WO2007071166A1 - Membrane composite a base d'agglomere de poudre metallique superfine, son procede de preparation et systeme de desallement de l'eau de mer - Google Patents
Membrane composite a base d'agglomere de poudre metallique superfine, son procede de preparation et systeme de desallement de l'eau de mer Download PDFInfo
- Publication number
- WO2007071166A1 WO2007071166A1 PCT/CN2006/003427 CN2006003427W WO2007071166A1 WO 2007071166 A1 WO2007071166 A1 WO 2007071166A1 CN 2006003427 W CN2006003427 W CN 2006003427W WO 2007071166 A1 WO2007071166 A1 WO 2007071166A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal powder
- film
- sintered base
- porous
- ultrafine metal
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 63
- 239000012528 membrane Substances 0.000 title claims abstract description 48
- 239000002131 composite material Substances 0.000 title claims abstract description 44
- 239000013535 sea water Substances 0.000 title claims abstract description 21
- 238000010612 desalination reaction Methods 0.000 title claims description 33
- 238000002360 preparation method Methods 0.000 title abstract description 19
- 238000011049 filling Methods 0.000 claims abstract description 7
- 239000011148 porous material Substances 0.000 claims abstract description 6
- 229910010272 inorganic material Inorganic materials 0.000 claims abstract description 5
- 239000011147 inorganic material Substances 0.000 claims abstract description 5
- 229910052751 metal Inorganic materials 0.000 claims description 65
- 239000002184 metal Substances 0.000 claims description 65
- 239000010410 layer Substances 0.000 claims description 35
- 239000000919 ceramic Substances 0.000 claims description 25
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 20
- 229920000620 organic polymer Polymers 0.000 claims description 18
- 238000000926 separation method Methods 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 12
- 238000005245 sintering Methods 0.000 claims description 9
- 239000011800 void material Substances 0.000 claims description 6
- 238000011065 in-situ storage Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 239000002344 surface layer Substances 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 2
- 230000000379 polymerizing effect Effects 0.000 claims description 2
- 238000012986 modification Methods 0.000 claims 1
- 230000004048 modification Effects 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 3
- 230000004907 flux Effects 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 23
- 230000035699 permeability Effects 0.000 description 10
- 238000011161 development Methods 0.000 description 7
- 230000018109 developmental process Effects 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000001223 reverse osmosis Methods 0.000 description 4
- 239000010865 sewage Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000011033 desalting Methods 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 235000020188 drinking water Nutrition 0.000 description 3
- 239000013505 freshwater Substances 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000006065 biodegradation reaction Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920006254 polymer film Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- 238000012695 Interfacial polymerization Methods 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000009313 farming Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003673 groundwater Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- -1 permeability Substances 0.000 description 1
- 238000005373 pervaporation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000009938 salting Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002352 surface water Substances 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 239000010891 toxic waste Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0039—Inorganic membrane manufacture
- B01D67/0041—Inorganic membrane manufacture by agglomeration of particles in the dry state
- B01D67/00411—Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/022—Metals
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Definitions
- Ultrafine metal powder sintered base composite film, preparation method thereof and seawater desalination system Ultrafine metal powder sintered base composite film, preparation method thereof and seawater desalination system
- the invention relates to a membrane separation technology for seawater desalination or water purification or sewage treatment, in particular to an ultrafine metal powder sintered base composite membrane, a preparation method of the composite membrane and a seawater desalination system comprising the composite membrane. Background technique
- seawater desalination As we all know, the shortage of water resources restricts the development of social economy and the improvement of people's lives. Therefore, long-term seawater desalination, brackish water desalination, water purification, sewage treatment or treatment, and the production of high-quality drinking water using surface water as a source of water have always been hot spots for scientific and technological personnel to compete for research and development. Among them, desalination technology and engineering are particularly concerned by coastal cities, because the use of seawater as a freshwater resource will not have any harmful impact on natural resources and the environment.
- the concentrated high-salinity water produced during the desalination process can be prepared into edible salt or industrial salt through subsequent processes, which not only saves the land resources occupied by the salt field due to salting, but also helps to improve the quality of the salt.
- membrane separation technology One of the mainstream technologies associated with this is membrane separation technology.
- Membrane separation techniques including microfiltration, ultrafiltration, dialysis, nanofiltration, reverse osmosis, gas separation, membrane distillation, and pervaporation, are valued for their non-phase change, energy savings, and ease of operation.
- the application prospect of membrane separation technology depends on the performance of the membrane, including permeability, water permeability, operational stability, temperature resistance, hydrolysis resistance and biodegradation. The key to good performance, especially comprehensive performance lies in Preparation of film forming materials and films.
- the reverse osmosis membrane used in seawater desalination mainly includes a cellulose acetate series membrane (CA) and a polyamide series membrane (PS), both of which are organic membranes, and have defects of poor chemical stability and low mechanical strength.
- the material of the inorganic film is generally glass or ceramic, and the composition is an inorganic substance such as titanium dioxide, aluminum oxide, zirconium dioxide, silicon dioxide, calcium oxide, platinum or palladium.
- the inorganic membrane has the characteristics of good chemical stability and high mechanical strength, but its pore diameter is large, and it is difficult to effectively ensure a high level of desalination ability.
- the present invention provides a superfine metal powder sintered base composite film which can be applied to high-efficiency desalination treatment under high-flux and low-pressure conditions in view of defects or deficiencies existing in the prior art.
- the composite membrane can be widely used for seawater desalination, brackish water desalination, pure water preparation, sewage treatment or treatment.
- the invention also provides a preparation method of the above superfine metal powder sintered base composite film.
- the present invention also provides a seawater desalination system comprising the above composite membrane.
- the general technical idea of the present invention is to form an inorganic porous film by filling a void with an inorganic material on a sintered base of an ultrafine metal powder, and covering the inorganic porous film with an active layer of an organic polymer, and the desalting function and porous of the polymer film
- the support functions of the films are combined to form a separation layer, so that the ultrafine metal powder sintered base composite film of the present invention has good selective permeability, water permeability, and operational stability.
- the ultrafine metal powder sintered base composite film comprising: an inorganic porous film formed by filling a void in the sintered base of the ultrafine metal powder with an inorganic material, and an organic polymer active layer covered on the inorganic porous film.
- the inorganic porous film is located on a single-sided surface layer of the superfine metal powder sintered base.
- the ultrafine metal powder sintered base composite film has a tubular shape or a tubular shape.
- the ultrafine metal powder sintered base is a porous titanium substrate prepared by using ultrafine titanium powder.
- the porous metal substrate has an electrolytically activated surface.
- the inorganic porous film is an inorganic porous ceramic film.
- the surface of the porous titanium substrate is filled with a nano ceramic porous material and sintered to form a porous ceramic film layer, and an organic polymer is polymerized in situ on the porous ceramic film layer to form an organic polymer active layer.
- the preparation method of the superfine metal powder sintered base composite film comprises the following steps: Step 1: preparing a porous metal powder substrate by sintering with ultrafine metal powder; Step 2, modifying the surface of the porous metal powder substrate Forming an inorganic porous film; Step 3, polymerizing the organic polymer in situ on the inorganic porous film to form an organic polymer active layer.
- the ultrafine metal powder is ultrafine titanium powder
- the inorganic porous film is a porous ceramic film.
- the seawater desalination system includes a membrane separation layer, wherein the membrane separation layer is the above-mentioned ultrafine metal powder sintered composite membrane.
- the ultrafine metal powder sintered base composite film of the present invention employs a filled void and a laminated structure of a substrate, an inorganic porous film and an organic active layer, and a desalting function of the polymer film and a porous film
- the supporting functions are combined to form a separation layer, so that the ultrafine metal powder sintered base composite film of the present invention has good selective permeability, water permeability and running stability.
- the ultrafine metal powder sintered base composite film of the invention can have good chemical stability and health Inert, non-toxic, and resistant to biodegradability, hydrolysis and temperature change; desalination ability can be achieved
- permeable flow rate can reach 0.8mVn ⁇ h; average pore diameter is 10 ⁇ ⁇ , void ratio is not less than 35%, ultimate withstand voltage is 7.
- OMpa working pressure is 4. 5Mpa, deformation and crack are not generated under running pressure and tension , stable performance, suitable for long-term operation.
- the ultrafine metal powder sintered base composite film of the present invention can be widely used in large seawater desalination plants, large brackish water desalination plants, high purity water preparation and large sewage treatment plants, as well as nuclear pollution wastewater treatment and hospital toxic waste water treatment, and It has the following technical characteristics: low power consumption, simple operation, no consumables, no secondary pollution, no intermediate products, and a service life of up to 10 years.
- the preparation method of the ultrafine metal powder sintered base composite film of the invention is convenient for obtaining the superfine metal powder sintered base composite film conveniently.
- the seawater desalination system of the invention provides a practical application for the superfine metal powder sintered base composite membrane.
- Fig. 1 is a schematic view showing the structure of a membrane element of a superfine metal powder sintered base composite membrane of the present invention, wherein an enlarged view of a portion A shows a composite structure of the membrane.
- the ultrafine metal powder sintered base composite film of the present invention comprises an ultrafine metal powder sintered base, an inorganic porous ceramic film 2, and a high molecular organic active layer 3, which are sequentially disposed in a laminated manner, and an inorganic porous ceramic.
- the film 2 is an inorganic porous film formed by filling a void in the sintered base of the ultrafine metal powder with an inorganic material, and the inorganic porous film is covered with an organic polymer active layer.
- the inorganic porous ceramic film 2 can also be replaced with a glass film having the same characteristics.
- the inorganic porous film is located on the single-sided surface layer of the superfine metal powder sintered base.
- the ultrafine metal powder sintered base composite film shown in the drawing has a tubular shape and may have a tubular shape or the like.
- the ultrafine metal powder sintered base is a porous titanium substrate prepared by sintering ultrafine titanium powder or titanium dioxide powder, and may also be made of a metal crucible or a tantalum oxide.
- the porous titanium substrate has an electrolytically activated surface. The filling gap and the laminated structure of the substrate, the inorganic porous film and the organic active layer are combined, the surface of the porous titanium substrate is filled with the nano ceramic porous material and sintered to form a porous ceramic film layer, and the porous ceramic film layer is formed on the porous ceramic film layer.
- the polymerized organic polymer forms an organic ruthenium molecular active layer.
- the preparation method of the superfine metal powder sintered base composite film comprises the following steps: Step 1, sintered by ultrafine metal powder Porous metal powder substrate; ultra-fine metal powder using titanium as an example of the preparation process is to obtain ultra-fine powder sphere by ionization method, the spherical particle size is controlled below 100 nm, and the spherical rate is over 97%.
- the ultrafine metal powder is placed in an ultrahigh temperature mold and sintered at a high temperature to prepare an ultrafine porous metal powder substrate.
- Step 2 modifying the surface of the porous metal powder substrate to form an inorganic porous film; preparing the inorganic porous film by using a small molecular template on the porous metal substrate to prepare a ceramic layer having a high specific surface area for filling formation A metal-based inorganic film separation layer.
- an organic polymer is polymerized in situ on the inorganic porous film to form an organic polymer active layer.
- the organic polymer active layer is obtained by foaming an organic polymer by a nano-foaming technique to obtain an ultra-high specific area, and then the advanced organic polymer interfacial polymerization technology is used to compound the inorganic film separation layer to prepare a high desalting function, and ⁇ Flux metal-based inorganically filled organic composite separation membrane.
- the advanced organic polymer interfacial polymerization technology is used to compound the inorganic film separation layer to prepare a high desalting function, and ⁇ Flux metal-based inorganically filled organic composite separation membrane.
- alternative materials can be used in the same way.
- the ultrafine metal powder is ultrafine titanium powder
- the inorganic porous membrane is an inorganic porous ceramic membrane.
- the seawater desalination system is first promoted.
- Ultra-fine titanium powder sintering base preparation of seawater desalination membrane technology includes the following contents: Preparation of porous titanium-based material by ultra-fine titanium powder sintering; porous titanium-based surface-modified composite mesoporous ceramic layer technology; mesoporous ceramic layer coated with polymer active layer technology.
- the technology includes: preparation of ultrafine tantalum powder; preparation of titanium-based mold; equalization of sintering technology; ceramic-based composite; application of active ruthenium molecules.
- the key technology of this project is to prepare a porous titanium substrate by sintering ultra-fine titanium powder, forming asymmetric mesoporous ceramics and organic active polymer layer in the porous channel, so that the reverse osmosis active membrane has good permeability and permeability. Flow, running stability, temperature resistance, hydrolysis resistance, biodegradation.
- the first-stage flux of the seawater desalination membrane prepared by the ultrafine titanium powder sintering base is 33%.
- the average throughput of the first stage of the roll film is 15%.
- the seawater desalination membrane has a first-stage passage pressure of 30-50 kg/cm 2 .
- the first stage of the roll film passes through a pressure of 75-83 kg/cm 2 .
- the technology has the following advancement in the prior art - the technology is not limited by the water temperature; the permeability of the technology is more than double that of the existing roll film; the running cost of the technology is 1/3 of the prior art.
- the main uses of this product are seawater desalination, pure water preparation, and advanced wastewater treatment. According to relevant information, large-scale desalination plants are being built in coastal cities across the country.
- the Tianjin Water Supply Group is preparing a seawater desalination project with a daily processing capacity of 100,000 tons.
- the Jinjin Binhai New Area is investigating and preparing to build a desalination project with a daily capacity of 200,000 tons. Liaoning, Liaoning, Qingdao, Zhejiang and other regions are also preparing to build.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Description
超细金属粉烧结基复合膜及其制备方法和海水淡化系统 技术领域
本发明涉及用于海水淡化或水质净化或污水处理的膜分离技术, 特别是一种超细金 属粉烧结基复合膜, 以及该复合膜的制备方法和包含该复合膜的海水淡化系统。 背景技术
众所周知, 水资源的紧缺制约着社会经济的发展和人们生活的改善。 因此, 长期以 来海水淡化、 苦咸水脱盐、 水质净化、 污水处理或治理, 以及以地表水为水源生产高品 质的饮用水等, 一直是科技人员竞相研究开发的热点。 其中的海水淡化技术与工程, 尤 其受到沿海城市的关注, 因为利用海水作为淡水资源对自然资源和环境不会造成任何有 害影响。 海水淡化过程中产生的浓缩高盐度水, 经过后续的工序可制备成食用盐或工业 用盐, 不仅节省了盐场因晒盐而占用的土地资源, 同时还有利于提高盐类的质量。 与此 相关的主流技术之一就是膜分离技术。 膜分离技术包括微滤、 超滤、 渗析、 纳滤、 反渗 透、气体分离、 膜蒸馏和渗透蒸发等, 因其无相变、 节能和操作简单等特点而受到重视。 膜分离技术的应用前景取决于膜的性能, 该性能包括选择透过性、 透水流量、 运行稳定 性、 耐温、 耐水解和耐生物降解等, 而获得良好性能、 特别是综合性能的关键在于成膜 材料和膜的制备上。 目前海水淡化主要是以卷式膜分离技术为主导。 卷式膜的生产制造 商主要是美国的陶氏膜和美国的海德能膜。 膜和膜组件与光纤、 超导等技术一样, 已成 为主导未来工业的六大新技术之一。目前全世界膜和膜组件的销售额在 130亿美元左右, 成套设备和膜工程的市场更大, 而且每年还以 13%-14%的幅度递增。 国内, 经济发达的 沿海城市, 多数是缺水城市, 水资源的短缺已经成为制约经济和社会发展的瓶颈。 开发 高性能的金属基复合反渗透膜的制备技术, 改变目前外国公司垄断的局面, 将有巨大的 经济效益和社会效益。
现有技术中, 在海水淡化中使用的反渗透膜主要有醋酸纤维素系列膜(CA)和聚酰 胺系列膜(PS), 都属于有机膜, 存在化学稳定性差和机械强度低的缺陷。无机膜的材质 一般为玻璃或陶瓷, 组分为二氧化钛、 三氧化二铝、 二氧化锆、 二氧化硅、 氧化钙、 铂、 钯等无机物。 无机膜具有化学稳定性好和机械强度高的特点, 但是, 其孔径较大, 难以 有效保证较高水平的脱盐能力。 发明内容
本发明针对现有技术中存在的缺陷或不足, 提供一种能够适用于大通量、 低压力条 件下进行高效率脱盐处理的超细金属粉烧结基复合膜。 该复合膜可广泛用于海水淡化、 苦咸水脱盐、 纯水制备、 污水处理或治理。
本发明还提供一种上述超细金属粉烧结基复合膜的制备方法。
本发明还提供一种包含上述复合膜的海水淡化系统。
本发明总的技术构思为, 通过在超细金属粉烧结基上以无机材料填充空隙形成无机 多孔膜, 并在该无机多孔膜上覆盖有机高分子活性层, 将高分子膜的脱盐功能与多孔膜 的支持功能结合在一起形成分离层, 使得本发明的超细金属粉烧结基复合膜具有良好的 选择透过性、 透水流量和运行稳定性。
本发明的技术方案如下:
超细金属粉烧结基复合膜, 其特征在于: 包括以无机材料填充超细金属粉烧结基中 的空隙所形成的无机多孔膜, 和在该无机多孔膜上覆盖的有机高分子活性层。
所述无机多孔膜位于所述超细金属粉烧结基的单面表层。
该超细金属粉烧结基复合膜呈管形或管筒形。
所述超细金属粉烧结基为采用超细钛粉制备的多孔钛基材。
所述多孔金属基材具有电解活化表面。
所述无机多孔膜为无机多孔陶瓷膜。
所述多孔钛基材的表面填装纳米陶瓷多孔材料并烧结形成多孔陶瓷膜层, 在该多孔 陶瓷膜层上原位聚合有机高分子形成有机高分子活性层。
超细金属粉烧结基复合膜的制备方法,其特征在于包括以下步骤: 步骤 1, 以超细金 属粉烧结制备多孔的金属粉基材;步骤 2,在多孔的金属粉基材的表面改性, 形成无机多 孔膜; 步骤 3, 在该无机多孔膜上原位聚合有机高分子形成有机高分子活性层。
所述超细金属粉为超细钛粉, 所述无机多孔膜为多孔陶瓷膜。
海水淡化系统, 包括膜分离层, 其特征在于: 所述膜分离层为上述超细金属粉烧结 基复合膜。
本发明的技术效果如下- 由于本发明的超细金属粉烧结基复合膜, 采用了基材、 无机多孔膜和有机活性层的 填充空隙、 叠层结构, 将高分子膜的脱盐功能与多孔膜的支持功能结合在一起形成分离 层, 使得本发明的超细金属粉烧结基复合膜具有良好的选择透过性、 透水流量和运行稳 定性。
经过优化实施, 本发明的超细金属粉烧结基复合膜能够具有良好的化学稳定性和生
物惰性, 并且无毒, 以及耐生物降解性、 耐水解性和耐温度变化性; 脱盐能力能够达到
99%, 透水流量能够达到 0.8mVn · h; 平均孔径为 10 μ πι, 空隙率不小于 35%, 极限耐压 7. OMpa, 工作压力 4. 5Mpa, 在运行压力和拉力下不致发生形变和裂紋, 性能稳定, 适合 长时间运行。
总之, 本发明的超细金属粉烧结基复合膜可广泛用于大型海水淡化工厂、 大型苦咸 水淡化工厂、 高纯水制备和大型的污水处理工厂, 以及核污染废水处理和医院有毒废水 处理, 并且具有以下技术特性: 耗电量低, 操作简单, 无耗材, 无二次污染, 无中间产 物, 使用寿命可长达 10年。
本发明的超细金属粉烧结基复合膜的制备方法, 有利于便捷地获取超细金属粉烧结 基复合膜。
本发明的海水淡化系统, 为超细金属粉烧结基复合膜提供了切实可行的应用。 附图说明
图 1为本发明的超细金属粉烧结基复合膜的膜元件结构示意图, 其中的 A部放大图 表明了膜的复合构造。
附图标记列示如下:
1-超细金属粉烧结基, 2-无机多孔陶瓷膜, 3-高分子有机活性层。 具体实施方式
下面结合附图对本发明作进一步的详细说明。
如图 1所示, 本发明的超细金属粉烧结基复合膜包括以叠层的方式依次设置的超细 金属粉烧结基 1、 无机多孔陶瓷膜 2和高分子有机活性层 3, 无机多孔陶瓷膜 2是以无机 材料填充超细金属粉烧结基中的空隙所形成的无机多孔膜, 该无机多孔膜上覆盖有机高 分子活性层。 其中, 无机多孔陶瓷膜 2也可以用具有相同特性的玻璃膜进行替代。 无机 多孔膜位于超细金属粉烧结基的单面表层。 图中表示的超细金属粉烧结基复合膜呈管筒 形, 也可以呈管形或其他形状。 超细金属粉烧结基是以超细钛粉或者说二氧化钛粉末烧 结制备的多孔钛基材, 也可以釆用金属铌或者说铌氧化物等材料。 多孔钛基材具有电解 活化表面。 基材、 无机多孔膜和有机活性层的填充空隙、 叠层结构的结合方式为, 多孔 钛基材的表面填装纳米陶瓷多孔材料并烧结形成多孔陶瓷膜层, 在该多孔陶瓷膜层上原 位聚合有机高分子形成有机髙分子活性层。
超细金属粉烧结基复合膜的制备方法,包括以下步骤: 步骤 1, 以超细金属粉烧结制
备多孔的金属粉基材; 超细金属粉以钛为例的制备工艺为用离 化法求得超细的粉末 球型, 球型粒径控制在 lOOnm以下、 球型率达到 97%以上。 超细金属粉末装入超高温模 具内经高温烧结后制备成超细多孔金属粉末基材。歩骤 2,在多孔的金属粉基材的表面改 性, 形成无机多孔膜; 无机多孔膜的制备是在多孔金属基材上用小分子模板来制备高比 表面积的陶瓷层来作填充物形成金属基无机膜分离层。步骤 3,在该无机多孔膜上原位聚 合有机高分子形成有机高分子活性层。 有机高分子活性层是通过纳米发泡技术对有机高 分子进行发泡求得超高比面积、 再由先进的有机高分子界面聚合技术对无机膜分离层迸 行复合而制备高脱盐功能、 髙通量的金属基无机填充有机复合的分离膜。 显然, 可替代 的其他材料也可以采用同样的方式。
作为优选: 超细金属粉为超细钛粉, 无机多孔膜为无机多孔陶瓷膜。
作为本发明超细金属粉烧结基复合膜的一种极具经济效益和社会效益的应用, 当首 推海水淡化系统。
超细钛粉烧结基制备海水淡化膜技术包括下列内容: 超细钛粉烧结制备多孔钛基材 料技术; 多孔钛基表面改性复合介孔陶瓷层技术; 介孔陶瓷层涂覆高分子活性层技术。
本技术包括: 超细钕粉的制备; 钛基模具的制备; 烧结技术的均衡; 陶瓷基的复合; 活性髙分子的涂覆。 本项目的技术关键在于, 以超细鈦粉烧结制备多孔钛基材, 在多孔 通道内形成不对称介孔陶瓷和有机活性高分子层, 使反渗透活性膜具有良好的选择透过 性、 透水流量、 运行稳定性, 耐温、 耐水解、 耐生物降解。
本技术与现有技术的比较- 关于脱盐率: 超细钛粉烧结基制备海水淡化膜脱盐达到 99%。 卷式膜平均脱盐率 9S%。
关于通透率: 超细钛粉烧结基制备海水淡化膜一级一段通量为 33%。 卷式膜一级一 段平均通量为 15%。
关于能耗: 超细钛粉烧结基制备海水淡化膜一级一段通过压力 30— 50kg/cm2。 卷式 膜一级一段通过压力 75— 83kg/cm2。
本技术于现有技术比较具有以下的先进性- 本技术不受水温限制; 本技术通透率 现有卷式膜一倍以上; 本技术运行成本是现 有技术的 1/3。
关于产品市场调查和霈求预测- 1、 国内外市场调查和预测:
本产品的主要用途为海水淡化、 纯水制备、 污水深度处理。
根据相关资料显示, 在全国沿海城市正在筹建大型的海水淡化工厂。 特别是天津市 自来水集团正在筹备一个日处理能力达到 10万吨的海水淡化项目,夭津滨海新区正在调 研准备筹建一个日处理量为 20万吨的海水淡化工程。 辽宁的大连、 山东青岛、 浙江等地 区也正在准备筹建。
我国的水资源状况很不乐观,我国可耕地面积在世界中的比例为 7%,但养活人口占 世界 22%, 几大水系分布较为集中, 北方大部分地区都面临缺水问题。 由于人类的过度 索取, 曾有 "千湖之省"称号的湖北省的水域面积就比建国前减少了 3/4, 蓄水能力的下 降不仅引发了洪灾, 而且使宝贵的淡水资源大量流失了; 加之西北、 华北和东北地区的 植被破坏严重, 天然水资源再生问题恶化, 地下水位日益下降, 导致土地沙漠化加剧, 引发恶性循环。 片面追求发展经济, 忽视环境保护和环境治理, 长期造成的严重工业污 染, 使全国数条河流已经面目全非, 虽然近几年的治理取得一些成效, 但部分河流已经 不能作为饮用水的水源, 给下游和沿海城市造成缺水问题, 成为制约社会进步和经济发 展的瓶颈。
我国拥有 18000多公里的海岸线, 沿海岛屿星罗棋布, 但许多岛屿因为缺少淡水而 无人居住, 长期以往, 将会造成我国海洋国土资源的损失, 尤其是接近海域界线附近的 岛屿或岛礁。 发展远海或深海养殖, 虽然可以避免这类问题出现, 同样面临缺少饮用水 问题。
针对以上问题, 除对水资源进行科学管理和优化配置外, 充分发挥高新技术手段, 发展节能型海水淡化技术, 在国民经济的可持续发展中的作用是十分关键的。
目前海水淡化主要是以卷式膜分离技术为主导。本技术目前在全球范围内是独创的。
Claims
1.超细金属粉烧结基复合膜,其特征在于:包括以无机材料填充超细金属粉烧结基中 的空隙所形成的无机多孔膜, 和在该无机多孔膜上覆盖的有机高分子活性层。
2.根据权利要求 1所述的超细金属粉烧结基复合膜,其特征在于:所述无机多孔膜位 于所述超细金属粉烧结基的单面表层。
3.根据权利要求 1所述的超细金属粉烧结基复合膜,其特征在于:该超细金属粉烧结 基复合膜呈管形或管筒形。
4.根据权利要求 1所述的超细金属粉烧结基复合膜,其特征在于:所述超细金属粉烧 结基为采用超细钛粉制备的多孔钛基材。
5.根据权利要求 1所述的超细金属粉烧结基复合膜,其特征在于:所述多孔金属基材 具有电解活化表面。
6.根据权利要求 1所述的超细金属粉烧结基复合膜,其特征在于:所述无机多孔膜为 无机多孔陶瓷膜。
7.根据权利要求 4所述的超细金属粉烧结基复合膜,其特征在于:所述多孔钛基材的 表面填装纳米陶瓷多孔材料并烧结形成多孔陶瓷膜层, 在该多孔陶瓷膜层上原位聚合有 机高分子形成有机高分子活性层。
8.超细金属粉烧结基复合膜的制备方法, 其特征在于包括以下步骤: 步骤 1, 以超细 金属粉烧结制备多孔的金属粉基材; 步骤 2, 在多孔的金属粉基材的表面改性, 形成无机 多孔膜; 步骤 3, 在该无机多孔膜上原位聚合有机高分子形成有机高分子活性层。
9.根据权利要求 8所述的超细金属粉烧结基复合膜的制备方法,其特征在于:所述超 细金属粉为超细钛粉, 所述无机多孔膜为多孔陶瓷膜。
10.海水淡化系统, 包括膜分离层, 其特征在于: 所述膜分离层为上述超细金属粉烧 结基复合膜。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005101307272A CN100337991C (zh) | 2005-12-23 | 2005-12-23 | 超细金属粉烧结基复合膜及其制备方法和海水淡化系统 |
CN200510130727.2 | 2005-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007071166A1 true WO2007071166A1 (fr) | 2007-06-28 |
Family
ID=36865901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2006/003427 WO2007071166A1 (fr) | 2005-12-23 | 2006-12-15 | Membrane composite a base d'agglomere de poudre metallique superfine, son procede de preparation et systeme de desallement de l'eau de mer |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN100337991C (zh) |
WO (1) | WO2007071166A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101368279B (zh) * | 2008-04-16 | 2014-02-19 | 苏州盖依亚生物医药有限公司 | 介孔金属基电生强氧化剂发射材料 |
CN108115143B (zh) * | 2017-12-22 | 2021-03-09 | 苏州第一元素纳米技术有限公司 | 一种过滤器件的制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86102672A (zh) * | 1986-04-11 | 1987-10-21 | 西北大学 | 醋酸纤维素复合钛微孔体超滤膜的制备 |
CN87102849A (zh) * | 1986-04-16 | 1987-10-28 | 艾尔坎国际有限公司 | 组合隔膜 |
CN1043446A (zh) * | 1988-12-24 | 1990-07-04 | 西北大学 | 聚砜-钛微孔体复合超滤膜及其制备 |
CN1184699A (zh) * | 1997-09-29 | 1998-06-17 | 天津大学 | 用于水体净化的介孔分子筛型无机复合膜 |
CN1621137A (zh) * | 2004-10-21 | 2005-06-01 | 山西保太和膜科技有限公司 | 一种不锈钢陶瓷复合膜的制备方法及制品 |
CN1696344A (zh) * | 2005-04-08 | 2005-11-16 | 华南理工大学 | 多孔纳米陶瓷/金属复合膜及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK193287A (da) * | 1986-04-16 | 1987-10-17 | Alcan Int Ltd | Sammensat membran |
US5269926A (en) * | 1991-09-09 | 1993-12-14 | Wisconsin Alumni Research Foundation | Supported microporous ceramic membranes |
CN1583843A (zh) * | 2004-06-07 | 2005-02-23 | 王旭生 | 一种多用途纳米材料复合膜的制备方法 |
-
2005
- 2005-12-23 CN CNB2005101307272A patent/CN100337991C/zh not_active Expired - Fee Related
-
2006
- 2006-12-15 WO PCT/CN2006/003427 patent/WO2007071166A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86102672A (zh) * | 1986-04-11 | 1987-10-21 | 西北大学 | 醋酸纤维素复合钛微孔体超滤膜的制备 |
CN87102849A (zh) * | 1986-04-16 | 1987-10-28 | 艾尔坎国际有限公司 | 组合隔膜 |
CN1043446A (zh) * | 1988-12-24 | 1990-07-04 | 西北大学 | 聚砜-钛微孔体复合超滤膜及其制备 |
CN1184699A (zh) * | 1997-09-29 | 1998-06-17 | 天津大学 | 用于水体净化的介孔分子筛型无机复合膜 |
CN1621137A (zh) * | 2004-10-21 | 2005-06-01 | 山西保太和膜科技有限公司 | 一种不锈钢陶瓷复合膜的制备方法及制品 |
CN1696344A (zh) * | 2005-04-08 | 2005-11-16 | 华南理工大学 | 多孔纳米陶瓷/金属复合膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN100337991C (zh) | 2007-09-19 |
CN1803722A (zh) | 2006-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Recent advances in forward osmosis (FO) membrane: Chemical modifications on membranes for FO processes | |
Long et al. | Fabrication of chitosan nanofiltration membranes by the film casting strategy for effective removal of dyes/salts in textile wastewater | |
Qamar et al. | Synthesis and applications of graphitic carbon nitride (g-C3N4) based membranes for wastewater treatment: A critical review | |
Lee et al. | Novel method for enhancing permeate flux of submerged membrane system in two-phase anaerobic reactor | |
CN110665377B (zh) | 一种高通量抗污染反渗透膜及其制备方法 | |
Zhang et al. | High-performance nanofiltration membrane intercalated by FeOOH nanorods for water nanofiltration | |
Osman et al. | Membrane technology for energy saving: principles, techniques, applications, challenges, and prospects | |
CN106552514A (zh) | 一种一体式智能净水龙头专用复合纳滤膜及其制备方法 | |
Cao et al. | Membrane desalination for water treatment: recent developments, techno-economic evaluation and innovative approaches toward water sustainability | |
CN110975621B (zh) | 一种基于弱碱-弱酸缓冲体系的反渗透膜及其制备方法 | |
KR20100116344A (ko) | 정수 필터 및 그의 제조 방법 | |
CN100490953C (zh) | 陶瓷膜海水预处理方法 | |
Wang et al. | Efficient oil-in-water emulsion separation in the low-cost bauxite ceramic membranes with hierarchically oriented straight pores | |
Alias et al. | Polymeric/ceramic membranes for water reuse | |
Xing et al. | Efficient water purification using stabilized MXene nanofiltration membrane with controlled interlayer spacings | |
Shi et al. | An innovative hollow fiber vacuum membrane distillation-crystallization (VMDC) coupling process for dye house effluent separation to reclaim fresh water and salts | |
Alsayed et al. | Modified nanofiltration membrane treatment of saline water | |
Ma et al. | Design of nanofibre interlayer supported forward osmosis composite membranes and its evaluation in fouling study with cleaning | |
Liu et al. | Dual-function conductive copper hollow fibers for microfiltration and anti-biofouling in electrochemical membrane bioreactors | |
WO2007071166A1 (fr) | Membrane composite a base d'agglomere de poudre metallique superfine, son procede de preparation et systeme de desallement de l'eau de mer | |
WO2018205823A1 (zh) | 一种反渗透膜及其制备方法 | |
CN108176247A (zh) | 用于盐水分离的纳米复合过滤膜及其制备方法和应用 | |
CN112473398B (zh) | 一种高脱盐兼具抗污染的反渗透膜及其制备方法 | |
JP2009065966A5 (zh) | ||
Ng et al. | Fundamentals of aerobic membrane bioreactors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06828341 Country of ref document: EP Kind code of ref document: A1 |