JP4601545B2 - Parallel magnetic field type Rutherford backscattered ion measuring device - Google Patents

Parallel magnetic field type Rutherford backscattered ion measuring device Download PDF

Info

Publication number
JP4601545B2
JP4601545B2 JP2005348906A JP2005348906A JP4601545B2 JP 4601545 B2 JP4601545 B2 JP 4601545B2 JP 2005348906 A JP2005348906 A JP 2005348906A JP 2005348906 A JP2005348906 A JP 2005348906A JP 4601545 B2 JP4601545 B2 JP 4601545B2
Authority
JP
Japan
Prior art keywords
ion
plate
magnetic field
ion beam
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005348906A
Other languages
Japanese (ja)
Other versions
JP2007155426A (en
Inventor
明 小林
主税 一原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005348906A priority Critical patent/JP4601545B2/en
Publication of JP2007155426A publication Critical patent/JP2007155426A/en
Application granted granted Critical
Publication of JP4601545B2 publication Critical patent/JP4601545B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、イオンビームが照射された試料から後方散乱された散乱イオンをそのイオンビームと平行な磁場を用いてビーム軸に収束させるて測定する平行磁場型ラザフォード後方散乱イオン測定装置に関するものである。   The present invention relates to a parallel magnetic field type Rutherford backscattered ion measuring apparatus for measuring scattered ions backscattered from a sample irradiated with an ion beam by focusing the scattered ions on a beam axis using a magnetic field parallel to the ion beam. .

従来、例えば特許文献1には、高中エネルギーのイオンビームが入射した試料にて後方散乱された散乱イオンを、前記イオンビームと平行な磁場を用いてビーム軸に収束させる平行磁場型ラザフォード後方散乱イオン測定装置(或いは、平行磁場型ラザフォード後方散乱分析装置)が示されている。
図3は、一般的な平行磁場型ラザフォード後方散乱イオン測定装置Xの断面図を表す。
図3に示すように、平行磁場型ラザフォード後方散乱イオン測定装置X(以下、散乱イオン測定装置Xという)は、大別して測定用のイオンビームHを生成する加速器X1と、超伝導スペクトロメータ部(以下「スペクトロメータ部」と略す)X2とを備えて構成される。
また、加速器X1は、水素若しくはヘリウム等のイオン(一次イオン)を生成するイオン源11と、生成されたイオンに高電圧を印加することによりイオンを加速させてイオンビームHにする加速管12とを備えている。
この加速器X1で生成されたイオンビームHは、ビームダクト13を通って、四重極レンズ14や図示しない対物コリメータ等を通じて、スペクトロメータ部X2の測定室20内に配置された試料Sに向けて出射される。
Conventionally, for example, Patent Document 1 discloses a parallel magnetic field type Rutherford backscattered ion that converges a scattered ion backscattered by a sample on which a high and medium energy ion beam is incident on a beam axis using a magnetic field parallel to the ion beam. A measuring device (or a parallel field Rutherford backscattering analyzer) is shown.
FIG. 3 is a cross-sectional view of a general parallel magnetic field type Rutherford backscattered ion measuring apparatus X.
As shown in FIG. 3, the parallel magnetic field type Rutherford backscattered ion measuring device X (hereinafter referred to as scattered ion measuring device X) is roughly classified into an accelerator X1 that generates a measurement ion beam H, and a superconducting spectrometer unit ( (Hereinafter abbreviated as “spectrometer section”) X2.
Further, the accelerator X1 includes an ion source 11 that generates ions (primary ions) such as hydrogen or helium, an acceleration tube 12 that accelerates ions by applying a high voltage to the generated ions to form an ion beam H, and It has.
The ion beam H generated by the accelerator X1 passes through the beam duct 13 and through the quadrupole lens 14 and an objective collimator (not shown) toward the sample S arranged in the measurement chamber 20 of the spectrometer unit X2. Emitted.

一方、スペクトロメータ部X2は、イオンビームHの軸方向に伸びる円筒状の測定室20と、この測定室20の側面に配置されイオンビームHの軸に対して平行且つ均一な磁場(磁界)を発生させる電磁石30、測定室20内の空気を外部へ排出する真空ポンプ38等を備えて構成されている。ここで、電磁石30は、超伝導ソレノイドコイル(以下、ソレノイドコイルという)35及び補正コイル36、並びにそれらを覆うマグネットヨーク37等により構成されている。また、真空ポンプ38を通じて測定室20内の空気が不図示の吸引装置により吸引されて排出されることにより、測定中は測定室20内がほぼ真空状態に保持される。
さらに、測定室20内には、試料Sが載置される試料台22と、散乱イオンが入射されることによりパルス電流信号を出力するイオン検出器21と、試料Sとイオン検出器21との間の位置に配置されるイオン弁別用のアパーチャ23(イオン弁別手段の一例)とを備えている。
このアパーチャ23は、イオン検出器21側から試料Sに入射するイオンビームHを通過させるとともに、ソレノイドコイル35の磁場によりイオンビームHの軸に収束した特定のエネルギー及び散乱角を有する散乱イオンをイオン検出器21側に通過させるための開口部(イオン通過用開口部)を備えた板状の部材である。一般に、このアパーチャ23は、ほぼ中心部に散乱イオン通過用の開口が設けられた円形の板状部材により構成されている。即ち、CD−ROMの中央の開口部をごく小さくしたようなものである。
On the other hand, the spectrometer unit X2 has a cylindrical measurement chamber 20 extending in the axial direction of the ion beam H and a uniform magnetic field (magnetic field) arranged on the side surface of the measurement chamber 20 and parallel to the axis of the ion beam H. An electromagnet 30 to be generated, a vacuum pump 38 for discharging the air in the measurement chamber 20 to the outside, and the like are provided. Here, the electromagnet 30 includes a superconducting solenoid coil (hereinafter referred to as a solenoid coil) 35, a correction coil 36, and a magnet yoke 37 that covers them. Further, the air in the measurement chamber 20 is sucked and discharged by a suction device (not shown) through the vacuum pump 38, whereby the inside of the measurement chamber 20 is maintained in a substantially vacuum state during the measurement.
Further, in the measurement chamber 20, there are a sample stage 22 on which the sample S is placed, an ion detector 21 that outputs a pulse current signal when scattered ions are incident, and the sample S and the ion detector 21. And an ion discrimination aperture 23 (an example of an ion discrimination means) disposed between them.
The aperture 23 allows the ion beam H incident on the sample S from the ion detector 21 side to pass, and ionizes scattered ions having specific energy and scattering angle converged on the axis of the ion beam H by the magnetic field of the solenoid coil 35. It is a plate-like member provided with an opening (ion opening for ion passage) for allowing the detector 21 to pass through. In general, the aperture 23 is constituted by a circular plate-like member having an opening for passing scattered ions substantially at the center. That is, the central opening of the CD-ROM is very small.

測定室20内では、入射したイオンビームHが試料Sに照射されると、入射イオンが試料表面の組成元素に衝突して散乱する。この散乱イオンは、ソレノイドコイル35による磁場によりローレンツ力を受け、測定室20内で螺旋軌道(サイクロトロン軌道)に沿って、試料Sから遠ざかる方向(磁界の方向)、即ち、イオン検出器21の方向へ向けて旋回飛行を行う。このような散乱イオンの旋回飛行を一般にサイクロトロン運動という。
そして、特定のエネルギーと散乱角とをもった散乱イオンがイオンビームHの軸或いはその近傍に収束する位置にアパーチャ23が配置され、その特定の散乱イオンのみがアパーチャ23の開口を通じてイオン検出器21側に通過し、その他の散乱イオンは遮断される。これにより特定のエネルギー及び散乱角を有する散乱イオンのみを弁別して2次元のイオン検出器21により検出し、エネルギースペクトルを得ることができる。このようにして得られたエネルギースペクトルに基づいて試料Sの成分元素の同定や深さ方向の組成分析を行うことができる。
特開平7−190963号公報
In the measurement chamber 20, when the incident ion beam H is irradiated onto the sample S, the incident ions collide with the constituent elements on the sample surface and are scattered. The scattered ions are subjected to Lorentz force by the magnetic field generated by the solenoid coil 35, and move away from the sample S along the spiral orbit (cyclotron orbit) in the measurement chamber 20 (direction of the magnetic field), that is, the direction of the ion detector 21. Make a swivel flight toward Such swirling flight of scattered ions is generally called cyclotron motion.
An aperture 23 is arranged at a position where scattered ions having specific energy and scattering angle converge on the axis of the ion beam H or in the vicinity thereof, and only the specific scattered ions pass through the aperture 23 and the ion detector 21. Passes to the side and other scattered ions are blocked. Thereby, only the scattered ions having specific energy and scattering angle can be discriminated and detected by the two-dimensional ion detector 21 to obtain an energy spectrum. Based on the energy spectrum thus obtained, identification of the component elements of the sample S and composition analysis in the depth direction can be performed.
JP-A-7-190963

しかしながら、従来のアパーチャ23は、散乱イオンのうち特定のもの以外がイオン検出器21側に通過しないよう、特定の散乱イオンを通過させるごく小さな開口が設けられただけの板状部材で構成されるためそのコンダクタンス(通気性)が小さく、これが、測定室20内をイオン検出器21側と試料S側とに仕切る仕切り板のように作用してしまう。このため、真空ポンプ38による測定室20内からの排気の際に、測定室20内のイオン検出器21側の空間と試料S側の空間とで真空状態の差(真空の程度の差)が生じ、測定精度に影響を与えるという問題点があった。さらに、一般に、真空ポンプ38は試料S側に設けられるため(図3参照)、イオン検出器21側が十分な真空状態とならず、これがイオン検出器21の放電の原因となる結果、イオン検出器21が劣化するという問題点もあった。
従って、本発明は上記事情に鑑みてなされたものであり、その目的とするところは、特定の散乱イオンのみを通過させてその他の散乱イオンを確実に遮断するという散乱イオンの弁別性能を確保しつつ、コンダクタンスを大きく(通気性を高く)して測定室内の圧力差を生じさせないイオン弁別手段を具備する平行磁場型ラザフォード後方散乱イオン測定装置を提供することにある。
However, the conventional aperture 23 is configured by a plate-like member that is provided with a very small opening through which specific scattered ions pass so that other than specific ones of the scattered ions do not pass to the ion detector 21 side. Therefore, the conductance (air permeability) is small, and this acts like a partition plate that partitions the measurement chamber 20 into the ion detector 21 side and the sample S side. Therefore, when the vacuum pump 38 evacuates the measurement chamber 20, there is a difference in vacuum state (difference in vacuum level) between the space on the ion detector 21 side and the space on the sample S side in the measurement chamber 20. This has the problem of affecting measurement accuracy. In addition, since the vacuum pump 38 is generally provided on the sample S side (see FIG. 3), the ion detector 21 side is not in a sufficient vacuum state, which causes discharge of the ion detector 21, resulting in the ion detector. There was also a problem that 21 deteriorated.
Therefore, the present invention has been made in view of the above circumstances, and the object of the present invention is to ensure the discrimination performance of scattered ions that allows only specific scattered ions to pass through and reliably blocks other scattered ions. On the other hand, it is an object of the present invention to provide a parallel magnetic field type Rutherford backscattered ion measuring apparatus including an ion discriminating means that increases conductance (increases air permeability) and does not cause a pressure difference in a measurement chamber.

上記目的を達成するために本発明は、略真空の測定室内においてイオンビームが入射した試料から後方散乱された散乱イオンを、そのイオンビームと平行な磁場中に飛行させた後にイオン検出器により検出する平行磁場型ラザフォード後方散乱イオン測定装置に用いられ、前記試料と前記イオン検出器との間に、前記散乱イオンの一部を前記イオン検出器側へ通過させるイオン通過用開口部とその他の前記散乱イオンの通過を遮断する遮断部とが設けられたイオン弁別手段が設けられ、さらに前記イオン弁別手段の前記遮断部には、前記試料側と前記イオン検出器側とを連通させる連通部が形成され、該連通部は、前記遮断部の一部が、前記イオンビームの軸方向から見て相互に重なり合う部分と上記重なり合う部分の間を前記試料側から前記イオン検出器側まで貫通する空間とを有することにより、前記イオンビームの軸方向から見て隙間が形成されない状態で前記試料側と前記イオン検出器側とを連通させてなものであることを特徴とする平行磁場型ラザフォード後方散乱イオン測定装置である。
このような構成により、ごく小さく形成される前記イオン通過用開口部の位置に到達した特定の散乱イオンのみがこれを通過してイオン検出器に到達する。一方、前記遮断部における前記連通機構は、イオンビームの軸方向から見ると相互に重なり合う部分により隙間が形成されていないので、前記特定の散乱イオン以外の散乱イオンはこの遮断部により遮断され、散乱イオンの弁別性能が確保される。さらに、前記連通機構は、試料側とイオン検出器側とを連通させるので、測定室内においてほとんど圧力差を生じさせないイオン弁別手段を構成できる。
To accomplish the above object, the scattered ions that the ion beam in Ryakushin empty measuring chamber is backscattered from the sample incident, by the ion detector after flying in the ion beam and the magnetic field parallel used that detect flat ascending magnetic sector Rutherford backscattering ion measuring device, between said ion detector and said sample, and the ion passage opening for a portion passing into the ion detector side of the scattered ions An ion discriminating unit provided with a blocking unit for blocking the passage of other scattered ions is provided, and further, the communication unit that communicates the sample side and the ion detector side with the blocking unit of the ion discriminating unit. A portion is formed between the overlapping portion and the overlapping portion when viewed from the axial direction of the ion beam from the sample side. A space penetrating to the ion detector side, and the sample side and the ion detector side are communicated with each other in a state where no gap is formed when viewed from the axial direction of the ion beam. This is a parallel magnetic field type Rutherford backscattered ion measuring device .
With such a configuration, only specific scattered ions that have reached the position of the ion passage opening that is formed to be very small pass through this and reach the ion detector. On the other hand, since the communication mechanism in the blocking unit has no gap formed by overlapping portions when viewed from the axial direction of the ion beam, scattered ions other than the specific scattered ions are blocked by this blocking unit. Ion discrimination performance is secured. Furthermore, since the communication mechanism allows the sample side and the ion detector side to communicate with each other, an ion discriminating means that hardly causes a pressure difference in the measurement chamber can be configured.

前記連通機構のより具体的な構成としては、例えば、板状の前記遮断部に前記イオンビームの軸方向に対して斜め方向に前記試料側と前記イオン検出器側とを連通させるよう形成されたスリットにより構成されたものが考えられる。
この場合のスリットは、板状の前記遮断部において前記散乱イオンが旋回飛行する方向に対して直交或いはほぼ直交する方向に前記試料側と前記イオン検出器側とを連通させるよう形成されたものであることが望ましい。
これにより、イオン弁別手段における前記イオン通過用開口部以外の位置に到達する特定の散乱イオン以外の不要な散乱イオンは、その飛行方向(進行方向)に直交或いはほぼ直交するスリットの壁によって確実に遮断され、イオン検出器側へ到達しない。即ち、散乱イオンの弁別性能が確保される。加えて、前記スリットによってイオン検出器側の空間と試料側の空間との通気性が確保され、測定室内において極力圧力差(真空状態の差)を生じさせないイオン弁別手段を構成できる。
また、前記連通機構の他の具体例としては、例えば、複数の板状の前記遮断部を、前記イオンビームの軸方向から見て一部が相互に重なり合う状態で、前記イオンビームの軸方向に間隔を隔てて保持する機構により構成されたものが考えられる。
その一例としては、前記遮断部が、前記イオン通過用開口部が形成された第1の板状部材と、これよりも外縁が大きく形成されその内側に前記試料側と前記イオン検出器側との連通経路となる連通用開口部が形成された1又は複数の第2の板状部材と、により構成されるとともに、前記連通機構が、前記第1の板状部材及び前記第2の板状部材を、前記イオンビームの軸方向から見て前記第2の板状部材の前記連通用開口部各々が前記第1の板状部材により、又は前記第1の板状部材及び他の前記第2の板状部材により塞がれる状態で前記イオンビームの軸方向に間隔を隔てて保持する機構により構成されたものが考えられる。
As a more specific configuration of the communication mechanism, for example, the plate-shaped blocking portion is formed to communicate the sample side and the ion detector side in an oblique direction with respect to the axial direction of the ion beam. The thing comprised by the slit can be considered.
The slit in this case is formed so that the sample side and the ion detector side communicate with each other in a direction orthogonal or substantially orthogonal to the direction in which the scattered ions swirl and fly in the plate-shaped blocking unit. It is desirable to be.
As a result, unnecessary scattered ions other than the specific scattered ions that reach a position other than the ion passage opening in the ion discriminating means are reliably ensured by the slit wall perpendicular or nearly perpendicular to the flight direction (traveling direction). It is blocked and does not reach the ion detector side. That is, the discrimination performance of scattered ions is ensured. In addition, the slit can secure the air permeability between the space on the ion detector side and the space on the sample side, and can constitute an ion discriminating means that does not cause a pressure difference (a difference in vacuum state) as much as possible.
Further, as another specific example of the communication mechanism, for example, a plurality of plate-shaped blocking portions may be arranged in the axial direction of the ion beam in a state where a part thereof overlaps each other when viewed from the axial direction of the ion beam. It is possible to use a mechanism that is configured to hold at intervals.
As an example, the blocking portion includes a first plate-like member in which the ion passage opening is formed, and an outer edge larger than the first plate-like member, and the sample side and the ion detector side are disposed inside the first plate-like member. And one or a plurality of second plate-like members in which a communication opening serving as a communication path is formed, and the communication mechanism includes the first plate-like member and the second plate-like member. , When viewed from the axial direction of the ion beam, each of the communication opening portions of the second plate-like member is formed by the first plate-like member, or the first plate-like member and the other second A structure constituted by a mechanism that holds the ion beam at an interval in the axial direction in a state of being blocked by a plate-like member is conceivable.

本発明によれば、イオン弁別手段における散乱イオンを遮断する遮断部(前記イオン通過用開口部以外の部分)に、イオンビームの軸方向から見て隙間が形成されない状態で試料側とイオン検出器側とを連通させる連通機構が設けられるので、イオン検出器側に特定の散乱イオンのみを通過させてその他の不要な散乱イオンを遮断するという散乱イオンの弁別性能を確保しつつ、測定室内においてイオン検出器側及び試料側の両空間に圧力差(真空状態の差)を生じさせないイオン弁別手段を備えた平行磁場型ラザフォード後方散乱イオン測定装置を提供できる。その結果、測定室内の圧力差に起因する測定誤差の発生を回避できる。さらに、イオン検出器周辺の高い真空性を維持でき、イオン検出器の放電による劣化を防止できる。   According to the present invention, the sample side and the ion detector are formed in a state where no gap is formed when viewed from the axial direction of the ion beam in the blocking portion (portion other than the ion passage opening) in the ion discriminating means. Since a communication mechanism is provided to communicate with the side of the ion detector, the ion detector side allows only specific scattered ions to pass through and blocks other unnecessary scattered ions while ensuring the ability to discriminate scattered ions. It is possible to provide a parallel magnetic field type Rutherford backscattered ion measuring apparatus provided with an ion discriminating means which does not cause a pressure difference (difference in vacuum state) between both the detector side and the sample side. As a result, it is possible to avoid the occurrence of a measurement error due to the pressure difference in the measurement chamber. Furthermore, the high vacuum property around the ion detector can be maintained, and deterioration due to discharge of the ion detector can be prevented.

以下添付図面を参照しながら、本発明の一実施形態について説明し、本発明の理解に供する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定する性格のものではない。
ここに、図1は本発明の第1実施形態に係るイオン弁別アパーチャZ1の正面図及び一部断面図、図2は本発明の第2実施形態に係るイオン弁別アパーチャZ2の正面図及び側面図(一部断面図)、図3は本発明の実施形態に係るイオン弁別アパーチャの適用対象となる平行磁場型ラザフォード後方散乱イオン測定装置Xの概略構成を表す断面図、図4は平行磁場型ラザフォード後方散乱イオン測定装置Xにおける測定室の概略構成を表す断面図である。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. In addition, the following embodiment is an example which actualized this invention, Comprising: The thing of the character which limits the technical scope of this invention is not.
FIG. 1 is a front view and a partial cross-sectional view of an ion discrimination aperture Z1 according to the first embodiment of the present invention. FIG. 2 is a front view and a side view of the ion discrimination aperture Z2 according to the second embodiment of the present invention. (Partial cross-sectional view), FIG. 3 is a cross-sectional view showing a schematic configuration of a parallel magnetic field type Rutherford backscattered ion measuring apparatus X to which the ion discrimination aperture according to the embodiment of the present invention is applied, and FIG. 4 is a parallel magnetic field type Rutherford. 4 is a cross-sectional view illustrating a schematic configuration of a measurement chamber in the backscattered ion measurement apparatus X. FIG.

本発明の実施形態に係るイオン弁別手段であるイオン弁別アパーチャZ1、Z2(以下、アパーチャZ1、Z2という)は、図3に示した一般的な平行磁場型ラザフォード後方散乱イオン測定装置X(以下、散乱イオン測定装置Xという)に適用されるものである。
図3に示す後方散乱イオン測定装置Xは、真空の測定室20内においてイオンビームHが入射した試料Sから後方散乱された散乱イオンを、イオンビームHと平行な磁場中に飛行させた後にイオン検出器21により検出する装置であるが、既に説明したのでここでは説明を省略する。なお、図3に示したアパーチャ23が、本発明の実施形態に係るアパーチャZ1又はZ2(以下、これらを総称してアパーチャZという)に置き換えられる。
The ion discriminating apertures Z1 and Z2 (hereinafter referred to as apertures Z1 and Z2), which are ion discriminating means according to the embodiment of the present invention, are represented by the general parallel magnetic field type Rutherford backscattered ion measuring apparatus X (hereinafter referred to as the following). This is applied to a scattered ion measurement device X).
In the backscattered ion measuring apparatus X shown in FIG. 3, the scattered ions backscattered from the sample S on which the ion beam H is incident in the vacuum measurement chamber 20 are made to fly after flying in a magnetic field parallel to the ion beam H. Although it is an apparatus which detects with the detector 21, since it already demonstrated, description is abbreviate | omitted here. Note that the aperture 23 shown in FIG. 3 is replaced with the aperture Z1 or Z2 (hereinafter collectively referred to as the aperture Z) according to the embodiment of the present invention.

ここで、図4を参照しつつ、後方散乱イオン測定装置Xが備える測定室20についてより詳細に説明する。
測定室20は、ほぼ円筒形に形成されており、円筒の中心軸がイオンビームHの軸と一致するように配置され、そのイオンビームHの入口側を塞ぐ磁極31には、イオンビームH通過用の開口31aが設けられている。この測定室20内は、ソレノイドコイル35、補正コイル(図3参照)及びマグネットヨーク(図3参照)が周囲に配置されることにより、イオンビームHの軸に平行な磁場が発生する。
測定室20内には、イオンビームHの照射方向上流側(磁極31側)から順に、イオン検出器21、散乱イオン弁別用のアパーチャZ、及び試料Sが配置される。ここで、イオン検出器21のほぼ中央には、イオンビームHを通過させる開口21aが設けられている。
一方、試料Sとイオン検出器21との間に配置されるアパーチャZのほぼ中央には、イオンビームHを通過させるとともに、試料Sから飛行してくる散乱イオンの一部(後述する特定散乱イオン)e1をイオン検出器21側へ通過させる開口部Za(以下、イオン通過用開口部という)が設けられ、その周囲は、その他の散乱イオンe2の通過を遮断する遮断部Zbが形成されている。
このアパーチャZの外縁は、測定室20の内面にほぼ沿うような形状となっており、測定室20は、アパーチャZによって試料側20aとイオン検出器側20bとに仕切られたような状態となる。
Here, the measurement chamber 20 provided in the backscattered ion measurement apparatus X will be described in more detail with reference to FIG.
The measurement chamber 20 is formed in a substantially cylindrical shape, is arranged so that the center axis of the cylinder coincides with the axis of the ion beam H, and the magnetic pole 31 that closes the entrance side of the ion beam H passes through the ion beam H. An opening 31a is provided. In the measurement chamber 20, a solenoid coil 35, a correction coil (see FIG. 3), and a magnet yoke (see FIG. 3) are arranged around, so that a magnetic field parallel to the axis of the ion beam H is generated.
In the measurement chamber 20, an ion detector 21, a scattered ion discrimination aperture Z, and a sample S are arranged in this order from the upstream side in the irradiation direction of the ion beam H (the magnetic pole 31 side). Here, an opening 21 a through which the ion beam H passes is provided in the approximate center of the ion detector 21.
On the other hand, an ion beam H is allowed to pass through substantially the center of the aperture Z disposed between the sample S and the ion detector 21 and a part of scattered ions flying from the sample S (specific scattered ions described later). ) An opening Za for passing e1 to the ion detector 21 side (hereinafter referred to as an ion passage opening) is provided, and a blocking portion Zb for blocking the passage of other scattered ions e2 is formed around the opening Za. .
The outer edge of the aperture Z has a shape substantially along the inner surface of the measurement chamber 20, and the measurement chamber 20 is partitioned by the aperture Z into a sample side 20a and an ion detector side 20b. .

真空状態の測定室20内において、イオンビームHが試料Sに照射され、そのイオンビームHを構成するイオンが試料S表面の組成元素に当たって散乱する。この散乱イオンは、ソレノイドコイル35等により発生する平行磁場によりローレンツ力を受け、測定室20内で螺旋軌道(サイクロトロン軌道)に沿って、試料Sから遠ざかる方向(磁界の方向)、即ち、イオン検出器21の方向へ向けて旋回飛行(サイクロトロン運動)を行う。
そして、アパーチャZが、特定のエネルギーと散乱角とをもった散乱イオン(以下、特定散乱イオンe1という)がほぼイオンビームHの軸に収束する位置にイオン通過用開口部Zaが位置するよう配置され、特定散乱イオンe1のみがイオン通過用開口部Zaを通じてイオン検出器21側に通過し、その他の散乱イオンe2は遮断部Zbにより遮断される。
In the measurement chamber 20 in a vacuum state, the sample beam S is irradiated with the ion beam H, and ions constituting the ion beam H strike the composition elements on the surface of the sample S and are scattered. The scattered ions receive a Lorentz force by a parallel magnetic field generated by the solenoid coil 35 and the like, and move away from the sample S (magnetic field direction) along the spiral orbit (cyclotron orbit) in the measurement chamber 20, that is, ion detection. A turn flight (cyclotron motion) is performed in the direction of the vessel 21.
The aperture Z is arranged such that the ion passing aperture Za is located at a position where scattered ions having specific energy and scattering angle (hereinafter referred to as specific scattered ions e1) are substantially converged on the axis of the ion beam H. Only the specific scattered ions e1 pass to the ion detector 21 side through the ion passage opening Za, and the other scattered ions e2 are blocked by the blocking unit Zb.

<第1実施形態>
次に、図1を参照しつつ、本発明の第1実施形態に係る散乱イオン弁別用のアパーチャZ1について説明する。
図1の正面図に示すように、アパーチャZ1は、その外縁が測定室20の内面に沿うように円形の板状部材により遮断部Zbが形成され、そのほぼ中央に前記イオン通過用開口部Zaが設けられている。このアパーチャZ1は、そのイオン通過用開口部ZaをイオンビームHが通過するように配置される。
また、遮断部Zbには、イオンビームHの軸を中心とする放射線に沿って伸びる複数のスリットZcが設けられている。
このスリットZcは、図1のA−A’断面図に示されるように、板状の遮断部ZbにイオンビームHの軸方向に対して斜め方向(図1のR1の方向)に測定室20内の試料側20aとイオン検出器側20bとを連通させるよう形成されており、イオンビームHの軸方向から見て相互に重なり合う部分51、52を有することにより、イオンビームHの軸方向から見て隙間が形成されない状態となっている(連通機構の一例)。
このようなスリットZcを遮断部Zbに設けることにより、特定散乱イオンe1のみを通過させる(他の散乱イオンe2を遮断する)弁別性能を確保しつつ、測定室20内において試料側20aとイオン検出器側20bとの間のコンダクタンスを高めて両空間の圧力差を無くすことができる。
<First Embodiment>
Next, the scattered ion discrimination aperture Z1 according to the first embodiment of the present invention will be described with reference to FIG.
As shown in the front view of FIG. 1, the aperture Z <b> 1 is formed with a blocking portion Zb by a circular plate-like member so that the outer edge thereof is along the inner surface of the measurement chamber 20, and the ion passage opening Za is substantially at the center. Is provided. The aperture Z1 is arranged such that the ion beam H passes through the ion passage opening Za.
Further, the blocking portion Zb is provided with a plurality of slits Zc extending along radiation centering on the axis of the ion beam H.
As shown in the AA ′ cross-sectional view in FIG. 1, the slit Zc is formed in the measurement chamber 20 in a direction oblique to the axial direction of the ion beam H (direction R1 in FIG. 1) in the plate-shaped blocking portion Zb. The sample side 20a and the ion detector side 20b are formed so as to communicate with each other, and have portions 51 and 52 that overlap each other when viewed from the axial direction of the ion beam H, so that they can be viewed from the axial direction of the ion beam H. Thus, no gap is formed (an example of a communication mechanism).
By providing such a slit Zc in the blocking part Zb, the sample side 20a and the ion detection are detected in the measurement chamber 20 while ensuring the discrimination performance of allowing only the specific scattered ions e1 to pass (blocking other scattered ions e2). The conductance between the container side 20b can be increased and the pressure difference between the two spaces can be eliminated.

ここで、散乱イオンe2はサイクロトロン運動を行って旋回飛行するが、図1のA−A’断面図に示すように、スリットZcは、板状の遮断部Zbにおいて、散乱イオンe2が旋回飛行する方向に対してほぼ直交する方向R1に、測定室20内の試料側20aとイオン検出器側20bとを連通させるよう形成されている。
このような構成により、イオンビームHの軸方向から見て相互に重なり合う部分51、52の幅(重複範囲)を比較的小さくして高いコンダクタンスを確保しつつ、散乱イオンe2を確実に遮断できる。
また、散乱イオンe2はイオンビームHの軸を中心に旋回飛行するので、散乱イオンe2の旋回飛行の方向に対してほぼ直交する方向のスリットZcは、前述したように、イオンビームHの軸を中心とする放射線に沿う方向に伸びて形成されると、いずれの位置でも散乱イオンe2の飛行方向に対してほぼ同じ角度条件となる。その結果、不要な散乱イオンe2は、スリットZcを形成する壁により確実に遮断され、それがスリットZcを通じてイオン検出器21側に通過することを確実に防止できる。
Here, the scattered ions e2 make a cyclotron motion and swirl, but as shown in the AA ′ cross-sectional view of FIG. 1, the scattered ions e2 swirl and fly in the slit Zc at the plate-shaped blocking portion Zb. The sample side 20a and the ion detector side 20b in the measurement chamber 20 are formed to communicate with each other in a direction R1 substantially orthogonal to the direction.
With such a configuration, it is possible to reliably block the scattered ions e2 while ensuring a high conductance by relatively reducing the width (overlapping range) of the overlapping portions 51 and 52 as viewed from the axial direction of the ion beam H.
Further, since the scattered ions e2 swirl around the axis of the ion beam H, the slit Zc in a direction substantially orthogonal to the direction of the swirl flight of the scattered ions e2 has the axis of the ion beam H as described above. If it is formed extending in the direction along the central radiation, the angle condition is almost the same with respect to the flight direction of the scattered ions e2 at any position. As a result, unnecessary scattered ions e2 are surely blocked by the wall forming the slit Zc, and can be reliably prevented from passing to the ion detector 21 side through the slit Zc.

<第2実施形態>
次に、図2を参照しつつ、本発明の第2実施形態に係る散乱イオン弁別用のアパーチャZ2について説明する。
図2に示すように、アパーチャZ2は、複数枚(図2では3枚)の板状の遮断部Zb1〜Zb3を備え、その複数の遮断部Zb1〜Zb3が、柱状のスペーサZe(支柱)により、イオンビームHの軸方向から見てそれらの一部61、62a、62b、63が相互に重なり合う状態でイオンビームHの軸方向に間隔Zd1、Zc2を隔てて保持されたものである。
図2に示す例では、1枚の遮断部Zb1は、前記イオン通過用開口部Zaが形成された円形状の板状部材(第1の板状部材の一例)であり、他の2枚の遮断部Zb2、Zb3各々は、遮断部Zb1よりも外縁が大きく形成されその内側に測定室20内の試料側20aとイオン検出器側20bとの連通経路となる連通用開口部Zc2、Zc3が形成されたドーナツ板状の板状部材(第2の板状部材の一例)である。ここで、遮断部Zb2の連通用開口部Zc2は、遮断部Zb1の外縁よりも小さく形成され、遮断部Zb3の連通用開口部Zc3は、遮断部Zb1の外縁よりも大きく、かつ遮断部Zb2の外縁よりも小さく形成されている。また、最も大きな遮断部Zb3は、その外縁が測定室20の内面に沿うように円形に形成されている。
そして、3枚の板状の遮断部Zb1は、イオンビームHの軸方向にほぼ平行に間隔Zd1、Zd2を隔てて配列され、その間隔の部分に設けられた柱状のスペーサZeにより連結されて保持されている。
このアパーチャZ2は、そのイオン通過用開口部ZaをイオンビームHが通過するように配置される。
<Second Embodiment>
Next, an aperture Z2 for scattered ion discrimination according to a second embodiment of the present invention will be described with reference to FIG.
As shown in FIG. 2, the aperture Z2 includes a plurality of (three in FIG. 2) plate-like blocking portions Zb1 to Zb3, and the plurality of blocking portions Zb1 to Zb3 are formed by columnar spacers Ze (posts). As seen from the axial direction of the ion beam H, the portions 61, 62a, 62b, 63 are held in the axial direction of the ion beam H with a gap Zd1, Zc2 therebetween.
In the example shown in FIG. 2, one blocking portion Zb1 is a circular plate-shaped member (an example of a first plate-shaped member) in which the ion passing opening Za is formed, and the other two sheets Each of the blocking portions Zb2 and Zb3 has a larger outer edge than the blocking portion Zb1, and communication openings Zc2 and Zc3 are formed inside the blocking portion Zb1 and serve as a communication path between the sample side 20a and the ion detector side 20b in the measurement chamber 20. This is a donut plate-like plate member (an example of a second plate member). Here, the communication opening Zc2 of the blocking part Zb2 is formed smaller than the outer edge of the blocking part Zb1, the communication opening Zc3 of the blocking part Zb3 is larger than the outer edge of the blocking part Zb1, and the blocking part Zb2 It is formed smaller than the outer edge. In addition, the largest blocking portion Zb3 is formed in a circular shape so that the outer edge thereof is along the inner surface of the measurement chamber 20.
The three plate-like blocking portions Zb1 are arranged substantially parallel to the axial direction of the ion beam H with intervals Zd1 and Zd2, and are connected and held by columnar spacers Ze provided at the intervals. Has been.
The aperture Z2 is arranged such that the ion beam H passes through the ion passage opening Za.

図2に示すように、アパーチャZ2も、各遮断部Zb1〜Zb3が、イオンビームHの軸方向から見て相互に重なり合う部分61、62a、62b、63を有することにより、イオンビームHの軸方向から見て隙間が形成されない状態となっている。さらに、連通用開口部Zc2、Zc3と、各遮断部Zb1〜Zb3の間の間隔Zd1、Zd2(隙間)とが、測定室20内の試料側20aとイオン検出器側20bとの間の連通経路を形成している(連通機構の一例)。
図2に示す例では、イオンビームHの軸方向から見て、遮断部Zb2(第2の板状部材の一例)の連通用開口部Zc2が遮断部Zb1(第1の板状部材の一例)により塞がれる状態で、かつ、遮断部Zb3(第2の板状部材の一例)の連通用開口部Zc3が遮断部Zb1及び遮断部Zb2により塞がれる状態で、イオンビームHの軸方向に間隔Zd1、Zd2を隔ててスペーサZeにより保持されている。
このような構造を有することにより、イオン通過用開口部Zaに到達する特定の散乱イオン以外の不要な散乱イオンe2は、各遮断部Zb1〜Zb3の壁面により確実に遮断され、それが連通用開口部Zc1〜Zc3を通じてイオン検出器21側に通過することを確実に防止できる。即ち、特定散乱イオンe1のみを通過させる(他の散乱イオンe2を遮断する)という弁別性能を確保しつつ、測定室20内において試料側20aの空間とイオン検出器側20bの空間との圧力差(真空状態の差)を無くすことができる。
また、複数の遮断部Zb1〜Zb3の間隔Zd1、Zd2を十分に確保することによって、前述したアパーチャZ1におけるスリットZcを設ける場合よりもさらに圧損を低く抑えることができる。また、遮断部を斜め方向に加工する必要がなく、比較的容易に製造するとができる。
As shown in FIG. 2, the aperture Z <b> 2 also includes portions 61, 62 a, 62 b, and 63 that overlap each other when the blocking portions Zb <b> 1 to Zb <b> 3 are viewed from the axial direction of the ion beam H. As a result, no gap is formed. Further, the communication openings Zc2 and Zc3 and the intervals Zd1 and Zd2 (gap) between the blocking portions Zb1 to Zb3 are communication paths between the sample side 20a and the ion detector side 20b in the measurement chamber 20. (An example of a communication mechanism).
In the example shown in FIG. 2, when viewed from the axial direction of the ion beam H, the communication opening Zc2 of the blocking portion Zb2 (an example of the second plate member) is the blocking portion Zb1 (an example of the first plate member). In the axial direction of the ion beam H in a state where the opening Zc3 for communication of the blocking part Zb3 (an example of the second plate member) is blocked by the blocking part Zb1 and the blocking part Zb2. The spacers Ze hold the gaps Zd1 and Zd2.
By having such a structure, unnecessary scattered ions e2 other than the specific scattered ions that reach the ion passage opening Za are reliably blocked by the wall surfaces of the respective blocking portions Zb1 to Zb3. Passing to the ion detector 21 side through the parts Zc1 to Zc3 can be reliably prevented. That is, the pressure difference between the space on the sample side 20a and the space on the ion detector side 20b in the measurement chamber 20 while ensuring the discrimination performance of allowing only the specific scattered ions e1 to pass (blocking other scattered ions e2). (Difference in vacuum state) can be eliminated.
Further, by sufficiently securing the intervals Zd1 and Zd2 between the plurality of blocking portions Zb1 to Zb3, the pressure loss can be further suppressed as compared with the case where the slit Zc in the aperture Z1 described above is provided. Further, it is not necessary to process the blocking portion in an oblique direction, and it can be manufactured relatively easily.

以上示したアパーチャZ1、Z2は、本発明を具体化した一例であり、特定の散乱イオン以外の散乱イオンを遮断する遮断部に、イオンビームHの軸方向から見て相互に重なり合う部分を有することによって、イオンビームHの軸方向から見たときに隙間が生じないように構成しつつ、測定室20内の試料側20aとイオン検出器側20bとの連通経路が形成される構成を有するものであれば、他の構成により実現されたものであっても本発明の実施例となる。   The apertures Z1 and Z2 described above are examples embodying the present invention, and have a portion that overlaps each other when viewed from the axial direction of the ion beam H in a blocking portion that blocks scattered ions other than specific scattered ions. Thus, the communication path between the sample side 20a and the ion detector side 20b in the measurement chamber 20 is formed while the gap is not generated when viewed from the axial direction of the ion beam H. If there is, it is an embodiment of the present invention even if it is realized by another configuration.

本発明の第1実施形態に係るイオン弁別アパーチャZ1の正面図及び一部断面図。The front view and partial sectional view of the ion discrimination aperture Z1 according to the first embodiment of the present invention. 本発明の第2実施形態に係るイオン弁別アパーチャZ2の正面図及び側面図(一部断面図)。The front view and side view (partial sectional view) of an ion discrimination aperture Z2 according to a second embodiment of the present invention. 本発明の実施形態に係るイオン弁別アパーチャの適用対象となる平行磁場型ラザフォード後方散乱イオン測定装置Xの概略構成を表す断面図。Sectional drawing showing schematic structure of the parallel magnetic field type | mold Rutherford backscattering ion measuring apparatus X used as the application object of the ion discrimination aperture which concerns on embodiment of this invention. 平行磁場型ラザフォード後方散乱イオン測定装置Xにおける測定室の概略構成を表す断面図。FIG. 4 is a cross-sectional view illustrating a schematic configuration of a measurement chamber in the parallel magnetic field type Rutherford backscattered ion measurement apparatus X.

符号の説明Explanation of symbols

X…平行磁場型ラザフォード後方散乱イオン測定装置
X1…加速器
X2…超伝導スペクトロメータ部
Z1、Z2、Z…アパーチャ
Za…イオン通過用開口部
Zb、Zb1、Zb2、Zb3…遮断部
Zc…スリット
Ze…スペーサ
S…試料
11…イオン源
12…加速管
20…測定室
21…イオン検出器
22…試料台
30…電磁石
35…超伝導ソレノイドコイル
36…補正コイル
X ... Parallel field type Rutherford backscattered ion measuring device X1 ... Accelerator X2 ... Superconducting spectrometer part Z1, Z2, Z ... Aperture Za ... Ion passage opening Zb, Zb1, Zb2, Zb3 ... Blocking part Zc ... Slit Ze ... Spacer S ... Sample 11 ... Ion source 12 ... Accelerator tube 20 ... Measurement chamber 21 ... Ion detector 22 ... Sample stand 30 ... Electromagnet 35 ... Superconducting solenoid coil 36 ... Correction coil

Claims (5)

略真空の測定室内においてイオンビームが入射した試料から後方散乱された散乱イオンを該イオンビームと平行な磁場中に飛行させた後にイオン検出器により検出する平行磁場型ラザフォード後方散乱イオン測定装置であって、
前記試料と前記イオン検出器との間に、前記散乱イオンの一部を前記イオン検出器側へ通過させるイオン通過用開口部とその他の前記散乱イオンの通過を遮断する遮断部とが設けられたイオン弁別手段が設けられ、さらに前記イオン弁別手段の前記遮断部には、前記試料側と前記イオン検出器側とを連通させる連通部が形成され、該連通部は、前記遮断部の一部が、前記イオンビームの軸方向から見て相互に重なり合う部分と上記重なり合う部分の間を前記試料側から前記イオン検出器側まで貫通する空間とを有することにより、前記イオンビームの軸方向から見て隙間が形成されない状態で前記試料側と前記イオン検出器側とを連通させてなるものであることを特徴とする平行磁場型ラザフォード後方散乱イオン測定装置。
This is a parallel magnetic field type Rutherford backscattered ion measuring device that detects scattered ions backscattered from a sample in which an ion beam is incident in a substantially vacuum measurement chamber by flying in a magnetic field parallel to the ion beam and then detecting the ions with an ion detector. And
Between said ion detector and said sample, and blocking portions are provided to block the passage of a portion of the scattered ions the ion detector ions passing opening for passing to the side and the other of the scattered ions An ion discriminating means is provided , and a communicating part for communicating the sample side and the ion detector side is formed in the blocking part of the ion discriminating means, and the communicating part is a part of the blocking part. And a gap penetrating each other when viewed from the axial direction of the ion beam and a space penetrating from the sample side to the ion detector side between the overlapping portions, thereby providing a gap when viewed from the axial direction of the ion beam. parallel magnetic field type Rutherford backscattering ion measuring device, characterized in that in a state but not formed is made by communication between the ion detector side and the sample side.
前記連通機構が、板状の前記遮断部に前記イオンビームの軸方向に対して斜め方向に前記試料側と前記イオン検出器側とを連通させるよう形成されたスリットにより構成されてなる請求項1に記載の平行磁場型ラザフォード後方散乱イオン測定装置。   2. The communication mechanism is configured by a slit formed to communicate the sample side and the ion detector side in an oblique direction with respect to the axial direction of the ion beam to the plate-shaped blocking portion. 2. A parallel magnetic field type Rutherford backscattered ion measuring apparatus described in 1. 前記スリットが、板状の前記遮断部において前記散乱イオンが旋回飛行する方向に対して略直交する方向に前記試料側と前記イオン検出器側とを連通させるよう形成されてなる請求項2に記載の平行磁場型ラザフォード後方散乱イオン測定装置。   The said slit is formed so that the said sample side and the said ion detector side may be connected in the direction substantially orthogonal to the direction in which the said scattered ion turns in the plate-shaped said interruption | blocking part. Parallel magnetic field type Rutherford backscattered ion measuring device. 前記連通機構が、複数の板状の前記遮断部の一部が、前記イオンビームの軸方向から見て相互に重なり合う状態で前記イオンビームの軸方向に間隔を隔てて保持する機構により構成されてなる請求項1に記載の平行磁場型ラザフォード後方散乱イオン測定装置。 The communication mechanism, part of the cut-off portion of the plurality of plate-shaped, is composed of the ion beam mechanism as viewed in the axial direction phase with each other overlapping state holds at intervals in the axial direction of the ion beam The parallel magnetic field type Rutherford backscattered ion measuring apparatus according to claim 1. 前記遮断部が、前記イオン通過用開口部が形成された第1の板状部材と、該第1の板状部材よりも外縁が大きく形成されその内側に前記試料側と前記イオン検出器側との連通経路となる連通用開口部が形成された1又は複数の第2の板状部材と、により構成され、
前記連通機構が、
前記第1の板状部材及び前記第2の板状部材を、前記イオンビームの軸方向から見て前記第2の板状部材の前記連通用開口部各々が前記第1の板状部材により、又は前記第1の板状部材及び他の前記第2の板状部材により塞がれる状態で前記イオンビームの軸方向に間隔を隔てて保持する機構により構成されてなる請求項4に記載の平行磁場型ラザフォード後方散乱イオン測定装置。
The blocking portion includes a first plate-like member in which the ion passage opening is formed, an outer edge larger than the first plate-like member, and the sample side and the ion detector side inside the first plate-like member. And one or a plurality of second plate-like members in which a communication opening serving as a communication path is formed,
The communication mechanism is
When the first plate member and the second plate member are viewed from the axial direction of the ion beam, each of the communicating openings of the second plate member is formed by the first plate member. Alternatively, the parallel structure according to claim 4, comprising a mechanism that holds the ion beam at an interval in the axial direction while being closed by the first plate-like member and the other second plate-like member. Magnetic field type Rutherford backscattered ion measuring device.
JP2005348906A 2005-12-02 2005-12-02 Parallel magnetic field type Rutherford backscattered ion measuring device Expired - Fee Related JP4601545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005348906A JP4601545B2 (en) 2005-12-02 2005-12-02 Parallel magnetic field type Rutherford backscattered ion measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005348906A JP4601545B2 (en) 2005-12-02 2005-12-02 Parallel magnetic field type Rutherford backscattered ion measuring device

Publications (2)

Publication Number Publication Date
JP2007155426A JP2007155426A (en) 2007-06-21
JP4601545B2 true JP4601545B2 (en) 2010-12-22

Family

ID=38240007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005348906A Expired - Fee Related JP4601545B2 (en) 2005-12-02 2005-12-02 Parallel magnetic field type Rutherford backscattered ion measuring device

Country Status (1)

Country Link
JP (1) JP4601545B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190963A (en) * 1993-12-27 1995-07-28 Kobe Steel Ltd Analyzer by use of ion scattering
JP2000223437A (en) * 1999-01-28 2000-08-11 Hiroshima Nippon Denki Kk Ion implantating apparatus
JP2002048736A (en) * 2000-07-31 2002-02-15 Kobe Steel Ltd Parallel magnetic field type rutherford back scattering analyzer
JP2002507045A (en) * 1998-03-10 2002-03-05 エッサーズ、エリック Scanning electron microscope
JP2003021609A (en) * 2001-05-02 2003-01-24 Kobe Steel Ltd Parallel magnetic field type rutherford back scattering analyzer, energy spectrum measuring method for scattered ion using it and crystal axis detecting method for sample using it
JP2004361283A (en) * 2003-06-05 2004-12-24 Kobe Steel Ltd Parallel magnetic field rutherford back-scattering analysis apparatus
JP2005043227A (en) * 2003-07-22 2005-02-17 Kobe Steel Ltd Magnetic field producing device for analyzing apparatuses
JP2005158570A (en) * 2003-11-27 2005-06-16 Kobe Steel Ltd Scattering ion detection device and rutherford rear scattering analysis device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190963A (en) * 1993-12-27 1995-07-28 Kobe Steel Ltd Analyzer by use of ion scattering
JP3273844B2 (en) * 1993-12-27 2002-04-15 株式会社神戸製鋼所 Analyzer using scattered ions
JP2002507045A (en) * 1998-03-10 2002-03-05 エッサーズ、エリック Scanning electron microscope
JP2000223437A (en) * 1999-01-28 2000-08-11 Hiroshima Nippon Denki Kk Ion implantating apparatus
JP2002048736A (en) * 2000-07-31 2002-02-15 Kobe Steel Ltd Parallel magnetic field type rutherford back scattering analyzer
JP2003021609A (en) * 2001-05-02 2003-01-24 Kobe Steel Ltd Parallel magnetic field type rutherford back scattering analyzer, energy spectrum measuring method for scattered ion using it and crystal axis detecting method for sample using it
JP2004361283A (en) * 2003-06-05 2004-12-24 Kobe Steel Ltd Parallel magnetic field rutherford back-scattering analysis apparatus
JP2005043227A (en) * 2003-07-22 2005-02-17 Kobe Steel Ltd Magnetic field producing device for analyzing apparatuses
JP2005158570A (en) * 2003-11-27 2005-06-16 Kobe Steel Ltd Scattering ion detection device and rutherford rear scattering analysis device

Also Published As

Publication number Publication date
JP2007155426A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
JP6203749B2 (en) First-order and second-order focusing using field-free regions in time of flight
JP5250166B2 (en) Ion optical system for TOF mass spectrometer
US7459677B2 (en) Mass spectrometer for trace gas leak detection with suppression of undesired ions
US5559337A (en) Plasma ion source mass analyzing apparatus
JP2006520072A (en) Mass spectrometer
WO2006130149A2 (en) Mass spectrometer and methods of increasing dispersion between ion beams
JP2009507328A (en) Reflectron
JP5723893B2 (en) Mass spectrometer and ion separation detection method
JP3840558B2 (en) Simultaneous detection isotope ratio mass spectrometer
JP2009527098A (en) Highly sensitive slitless ion source mass spectrometer for trace gas leak detection
US5850084A (en) Ion lens assembly for gas analysis system
GB2536776A (en) Method for measurement of fragment ion mass spectra with tandem time-of-flight mass spectrometers
CA2897899C (en) Mass spectrometer with improved magnetic sector
JP4601545B2 (en) Parallel magnetic field type Rutherford backscattered ion measuring device
US11101123B2 (en) Extraction system for charged secondary particles for use in a mass spectrometer or other charged particle device
JP2018515899A (en) Double bending ion guide and apparatus using the same
US9543115B2 (en) Electron microscope
EP3183562B1 (en) Neutral atom or molecule detector
JP2022002218A (en) Charged particle filter
WO2015133558A1 (en) Projection-type charged particle optical system and imaging mass spectrometry apparatus
US20240014026A1 (en) Magnetic sector with a shunt for a mass spectrometer
WO2021193574A1 (en) Time-of-flight mass spectrometer
KR20040034252A (en) Matrix assisted laser desorption ionization time of flight mass spectrometry
CZ304659B6 (en) Detection method of signal electrons in electron microscope and apparatus for making the same
JP2023075619A (en) mass spectrometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees