JP2004361283A - Parallel magnetic field rutherford back-scattering analysis apparatus - Google Patents

Parallel magnetic field rutherford back-scattering analysis apparatus Download PDF

Info

Publication number
JP2004361283A
JP2004361283A JP2003161013A JP2003161013A JP2004361283A JP 2004361283 A JP2004361283 A JP 2004361283A JP 2003161013 A JP2003161013 A JP 2003161013A JP 2003161013 A JP2003161013 A JP 2003161013A JP 2004361283 A JP2004361283 A JP 2004361283A
Authority
JP
Japan
Prior art keywords
scattered
magnetic field
ion detector
energy
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003161013A
Other languages
Japanese (ja)
Other versions
JP4130904B2 (en
Inventor
Chikara Ichihara
主税 一原
Akira Kobayashi
明 小林
Kenichi Inoue
憲一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003161013A priority Critical patent/JP4130904B2/en
Publication of JP2004361283A publication Critical patent/JP2004361283A/en
Application granted granted Critical
Publication of JP4130904B2 publication Critical patent/JP4130904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2446Position sensitive detectors
    • H01J2237/24465Sectored detectors, e.g. quadrants

Abstract

<P>PROBLEM TO BE SOLVED: To provide a parallel magnetic field Rutherford back-scattering analysis apparatus having a scattered ion detector for eliminating a complicated apparatus structure and complicated detecting operation, accurately detecting a location of a scattered ion, discriminating the scattered ion having different convergence times, detecting energy of the scattered ion and extending a range of an energy spectrum. <P>SOLUTION: In the parallel magnetic field Rutherford back-scattering analysis apparatus, the scattered ion detector uses a semiconductor detector 1. An annular electrode 3 is mounted on one detecting face 1a. A fan electrode 4 is mounted on the other detecting face 1b. Pulse amplifiers 6a-6d are connected to end electrodes 3a, 3b, 4a, 4b. An energy discriminating circuit and a location calculating circuit are provided on the output side. The parallel magnetic field Rutherford back-scattering analysis apparatus has a function for detecting two-dimensional (R-θ) location information of the scattered ion and a function for discriminating the quantity of energy, convergence times, etc. The apparatus structure is not complicated, and an analysis range and measuring accuracy are improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、イオンビーム照射による分析装置に係り、詳しくは、ヘリウムや水素等の単一エネルギーのイオンを照射し、試料中の原子核との弾性散乱によって後方に跳ね返されたイオンのエネルギースペクトルを測定することにより、試料成分元素の同定や深さ方向の組成分析を行なうイオン散乱分析装置に関する。
【0002】
【従来の技術】
上記のイオン散乱分析装置として、例えば、高エネルギーまたは中エネルギーのイオンビームが入射した試料中の原子核で後方に跳ね返された散乱イオンを、前記イオンビームと平行な磁場を用いてビーム軸に収束させ、散乱イオンを検出する平行磁場型ラザフォード後方散乱分析装置が知られている(特許文献1参照)。このラザフォード後方散乱分析装置は、図5に示すように、400kv程度の高電圧が給電されたイオン源21からヘリウムイオンビーム22が発せられ、このヘリウムイオンビーム22は、加速管23に印加された電圧によって加速され、試料24に照射される。試料24の表面で弾性散乱された散乱イオン25は、ソレノイドコイル26およびマグネットコイル27からなる、磁場発生手段の電磁石28によって発生した、イオンビーム22のビーム軸に平行な磁場により軌道が曲げられて、螺旋運動を繰り返しながらビーム軸に収束する。特定のエネルギーと散乱角とをもった散乱イオン25がビーム軸に収束する位置に板状のアパーチャ29が配置され、このアパーチャ29の中心部にはイオンビーム22を通すように開口部が設けられている。前記試料24の配設位置に対して、アパーチャ29の配置位置を変化させる方法、または、前記磁場強度を変化させる方法等によって、特定のエネルギーを有する散乱イオン25のみが弁別され、アパーチャ29を通過して再度発散していく散乱イオン25が散乱イオン検出器30により検出され、そのエネルギースペクトルが測定される。このようにして得られたエネルギースペクトルに基づいて、試料24の成分元素の同定、および深さ方向の組成分析、即ちイオンチャネリング分析を行なうことができる。
【0003】
前記散乱イオン検出器30としては、例えば、2次元状に微細検出管が多数配列されたマイクロチャンネルプレート(MCP)が用いられている。図6は、このマイクロチャンネルプレートを用いた散乱イオン検出器30の外観を簡略的に示したもので、散乱イオン検出器30は、その中心部に、イオンビーム22を通過させるための小さな開口31を設けたドーナツ型の形状をしている。イオンビーム22の照射により、試料24の表面から散乱した同一散乱角、同一エネルギーの散乱イオン29は、一旦、アパーチャ29の位置で収束した後、再度発散して散乱イオン検出器30の中心から距離Rの位置に入射する。エネルギーの異なる散乱イオン25が同じアパーチャ29の位置で収束すれば、散乱角度が異なることになるため、前記の距離Rの位置には入射せず、従って、同一エネルギーを有する散乱イオンを選別することができる。
【0004】
前記特許文献1に開示された散乱イオンのエネルギーの選別方法では、収束回数が異なる散乱イオンが同一散乱角でアパーチャ29を通過すると、結局エネルギーの異なる散乱イオンが散乱イオン検出器30に入射することになり、エネルギー分析が困難となる。このため、アパーチャ29を通過し、前記散乱イオン検出器30の同一R上に入射する散乱イオンから、収束回数の異なる散乱イオンを弁別してエネルギースペクトル測定を高分解能で容易に行なう散乱イオンの弁別方法が開示されている(特許文献2参照)。この方法では、イオンビームのビーム軸に沿ってイオンビームを通過させる開口をそれぞれ備え、イオンビームと平行に移動し得る、可動板スリットと筒状の可動筒状スリットとを所要の間隔を設けて配置し、検出対象とする特定の収束回数の散乱イオン以外の異なる収束回数の散乱イオンが検出器に到達することが防止される。
【0005】
【特許文献1】
特開平7−190963号公報(第4頁〜第5頁)
【特許文献2】
特開2003−21609号公報([0011]〜[0013])
【0006】
【発明が解決しようとする課題】
しかし、前述の従来技術のエネルギースペクトル測定には、以下のような問題があった。
【0007】
即ち、2次元イオン検出器として、マイクロチャンネルプレート(MCP)を用いる場合、
(1)イオンビームとして)数百keVのヘリウムイオンを用いた場合、散乱イオンの検出効率が約10%と小さい。
(2)所要の検出効率を得るためには数kVの高圧印加が必要であり、装置が大掛かりとなる。
(3)エネルギースペクトルのエネルギーレンジを広くとるためには検出器の大面積化が必要であるが、マイクロチャンネルプレートではφ40mm程度以上の大径化が困難である。
(4)2次元の位置出力方法としては、図7に簡略して示した、上下全面がシート抵抗であり、上下に直交して端部電極X1、X2およびY1、Y2を配置した位置検出器32をマイクロチャンネルプレートの出側に配置し、この位置検出器32を用いて、マイクロチャンネルプレートから出力される電子群位置信号、即ち散乱イオンの入射位置に対応し生じる電圧降下を測定し、4チャンネル位置演算法により測定結果を解析して位置検出を行なう方法がよく用いられる。しかし、マイクロチャンネルプレートの大面積化に伴って前記位置検出器32が大面積化されると、検出部の歪、即ち抵抗の歪が大きくなり、位置検出精度が低下する。また、イオンビーム通過のための開口を有する、マイクロチャンネルプレート型のイオン検出器で上記4チャンネル位置演算法を用いると、前記位置検出器32にもイオンビーム通過用の開口が必要となるため、その抵抗の歪が増加し、位置検出精度がますます低下する。
【0008】
一方、特許文献2に開示されたように、可動筒状スリットを用いて収束回数の異なる散乱イオンを弁別する方法では、前記可動筒状スリットに散乱イオンが衝突した際に発生する不要粒子がノイズとなり、エネルギースペクトルのS/Nが低下する。また、測定したい散乱イオンのエネルギーや散乱角度および収束回数により、可動筒状スリットの長さおよびその位置を前記ビーム軸に平行方向に可変にする必要があり、装置構成および検出操作が煩雑になる。
【0009】
そこで、この発明の課題は、装置構成および検出操作が煩雑にならず、散乱イオンの位置検出精度が良好で、かつ、収束回数の異なる散乱イオンを弁別してそのエネルギー量を検出でき、エネルギースペクトルのレンジを広くとれる散乱イオン検出器を備えた平行磁場型ラザフォード後方散乱分析装置を提供することである。
【0010】
【課題を解決するための手段】
前記の課題を解決するために、この発明では以下の構成を採用したのである。
【0011】即ち、イオンビームが入射した試料により後方散乱された散乱イオンを検出するための散乱イオン検出器と、前記イオンビームの入射方向と平行な磁場を少なくとも前記試料から散乱イオン検出器にかけて発生させる磁場発生手段と、前記試料と散乱イオン検出器との間に、この散乱イオン検出器に対して所要の位置に配置され、前記イオンビームを通過させ、かつ、前記磁場発生手段によりイオンビームのビーム軸に収束した特定のエネルギーと散乱角とを有する散乱イオンを、散乱イオン検出器側に通過させるための開口を設けた弁別用アパーチャを備えた平行磁場型ラザフォード後方散乱分析装置において、前記散乱イオン検出器が、イオンビーム通過用の開口を有し、2次元の位置検出機能と、エネルギー検出手段とを兼ね備えるようにしたのである。
【0012】
このようにすれば、2次元の位置検出のみならず、上記エネルギー検出機能により、イオン検出器の同一R上(図6参照)に入射した散乱イオンについて、エネルギー量や、散乱角度および収束回数などのエネルギー情報を得ることができる。それにより、収束回数の弁別のための前記可動板スリットや可動筒状スリットの配置も不要となり、装置構成が簡略化され、また、前記可動筒状スリットに衝突した散乱イオンによる不要粒子が発生しないため、エネルギースペトルのS/Nの低下を防止できる。
【0013】
前記散乱イオン検出器の位置検出機能を、散乱イオン検出器の中心からの距離と、中心角との2次元位置情報をそれぞれ独立に検出することにより付与することが望ましい。
【0014】
このようにすれば、散乱イオン検出器の位置演算機能、即ち前記検出器の出力側に設ける位置演算回路が、イオンビーム通過用の開口の影響を受けず、前述の全面シート抵抗型の2次元(X−Y座標系)検出器では不可能であった、イオンビーム通過用開口を設けた状態での、位置演算歪の小さい大面積の散乱イオン検出器での位置検出が可能となる。
【0015】
前記散乱イオン検出器を半導体材料で形成することが望ましい。
【0016】
このように前記散乱イオン検出器をSiやGeなどの半導体材料で検出すれば、散乱イオンの検出効率(単位時間あたりのカウント数/単位時間あたりの入射する散乱イオンの数)をほぼ100%まで高めることができ、入射した散乱イオンのエネルギー量を測定できる。また、入射した散乱イオンにより生起される電子・正孔対を電気信号に変換するために、散乱イオン検出器に印加するバイアス電圧も100V以下で済んで、検出器の大面積化が可能となる。
【0017】
前記散乱イオン検出器の一方の検出面に、複数の同心円状の環状電極を、他方の検出面に、周方向に分割された複数の扇形状電極をそれぞれ装着することが望ましい。
【0018】
このようにすれば、上記環状電極により、半径方向の位置検出が可能となり、上記扇形状電極により、中心角、即ち周方向の位置検出が可能となる。
【0019】
前記散乱イオン検出器のエネルギー検出機能が、エネルギー弁別機能を備えていることが望ましい。
【0020】
このように、散乱イオン検出器に位置演算機能のみならず、エネルギー弁別機能をも付与することにより、所望のエネルギー、散乱角および収束回数の散乱イオンについての情報だけを取得することが可能となる。
【0021】
【発明の実施の形態】
以下に、この発明の実施形態を添付の図1から図4に基づいて説明する。
【0022】
図1((a)および(b))は、本発明の実施形態に係る平行磁場型ラザフォード後方散乱分析装置に用いられる2次元の散乱イオン検出器である半導体検出器1を示したもので、この平行磁場型ラザフォード後方散乱分析装置の基本的構成は、図5で示した平行磁場型ラザフォード後方散乱分析装置と同様である。前記2次元の散乱イオン検出器1は放射線検出用のSiなどの半導体材料で形成され、その中心部にイオンビーム通過用の開口2が設けられている。そして、この検出器1の一方の検出面1aには、複数の同心円状の環状電極3が、他方の検出面1bには、周方向に分割された複数の扇形状電極4がそれぞれ形成されており、各電極3、3a、3bおよび4、4a、4bは抵抗5aおよび5bで接続され、いずれの面でも、抵抗5aおよび5bの両端側、即ち端部電極3a、3bおよび4a、4bに、パルス増幅器6a、6bおよび6c、6dが、直流カット用のコンデンサ7を介してそれぞれ接続され、A〜Dの各チャンネル(ch)が形成されている。環状電極3を設けた検出面1a側には、入射した散乱イオンにより生起される電子・正孔対を電気信号に変換するために、抵抗5aを介して直流電源8で、バイアス電圧が印加されるようになっている。そして、前記パルス増幅器6a〜6dの出力は、図2に示すように、エネルギー弁別機能を有する弁別回路9、パルスの同期性を判断するコインシデンス機能(同期機能)を有する回路10、位置演算機能を有する演算回路11を経て信号処理され、試料とした固体物質表層部の原子素性等の分析データが得られる。なお、前記パルス増幅器6a〜6dの出力側に、多チャンネル波高分析器を接続し、蓄積したデータをパソコンで解析してエネルギ量を決定することも可能である。
【0023】
既に図5で示したように、試料24により後方散乱され、弁別用アパーチャ29の開口を通過して、半導体材料で形成された散乱イオン検出器30に入射したヘリウムイオンにより、散乱イオン検出器30として用いられ、バイアス電圧が印加された前記半導体検出器1(図1参照)に電子・正孔対が生起されると、正と負のパルスがそれぞれ発生する。この正負のパルスは、半導体検出器1のそれぞれの面1a、1bに形成した、前記複数の環状電極3、および扇形状電極4の中の1つに到達し、各電極3、3a、3bおよび4、4a、4bをそれぞれ接続した抵抗5a、5bを介してそれぞれの面の端部電極3a、3bおよび4a、4bまでの総抵抗値に応じて電荷分割され、端部電極3a、3bおよび4a、4bにそれぞれ接続されたパルス増幅器6a、6bおよび6c、6dに到達する。この電荷分割により、後方散乱されたヘリウムイオンの半導体検出器1への入射位置を正確に算出することが可能となる。
【0024】
前記入射位置の算出は、具体的には、前記A〜Dチャンネルに現れるパルス増幅器6a、6b、6c、6dの出力波高値をそれぞれ、A、B、C、Dとすると、コインシデンス回路10で、各出力が同期された後、位置演算回路11により、比率A/(A+B)が演算されて半径方向の位置Rが決定される。同様に比率C/(C+D)が演算されて半導体検出器1上での中心角、即ち周方向の位置が決定される。なお、前記環状電極3や扇形状電極4の数は多い程、位置の分解能は高くなる。
【0025】
また、前記半導体検出器1では、環状電極3を設けた面側のパルス増幅器6a、6bの出力波高値の和(A+B)、扇形状電極4を設けた面側のパルス増幅器6c、6d側の出力波高値の和(C+D)に基づいて、入射したヘリウムイオンのエネルギー量も求めることができるため、位置検出回路11により算出した位置へ入射したヘリウムイオンのエネルギー量の大小を、前記弁別回路9で弁別、比較することにより、入射したヘリウムイオンの収束回数も判定することができる。
【0026】
上記収束回数の判定を具体的に説明するために、散乱イオン、即ち散乱粒子のエネルギーと、マイクロチャンネルプレート(MCP)中心、即ち半導体検出器1の中心からの距離Rとの関係の一例を、分析条件とともに、図3に示す。図3に示した例では、半導体検出器1の中心からの距離Rが15mmの位置に収束回数Nが1〜4回の散乱イオンが入射した場合のエネルギーが示され、R=15mmの位置では、収束回数N=1の散乱イオンのエネルギーは400eV、N=2の散乱イオンのエネルギーは100eV、N=3およびN=4では散乱イオンのエネルギーは50eV以下となっている。従って、距離R=15mmの位置に入射した場合のパルス増幅器6a、6bおよび6c、6dの出力波高値の和、(A+B)および(C+D)の解析から求めた散乱イオンのエネルギーと、図5に示したR=15mmの位置での散乱イオンのエネルギーとを比較することにより、入射散乱イオンの収束回数を判定することができる。
【0027】
さらに、図2に示したように、パルス増幅器6a、6b、6c、6dの出力側に設けたパルス波高を弁別するエネルギー弁別回路9で、例えば、200keV以上のエネルギーに相当するパルス波高だけを通すようにすれば、収束回数が1回(N=1)の散乱イオンだけのエネルギースペクトルを得ることができる。
【0028】
なお、上述のように、散乱イオンの周方向の入射位置の検出が可能なことにより、試料の結晶軸(チャンネル軸)を簡便に検出でき、散乱分析前の前記結晶軸とイオンビームのビーム軸との軸合わせが容易となる。
【0029】
図4は、他の実施形態の2次元の半導体イオン検出器12を示したものである。この2次元の半導体イオン検出器12では、その一方の検出面に設けた内周側および外周側の同心円状の環状電極13aおよび13bを抵抗膜14で接続している点が、図1に示した2次元散乱イオン検出器1とは異なる。このように、抵抗5a(図1(c)参照)の代わりに抵抗膜14を用いると、検出面の構造が簡素化され、図1に示した2次元の散乱イオン検出器1の場合と同様に、入射する散乱イオンの位置およびエネルギーの分解機能および収束回数の判定機能が得られる。
【0030】
【発明の効果】
以上のように、この発明では、平行磁場型ラザフォード後方散乱分析装置に用いられる、イオンビーム通過用開口を設けた散乱イオン検出器を半導体材料から形成し、2次元(R−θ座標系)位置検出機能と、弁別機能を有するエネルギー検出機能とを兼ね備えるようにしたので、前記開口を設けた状態で、入射する散乱イオンの位置を精度よく検出でき、かつ、散乱イオンのエネルギースペクトルのみならずエネルギー量を検出でき、また、装置構成を煩雑にする可動板スリットや可動筒状スリットを配置しなくても、所望のエネルギー、散乱角および収束回数の散乱イオンについての情報だけを弁別し、取得することが可能となる。
【0031】
さらに、位置演算歪を小さくできるため、検出器の大面積化が可能となって、散乱イオンのエネルギースペクトルのエネルギーレンジをより広く取ることができる。そして、検出効率が著しく向上するため、イオンビーム生成用に特に高圧印加を必要としない。これらによって、装置構成が大掛かりならず、また、煩雑化せずに、分析範囲および精度が向上した平行磁場型ラザフォード後方散乱装置を実現することができる。
【図面の簡単な説明】
【図1】(a)、(b)この発明の実施形態の散乱イオン検出器の正面図
(c)同上の側面図
【図2】図1の散乱イオン検出器のエネルギー弁別機能を有する出力制御回路を示す説明図
【図3】図1の散乱イオン検出器に入射する散乱イオンのエネルギーが収束回数により異なる状況を示す説明図
【図4】(a)他の実施形態の散乱イオン検出器の正面図
(b)同上の側面図
【図5】従来の平行磁場型ラザフォード後方散乱分析装置の概略構成例を示す説明図
【図6】散乱イオン検出器の外観を簡略して示した説明図
【図7】従来の2次元(X−Y)位置検出器を簡略して示した説明図
【符号の説明】
1:半導体検出器 1a、1b:検出面 2:開口
3:環状電極 3a、3b:端部電極 4:扇形状電極
4a、4b:端部電極 5a、5b:抵抗 6a〜6d:パルス増幅器
7:コンデンサ 8:直流電源 9:弁別回路
10:コインシデンス回路 11:演算回路 12:半導体検出器
13:環状電極 14:抵抗膜
X1、X2、Y1、Y2:端部電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an analyzer using ion beam irradiation, and more specifically, irradiates ions of single energy such as helium or hydrogen and measures the energy spectrum of ions bounced backward by elastic scattering with atomic nuclei in a sample. The present invention relates to an ion scattering analyzer for identifying sample constituent elements and analyzing the composition in the depth direction.
[0002]
[Prior art]
As the above-described ion scattering analyzer, for example, scattered ions bounced back by atomic nuclei in a sample to which a high-energy or medium-energy ion beam is incident are converged on a beam axis using a magnetic field parallel to the ion beam. A parallel magnetic field type Rutherford backscattering analyzer for detecting scattered ions is known (see Patent Document 1). In this Rutherford backscattering analyzer, as shown in FIG. 5, a helium ion beam 22 is emitted from an ion source 21 to which a high voltage of about 400 kv is supplied, and the helium ion beam 22 is applied to an acceleration tube 23. The sample 24 is accelerated by the voltage and is irradiated. The trajectory of the scattered ions 25 elastically scattered on the surface of the sample 24 is bent by a magnetic field parallel to the beam axis of the ion beam 22 generated by an electromagnet 28 of a magnetic field generating means including a solenoid coil 26 and a magnet coil 27. Converge on the beam axis while repeating the spiral motion. A plate-like aperture 29 is arranged at a position where the scattered ions 25 having a specific energy and a scattering angle converge on the beam axis, and an opening is provided at the center of the aperture 29 so as to pass the ion beam 22. ing. Only the scattered ions 25 having a specific energy are discriminated by the method of changing the arrangement position of the aperture 29 with respect to the arrangement position of the sample 24 or the method of changing the magnetic field intensity, and pass through the aperture 29. Then, the scattered ions 25 diverging again are detected by the scattered ion detector 30 and the energy spectrum is measured. Based on the energy spectrum obtained in this manner, identification of the component elements of the sample 24 and composition analysis in the depth direction, that is, ion channeling analysis can be performed.
[0003]
As the scattered ion detector 30, for example, a microchannel plate (MCP) in which a number of fine detection tubes are two-dimensionally arranged is used. FIG. 6 schematically shows the appearance of the scattered ion detector 30 using the microchannel plate. The scattered ion detector 30 has a small opening 31 for passing the ion beam 22 at the center thereof. Donut-shaped shape provided with. The scattered ions 29 having the same scattering angle and the same energy, which are scattered from the surface of the sample 24 by the irradiation of the ion beam 22, once converge at the position of the aperture 29, diverge again, and move away from the center of the scattered ion detector 30. The light enters the position of R. If the scattered ions 25 having different energies converge at the same position of the aperture 29, the scattered angles will be different. Therefore, the scattered ions 25 are not incident on the position of the distance R, and therefore, the scattered ions having the same energy are selected. Can be.
[0004]
In the method for selecting the energy of scattered ions disclosed in Patent Document 1, when scattered ions having different convergence times pass through the aperture 29 at the same scattering angle, the scattered ions having different energies eventually enter the scattered ion detector 30. And energy analysis becomes difficult. For this reason, the scattered ions passing through the aperture 29 and incident on the same R of the scattered ion detector 30 are distinguished from the scattered ions having different convergence times to easily perform the energy spectrum measurement with high resolution. Is disclosed (see Patent Document 2). In this method, an opening for passing the ion beam along the beam axis of the ion beam is provided, and a movable plate slit and a cylindrical movable cylindrical slit are provided at a required interval, which can move in parallel with the ion beam. The scattered ions having different convergence times other than the specific convergence times of the scattered ions to be detected are prevented from reaching the detector.
[0005]
[Patent Document 1]
JP-A-7-190963 (pages 4 to 5)
[Patent Document 2]
JP-A-2003-21609 ([0011] to [0013])
[0006]
[Problems to be solved by the invention]
However, the above-described conventional energy spectrum measurement has the following problems.
[0007]
That is, when a microchannel plate (MCP) is used as a two-dimensional ion detector,
(1) When helium ions of several hundred keV are used (as an ion beam), the detection efficiency of scattered ions is as small as about 10%.
(2) It is necessary to apply a high voltage of several kV in order to obtain the required detection efficiency, and the device becomes large.
(3) In order to widen the energy range of the energy spectrum, it is necessary to increase the area of the detector. However, it is difficult to increase the diameter of the microchannel plate to about 40 mm or more.
(4) As a two-dimensional position output method, a position detector in which the entire upper and lower surfaces are sheet resistances and the end electrodes X1, X2 and Y1, Y2 are arranged vertically perpendicularly as shown in FIG. The position detector 32 is used to measure an electron group position signal output from the microchannel plate, that is, a voltage drop corresponding to the incident position of the scattered ions. A method of performing position detection by analyzing a measurement result by a channel position calculation method is often used. However, if the area of the position detector 32 is increased in accordance with the increase in the area of the microchannel plate, the distortion of the detection unit, that is, the distortion of the resistance increases, and the position detection accuracy decreases. Also, if the above-described four-channel position calculation method is used in a micro-channel plate type ion detector having an opening for passing an ion beam, the position detector 32 also needs an opening for passing an ion beam. The distortion of the resistance increases, and the position detection accuracy further decreases.
[0008]
On the other hand, as disclosed in Patent Document 2, in the method of distinguishing scattered ions having different convergence times using a movable cylindrical slit, unnecessary particles generated when the scattered ions collide with the movable cylindrical slit are noise. And the S / N of the energy spectrum decreases. In addition, it is necessary to change the length and the position of the movable cylindrical slit in a direction parallel to the beam axis depending on the energy of the scattered ions to be measured, the scattering angle, and the number of times of convergence, which complicates the device configuration and the detection operation. .
[0009]
Therefore, an object of the present invention is to make the apparatus configuration and the detection operation not complicated, the position detection accuracy of the scattered ions is good, and the amount of energy can be detected by discriminating the scattered ions having different convergence times, and the energy spectrum of the scattered ions can be detected. An object of the present invention is to provide a parallel magnetic field type Rutherford backscattering analyzer provided with a scattered ion detector capable of providing a wide range.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following configuration.
That is, a scattered ion detector for detecting scattered ions backscattered by the sample on which the ion beam is incident, and a magnetic field parallel to the incident direction of the ion beam are generated at least from the sample to the scattered ion detector. Magnetic field generating means to be disposed, between the sample and the scattered ion detector, disposed at a required position with respect to the scattered ion detector, pass the ion beam, and, by the magnetic field generating means, In a parallel magnetic field type Rutherford backscattering analyzer having a discriminating aperture provided with an opening for allowing scattered ions having a specific energy and a scattering angle converged on a beam axis to pass to the scattered ion detector side, The ion detector has an opening for passing an ion beam, and has a two-dimensional position detecting function and energy detecting means. Than it was to prepare for it.
[0012]
With this configuration, not only the two-dimensional position detection but also the energy detection function, such as the energy amount, scattering angle, and number of convergences of the scattered ions incident on the same R of the ion detector (see FIG. 6). Energy information can be obtained. Thereby, the arrangement of the movable plate slit and the movable cylindrical slit for discriminating the number of times of convergence is not required, and the apparatus configuration is simplified, and unnecessary particles are not generated due to scattered ions colliding with the movable cylindrical slit. Therefore, it is possible to prevent a reduction in the S / N of the energy spectrum.
[0013]
It is desirable that the position detection function of the scattered ion detector be provided by independently detecting two-dimensional position information of a distance from the center of the scattered ion detector and a central angle.
[0014]
According to this configuration, the position calculation function of the scattered ion detector, that is, the position calculation circuit provided on the output side of the detector is not affected by the opening for passing the ion beam, and the two-dimensional sheet resistance type two-dimensional detector described above is used. (XY coordinate system) Position detection can be performed by a large-area scattered ion detector with a small position calculation distortion in a state where an ion beam passage opening is provided, which is impossible with a detector.
[0015]
Preferably, the scattered ion detector is formed of a semiconductor material.
[0016]
If the scattered ion detector is detected with a semiconductor material such as Si or Ge, the scattered ion detection efficiency (counts per unit time / number of incident scattered ions per unit time) can be reduced to almost 100%. And the energy amount of the scattered ions can be measured. Further, in order to convert the electron-hole pairs generated by the incident scattered ions into electric signals, the bias voltage applied to the scattered ion detector may be 100 V or less, and the area of the detector can be increased. .
[0017]
It is desirable to mount a plurality of concentric annular electrodes on one detection surface of the scattered ion detector and a plurality of fan-shaped electrodes divided in the circumferential direction on the other detection surface.
[0018]
With this configuration, the annular electrode enables position detection in the radial direction, and the fan-shaped electrode allows center position, that is, position detection in the circumferential direction.
[0019]
It is preferable that the energy detection function of the scattered ion detector has an energy discrimination function.
[0020]
As described above, by providing not only the position calculation function but also the energy discrimination function to the scattered ion detector, it is possible to acquire only information on the scattered ions having a desired energy, a scattering angle, and the number of times of convergence. .
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to FIGS.
[0022]
FIGS. 1A and 1B show a semiconductor detector 1 which is a two-dimensional scattered ion detector used in a parallel magnetic field type Rutherford backscattering analyzer according to an embodiment of the present invention. The basic configuration of this parallel magnetic field type Rutherford backscattering analyzer is the same as that of the parallel magnetic field type Rutherford backscattering analyzer shown in FIG. The two-dimensional scattered ion detector 1 is formed of a semiconductor material such as Si for radiation detection, and an opening 2 for passing an ion beam is provided at the center thereof. A plurality of concentric annular electrodes 3 are formed on one detection surface 1a of the detector 1, and a plurality of fan-shaped electrodes 4 divided in the circumferential direction are formed on the other detection surface 1b. The electrodes 3, 3a, 3b and 4, 4a, 4b are connected by resistors 5a and 5b, and on any surface, the both ends of the resistors 5a and 5b, ie, the end electrodes 3a, 3b and 4a, 4b, The pulse amplifiers 6a, 6b and 6c, 6d are connected via a DC cut capacitor 7, respectively, and channels A to D are formed. A bias voltage is applied to the detection surface 1a side provided with the annular electrode 3 by a DC power supply 8 through a resistor 5a in order to convert an electron-hole pair generated by incident scattered ions into an electric signal. It has become so. As shown in FIG. 2, the outputs of the pulse amplifiers 6a to 6d are supplied to a discrimination circuit 9 having an energy discrimination function, a circuit 10 having a coincidence function (synchronization function) for judging pulse synchronism, and a position calculation function. The signal processing is performed through the arithmetic circuit 11 having the same, and analysis data such as the atomic identity of the surface layer portion of the solid material as the sample is obtained. Incidentally, the output side of the pulse amplifier 6 a to 6 d, to connect the multi-channel pulse height analyzer, it is also possible to determine the energy amount by analyzing the accumulated data with a PC.
[0023]
As already shown in FIG. 5, the scattered ion detector 30 is scattered by the sample 24, passes through the opening of the discriminating aperture 29, and enters the scattered ion detector 30 made of a semiconductor material. When an electron-hole pair is generated in the semiconductor detector 1 (see FIG. 1) to which a bias voltage is applied, positive and negative pulses are generated. The positive and negative pulses reach one of the plurality of annular electrodes 3 and fan-shaped electrodes 4 formed on the respective surfaces 1a and 1b of the semiconductor detector 1, and each of the electrodes 3, 3a, 3b and 4, 4a, 4b, the electric charges are divided according to the total resistance value of the end electrodes 3a, 3b and 4a, 4b through the resistances 5a, 5b respectively connected to the end electrodes 3a, 3b, 4a. , 4b respectively connected to the pulse amplifiers 6a, 6b and 6c, 6d. This charge division makes it possible to accurately calculate the incident position of the backscattered helium ions on the semiconductor detector 1.
[0024]
The incident position is calculated, specifically, assuming that the output peak values of the pulse amplifiers 6a, 6b, 6c, and 6d appearing in the A to D channels are A, B, C, and D, respectively, the coincidence circuit 10 After the respective outputs are synchronized, the ratio A / (A + B) is calculated by the position calculation circuit 11 to determine the position R in the radial direction. Similarly, the ratio C / (C + D) is calculated, and the center angle on the semiconductor detector 1, that is, the position in the circumferential direction is determined. Note that the greater the number of the ring-shaped electrodes 3 and the fan-shaped electrodes 4, the higher the position resolution.
[0025]
In the semiconductor detector 1, the sum (A + B) of the output peak values of the pulse amplifiers 6 a and 6 b on the surface provided with the annular electrode 3 and the pulse amplifiers 6 c and 6 d on the surface provided with the fan-shaped electrode 4. Since the energy amount of the incident helium ion can also be obtained based on the sum of the output peak values (C + D), the magnitude of the energy amount of the helium ion incident on the position calculated by the position detection circuit 11 is determined by the discrimination circuit 9. , The number of convergence of the incident helium ions can also be determined.
[0026]
In order to specifically explain the determination of the number of times of convergence, an example of the relationship between the energy of scattered ions, that is, scattered particles, and the distance R from the center of the microchannel plate (MCP), that is, the center of the semiconductor detector 1, FIG. 3 shows the analysis conditions. In the example shown in FIG. 3, the energy when the scattered ions whose convergence number N is 1 to 4 times is shown at a position where the distance R from the center of the semiconductor detector 1 is 15 mm, and at the position where R = 15 mm The energy of the scattered ions with the number of convergence N = 1 is 400 eV, the energy of the scattered ions with N = 2 is 100 eV, and the energy of the scattered ions with N = 3 and N = 4 is 50 eV or less. Therefore, the scattered ion energy obtained from the sum of the output peak values of the pulse amplifiers 6a, 6b and 6c, 6d when the light is incident on the position of the distance R = 15 mm, and the energy of the scattered ions obtained from the analysis of (A + B) and (C + D), By comparing the energy of the scattered ions at the indicated position of R = 15 mm, the number of times of convergence of the incident scattered ions can be determined.
[0027]
Further, as shown in FIG. 2, an energy discriminating circuit 9 provided at the output side of the pulse amplifiers 6a, 6b, 6c, and 6d discriminates pulse heights, and passes only pulse heights corresponding to, for example, energy of 200 keV or more. By doing so, it is possible to obtain an energy spectrum of only the scattered ions whose convergence count is one (N = 1).
[0028]
In addition, as described above, since the incident position of the scattered ions in the circumferential direction can be detected, the crystal axis (channel axis) of the sample can be easily detected, and the crystal axis and the beam axis of the ion beam before the scattering analysis are obtained. Axis alignment is easy.
[0029]
FIG. 4 shows a two-dimensional semiconductor ion detector 12 according to another embodiment. FIG. 1 shows that the two-dimensional semiconductor ion detector 12 has inner and outer concentric annular electrodes 13a and 13b provided on one detection surface thereof connected by a resistive film 14. It is different from the two-dimensional scattered ion detector 1 described above. As described above, when the resistance film 14 is used instead of the resistance 5a (see FIG. 1C), the structure of the detection surface is simplified, and is similar to the case of the two-dimensional scattered ion detector 1 shown in FIG. In addition, a function of resolving the position and energy of the scattered ions and a function of determining the number of times of convergence are obtained.
[0030]
【The invention's effect】
As described above, according to the present invention, a scattered ion detector provided with an opening for passing an ion beam, which is used in a parallel magnetic field type Rutherford backscattering analyzer, is formed from a semiconductor material, and a two-dimensional (R-θ coordinate system) position is obtained. Since the detection function and the energy detection function having the discrimination function are combined, the position of the incident scattered ions can be accurately detected with the opening provided, and the energy spectrum as well as the energy spectrum of the scattered ions can be detected. It is possible to detect the amount, and to discriminate and acquire only the information on the scattered ions of the desired energy, scattering angle and convergence frequency without arranging a movable plate slit or a movable cylindrical slit which complicates the device configuration. It becomes possible.
[0031]
Furthermore, since the position calculation distortion can be reduced, the area of the detector can be increased, and the energy range of the energy spectrum of the scattered ions can be wider. Further, since the detection efficiency is remarkably improved, it is not particularly necessary to apply a high voltage for generating the ion beam. As a result, a parallel magnetic field type Rutherford backscattering apparatus having an improved analysis range and accuracy can be realized without increasing the size of the apparatus and without complicating the apparatus.
[Brief description of the drawings]
1A and 1B are front views of a scattered ion detector according to an embodiment of the present invention; FIG. 1C is a side view of the same; FIG. 2 is an output control having an energy discriminating function of the scattered ion detector of FIG. FIG. 3 is an explanatory diagram showing a circuit. FIG. 3 is an explanatory diagram showing a situation where the energy of scattered ions incident on the scattered ion detector of FIG. 1 varies depending on the number of times of convergence. FIG. 5 is an explanatory view showing a schematic configuration example of a conventional parallel magnetic field type Rutherford backscattering analyzer. FIG. 6 is an explanatory view showing a simplified appearance of a scattered ion detector. FIG. 7 is an explanatory diagram schematically showing a conventional two-dimensional (XY) position detector.
1: Semiconductor detector 1a, 1b: Detection surface 2: Opening 3: Ring electrode 3a, 3b: End electrode 4: Sector-shaped electrode 4a, 4b: End electrode 5a, 5b: Resistance 6a to 6d: Pulse amplifier 7: Capacitor 8: DC power supply 9: Discrimination circuit 10: Coincidence circuit 11: Operation circuit 12: Semiconductor detector 13: Ring electrode 14: Resistive film X1, X2, Y1, Y2: End electrode

Claims (5)

イオンビームが入射した試料により後方散乱された散乱イオンを検出するための散乱イオン検出器と、前記イオンビームの入射方向と平行な磁場を少なくとも前記試料から散乱イオン検出器にかけて発生させる磁場発生手段と、前記試料と散乱イオン検出器との間に、この散乱イオン検出器に対して所要の位置に配置され、前記イオンビームを通過させ、かつ、前記磁場発生手段によりイオンビームのビーム軸に収束した特定のエネルギーと散乱角とを有する散乱イオンを、散乱イオン検出器側に通過させるための開口を設けた弁別用アパーチャを備えた平行磁場型ラザフォード後方散乱分析装置において、前記散乱イオン検出器が、イオンビーム通過用の開口を有し、2次元の位置検出機能と、エネルギー検出機能とを兼ね備えたことを特徴とする平行磁場型ラザフォード後方散乱分析装置。A scattered ion detector for detecting scattered ions backscattered by the sample on which the ion beam is incident, and a magnetic field generating means for generating a magnetic field parallel to the incident direction of the ion beam from at least the sample to the scattered ion detector. Between the sample and the scattered ion detector, disposed at a required position with respect to the scattered ion detector, passed the ion beam, and converged on the beam axis of the ion beam by the magnetic field generating means. Scattered ions having a specific energy and a scattering angle, a parallel magnetic field type Rutherford backscattering analyzer provided with a discriminating aperture provided with an opening for passing the scattered ion detector side, the scattered ion detector, It has an opening for ion beam passage and has both a two-dimensional position detection function and an energy detection function. Parallel magnetic field type Rutherford backscattering spectrometer to. 前記散乱イオン検出器の位置検出機能が、散乱イオン検出器の中心からの距離と、中心角との2次元位置情報をそれぞれ独立に検出することにより付与されることを特徴とする請求項1に記載の平行磁場型ラザフォード後方散乱分析装置。2. The position detecting function of the scattered ion detector is provided by independently detecting two-dimensional position information of a distance from a center of the scattered ion detector and a central angle, respectively. A parallel magnetic field type Rutherford backscattering analyzer as described. 前記散乱イオン検出器が半導体材料で形成されたことを特徴とする請求項1または2に記載の平行磁場型ラザフォード後方散乱分析装置。3. The parallel magnetic field type Rutherford backscattering analyzer according to claim 1, wherein the scattered ion detector is formed of a semiconductor material. 前記散乱イオン検出器の一方の検出面に、複数の同心円状の環状電極が、他方の検出面に、周方向に分割された複数の扇形状電極がそれぞれ装着されたことを特徴とする請求項1から3のいずれかに記載の平行磁場型ラザフォード後方散乱分析装置。A plurality of concentric annular electrodes are mounted on one detection surface of the scattered ion detector, and a plurality of fan-shaped electrodes divided in the circumferential direction are mounted on the other detection surface. 4. The parallel magnetic field type Rutherford backscattering analyzer according to any one of 1 to 3. 前記散乱イオン検出器のエネルギー検出機能が、エネルギー弁別機能を備えていることを特徴とする請求項1から4のいずれかに記載の平行磁場型ラザフォード後方散乱分析装置。5. The parallel magnetic field type Rutherford backscattering analyzer according to claim 1, wherein an energy detection function of the scattered ion detector has an energy discrimination function. 6.
JP2003161013A 2003-06-05 2003-06-05 Parallel magnetic field type Rutherford backscattering analyzer Expired - Fee Related JP4130904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161013A JP4130904B2 (en) 2003-06-05 2003-06-05 Parallel magnetic field type Rutherford backscattering analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161013A JP4130904B2 (en) 2003-06-05 2003-06-05 Parallel magnetic field type Rutherford backscattering analyzer

Publications (2)

Publication Number Publication Date
JP2004361283A true JP2004361283A (en) 2004-12-24
JP4130904B2 JP4130904B2 (en) 2008-08-13

Family

ID=34053619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161013A Expired - Fee Related JP4130904B2 (en) 2003-06-05 2003-06-05 Parallel magnetic field type Rutherford backscattering analyzer

Country Status (1)

Country Link
JP (1) JP4130904B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155426A (en) * 2005-12-02 2007-06-21 Kobe Steel Ltd Parallel magnetic field type rutherford backscattering ion measuring instrument
EP2194565A1 (en) * 2008-12-03 2010-06-09 FEI Company Dark field detector for use in a charged-particle optical apparatus
JP2014041029A (en) * 2012-08-21 2014-03-06 Natl Inst Of Radiological Sciences Radiation measuring device, radiation measuring method, and ion chamber
CN105405733A (en) * 2015-12-25 2016-03-16 中国航空工业集团公司北京航空制造工程研究所 Backscattered electron receiving sensor and observation system for electron beam processing process
JPWO2016047538A1 (en) * 2014-09-24 2017-07-20 国立研究開発法人物質・材料研究機構 Energy discriminating electron detector and scanning electron microscope using the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155426A (en) * 2005-12-02 2007-06-21 Kobe Steel Ltd Parallel magnetic field type rutherford backscattering ion measuring instrument
JP4601545B2 (en) * 2005-12-02 2010-12-22 株式会社神戸製鋼所 Parallel magnetic field type Rutherford backscattered ion measuring device
EP2194565A1 (en) * 2008-12-03 2010-06-09 FEI Company Dark field detector for use in a charged-particle optical apparatus
US8288724B2 (en) 2008-12-03 2012-10-16 Fei Company Dark field detector for use in an electron microscope
JP2014041029A (en) * 2012-08-21 2014-03-06 Natl Inst Of Radiological Sciences Radiation measuring device, radiation measuring method, and ion chamber
JPWO2016047538A1 (en) * 2014-09-24 2017-07-20 国立研究開発法人物質・材料研究機構 Energy discriminating electron detector and scanning electron microscope using the same
US10121633B2 (en) 2014-09-24 2018-11-06 National Institute For Materials Science Energy discriminating electron detector and scanning electron microscope using the same
CN105405733A (en) * 2015-12-25 2016-03-16 中国航空工业集团公司北京航空制造工程研究所 Backscattered electron receiving sensor and observation system for electron beam processing process

Also Published As

Publication number Publication date
JP4130904B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US7932491B2 (en) Quantitative measurement of isotope ratios by time-of-flight mass spectrometry
Fricke et al. Single particle counting of heavy ions with a channeltron detector
EP0488067B1 (en) Ion-scattering spectrometer
JP3840558B2 (en) Simultaneous detection isotope ratio mass spectrometer
GB2397940A (en) A detector for use in a dual-mode charged particle spectrometer
US3970849A (en) Device for mass analysis and structure analysis of a surface layer by means of ion scattering
JP4130904B2 (en) Parallel magnetic field type Rutherford backscattering analyzer
US5026988A (en) Method and apparatus for time of flight medium energy particle scattering
JPH10208682A (en) Particle beam imaging device, spectrometer provided in the particle beam imaging device, particle beam imaging method and usage of particle beam imaging device
JP6692108B2 (en) Analysis device and analysis system
Jones et al. Large-area field-ionization detector for the study of Rydberg atoms
US5541409A (en) High resolution retarding potential analyzer
Vampola Measuring energetic electrons—What works and what doesn't
JP3273844B2 (en) Analyzer using scattered ions
Borysov et al. Results from the October 2014 CERN test beam of LumiCal
Tarrío et al. Characterization of PPACs’ time resolution for fission studies
Olsen Position-sensitive detector for heavy atomic particles in the keV energy range
JPH0652818A (en) Ion beam irradiating device
Guerrieri et al. A focal-plane detector for the recoil-mass spectrometer of LNL
Foote Measuring MeV ions from fusion reactions in magnetic-mirror experiments
Gibson et al. A modified fountain spectrometer for measuring double differential cross sections in ion-atom collisions
JP2005233899A (en) Sample analyzer and sample analyzing method
JPS62232849A (en) Ion detection device
JPS61253760A (en) Charged-particle energy analyzer
Panniello et al. Beam instrumentation for the Ultra-low energy Storage Ring (USR)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080526

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees