分と y成分 であり、 Δ aと Δ cはそれぞれ原子の変位量の X成分と y成分である。
[Number 1]
Figure imgf000005_0001
[0014] where a and c are the x and y components of the interatomic distance of the atomic sequence before the atoms are displaced, respectively, and Δa and Δc are the X and y components of the displacement of the atoms, respectively. is there.
[0015] 式(1)からわ力るように、式(2)が成立する場合、すなわちひずみが緩和していなけ れば、観察角のシフト量 Δ Θは観察角 Θ =45°でピークを示す。言い換えれば、薄 膜のひずみあるいはひずみ緩和は 45° の方向で最も敏感に、かつ正確に評価する ことができる。  [0015] As shown in Equation (1), if Equation (2) holds, that is, if the strain is not relaxed, the observation angle shift amount ΔΘ peaks at the observation angle Θ = 45 °. Show. In other words, thin film strain or strain relaxation can be most sensitively and accurately evaluated in the 45 ° direction.
[数 2]  [Equation 2]
^)0 … ^) 0…
、 a C )  AC)
[0016] 従って、観察角 0° (散乱角 180° ) (あるいは観察角 0° 近傍)を取り囲む方向と 観察角 45° (散乱角 135° )を取り囲む方向に設置した 2台(あるいはそれ以上)の 二次元位置敏感'時間分析型検出器、または観察角 0° (散乱角 180° ) (あるいは 観察角 0° 近傍)を取り囲む方向と観察角 45° (散乱角 135° )を取り囲む方向を同 時に測定できる 1台の二次元位置敏感 ·時間分析型検出器を用いることにより、最も 敏感にかつ高精度に結晶材料の"ひずみ (構造) "を調べることができる。 [0016] Therefore, two units (or more) installed in the direction surrounding the observation angle 0 ° (scattering angle 180 °) (or near the observation angle 0 °) and in the direction surrounding the observation angle 45 ° (scattering angle 135 °). Two-dimensional position sensitive 'time analysis type detector, or the direction surrounding the observation angle 0 ° (scattering angle 180 °) (or near the observation angle 0 °) and the direction surrounding the observation angle 45 ° (scattering angle 135 °) are the same. By using one two-dimensional position sensitive and time analysis type detector that can be measured sometimes, it is possible to investigate the "strain (structure)" of the crystal material most sensitively and with high accuracy.
[0017] 図 3は、本発明によるイオン散乱分光分析装置の概略構成図である。この装置は、 パルスイオンビーム源 11、試料 12を保持するゴニォメータ 13、観察角 0° を取り囲 む方向を測定する二次元位置敏感'時間分析型検出器 14、観察角 45° を取り囲む 方向を測定する二次元位置敏感 ·時間分析型検出器 15, 16、及び検出器からの信 号を処理する信号処理部 17を備えて構成される。ノルスイオンビーム源 11、ゴ-ォ メータ 13、及び二次元位置敏感'時間分析型検出器 14, 15, 16は真空容器 18中 に配置されている。真空容器内は、検出器の作動真空度(2 X 10_4Pa)以下の真空 度にされる。 FIG. 3 is a schematic configuration diagram of an ion scattering spectrometer according to the present invention. This device consists of a pulsed ion beam source 11, a goniometer 13 holding the sample 12, a two-dimensional position sensitive 'time analysis type detector 14 measuring the direction surrounding the observation angle 0 °, and the direction surrounding the observation angle 45 °. It consists of two-dimensional position sensitive and time-analyzing detectors 15 and 16 to be measured, and a signal processing unit 17 for processing signals from the detectors. A nors ion beam source 11, a goometer 13, and two-dimensional position sensitive 'time analysis type detectors 14, 15, 16 are arranged in a vacuum vessel 18. The inside of the vacuum chamber is evacuated to a working vacuum of the detector (2 X 10 _4 Pa) or less.
[0018] 二次元位置敏感 '時間分析型検出器 15は試料力ゝらの距離が固定であり、二次元 位置敏感 '時間分析型検出器 16は試料力ゝらの距離が可変であるが、必ずしも両方を 備える必要はなぐ少なくとも一方を備えていればよい。二台の検出器 14, 15を用い ることで、ひずみの絶対測定、すなわち基板上の薄膜単独でひずみを評価できる。 また、一台の検出器でひずみの相対測定、すなわち基板に対して薄膜がどのように ひずんで!/、るかを評価することができる。 The two-dimensional position sensitive 'time analysis type detector 15 has a fixed distance from the sample force, and the two-dimensional position sensitive' time analysis type detector 16 has a variable distance from the sample force. It is only necessary to have at least one that does not necessarily need to have both. By using two detectors 14, 15, the strain can be measured by absolute measurement, that is, the thin film alone on the substrate. Also, the relative measurement of strain with a single detector, i.e. how the thin film is against the substrate You can evaluate whether it is distorted!
[0019] パルスイオンビーム源 11からは、平行度がょ 、パルスイオンビーム、例えばェネル ギ一が lOOkeV (速度 2. 196 X 108cm/s)、パルスビームのパルス幅が 2nsのパル スイオンビームを引き出し、試料 12に入射させる。ゴ-ォメータ 13により試料の方位 をラフに合わせる。例えば試料が SiGe (001)であれば、ほぼ SiGe [00—l]軸方向 力もパルスイオンビームを入射させ、かつ散乱角 135° (観察角 45° )を取り囲む方 向を測定する検出器 15に SiGeく 011 >軸を合わせる。これにより、散乱角 180° ( 観察角 0° ) (あるいは観察角 0° 近傍)を取り囲む方向を測定する検出器 14に [00 1]軸方向に並ぶ原子のブロッキングコーンが観察され、同様に散乱角 135° を取り 囲む方向を測定する検出器 15にく 011 >軸方向に並ぶ原子のブロッキングコーン が観察される。なお、必ずしも [001]軸とく 011 >軸に注目する必要はないが、 SiG e試料はダイヤモンド構造であることから、ひずんでいたとしても SiGe [001]軸と SiG e< 011 >軸の二軸のなす角は 45° 前後であることから、ひずみを調べるのには都 合のよい角度関係である。 [0019] From the pulsed ion beam source 11, a pulsed ion beam having a parallelism, for example, an energy source of lOOkeV (velocity 2.196 X 10 8 cm / s) and a pulsed beam width of 2 ns Is extracted and made incident on the sample 12. Roughly adjust the orientation of the sample using the goometer 13. For example, if the sample is SiGe (001), the SiGe [00-l] axial force is applied to the detector 15 that measures the direction surrounding the scattering angle of 135 ° (observation angle of 45 °) with the pulsed ion beam incident. SiGe 011> Align the axis. As a result, a blocking cone of atoms aligned in the [00 1] axis direction is observed in the detector 14 measuring the direction surrounding the scattering angle 180 ° (observation angle 0 °) (or near the observation angle 0 °), and similarly scattered. A detector cone 15 measuring the direction surrounding the angle 135 ° is observed. Although it is not always necessary to pay attention to the [001] axis and the 011> axis, the SiGe sample has a diamond structure, so even if it is distorted, the SiGe [001] axis and the SiG e <011> axis are two axes. Since the angle formed by is around 45 °, it is a convenient angle relationship for examining strain.
[0020] 散乱角 180° を取り囲む方向を測定する検出器 14には RoentDek社製のセンター ホール付き位置敏感.時間分析型 MCP検出器(RoentDek Hexl20/o)を用いた。ま た、散乱角 135° を取り囲む方向を測定する検出器 15 (及び 16)には RoentDek社 製の位置敏感.時間分析型 MCP検出器(RoentDek DLD120)を用いた。 Hexl20/o は、有効径が 120mmで中央にセンターホールを有し、マイクロチャネルプレート(M CP)と 120° の角をなすように各々接触することなく螺旋状に巻かれた三本の遅延 線 (ディレーライン)アノードによって構成されている。パルスイオンビーム源 11から出 射したパルスイオンビームは、検出器 14のセンターホールを通って、試料 12に入射 する。 DLD120は、有効径が 120mmで、 MCPと 90° の角をなして接触することなく 螺旋状に巻かれた二本の遅延線アノードによって構成されて 、る。散乱 (あるいは反 跳)粒子が MCPに入り、 MCPより二次電子が放出され、 MCPの中で二次電子が増倍 される。この増倍された二次電子は遅延アノードに入り各々遅延線アノードの両端に 向力う o  [0020] A position sensitive and time analysis type MCP detector (RoentDek Hexl20 / o) with a center hole made by RoentDek was used as the detector 14 for measuring the direction surrounding the scattering angle of 180 °. In addition, a position sensitive and time analysis type MCP detector (RoentDek DLD120) manufactured by RoentDek was used as the detector 15 (and 16) for measuring the direction surrounding the scattering angle of 135 °. Hexl20 / o has an effective diameter of 120mm, a center hole in the center, and three delay lines spirally wound without contacting each other with a microchannel plate (MCP) at a 120 ° angle. (Delay line) It is constituted by an anode. The pulsed ion beam emitted from the pulsed ion beam source 11 passes through the center hole of the detector 14 and enters the sample 12. The DLD 120 has an effective diameter of 120 mm, and is composed of two delay line anodes wound spirally without making contact with the MCP at an angle of 90 °. Scattered (or recoiled) particles enter the MCP, secondary electrons are emitted from the MCP, and secondary electrons are multiplied in the MCP. The multiplied secondary electrons enter the delay anode and are directed to both ends of the delay line anode.
[0021] 遅延線の両端に信号が到達した時間差を測定することによって、遅延線が巻かれ ている方向のイオン入射位置が算出される。また、イオンビームをパルス化するタイミ ング (スタート)信号と遅延線の両端に現れた時間の合計によって散乱 (反跳)粒子の 飛行時間を算出する。この粒子の飛行時間は粒子のエネルギーに対応しており、試 料中のどの元素と衝突した力、また試料のどの深さから散乱 (反跳)してきたかがわか る。なお、スタート信号は必ずしもノ ルス化のタイミング信号でなくともよい。例えば、 イオンが試料に入射することにより試料力 出てくる二次電子の計測信号をスタート 信号としてもよい。 [0021] By measuring the time difference between the arrival of the signal at both ends of the delay line, the delay line is wound. The ion incident position in the direction is calculated. Also, the time of flight of the scattered (recoil) particles is calculated from the sum of the timing (start) signal that pulses the ion beam and the time that appears at both ends of the delay line. The flight time of this particle corresponds to the energy of the particle, and it is possible to know which element in the sample collided with the element and from which depth of the sample it was scattered (recoiled). Note that the start signal does not necessarily have to be a timing timing signal. For example, the measurement signal of the secondary electrons that come out of the sample force when ions enter the sample may be used as the start signal.
[0022] 検出器 14として用いた Hexl20/oは、位置分解能 0. 2mm以下を達成しており、仮 に位置分解能が 0. 2mmであるとする。また、検出器 15 (16)として用ぃた0し0120は 、位置分解能 0. 1mm以下を達成しており、仮に位置分解能が 0. 1mmであるとする 。更に、検出器 14及び検出器 15を試料から 500mmのところに設置したとする。この 場合、検出器 14の位置分解能力も算出される角度分解能は tan _1 (0. 2/500) =0 . 023°となる。同様に、検出器 15の角度分解能は tan—1 (0. 1/500) =0. 0115°と なり、二台の検出器 14, 15による総合的角度分解能は散乱強度の統計的ばらつき を考えなければ (0. 0232 + 0. 01152) 1/2 = 0. 026 (。)となる。観察角 45° で観察 している場合、 sin (2 X 45° ) = 1であるから、式(1)より式(3)が成立する。 [0022] The Hexl20 / o used as the detector 14 achieves a position resolution of 0.2 mm or less, and it is assumed that the position resolution is 0.2 mm. Further, 0 0120 used as the detector 15 (16) achieves a position resolution of 0.1 mm or less, and it is assumed that the position resolution is 0.1 mm. Furthermore, it is assumed that the detector 14 and the detector 15 are installed 500 mm from the sample. In this case, the angular resolution of the position resolution capability is also calculated in the detector 14 is t an _1 (0. 2/500) = 0. The 023 °. Similarly, the angular resolution of detector 15 is tan — 1 (0. 1/500) = 0.0115 °, and the total angular resolution of the two detectors 14 and 15 is based on statistical variations in the scattering intensity. Otherwise (0. 023 2 + 0. 0115 2 ) 1/2 = 0.026 (.). When observing at an observation angle of 45 °, sin (2 X 45 °) = 1, so equation (3) is established from equation (1).
[数 3] [Equation 3]
Figure imgf000008_0001
Figure imgf000008_0001
[0023] すなわち、図 3に示した装置は、散乱強度の統計的ばらつきを当然考えなければな らないが、散乱強度の統計的ばらつきを考えなければ 0. 1%のひずみ (構造変化) を捕えることができること〖こなる。もちろん、検出器と試料の距離を長くすれば、更に 精度よくひずみ (構造)を捕えることが可能である。  [0023] That is, the apparatus shown in Fig. 3 must naturally take into account the statistical dispersion of the scattering intensity, but if the statistical dispersion of the scattering intensity is not taken into account, a strain (structural change) of 0.1% can be obtained. I can catch it. Of course, if the distance between the detector and the sample is increased, the strain (structure) can be captured more accurately.
[0024] なお、検出器 14 (Hexl20/o)と検出器 15 (DLD120)は共に有効径が 120mmであ ることから、検出器と試料の距離を 500mmとした場合、検出器により検出できる出射 角は共に tan_ 1 (120Z500) 13. 4° (±6. 7° )の範囲、立体角としては、次式か ら共に 0. 045srの範囲のブロッキングパターンを捕えることができる。 [0024] Since the effective diameter of both detector 14 (Hexl20 / o) and detector 15 (DLD120) is 120 mm, the output that can be detected by the detector when the distance between the detector and the sample is 500 mm. Both angles are in the range of tan _ 1 (120Z500) 13. 4 ° (± 6.7 °), and the solid angle can be captured in the following formula for the blocking pattern in the range of 0.045sr.
[0025] (立体角) = (面積) / (距離) 2= π · 602/5002=0. 045sr 次に、試料が SiGe (Oi l)である場合の測定法について説明する。 SiGe (011)試 料の場合、 SiGe (001)試料とは逆に、ほぼ SiGe [0— 1— 1]軸方向力 パルスィォ ンビームを入射させ、かつ散乱角 135° を取り囲む方向を測定する検出器 15に SiG e < 001 >軸を合わせる。これにより、散乱角 180° を取り囲む方向を測定する検出 器 14に [011]軸方向に並ぶ原子のブロッキングコーンが観察され、同様に散乱角 1 35° を取り囲む方向を測定する検出器 15にく 001 >軸方向に並ぶ原子のブロッキ ングコーンが観察される。この場合にも、必ずしも [011]軸とく 001 >軸に注目する 必要はないが、 SiGe試料はダイヤモンド構造であることから、ひずんでいたとしても S iGe [011]軸と SiGeく 001 >軸の二軸のなす角は 45° 前後であることから、ひずみ を調べるのには都合のよい角度関係である。 [0025] (solid angle) = (area) / (distance) 2 = π · 60 2/ 500 2 = 0. 045sr Next, a measurement method when the sample is SiGe (Oil) will be described. In the case of the SiGe (011) sample, in contrast to the SiGe (001) sample, a detector that measures the direction surrounding the scattering angle of 135 ° with a nearly SiGe [0—1-1] axial force pulsed beam incident. Align the SiG e <001> axis with 15. As a result, a blocking cone of atoms aligned in the [011] axial direction is observed in the detector 14 measuring the direction surrounding the scattering angle of 180 °, and similarly to the detector 15 measuring the direction surrounding the scattering angle of 1 35 °. 001> Axial blocking cones aligned in the axial direction are observed. In this case as well, it is not always necessary to pay attention to the [011] axis and the 001> axis, but since the SiGe sample has a diamond structure, the SiGe [011] axis and the SiGe Since the angle between the two axes is around 45 °, it is a convenient angular relationship for examining strain.
[0026] 次に、試料が SiGe (111)である場合の測定法について説明する。 SiGe (111)試 料の場合には、 SiGe < 00- 1 > (あるいは SiGeく 0— 1— 1 >)軸方向からビームを 入射させ、入射方向が SiGeく 00— 1 >であれば散乱角 135° を取り囲む方向に設 置された検出器 15に SiGeく 011 >軸を合わせてひずみを測定することができ、入 射方向が SiGeく 0— 1 - 1 >であれば散乱角 135° を取り囲む方向に設置された検 出器 15に SiGeく 001 >軸を合わせてひずみを測定することが可能である。  Next, a measurement method when the sample is SiGe (111) will be described. In the case of the SiGe (111) sample, the beam is incident from the SiGe <00-1> (or SiGe 0-1-1>) axial direction. If the incident direction is SiGe 00-1>, the scattering angle is Strain can be measured by aligning the SiGe 011> axis to the detector 15 installed in the direction surrounding 135 °, and if the incident direction is SiGe 0-1-1>, the scattering angle is 135 °. Strain can be measured by aligning the SiGe 001> axis with the detector 15 installed in the surrounding direction.
[0027] また、散乱角 135° を取り囲む方向を測定する検出器 16を試料から 300mmに設 置したとする。これによりこの検出器の測定可能な出射角は、 tan_1 (120Z300) = 2 1. 8° ( ± 10. 9° )の範囲となる。この検出器により SiGe< 011 >ある!/、は SiGe< 0 01 >軸を捕えることによって、ひずみを評価することが可能である。 SiGe< 011 >あ るいは SiGeく 001 >は、ひずみがない場合には Si[l l l]軸から 54. 74° あるいは 35. 26° である。パルスイオンビームを SiGeく一 1— 1— 1 >軸から入射させ、 SiG e< 011 >軸ある!/、は SiGe< 001 >を散乱角 135° を取り囲む方向を測定する検 出器 16によって、 SiGeく 011 >あるいは SiGeく 001 >軸に相当するブロッキング コーンを観察する。それらの軸はそれぞれ 144. 74° 及び 125. 26° の散乱角付近 に観察されるはずである。観察角 Θで言い換えれば、それぞれ 35. 26° 及び 54. 7 4° である。従って sin2 Θは観察角が 35. 26° 及び 54. 74° でも共に、 sin2 Θ =0 . 943であることから、最適な条件ではないものの、十分にひずみを捕えることが可能 である。 [0027] Further, it is assumed that the detector 16 for measuring the direction surrounding the scattering angle of 135 ° is installed 300 mm from the sample. As a result, the measurable emission angle of this detector is in the range of tan _1 (120Z300) = 2.1.8 ° (± 10.9 °). With this detector, it is possible to evaluate the strain of SiGe <011>! /, By capturing the SiGe <001> axis. SiGe <011> or SiGe 001> is 54.74 ° or 35.26 ° from the Si [lll] axis when there is no strain. The pulsed ion beam is incident from the SiGe 1- 1-1 axis, and the SiG e <011> axis is! /, By the detector 16 measuring the direction surrounding the scattering angle of 135 ° with SiGe <001> Observe the blocking cone corresponding to the SiGe 011> or SiGe 001> axis. Their axes should be observed around the scattering angles of 144.74 ° and 125.26 °, respectively. In other words, the observation angle Θ is 35.26 ° and 54.7 4 °, respectively. Therefore, since sin2 Θ is sin2 Θ = 0.943 at both observation angles of 35.26 ° and 54.74 °, it is not the optimum condition, but it can capture the strain sufficiently. It is.
[0028] その場合の位置分解能力も算出される角度分解能は、検出器 (Hexl20/O) 14は従 前通りの tan—1 (0. 2/500) = 0. 023°であり、検出器(DLD120) 16では tan—1 (0. 1 /300) = 0. 019°となり、 2つの検出器 14, 16による総合的角度分解能は、散乱強 度の統計的ばらつきを当然考えなければならないが、散乱強度の統計的ばらつきを 考えなければ(0. 0232+ 0. 0192) 1/2= 0. 03 (。)となる。観察角 Θ = 35. 26° ある いは 54. 74° で観察した場合、(sin2 0 = 0. 943)であるから、式(1)より式 (4)が成 立し、 0. 1 %のひずみ (構造変ィ匕)を捕えることができることになる。 [0028] The angular resolution in which the position resolution capability is also calculated is as follows. The detector (Hexl20 / O ) 14 is tan— 1 (0.2 / 500) = 0.023 ° as before, and the detector (DLD120) 16 is tan- 1 (0. 1/300) = 0.019 °, and the total angular resolution of the two detectors 14, 16 must naturally take into account the statistical dispersion of the scattering intensity. Without considering the statistical dispersion of scattering intensity, (0.023 2 + 0. 019 2 ) 1/2 = 0.03 (.). When observed at an observation angle of Θ = 35.26 ° or 54.74 °, (sin2 0 = 0.9943), equation (4) is established from equation (1), and 0.1% It is possible to capture the strain (structural change).
 Picture
—-— ) = Αθ χ -^-$ιη 2θ = 0.03 χ— χ 0.943 « 0.001 - -(4) —-—) = Αθ χ-^-$ ιη 2θ = 0.03 χ— χ 0.943 «0.001--(4)
{ a c J 180 180  {a c J 180 180
[0029] 検出器と試料の距離に関しては、検出器を直線移動機構上に置き直線移動機構 によって検出器と試料の距離を調整することにより、測定可能な出射角を変えること ができる。また、図 3のように 2つの異なる散乱角 135° の方向にそれぞれ検出器を 設置し、一方では検出器と試料の距離を長くして角度分解能、深さ分解能及び質量 分解能を上げ、他方では検出器と試料の距離を短くすることにより大きな立体角を測 定できるようにすることが可能である。 [0029] Regarding the distance between the detector and the sample, the measurable emission angle can be changed by placing the detector on a linear moving mechanism and adjusting the distance between the detector and the sample by the linear moving mechanism. In addition, as shown in Fig. 3, detectors are installed in two different scattering angles of 135 °, and on the one hand, the distance between the detector and the sample is increased to increase the angular resolution, depth resolution, and mass resolution. It is possible to measure a large solid angle by shortening the distance between the detector and the sample.
[0030] この測定装置は、ひずみ Si系をはじめ、他の系にお 、てもひずみ及び構造を解析 できる。  [0030] This measuring apparatus can analyze strain and structure even in other systems including a strained Si system.

Claims

請求の範囲 The scope of the claims
[1] 試料を保持する試料保持部と、  [1] a sample holder for holding a sample;
試料に向けてパルスイオンビームを照射するパルスイオンビーム源と、 試料によって散乱されたイオンを検出する第 1の二次元位置敏感検出器及び第 2 の二次元位置敏感検出器とを備え、  A pulsed ion beam source that irradiates a sample with a pulsed ion beam; a first two-dimensional position sensitive detector that detects ions scattered by the sample; and a second two-dimensional position sensitive detector;
前記第 1の二次元位置敏感検出器は、観察角 0° を取り囲む方向に散乱されたィ オンを検出するように前記パルスイオンビーム源と前記試料保持部に保持された試 料との間に配置され、  The first two-dimensional position sensitive detector is provided between the pulse ion beam source and the sample held by the sample holding unit so as to detect ions scattered in a direction surrounding an observation angle of 0 °. Arranged,
前記第 2の二次元位置敏感検出器は、観察角 45° を取り囲む方向に散乱された イオンを検出するように配置されて 、ることを特徴とするイオン散乱分光分析装置。  The second two-dimensional position sensitive detector is arranged so as to detect ions scattered in a direction surrounding an observation angle of 45 °, and an ion scattering spectroscopic analysis device characterized in that:
[2] 請求項 1記載のイオン散乱分光分析装置において、前記第 1の二次元位置敏感検 出器は、中央部に前記ノ ルスイオンビーム源から出射されたイオンビームを通過させ る穴を有することを特徴とするイオン散乱分光分析装置。 [2] The ion scattering spectrometer according to claim 1, wherein the first two-dimensional position sensitive detector has a hole through which an ion beam emitted from the Norse ion beam source passes in a central portion. An ion scattering spectroscopic analyzer characterized by that.
[3] 請求項 1又は 2記載のイオン散乱分光分析装置において、前記第 1及び第 2の二 次元位置敏感検出器は時間分解型検出器であることを特徴とするイオン散乱分光 分析装置。 3. The ion scattering spectrometer according to claim 1 or 2, wherein the first and second two-dimensional position sensitive detectors are time-resolved detectors.
PCT/JP2006/325410 2005-12-28 2006-12-20 Ion scattering spectroscopic analyzer WO2007074696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-378852 2005-12-28
JP2005378852A JP2007178341A (en) 2005-12-28 2005-12-28 Spectral analyzer of ion scattering

Publications (1)

Publication Number Publication Date
WO2007074696A1 true WO2007074696A1 (en) 2007-07-05

Family

ID=38217916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/325410 WO2007074696A1 (en) 2005-12-28 2006-12-20 Ion scattering spectroscopic analyzer

Country Status (2)

Country Link
JP (1) JP2007178341A (en)
WO (1) WO2007074696A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101052361B1 (en) * 2008-07-31 2011-07-27 한국표준과학연구원 Spectrometer Using Heavy Energy Ion Beam Scattering
KR101093818B1 (en) 2008-08-21 2011-12-19 한국표준과학연구원 Quantification Method of Biochemical Substances Using Ion Scattering Spectroscopy and Specific-Binding Efficiency Quantification Method of Biochemical Substances Using Ion Scattering Spectroscopy
JP5429797B2 (en) * 2009-08-27 2014-02-26 独立行政法人理化学研究所 Position sensitive time analysis type detector, method for producing the same, and three-dimensional medium energy ion scattering apparatus using the same
KR101377938B1 (en) * 2010-12-14 2014-03-24 한국표준과학연구원 Medium Energy Ion Scattering spectrometer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308058A (en) * 1993-04-20 1994-11-04 Nippon Steel Corp Rutherford backscattering spectroscopic analyzer
JPH08101142A (en) * 1994-10-03 1996-04-16 Shimadzu Corp Ion dispersion spectrographic device
WO2003081632A1 (en) * 2002-03-25 2003-10-02 Riken 3-dimensional ion scattering spectroscopic method and spectroscopic device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06308058A (en) * 1993-04-20 1994-11-04 Nippon Steel Corp Rutherford backscattering spectroscopic analyzer
JPH08101142A (en) * 1994-10-03 1996-04-16 Shimadzu Corp Ion dispersion spectrographic device
WO2003081632A1 (en) * 2002-03-25 2003-10-02 Riken 3-dimensional ion scattering spectroscopic method and spectroscopic device

Also Published As

Publication number Publication date
JP2007178341A (en) 2007-07-12

Similar Documents

Publication Publication Date Title
Lucarelli et al. The upgraded external-beam PIXE/PIGE set-up at LABEC for very fast measurements on aerosol samples
US8923480B2 (en) X-ray diffraction instrument
US20130126727A1 (en) Time-of-Flight Electron Energy Analyzer
KR101702803B1 (en) Leed for sem
JP2002107134A (en) Thickness meter for x-ray fluorescence film
US7263161B2 (en) Analysis device with variably illuminated strip detector
WO2007074696A1 (en) Ion scattering spectroscopic analyzer
CN104076053A (en) Foreign matter detector
US6522718B2 (en) X-ray fluorescence thickness tester
US9490112B2 (en) System and method for characterizing ions using a superconducting transmission line detector
KR102169574B1 (en) Charged particle beam apparatus
EP1092974A3 (en) Detector for large wafers areas
US8074292B2 (en) High resolution wide angle tomographic probe
KR100955434B1 (en) Nondestructive characterization of thin films using measured basis spectra and/or based on acquired spectrum
WO2023145236A1 (en) Identification device that detects foreign matter and operates using fluorescence x-rays
EP2077449A1 (en) Reverse x-ray photoelectron holography device and its measuring method
EP2853886A1 (en) Magnetic measurement method and its system and apparatus
CN102565108A (en) Diffractometer
van Riessen et al. Auger photoelectron coincidence spectroscopy: simplifying complexity
US11133166B2 (en) Momentum-resolving photoelectron spectrometer and method for momentum-resolved photoelectron spectroscopy
Heller et al. Backscattering spectrometry in the helium ion microscope: Imaging elemental compositions on the nm scale
WO2023095365A1 (en) Surface analysis method and surface analysis device
JP2004361283A (en) Parallel magnetic field rutherford back-scattering analysis apparatus
Quinn et al. Facilities for spin‐resolved photoemission at the SRS
KR100687074B1 (en) System for analysis of thin film using the scattering of focused ion beam

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06835030

Country of ref document: EP

Kind code of ref document: A1