WO2003081632A1 - 3-dimensional ion scattering spectroscopic method and spectroscopic device - Google Patents

3-dimensional ion scattering spectroscopic method and spectroscopic device Download PDF

Info

Publication number
WO2003081632A1
WO2003081632A1 PCT/JP2003/003502 JP0303502W WO03081632A1 WO 2003081632 A1 WO2003081632 A1 WO 2003081632A1 JP 0303502 W JP0303502 W JP 0303502W WO 03081632 A1 WO03081632 A1 WO 03081632A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
scattering
particles
scattered
time
Prior art date
Application number
PCT/JP2003/003502
Other languages
French (fr)
Japanese (ja)
Inventor
Takane Kobayashi
Masakazu Aono
Original Assignee
Riken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken filed Critical Riken
Publication of WO2003081632A1 publication Critical patent/WO2003081632A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/252Tubes for spot-analysing by electron or ion beams; Microanalysers

Definitions

  • the present invention uses a time-of-flight analysis method that irradiates a target object with a pulsed ion beam, measures the time of flight of scattered particles scattered from the target object, and detects energy of the scattered particles.
  • the present invention relates to a three-dimensional ion scattering spectroscopy and a spectroscopic device for analyzing a surface structure and an interface structure of a substance. Background art
  • MEIS Medium energy Ion scattering spectroscopy: medium energy scattering spectroscopy
  • a continuous ion beam with good parallelism is incident on a crystalline material, and the particles scattered from the crystalline material atoms are scanned for energy by a one-dimensional (a certain unidirectional plane) electrostatic analyzer.
  • a one-dimensional scattering spectrum in a certain polar angle range in a certain crystal orientation plane can be obtained.
  • a time-of-flight analysis method is known in which the flight time of the scattering particles is measured and the energy is obtained from the speed of the scattering particles.
  • a detector an electric circuit including the detector
  • a high time resolution for example, about Ins (nanosecond)
  • an object of the present invention is to provide a three-dimensional ion scattering spectroscopy and a spectroscopic device capable of performing a detailed structural analysis in a shorter time than in the past and suppressing irradiation damage to a sample. It is in.
  • the object to be measured is irradiated with a pulsed ion beam, and a three-dimensional detector arranged at a predetermined position is used to measure the flight time of scattered particles scattered from the object to be measured.
  • a two-dimensional incident position of the scattered particles in a three-dimensional detector is measured, and a structure of the object is analyzed.
  • the present invention is characterized in that, in the three-dimensional ion scattering spectroscopy, the three-dimensional detector can measure the time of flight of the scattered particles with a time resolution of 1 ns or less.
  • the three-dimensional detector in the three-dimensional ion scattering spectroscopy, can measure a two-dimensional incident position of the scattering particles with a positional resolution of 360 ⁇ m or less. It is characterized by the following.
  • the three-dimensional ion scattering spectrometer of the present invention provides a pulsed ion beam A pulsed ion beam source for irradiating a beam, a three-dimensional detector arranged at a predetermined position and measuring a flight time of scattered particles scattered from the object to be measured and a two-dimensional incident position of the scattered particles. And analyzing the structure of the DUT from the flight time of the scattered particles and the two-dimensional incident position of the scattered particles.
  • the present invention is characterized in that in the three-dimensional ion scattering spectrometer, the three-dimensional detector is capable of measuring the time of flight of the scattered particles with a time resolution of 1 ns or less. .
  • the three-dimensional detector in the three-dimensional ion scattering spectrometer, can measure a two-dimensional incident position of the scattering particles with a positional resolution of 360 // m or less. It is characterized by having. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a diagram schematically showing a schematic configuration of an embodiment of the present invention.
  • Figure 2 is a diagram for explaining blocking in structural analysis.
  • FIG. 1 shows a pulsed ion beam source for generating a pulsed ion beam.
  • the pulse ion beam source 1 is configured to irradiate a sample 3 accommodated in a vacuum chamber 2 with a pulse ion beam 4 having a predetermined parallelism.
  • the pulse ion beam source 1 uses helium ions (He + ions) as the ion species, the energy of the pulse ion beam 4 is 100 keV, and the pulse width is 1.3. n s.
  • the interior of the vacuum chamber 2 can be set to a high vacuum of, for example, about 10 to 5 Pa by a vacuum pump (not shown).
  • the scattering particles scattered from the sample 3 are configured to be measured by the three-dimensional detector 5 arranged at a predetermined distance from the sample 3 at a predetermined distance (1 O cm in the present embodiment).
  • the measurement signal of the three-dimensional detector 5 is input to the computer 7 via the pre-stage electric circuit 6, and is configured so that the computer 7 performs predetermined processing.
  • the three-dimensional detector composed of the three-dimensional detector 5, the preceding electric circuit 6, and the computer 7 is capable of detecting scattered particles incident on the three-dimensional detector 5 with a time resolution of less than 1.0 ns.
  • the time resolution allows the energy of the scattered particles to be calculated from the time of flight of the scattered particles.
  • the three-dimensional detector 5 in the present embodiment has a circular shape having an effective detector diameter of 83 mm. It is configured to detect a dimensional incident position with a positional resolution of 50 / zm.
  • the three-dimensional detector composed of the three-dimensional detector 5, the pre-stage electric circuit 6, and the computer 7 provides information on the energy of the scattered particles (information on the flight time) and the two-dimensional information on the scattered particles. It is configured so that a total of three-dimensional information of various positional information can be obtained simultaneously.
  • pulsed ion beam source 1 helicopter Umui on emitted from the pulse width of the pulsed ion beam 4 (Enenoregi:: 1 0 0 ke V, speed 2. 1 9 6 X 1 0 8 cm / s) is 1 3 ns.
  • the distance between the sample 3 and the three-dimensional detector 5 is 10 cm (10 O mm), and the effective diameter of the three-dimensional detector 5 is 83 mm. If the position of the three-dimensional detector 5 is arranged so that the central scattering angle is 135 °, the scattering angle of the scattered particles detected by the three-dimensional detector 5 is 12.5 to 15.7 5 ° (1 3 5 ⁇ 22.5 ° (tan_l ((83 3 [mm] / 2) / 100 [mm]))).
  • the energy (velocity) of the helium particles scattered from the Er atom is
  • the flight time of the helium particles scattered from the Er atom (10 c ⁇ ⁇ scattering velocity) is Scattering angle 4 1 7.2.5 at 12.5 °
  • the above discrimination is possible if the time resolution is about 1 ns or less as in this embodiment. Also, to further increase the distance between the sample 3 and the 3-dimensional detector 5, for example, if 2 0 cm (2 0 O mm ), Note c limitation to the time resolution becomes gentle, the time resolution in the above It shows the time resolution that can be actually detected by the three-dimensional detection device composed of the three-dimensional detector 5, the pre-stage electric circuit 6. and the computer 7.
  • Blocking means that, as shown in Fig. 2, when attention is paid to ions scattered by a certain atom A forming a material, if another atom B exists on the scattering trajectory, the atom is located behind the atom B. This is the generation of a conical shadow into which scattered ions cannot enter, and the generation of this shadow is called blocking.
  • the plot of energy when a laser ion of lOO ke V Since the half width of the king (shadow) is about 2 °, the total angle (45 °) that can be detected by the three-dimensional detector 5 is also the angular resolution (because the position resolution is 50 ⁇ m, the angle A resolution of 0.027 °) is sufficient for structural analysis of material surfaces and interfaces. In order to perform structural analysis of the material surface and interface, the angular resolution of the three-dimensional detector 5 only needs to be about 0.2 °, so that the position resolution is about 360; m or less. If you can, you can use it. Next, using a 3-dimensional ion scattering spectroscopy device configured as described above, S i on the substrate F e 1 ML (1 ML 0.
  • the Fe atom It is possible to separate the scattered particles from the scattered particles from the scattered particles from the Si atoms.
  • the distance between the sample 3 and the three-dimensional detector 5 is 10 cm (100 mm), and the effective diameter of the three-dimensional detector 5 is 83 mm. It is.
  • the position of the three-dimensional detector 5 is arranged so that the central scattering angle is 1 35 °, the scattering angle of the scattered particles detected by the three-dimensional detector 5 is 1 12.5-15 7.5 ° (1 3 5 ⁇ 22.5 °
  • the energy (velocity) of the helium particles scattered from the Fe atom is Scattering angle 1 1 2.8 at 5 ° 1. 9 9 ke V ( 1. 9 8 8 X 1 0 8 cm / s)
  • the scattering sufficiently scattered from the F e atom Particles can be distinguished from scattered particles (helium particles) scattered from Si atoms.
  • the time resolution is I ns or less.
  • Position resolution 3 6 0 mu m or less (preferably Is less than 50 ⁇ m), and a three-dimensional detector (a three-dimensional detector 5, a front-end electrical circuit 6, and a computer 7) that can measure the time of flight and the two-dimensional incident position of scattered particles.
  • the amount of ion beam irradiating the sample can be reduced as compared with the conventional case, and irradiation damage to the sample can be suppressed.
  • a detailed structure analysis can be performed in a shorter time than before, and irradiation damage to a sample can be suppressed. it can.
  • the three-dimensional ion scattering spectroscopy and the spectrometer according to the present invention can be used in the manufacture of a device having a fine structure, for example, in the semiconductor manufacturing industry for manufacturing semiconductor devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

A pulse ion beam (4) is applied from a pulse ion beam source (1) to a sample (3) contained in a vacuum chamber (2), so that scattering particles scattering from the sample (3) are detected by a 3-dimensional detection device. The 3-dimensional detection device includes a 3-dimensional detector (5), a pre-stage electric circuit (6), and a computer (7), and is configured so as to simultaneously obtain information on the energy of the scattering particles (information on the flying time) and the total 3-dimensional information on the total of 2-dimensional position information on the scattering particles. This enables analysis of a detailed structure in a short time as compared to the conventional method and suppresses damage to the sample by the beam application.

Description

明 細 書  Specification
3次元イオン散乱分光法及び分光装置 技術分野 3D ion scattering spectroscopy and spectroscopy
本発明は、 被測定物にパルスイオンビームを照射し、 被測定物から散 乱する散乱粒子の飛行時間を測定して散乱粒子のエネルギーを検出する 飛行時間分析法を用いて、 被測定物である物質の表面の構造や界面の構 造を解析する 3次元イオン散乱分光法及び分光装置に関する。 背景技術  The present invention uses a time-of-flight analysis method that irradiates a target object with a pulsed ion beam, measures the time of flight of scattered particles scattered from the target object, and detects energy of the scattered particles. The present invention relates to a three-dimensional ion scattering spectroscopy and a spectroscopic device for analyzing a surface structure and an interface structure of a substance. Background art
従来から、 物質の表面の構造や界面の構造を解析する方法と しては、 M E I S (Medium energy Ion scattering spectroscopy : 中エネルキー オン散乱分光法) が知られている。  Conventionally, as a method of analyzing the surface structure and interface structure of a material, MEIS (Medium energy Ion scattering spectroscopy: medium energy scattering spectroscopy) is known.
この M E I Sは、 平行度のよい連続イオンビームを結晶性材料へ入射 し、 この結晶性材料原子から散乱してく る粒子を 1次元 (ある所定の一 方位面) の静電アナライザーでエネルギーをスキヤンすることによって、 ある所定の結晶方位面内のある所定の極角範囲の一次元散乱スペク トル In this MEIS, a continuous ion beam with good parallelism is incident on a crystalline material, and the particles scattered from the crystalline material atoms are scanned for energy by a one-dimensional (a certain unidirectional plane) electrostatic analyzer. Thus, a one-dimensional scattering spectrum in a certain polar angle range in a certain crystal orientation plane can be obtained.
(一次元の位置情報と、 エネルギー情報の合計 2次元の情報) を得て、 この情報から結晶性材料の表面、 界面の構造解析を行うものである。 上記の M E I Sでは、 散乱粒子が 2次元空間へ散乱してくるにも拘ら ず、 一次元の位置情報しか得られないため、 物質の表面の構造や界面の 構造をより詳細に解析するためには、 試料を回転させいくつかの結晶方 位面の測定を行う必要があり、 測定に長時間を要するとともに、 長時間 に亘るイオンビームの照射により、 試料に照射損傷が生じるという問題 があった。 また、 散乱粒子のエネルギーを測定する方法としては、 散乱粒子の飛 行時間を測定して散乱粒子の速度からエネルギーを求める飛行時間分析 法が知られている。 この飛行時間分析法では、 散乱粒子を検出する検出 器 (検出器を含む電気回路) に高度な時間分解能 (例えば I n s (ナノ 秒) 程度) が必要とされるため、 従来においては、 エネルギーの検出の みに使用されている。 (One-dimensional position information and energy information, a total of two-dimensional information) are obtained, and the structural analysis of the surface and interface of the crystalline material is performed from this information. In the above MEIS, only one-dimensional positional information can be obtained despite the scattering particles scattered in two-dimensional space, so in order to analyze the surface structure and interface structure of a substance in more detail, However, it was necessary to rotate the sample to measure several crystallographic planes, which required a long time for the measurement, and the irradiation of the ion beam for a long time caused a problem that the sample was damaged by irradiation. As a method of measuring the energy of the scattering particles, a time-of-flight analysis method is known in which the flight time of the scattering particles is measured and the energy is obtained from the speed of the scattering particles. In this time-of-flight analysis method, a detector (an electric circuit including the detector) that detects scattered particles requires a high time resolution (for example, about Ins (nanosecond)). Used for detection only.
上述したとおり、 従来の結晶性材料の表面や界面の構造解析を行う方 法では、 3次元的なより詳細な構造の解析を行うためには、 測定に長時 間を要し、 試料に照射損傷が生じるという問題があった。 発明の開示  As described above, the conventional method of analyzing the surface and interface of crystalline materials requires a long measurement time to perform a more detailed three-dimensional structure analysis, and irradiates the sample. There was a problem that damage occurred. Disclosure of the invention
そこで、 本発明の目的は、 従来に比べて短時間で詳細な構造の解析を 行うことができ、 試料に与える照射損傷も抑制することのできる 3次元 イオン散乱分光法及び分光装置を提供することにある。  Therefore, an object of the present invention is to provide a three-dimensional ion scattering spectroscopy and a spectroscopic device capable of performing a detailed structural analysis in a shorter time than in the past and suppressing irradiation damage to a sample. It is in.
本発明の 3次元イオン散乱分光法は、 被測定物にパルスイオンビーム を照射し、 所定位置に配置された 3次元検出器により、 前記被測定物か ら散乱する散乱粒子の飛行時間と、 当該 3次元検出器における前記散乱 粒子の 2次元的な入射位置を測定し、 前記被測定物の構造を解析するこ とを特徴とする。  In the three-dimensional ion scattering spectroscopy of the present invention, the object to be measured is irradiated with a pulsed ion beam, and a three-dimensional detector arranged at a predetermined position is used to measure the flight time of scattered particles scattered from the object to be measured. A two-dimensional incident position of the scattered particles in a three-dimensional detector is measured, and a structure of the object is analyzed.
また、 本発明は、 上記 3次元イオン散乱分光法において、 前記 3次元 検出器が、 1 n s以下の時間分解能で、 前記散乱粒子の飛行時間を測定 可能とされていることを特徴とする。  Further, the present invention is characterized in that, in the three-dimensional ion scattering spectroscopy, the three-dimensional detector can measure the time of flight of the scattered particles with a time resolution of 1 ns or less.
また、 本発明は、 上記 3次元イオン散乱分光法において、 前記 3次元 検出器が、 3 6 0 μ m以下の位置分解能で、 前記散乱粒子の 2次元的な 入射位置を測定可能とされていることを特徴とする。  Further, according to the present invention, in the three-dimensional ion scattering spectroscopy, the three-dimensional detector can measure a two-dimensional incident position of the scattering particles with a positional resolution of 360 μm or less. It is characterized by the following.
本発明の 3次元イオン散乱分光装置は、 被測定物にパルスイオンビー ムを照射するパルスイオンビーム源と、 所定位置に配置され、 前記被測 定物から散乱する散乱粒子の飛行時間と、 前記散乱粒子の 2次元的な入 射位置を測定する 3次元検出器とを具備し、 前記散乱粒子の飛行時間と- 前記散乱粒子の 2次元的な入射位置とから前記被測定物の構造を解析す ることを特徴とする。 The three-dimensional ion scattering spectrometer of the present invention provides a pulsed ion beam A pulsed ion beam source for irradiating a beam, a three-dimensional detector arranged at a predetermined position and measuring a flight time of scattered particles scattered from the object to be measured and a two-dimensional incident position of the scattered particles. And analyzing the structure of the DUT from the flight time of the scattered particles and the two-dimensional incident position of the scattered particles.
また、 本発明は、 上記 3次元イオン散乱分光装置において、 前記 3次 元検出器が、 1 n s以下の時間分解能で、 前記散乱粒子の飛行時間を測 定可能とされていることを特徴とする。  Also, the present invention is characterized in that in the three-dimensional ion scattering spectrometer, the three-dimensional detector is capable of measuring the time of flight of the scattered particles with a time resolution of 1 ns or less. .
また、 本発明は、 上記 3次元イオン散乱分光装置において、 前記 3次 元検出器が、 3 6 0 // m以下の位置分解能で、 前記散乱粒子の 2次元的 な入射位置を測定可能とされていることを特徴とする。 図面の簡単な説明  Further, according to the present invention, in the three-dimensional ion scattering spectrometer, the three-dimensional detector can measure a two-dimensional incident position of the scattering particles with a positional resolution of 360 // m or less. It is characterized by having. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態の概略構成を模式的に示す図。  FIG. 1 is a diagram schematically showing a schematic configuration of an embodiment of the present invention.
図 2は、 構造解析におけるブロッキングを説明するための図。 発明を実施するための最良の形態  Figure 2 is a diagram for explaining blocking in structural analysis. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の詳細を、 実施の形態について図面を参照して説明する c 図 1は、 本発明の一実施形態の概略構成を模式的に示すものであり、 同 図において 1は、 所定のパルスイオンビームを発生させるパルスイオン ビーム源を示している。 Hereinafter, details of the present invention, the c Figure 1 will be described with reference to the drawings an embodiment, a schematic configuration of one embodiment of the present invention are those shown schematically, 1 in the figure, a given Fig. 2 shows a pulsed ion beam source for generating a pulsed ion beam.
上記パルスイオンビーム源 1は、 真空チャンバ 2内に収容された試料 3に、 所定の平行度のよいパルスイオンビーム 4を照射するように構成 されている。 このパルスイオンビーム源 1は、 本実施形態では、 イオン 種としてはへリ ウムイオン (H e + イオン) を用いており、 パルスィ オンビーム 4のエネルギーは l O O k e Vであり、 パルス幅は 1 . 3 n sである。 なお、 真空チャンバ 2内は、 図示しない真空ポンプによって. 例えば、 1 0 -5 P a程度の高真空に設定可能とされている。 The pulse ion beam source 1 is configured to irradiate a sample 3 accommodated in a vacuum chamber 2 with a pulse ion beam 4 having a predetermined parallelism. In this embodiment, the pulse ion beam source 1 uses helium ions (He + ions) as the ion species, the energy of the pulse ion beam 4 is 100 keV, and the pulse width is 1.3. n s. The interior of the vacuum chamber 2 can be set to a high vacuum of, for example, about 10 to 5 Pa by a vacuum pump (not shown).
また、 試料 3から散乱された散乱粒子は、 試料 3から所定距離 (本実 施形態では 1 O c m) 離されて所定位置に配置された 3次元検出器 5に よって測定するよう構成されており、 この 3次元検出器 5の測定信号は. 前段電気回路 6を介してコンピュータ 7に入力され、 コンピュータ 7に よって所定の処理が施されるように構成されている。  Further, the scattering particles scattered from the sample 3 are configured to be measured by the three-dimensional detector 5 arranged at a predetermined distance from the sample 3 at a predetermined distance (1 O cm in the present embodiment). The measurement signal of the three-dimensional detector 5 is input to the computer 7 via the pre-stage electric circuit 6, and is configured so that the computer 7 performs predetermined processing.
上記 3次元検出器 5、 前段電気回路 6、 コンピュータ 7によって構成 される 3次元検出装置は、 時間分解能 1 . 0 n s以下で 3次元検出器 5 に入射する散乱粒子の検出を行えるようになつており、 かかる時間分解 能によって、 散乱粒子の飛行時間から、 散乱粒子のエネルギーを算出す ることができるようになつている。  The three-dimensional detector composed of the three-dimensional detector 5, the preceding electric circuit 6, and the computer 7 is capable of detecting scattered particles incident on the three-dimensional detector 5 with a time resolution of less than 1.0 ns. The time resolution allows the energy of the scattered particles to be calculated from the time of flight of the scattered particles.
また、 本実施形態における 3次元検出器 5は、 検出器有効直径が 8 3 mmの円形の形状とされており、 この検出器有効直径 8 3 mmの円形の 面内に入射した散乱粒子の 2次元的な入射位置を、 位置分解能 5 0 /z m で検出できるように構成されている。  In addition, the three-dimensional detector 5 in the present embodiment has a circular shape having an effective detector diameter of 83 mm. It is configured to detect a dimensional incident position with a positional resolution of 50 / zm.
上記のように、 3次元検出器 5、 前段電気回路 6、 コンピュータ 7に よって構成される 3次元検出装置は、 散乱粒子のエネルギーの情報 (飛 行時間の情報) と、 散乱粒子の 2次元的な位置情報の合計 3次元の情報 を、 同時に得られるように構成されている。  As described above, the three-dimensional detector composed of the three-dimensional detector 5, the pre-stage electric circuit 6, and the computer 7 provides information on the energy of the scattered particles (information on the flight time) and the two-dimensional information on the scattered particles. It is configured so that a total of three-dimensional information of various positional information can be obtained simultaneously.
以下、 上記構成の 3次元イオン散乱分光装置を用いて、 S i基板上に E rを 1 M L ( 1 M L = 0. 7 8 X 1 0 15atoms / c ) 堆積、 加熱 してシリサイ ドを形成した試料 3を測定する場合について説明する。 Hereafter, using the three-dimensional ion scattering spectrometer configured as described above, Er was deposited on the Si substrate by 1 ML (1 ML = 0.78 X 1015 a toms / c) and heated to form a silicide. The case where the formed sample 3 is measured will be described.
前述したとおり、 パルスイオンビーム源 1から射出されるヘリ ゥムィ オン (エネノレギー: 1 0 0 k e V、 速度 : 2. 1 9 6 X 1 08 c m/ s ) のパルスイオンビーム 4のパルス幅は 1 . 3 n sである。 また、 検 出システムは、 時間分解能 1. 0 11 3以下 ( 1. O n s より短時間) で ある。 このため、 E r原子から散乱してきた散乱粒子と、 S i原子か ら散乱してきた散乱粒子との間に、 これらを足し合わせた 1. 3 n s + 1. 0 n s = 2. 3 n s以上の飛行時間の差が生じれば、 どちらの原子 によって散乱された散乱粒子であるかを弁別可能となる。 As described above, pulsed ion beam source 1 helicopter Umui on emitted from the pulse width of the pulsed ion beam 4 (Enenoregi:: 1 0 0 ke V, speed 2. 1 9 6 X 1 0 8 cm / s) is 1 3 ns. In addition, inspection Out system is a time resolution 1.0 11 3 or less (1 time than O ns). Therefore, between the scattering particles scattered from the Er atom and the scattering particles scattered from the Si atom, the sum of these is 1.3 ns + 1.0 ns = 2.3 ns or more. If there is a difference in flight time, it will be possible to distinguish which atom is the scattered particle.
本実施形態では、 前述したとおり、 試料 3と 3次元検出器 5 との距離 が 1 0 c m ( 1 0 O mm) であり、 3次元検出器 5の検出器有効直径が 8 3 mmである。 そして、 3次元検出器 5の位置を、 中心散乱角が 1 3 5° となるように配置すると、 3次元検出器 5で検出される散乱粒子の 散乱角は 1 1 2. 5〜 1 5 7. 5° ( 1 3 5 ± 2 2. 5° ( t a n_l ( ( 8 3 [mm] / 2 ) / 1 0 0 [mm] ) ) ) となる。  In the present embodiment, as described above, the distance between the sample 3 and the three-dimensional detector 5 is 10 cm (10 O mm), and the effective diameter of the three-dimensional detector 5 is 83 mm. If the position of the three-dimensional detector 5 is arranged so that the central scattering angle is 135 °, the scattering angle of the scattered particles detected by the three-dimensional detector 5 is 12.5 to 15.7 5 ° (1 3 5 ± 22.5 ° (tan_l ((83 3 [mm] / 2) / 100 [mm]))).
この場合、 E r原子から散乱したヘリ ウム粒子のエネルギー (速度) は、  In this case, the energy (velocity) of the helium particles scattered from the Er atom is
散乱角 1 1 2. 5° で 9 3. 6 0 k e V ( 2. 1 2 5 X 1 08 c m/ s ) Scattering angle 1 1 2. 5 ° 9 3. 6 0 ke V (2. 1 2 5 X 1 0 8 cm / s)
散乱角 1 5 7. 5° で 9 1. 2 0 k e V ( 2. 0 9 7 X 1 08 c m/ s ) 9 the scattering angle 1 5 7. 5 ° 1. 2 0 ke V (2. 0 9 7 X 1 0 8 cm / s)
である。 It is.
—方、 S i原子から散乱したヘリ ウム粒子のエネルギー (速度) は、 散乱角 1 1 2. 5° で 6 7. 2 3 k e V ( 1. 8 0 1 X 1 08 c m/ s ) - How, the S i atom scattered helium particles from the energy (speed), the scattering angle of 1 1 2. 5 ° 6 7. 2 3 ke V (1. 8 0 1 X 1 0 8 cm / s)
散乱角 1 5 7. 5° で 5 7. 5 7 k e V ( 1. 6 6 6 X 1 08 c m/ s ) Scattering angle 1 5 7. 5 ° at 5 7. 5 7 ke V (1. 6 6 6 X 1 0 8 cm / s)
である。 It is.
したがって、 E r原子から散乱したヘリ ウム粒子の飛行時間 ( 1 0 c πι÷散乱速度) は、 散乱角 1 1 2. 5° で 4 7. I n s Therefore, the flight time of the helium particles scattered from the Er atom (10 c πι ÷ scattering velocity) is Scattering angle 4 1 7.2.5 at 12.5 °
散乱角 1 5 7. 5° で 4 7. 7 n s  Scattering angle 47.7 ns at 15.7.5 °
である。 It is.
一方、 S i原子から散乱したヘリ ウム粒子の飛行時間 ( 1 0 c m÷散 乱速度) は、  On the other hand, the flight time of helium particles scattered from Si atoms (10 cm ÷ scattering velocity) is
散乱角 1 1 2. 5° で 5 5. 5 n s  55.5 ns at scattering angle of 1 12.5 °
散乱角 1 5 7. 5° で 6 0. O n s  60.O n s at scattering angle 1 57.5 °
である。 It is.
したがって、 散乱角 1 1 2. 5° (飛行時間差: 8. 4 n s ) でも、 散乱角 1 5 7. 5 ° (飛行時間差: 1 2. 3 n s ) でも、 十分に E r原 子から散乱してきた散乱粒子 (ヘリ ウム粒子) と S i原子から散乱して きた散乱粒子 (ヘリ ウム粒子) とを弁別することが可能である。  Therefore, even with a scattering angle of 12.5 ° (flight time difference: 8.4 ns) or a scattering angle of 17.5.75 ° (flight time difference: 12.3 ns), sufficient scattering from the Er atom is observed. It is possible to discriminate between scattered particles (helium particles) and scattered particles (helium particles) scattered from Si atoms.
なお、 上記の算出結果から分かるように、 本実施形態のように時間分 解能 1 n s以下程度の時間分解能があれば、 上記の弁別が可能である。 また、 試料 3と 3次元検出器 5との距離を更に長く し、 例えば 2 0 c m (2 0 O mm) とすれば、 上記時間分解能に対する制限は緩やかになる c なお、 上記における時間分解能とは、 3次元検出器 5、 前段電気回路 6. コンピュータ 7によって構成される 3次元検出装置によって実際に検出 可能な時間分解能のことを示している。 As can be seen from the above calculation results, the above discrimination is possible if the time resolution is about 1 ns or less as in this embodiment. Also, to further increase the distance between the sample 3 and the 3-dimensional detector 5, for example, if 2 0 cm (2 0 O mm ), Note c limitation to the time resolution becomes gentle, the time resolution in the above It shows the time resolution that can be actually detected by the three-dimensional detection device composed of the three-dimensional detector 5, the pre-stage electric circuit 6. and the computer 7.
材料表面、 界面の構造解析を行うには、 ブロッキングのパターンを解 析することによって行われる。 ここで言うブロッキングとは、 図 2に示 すように、 材料を形成するある原子 Aによって散乱されたイオンに着目 すると、 その散乱軌道上に別の原子 Bが存在すると、 その原子 Bの後方 に散乱イオンが侵入できない円錐状の影が生じることであり、 この影が 生じることをプロッキングと呼んでいる。  The structural analysis of the material surface and interface is performed by analyzing the blocking pattern. Blocking here means that, as shown in Fig. 2, when attention is paid to ions scattered by a certain atom A forming a material, if another atom B exists on the scattering trajectory, the atom is located behind the atom B. This is the generation of a conical shadow into which scattered ions cannot enter, and the generation of this shadow is called blocking.
エネノレギ一が l O O k e Vのヘリ ゥムイオンを入射させた時のプロッ キング (影) の半値幅は 2° 程度であることから、 3次元検出器 5の検 出可能な全角度 (4 5° ) も、 角度分解能 (位置分解能が 5 0 μ mであ るので角度分解能は、 0. 0 2 7° ) も、 材料表面、 界面の構造解析を 行うのに十分である。 なお、 材料表面、 界面の構造解析を行うためには、 3次元検出器 5の角度分解能は、 0. 2° 程度あればよいので、 位置分 解能が 3 6 0 ; m以下程度のものであれば、 使用することができる。 次に、 上記構成の 3次元イオン散乱分光装置を用いて、 S i基板上に F eを 1 ML ( 1 M L = 0. 7 8 X 1 015 atoms / c m2 ) 堆積、 焼鈍 し、 シリサイ ドを形成した試料 3を測定する実施形態について説明する c この実施形態では、 パルスイオンビーム源 1から射出されるヘリ ゥムィ オン (エネルギー : 1 0 0 k e V、 速度 : 2. 1 9 6 X 1 08 c m/ s ) のパノレスイオンビーム 4のパルス幅は 1. 3 n s、 3次元検出器 5、 前段電気回路 6、 コンピュータ 7によって構成される 3次元検出装置の 時間分解能 1. 0 n sである。 The plot of energy when a laser ion of lOO ke V Since the half width of the king (shadow) is about 2 °, the total angle (45 °) that can be detected by the three-dimensional detector 5 is also the angular resolution (because the position resolution is 50 μm, the angle A resolution of 0.027 °) is sufficient for structural analysis of material surfaces and interfaces. In order to perform structural analysis of the material surface and interface, the angular resolution of the three-dimensional detector 5 only needs to be about 0.2 °, so that the position resolution is about 360; m or less. If you can, you can use it. Next, using a 3-dimensional ion scattering spectroscopy device configured as described above, S i on the substrate F e 1 ML (1 ML = 0. 7 8 X 1 0 15 atoms / c m2) deposited, and annealed, Shirisai de in c this embodiment will be described embodiments for measuring the sample 3 was formed, lip Umui on emitted from a pulsed ion beam source 1 (energy: 1 0 0 ke V, speed: 2. 1 9 6 X 1 0 The pulse width of the 8 cm / s) panorless ion beam 4 is 1.3 ns, and the time resolution of the three-dimensional detector consisting of the three-dimensional detector 5, the front-end electrical circuit 6, and the computer 7 is 1.0 ns .
このような条件では、 パルスイオンビーム 4のパルス幅 (1. 3 n s ) と時間分解能 ( 1. 0 n s ) の合計 ( 2. 3 n s ) より飛行時間の 差が生じれば、 F e原子から散乱してきた散乱粒子と、 S i原子から散 乱してきた散乱粒子とを分離することが可能となる。  Under these conditions, if there is a difference in flight time from the sum (2.3 ns) of the pulse width (1.3 ns) and the time resolution (1.0 ns) of the pulsed ion beam 4, the Fe atom It is possible to separate the scattered particles from the scattered particles from the scattered particles from the Si atoms.
本実施形態では、 前述した実施形態と同様に、 試料 3と 3次元検出器 5 との距離が 1 0 c m ( 1 0 0mm) であり、 3次元検出器 5の検出器 有効直径が 8 3 mmである。 そして、 3次元検出器 5の位置を、 中心散 乱角が 1 3 5° となるように配置すると、 3次元検出器 5で検出される 散乱粒子の散乱角は 1 1 2. 5 - 1 5 7. 5° ( 1 3 5 ± 2 2. 5°  In this embodiment, similarly to the above-described embodiment, the distance between the sample 3 and the three-dimensional detector 5 is 10 cm (100 mm), and the effective diameter of the three-dimensional detector 5 is 83 mm. It is. When the position of the three-dimensional detector 5 is arranged so that the central scattering angle is 1 35 °, the scattering angle of the scattered particles detected by the three-dimensional detector 5 is 1 12.5-15 7.5 ° (1 3 5 ± 22.5 °
( t a n"1 ( ( 8 3 [mm] / 2 ) / 1 0 0 [mm] ) ) ) となる。 (tan " 1 ((8 3 [mm] / 2) / 100 [mm]))).
この場合、 F e原子から散乱したヘリ ウム粒子のエネルギー (速度) は、 散乱角 1 1 2. 5 ° で 8 1. 9 9 k e V ( 1 . 9 8 8 X 1 08 c m/ s ) In this case, the energy (velocity) of the helium particles scattered from the Fe atom is Scattering angle 1 1 2.8 at 5 ° 1. 9 9 ke V ( 1. 9 8 8 X 1 0 8 cm / s)
散乱角 1 5 7. 5 ° で 7 5. 8 6 k e V ( 1 . 9 1 3 X 1 08 c m/ s ) 7 the scattering angle 1 5 7. 5 ° 5. 8 6 ke V (1. 9 1 3 X 1 0 8 cm / s)
である。 It is.
一方、 S i原子から散乱したヘリウム粒子のエネルギー (速度) は、 散乱角 1 1 2. 5 ° で 6 7. 2 3 k e V ( 1 . 8 0 1 X 1 08 c m/ s ) On the other hand, the energy of helium particles scattered from S i atom (speed), the scattering angle of 1 1 2. 5 ° 6 7. 2 3 ke V (1. 8 0 1 X 1 0 8 cm / s)
散乱角 1 5 7. 5 ° で 5 7. 5 7 k e V ( 1 . 6 6 6 X 1 08 c / s ) 57.57 keV (1.666 X 10 8 c / s) at a scattering angle of 17.5.75 °
である。 It is.
したがって、 F e原子から散乱したヘリ ウム粒子の飛行時間 ( 1 0 c m÷散乱速度) は、  Therefore, the flight time (10 cm ÷ scattering velocity) of a helium particle scattered from the Fe atom is
散乱角 1 1 2. 5 ° で 5 0. 3 n s  50.3 ns at scattering angle 1 12.5 °
散乱角 1 5 7. 5 ° で 5 2. 3 n s  52.3 ns at scattering angle 1 57.5 °
である。 It is.
一方、 S i原子から散乱したヘリウム粒子の飛行時間 (1 0 C m÷散 乱速度) は、 On the other hand, the flight time of helium particles scattered from Si atoms (10 C m ÷
散乱角 1 1 2. 5 ° で 5 5. 5 n s  55.5 ns at scattering angle of 1 12.5 °
散乱角 1 5 7. 5 ° で 6 0. 0 n s  60.0 n s at a scattering angle of 17.5.5 °
である。 It is.
したがって、 散乱角 1 1 2. 5 ° (飛行時間差: 5. 2 n s ) でも、 散乱角 1 5 7. 5 ° (飛行時間差: 7. 7 n s ) でも、 十分に F e原子 から散乱してきた散乱粒子 (ヘリ ウム粒子) と S i原子から散乱してき た散乱粒子 (ヘリ ウム粒子) とを弁別することが可能である。  Therefore, even when the scattering angle is 12.5 ° (flight time difference: 5.2 ns) or the scattering angle is 17.5 ° (flight time difference: 7.7 ns), the scattering sufficiently scattered from the F e atom Particles (helium particles) can be distinguished from scattered particles (helium particles) scattered from Si atoms.
したがって、 以上の条件で S i基板上に F eを 1 ML堆積、 焼鈍し、 シリサイ ドを形成した試料の表面、 界面の構造解析を行うことができる c 以上のとおり、 上述した各実施形態によれば、 時間分解能が I n s以下. 位置分解能が 3 6 0 μ m以下 (好ましくは 5 0 μ m以下) で、 散乱粒子 の飛行時間及び 2次元的な入射位置を測定可能な 3次元検出装置 ( 3 次元検出器 5、 前段電気回路 6、 コンピュータ 7によって構成される検 出装置) を用いることによって、 試料の表面、 界面の詳細な構造の解析 を、 検出器の走査等を行うことなく短時間で行うことができる。 Therefore, under the above conditions, 1 ML of Fe was deposited and annealed on the Si substrate, Surface of the sample forming a Shirisai de, as above c capable of performing a structural analysis of the interface, according to the embodiments described above, the time resolution is I ns or less. Position resolution 3 6 0 mu m or less (preferably Is less than 50 μm), and a three-dimensional detector (a three-dimensional detector 5, a front-end electrical circuit 6, and a computer 7) that can measure the time of flight and the two-dimensional incident position of scattered particles. By using), the detailed structure analysis of the sample surface and interface can be performed in a short time without scanning the detector.
また、 これによつて、 試料に照射するイオンビームの量も従来に比べ て減らすことができ、 試料に与える照射損傷も抑制することができる。 以上説明したとおり、 本発明の 3次元イオン散乱分光法及び分光装置に よれば、 従来に比べて短時間で詳細な構造の解析を行うことができ、 試 料に与える照射損傷も抑制することができる。 産業上の利用可能性  In addition, the amount of ion beam irradiating the sample can be reduced as compared with the conventional case, and irradiation damage to the sample can be suppressed. As described above, according to the three-dimensional ion scattering spectroscopy and the spectrometer of the present invention, a detailed structure analysis can be performed in a shorter time than before, and irradiation damage to a sample can be suppressed. it can. Industrial applicability
本発明に係る 3次元イオン散乱分光法及び分光装置は、 微細構造を有 する装置の製造、 例えば、 半導体装置の製造を行う半導体製造産業等に おいて使用することが可能である。  The three-dimensional ion scattering spectroscopy and the spectrometer according to the present invention can be used in the manufacture of a device having a fine structure, for example, in the semiconductor manufacturing industry for manufacturing semiconductor devices.
したがって、 産業上の利用可能性を有する。  Therefore, it has industrial applicability.

Claims

請 求 の 範 囲 The scope of the claims
1 . 被測定物にパルスイオンビームを照射し、 1. Irradiate the measured object with a pulsed ion beam.
所定位置に配置された 3次元検出器により、 前記被測定物から散乱す る散乱粒子の飛行時間と、 当該 3次元検出器における前記散乱粒子の 2 次元的な入射位置を測定し、 前記被測定物の構造を解析することを特徴 とする 3次元イオン散乱分光法。  The three-dimensional detector arranged at a predetermined position measures the time of flight of the scattered particles scattered from the object to be measured and the two-dimensional incident position of the scattered particles on the three-dimensional detector. Three-dimensional ion scattering spectroscopy characterized by analyzing the structure of an object.
2 . 請求項 1記載の 3次元イオン散乱分光法において、  2. In the three-dimensional ion scattering spectroscopy according to claim 1,
前記 3次元検出器が、 1 n s以下の時間分解能で、 前記散乱粒子の飛 行時間を測定可能とされていることを特徴とする 3次元イオン散乱分光 法。  The three-dimensional ion scattering spectroscopy, wherein the three-dimensional detector is capable of measuring the flight time of the scattered particles with a time resolution of 1 ns or less.
3 . 請求項 1記載の 3次元イオン散乱分光法において、  3. In the three-dimensional ion scattering spectroscopy according to claim 1,
前記 3次元検出器が、 3 6 0 m以下の位置分解能で、 前記散乱粒子 の 2次元的な入射位置を測定可能とされていることを特徴とする 3次元 イオン散乱分光法。  The three-dimensional ion scattering spectroscopy, wherein the three-dimensional detector is capable of measuring a two-dimensional incident position of the scattering particles with a positional resolution of 360 m or less.
4 . 被測定物にパルスイオンビームを照射するパルスイオンビーム源と、 所定位置に配置され、 前記被測定物から散乱する散乱粒子の飛行時間 と、 前記散乱粒子の 2次元的な入射位置を測定する 3次元検出器とを具 備し、  4. A pulsed ion beam source for irradiating the measured object with a pulsed ion beam, a flight time of scattered particles scattered from the measured object arranged at a predetermined position, and a two-dimensional incident position of the scattered particles are measured. Equipped with a three-dimensional detector,
前記散乱粒子の飛行時間と、 前記散乱粒子の 2次元的な入射位置とか ら前記被測定物の構造を解析することを特徴とする 3次元イオン散乱分 光装置。  A three-dimensional ion scattering spectrometer characterized by analyzing a structure of the object to be measured from a flight time of the scattering particles and a two-dimensional incident position of the scattering particles.
5 . 請求項 4記載の 3次元イオン散乱分光装置において、  5. The three-dimensional ion scattering spectrometer according to claim 4,
前記 3次元検出器が、 1 n s以下の時間分解能で、 前記散乱粒子の飛 行時間を測定可能とされていることを特徴とする 3次元イオン散乱分光 装置。 A three-dimensional ion scattering spectrometer, wherein the three-dimensional detector is capable of measuring the flight time of the scattered particles with a time resolution of 1 ns or less.
6 . 請求項 4記載の 3次元イオン散乱分光装置において、 前記 3次元検出器が、 3 6 0 ^ m以下の位置分解能で、 前記散乱粒子 の 2次元的な入射位置を測定可能とされていることを特徴とする 3次元 イオン散乱分光装置。 6. The three-dimensional ion scattering spectrometer according to claim 4, wherein the three-dimensional detector is capable of measuring a two-dimensional incident position of the scattered particles with a positional resolution of 360 m or less. A three-dimensional ion scattering spectrometer characterized by the following.
PCT/JP2003/003502 2002-03-25 2003-03-24 3-dimensional ion scattering spectroscopic method and spectroscopic device WO2003081632A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-83081 2002-03-25
JP2002083081A JP2003282018A (en) 2002-03-25 2002-03-25 Three-dimensional ion scattering spectroscopy and spectrometer

Publications (1)

Publication Number Publication Date
WO2003081632A1 true WO2003081632A1 (en) 2003-10-02

Family

ID=28449167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003502 WO2003081632A1 (en) 2002-03-25 2003-03-24 3-dimensional ion scattering spectroscopic method and spectroscopic device

Country Status (2)

Country Link
JP (1) JP2003282018A (en)
WO (1) WO2003081632A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074696A1 (en) * 2005-12-28 2007-07-05 Riken Ion scattering spectroscopic analyzer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101093818B1 (en) 2008-08-21 2011-12-19 한국표준과학연구원 Quantification Method of Biochemical Substances Using Ion Scattering Spectroscopy and Specific-Binding Efficiency Quantification Method of Biochemical Substances Using Ion Scattering Spectroscopy
JP5429797B2 (en) * 2009-08-27 2014-02-26 独立行政法人理化学研究所 Position sensitive time analysis type detector, method for producing the same, and three-dimensional medium energy ion scattering apparatus using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174783A (en) * 1991-12-25 1993-07-13 Shimadzu Corp Mass-spectrogpaphic device
JPH08101142A (en) * 1994-10-03 1996-04-16 Shimadzu Corp Ion dispersion spectrographic device
JP2000231901A (en) * 1999-02-12 2000-08-22 Japan Atom Energy Res Inst Mass spectrometer by image analizing method or mass spectrometry using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174783A (en) * 1991-12-25 1993-07-13 Shimadzu Corp Mass-spectrogpaphic device
JPH08101142A (en) * 1994-10-03 1996-04-16 Shimadzu Corp Ion dispersion spectrographic device
JP2000231901A (en) * 1999-02-12 2000-08-22 Japan Atom Energy Res Inst Mass spectrometer by image analizing method or mass spectrometry using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074696A1 (en) * 2005-12-28 2007-07-05 Riken Ion scattering spectroscopic analyzer
JP2007178341A (en) * 2005-12-28 2007-07-12 Institute Of Physical & Chemical Research Spectral analyzer of ion scattering

Also Published As

Publication number Publication date
JP2003282018A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
JP2740231B2 (en) Method and apparatus for quantitative analysis of solid sample by depth difference
US5778039A (en) Method and apparatus for the detection of light elements on the surface of a semiconductor substrate using x-ray fluorescence (XRF)
JP4724662B2 (en) X-ray fluorescence system with an aperture mask for the analysis of patterned surfaces
US6810105B2 (en) Methods and apparatus for dishing and erosion characterization
WO2015121603A1 (en) Method of performing electron diffraction pattern analysis upon a sample
KR100447713B1 (en) Method and apparatus for showing scanning image of sample
JP5069540B2 (en) Electron spectroscopic analysis apparatus and electron spectroscopic analysis method
JPH1164234A (en) Method and device for detecting foreign matter
JP2008512670A (en) Coherent scattering imaging
WO2003081632A1 (en) 3-dimensional ion scattering spectroscopic method and spectroscopic device
Leung et al. Optical radiation from low-energy hydrogen atomic and molecular ion-surface collisions
Childs et al. Comparison of submicron particle analysis by Auger electron spectroscopy, time‐of‐flight secondary ion mass spectrometry, and secondary electron microscopy with energy dispersive x‐ray spectroscopy
JP3323042B2 (en) Method and apparatus for measuring three-dimensional element concentration distribution
JPH0719844A (en) Measuring method for roughness of surface of wafer
JP3297736B2 (en) Method and apparatus for analyzing element distribution in the depth direction using precision section processing by focused ion beam
JP2004151004A (en) Film thickness measuring method for groove sidewall and its device
JP2525791B2 (en) Reflection electron energy-loss fine structure measurement method
JP2701764B2 (en) Apparatus and method for measuring size of charged particle beam
JP2010091292A (en) Method and device for analyzing specimen
JP4866749B2 (en) Surface analyzer
JPH03251760A (en) Beam analysis method and ion beam processing method
JP3563102B2 (en) Ion scattering spectrometer
JP2996210B2 (en) Sample absorption current spectroscopy
JPH10227750A (en) Surface analyzation method and device
JP2017122591A (en) Measurement method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase