WO2007064019A1 - Liquefied fuel gas composition - Google Patents

Liquefied fuel gas composition Download PDF

Info

Publication number
WO2007064019A1
WO2007064019A1 PCT/JP2006/324306 JP2006324306W WO2007064019A1 WO 2007064019 A1 WO2007064019 A1 WO 2007064019A1 JP 2006324306 W JP2006324306 W JP 2006324306W WO 2007064019 A1 WO2007064019 A1 WO 2007064019A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrocarbon
fuel gas
mol
gas composition
less
Prior art date
Application number
PCT/JP2006/324306
Other languages
French (fr)
Japanese (ja)
Inventor
Manabu Watanabe
Masanori Hirose
Original Assignee
Nippon Oil Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation filed Critical Nippon Oil Corporation
Publication of WO2007064019A1 publication Critical patent/WO2007064019A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/12Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/06Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by destructive hydrogenation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/18Crystalline alumino-silicate carriers the catalyst containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • C10G47/16Crystalline alumino-silicate carriers
    • C10G47/20Crystalline alumino-silicate carriers the catalyst containing other metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/28Propane and butane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a liquefied fuel gas composition, and in particular, using at least one metal selected from Groups 6A and 8 of the Periodic Table using a hydrocarbon fraction containing components derived from animal and vegetable oils and animal fats as a feedstock. And hydrogen containing an inorganic oxide with acid properties
  • the present invention relates to a liquefied fuel gas composition containing hydrocarbons obtained by contacting a hydrocracking catalyst with hydrogen under pressure.
  • Non-Patent Document 1 Regard the quality of liquefied petroleum gas (autogas) for automobiles, there are examples that have been studied with the aim of further reducing exhaust gas (see, for example, Patent Document 1), but examples of studies on reducing carbon dioxide. There is no.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-1 2 10 70
  • Non-Patent Document 1 ⁇ LP Gas 'Data Required (LP Gas' Data Required Editorial Committee) ", industry bulletin, supervised by the Science and Technology Agency, Resource Bureau, 1 96 4 years, p. 1 6 6 Used in Japan About one-quarter of LPG is provided by domestic production and about 34 by import.
  • LP Gas'Data Required LP Gas' Data Required Editorial Committee
  • p. 1 6 6 Used in Japan About one-quarter of LPG is provided by domestic production and about 34 by import.
  • biomass-derived fuel which is the most renewable energy.
  • Use as a fuel is being studied.
  • fuels that can be mixed directly with gasoline and light oil, which are conventional fossil fuels, such as bioethanol, ETB, and biodiesel are being investigated.
  • biomass-derived liquefied fuel gas compositions that can be directly mixed with conventional liquefied petroleum gas.
  • hydrocarbon fractions containing animal and vegetable fats and animal fats and oils as feedstocks, starting from groups 6A and 8 of the periodic table.
  • a liquefied fuel gas composition using a hydrocarbon obtained by contacting a hydrocracking catalyst containing at least one selected metal and an inorganic oxide having acid properties with hydrogen under pressure is found, and the present invention Has been completed. That is, the present invention provides a feedstock consisting of a hydrocarbon fraction containing a component derived from animal and vegetable fats and / or animal fats and at least one metal selected from Groups 6A and 8 of the periodic table.
  • the present invention relates to a liquefied fuel gas composition characterized by containing a hydrocarbon having 9 9.0 mol% or less and a C 4 hydrocarbon of 1.0 mol% or more and 99.0 mol% or less.
  • the present invention also provides a mixed oil obtained by mixing a hydrocarbon hydrocarbon fraction containing a component derived from animal and vegetable fats and oils and Z or animal fats and a petroleum hydrocarbon fraction having a kerosene fraction purified from crude oil or the like at an arbitrary ratio.
  • a feedstock comprising: a hydrocracking catalyst containing at least one metal selected from Groups 6A and 8 of the Periodic Table and an inorganic oxide having acid properties under hydrogen pressure.
  • a sulfur content of 10 mass ppm or less and a carbon number of 3 hydrocarbons obtained by the above is 1.0 mol% or more and 99.0 mol. /.
  • the hydrocarbon having 4 carbon atoms is 1.0 mol% or more and 99.0 mol. Contains hydrocarbons that are less than or equal to 0
  • the present invention relates to a liquefied fuel gas composition.
  • a hydrocarbon fraction containing animal and vegetable fats and oils and components derived from Z or animal fats is used as a raw material oil.
  • a mixed oil obtained by mixing animal and vegetable oils and / or hydrocarbon fractions containing animal fats and oils at an arbitrary ratio is used as a raw material oil.
  • animal and vegetable fats and oils and animal fats and oils-derived components in the present invention refer to animal and vegetable fats and oils and animal and vegetable fats and oils components that are produced or manufactured naturally or artificially.
  • animal fats and animal oils include beef tallow, milk lipid (batter), pork tallow, sheep fat, whale oil, fish oil, liver oil, etc.
  • Vegetable oils and vegetable oil ingredients include coconut palm, olive palm, olive, There are seeds and other parts such as banana, rapeseed (rapeseed), rice bran, sunflower, cottonseed, corn, soybeans, sesame seeds, Amami, etc. There is no problem in use.
  • raw oils may be solid or liquid, but it is preferable to use vegetable oils or vegetable oils as raw materials because of easy handling and high carbon dioxide absorption.
  • waste oils obtained by using these animal oils and vegetable oils for consumer use, industrial use, food use, etc. can be used as raw materials after adding a step for removing impurities.
  • Typical compositions of the fatty acid part of the glyceride compounds contained in these raw materials include butyric acid (C 3 H 7 COOH) and caproic acid, which are fatty acids having no unsaturated bonds in the molecular structure called saturated fatty acids.
  • Myristic acid (C! 3 H 27 COOH), palmitic acid (C! 5 H 3 i COOH), stearic acid (C 17 H 35 COOH), and unsaturated fatty acids with one or more unsaturated bonds
  • Examples include oleic acid (C 7 H 33 COOH), linoleic acid (C 17 H 31 COO H), linolenic acid (C i 7 H 29 COOH), and ricinolenic acid (C 17 H 32 (OH) CO OH).
  • the hydrocarbon part of these fatty acids in natural substances is generally straight chain, but as long as the properties defined in the present invention are satisfied in the present invention, even a structure having a side chain, that is, an isomer is used. can do.
  • the position of the unsaturated bond in the molecule of the unsaturated fatty acid is not limited to those generally found in nature as long as the properties specified in the present invention are satisfied in the present invention, but are also set at arbitrary positions by chemical synthesis. It can also be used.
  • the above-mentioned raw oils have one or more of these fatty acids, and the fatty acids they have differ depending on the raw materials.
  • coconut oil has a relatively large amount of saturated fatty acids such as lauric acid and myristic acid
  • soybean oil has a large amount of unsaturated fatty acids such as oleic acid and linoleic acid. .
  • Petroleum hydrocarbon fractions with kerosene fractions refined from crude oil, etc. used by mixing them in any proportion with hydrocarbon fractions containing animal and vegetable fats and / or animal fats and oils.
  • the fraction obtained in the refining process can be used.
  • the fraction hydrodesulfurization apparatus, hydrocracking apparatus, hydrocracking apparatus, and residual oil direct desulfurization corresponding to a predetermined boiling range obtained from an atmospheric distillation apparatus or a vacuum distillation apparatus.
  • a fraction having a corresponding boiling range obtained from an apparatus, a fluid catalytic cracker, or the like may be mixed alone, or corresponding fractions from a plurality of apparatuses may be mixed.
  • the petroleum hydrocarbon fraction has at least a boiling point
  • the boiling point range in this specification is a value measured according to the method described in JI S K 2 2 5 4 “Distillation test method” or A STM — D 8 6.
  • Petroleum containing raw material oil consisting of hydrocarbon fractions containing components derived from animal and vegetable oils and fats or animal oils, or hydrocarbons containing components derived from animal and vegetable oils and / or animal oils and oils having kerosene fractions refined from crude oil, etc.
  • the mixed oil in which the hydrocarbon fractions are mixed in an arbitrary ratio is the raw material oil.
  • an inorganic oxide having at least one metal selected from Group 6A and Group 8 of the periodic table and an acid property is used.
  • the hydrocracking catalyst contained is brought into contact with hydrogen under pressure.
  • the hydrocracking catalyst contains at least one type of metal selected from Group 6A and Group 8 metals of the periodic table, and preferably two or more types from Group 6A and Group 8. Contains the above metals.
  • C o—M o, N i -M o, N i—C o—M o, N i—W are preferable, N i—M o, N i—C o—M o, N i— W is selected.
  • these metals are converted into sulfides and used in the same manner as the pretreatment catalyst for hydrogenation.
  • these composite oxides contain zeolite.
  • the ratio of alumina to other components can be any ratio to the support, but the alumina content is 96% of the support weight. / 0 or less, preferably 90 weight. It is more desirable that it be less than 0 .
  • the alumina content exceeds 96% by weight, sufficient acidity cannot be obtained, and it tends to be difficult to exhibit a predetermined hydrocracking activity.
  • zeolite crystal skeleton used in hydrocracking catalysts.
  • alumina, titania, polya, gallium, and other components that form the zeolite crystal skeleton used in hydrocracking catalysts.
  • Many types of crystal structures of zeolite have been reported, such as faujasite, beta, mordenite, and pentasil.
  • the faujasite type, beta type, and pentasil type are more preferable, and particularly the faujasite type and beta type are even more desirable in that sufficient hydrocracking activity is exhibited.
  • zeolites those having an alumina content adjusted according to the stoichiometric ratio of raw materials at the start of synthesis, or those subjected to a predetermined hydrothermal treatment and / or acid treatment can be used.
  • ultra-stabilized Y type that is super-stabilized by hydrothermal treatment and / or acid treatment is most desirable.
  • This ultra-stabilized Y-type 2 In addition to the fine pore structure called Miku mouth pores below OA, new pores are formed in the range of 20 to 10 OA, which provides a good reaction field for converting the oxygen content of fats and oils.
  • the volume of the pores having the pore diameter is preferably 0.03 ml / g or more, more preferably 0,04 4 m 1 / g.
  • the pore volume mentioned here can be generally determined by a mercury intrusion method.
  • Known conditions can be used as the hydrothermal treatment conditions.
  • the molar ratio of silica and alumina is preferably 10 to 120, more preferably 15 to 70, and even more preferably 20 to 50. If the molar ratio of silica Z-alumina is higher than 120, the acidity is low, and sufficient hydrocracking activity may not be exhibited. On the other hand, when the molar ratio of silica Z alumina is lower than 10, the acidity is too strong, and there is a risk that the activity is rapidly lowered by promoting the coke formation reaction.
  • the content of zeoli cake is preferably 2 to 80% by weight, more preferably 4 to 75% by weight, based on the weight of the carrier. If the zeolite content is less than the lower limit, the hydrocracking activity may not be exhibited. If the zeolite content exceeds the upper limit, the acidity is too strong and the coke formation reaction There is a risk of promoting.
  • a hydrogenation pretreatment catalyst containing at least one metal selected from Group 6A and Group 8 of the periodic table and hydrogen pressure is used. It is preferable to contact with the hydrocracking catalyst under hydrogen pressure after contacting with.
  • the active metal of the hydrogenation pretreatment catalyst contains at least one metal selected from Group 6A and Group 8 metals of the periodic table, and preferably selected from Group 6A and Group 8 Contains two or more metals.
  • Co-Mo, Ni-M--o, Ni-Co-Mo, Ni--W, and these metals are converted to sulfide during the pretreatment of hydrogenation. To use.
  • a porous inorganic oxide is used as the support for the hydrogenation pretreatment catalyst.
  • it is a porous inorganic oxide containing alumina, and other carrier constituents include siri force, titania, zircoua, and polya.
  • it is a complex oxide containing at least one selected from alumina and other constituent components.
  • phosphorus may be included as another component.
  • the total free Yuryou ingredient other than alumina is 1 to 2 0 weight 0/0, 2-1 5 to contain by weight% Is more desirable. If the content is less than 1% by weight, a sufficient catalyst surface area cannot be obtained, and the activity may be lowered. If the content exceeds 20% by weight, the acidity of the support increases. There is a risk of reducing the activity due to the generation of the core.
  • phosphorus is included as a carrier constituent, its content is preferably 1 to 5% by weight, more preferably 2 to 3.5% by weight in terms of oxide.
  • the raw material that is a precursor of silica, titania, zircoure, and polya, which are carrier constituents other than alumina, and a solution containing general silicon, titanium, zirconium, and boron
  • a solution containing general silicon, titanium, zirconium, and boron can be used.
  • calcium for acid, water glass, silica sol, titanium sulfate for titanium, titanium tetrachloride and various alkoxide salts, zirconium for zirconium sulfate and various alkoxide salts, boron for boric acid, etc. Can be used.
  • phosphorus phosphoric acid or an alkali metal salt of phosphoric acid can be used.
  • the raw materials for the carrier constituents other than these aluminas are added in any step prior to the firing of the carrier.
  • it may be added to an aluminum aqueous solution in advance and then an aluminum hydroxide gel containing these components, may be added to a prepared aluminum hydroxide gel, or water or an acidic aqueous solution may be added to a commercially available alumina intermediate or boehmite powder.
  • a method of coexisting at the stage of preparing aluminum hydroxide gel is more desirable.
  • the active metal content is, for example, the total supported amount of W and Mo is preferably 12 to 35% by weight, more preferably 15 to 30% by weight based on the catalyst weight in terms of oxide conversion. is there. If the total supported amount of W and Mo is less than the lower limit, the activity may decrease due to a decrease in the number of active points.If the upper limit is exceeded, the metal is not effectively dispersed, Similarly, the activity may be reduced.
  • the total supported amount of 0 and ⁇ 1 is preferably 1.5 to 10% by weight, more preferably 2 to 8% by weight based on the catalyst weight in terms of oxide. If the total supported amount of cobalt and nickel is less than 1.5% by weight, a sufficient promoter effect may not be obtained and the activity may decrease. If it is higher than% by weight, the metal will not disperse effectively and may lead to activity as well o
  • the catalytic reaction conditions under hydrogen pressure are as follows: hydrogen pressure 5 to 20 MPa, liquid space velocity (LHSV) 0.:! To 2.2 h 1 , hydrogen Z oil ratio 300 to: I 500 N LZL Desirable conditions are: hydrogen pressure 6.5 to 18 MPa, liquid space velocity 0.2 to 2.0 h 1 , hydrogen / oil ratio 300 to 1 500 NL / L. Pressure 8 ⁇ 15MPa, Liquid space velocity 0.3 ⁇ : I.5h Hydrogen Oil ratio 350 ⁇ 1000N LZL and when the conditions are even more desirable.
  • the liquefied fuel gas composition of the present invention contains such a hydrocarbon, and its content is at least 1.0% by volume, preferably at least 20.0% by volume, more preferably at 98.0%. It is more than volume%.
  • the liquefied fuel gas composition of the present invention comprises a propane mixture which is a hydrocarbon having 3 carbon atoms as a main component and a butane mixture which is a hydrocarbon having 4 carbon atoms.
  • the ratio of the two can be arbitrarily defined according to the location of use and season.
  • the propane mixture is mainly composed of propane and propylene
  • the butane mixture is mainly composed of butane and butylene.
  • the composition of the liquefied fuel gas composition of the present invention can contain a small amount of ethane mixture, butadiene, pentane and the like.
  • the ethane mixture is composed of ethane and ethylene, and the content of the ethane mixture in the liquefied fuel gas composition is preferably 5 mol% or less.
  • the content of butadiene in the liquefied fuel gas composition is preferably 5 mol 0/0 below 0.1, the content of pentane 2 mol 0 /. The following is preferable.
  • the liquefied fuel gas composition of the present invention preferably has a residue at 105 ° C of 10 mass ppm or less. 105.
  • the C residue content is more preferably 5 mass ppm or less, and particularly preferably 2 mass ppm or less from the viewpoint of reducing the deposit generation rate and the frequency of drain extraction.
  • the residue at 105 ° C here is a value measured according to the method specified in ASTM D 2 1 58, but the initial sample amount is 10 OmL as described in the AS TM method.
  • the value to be measured By changing the set temperature from 38 ° C to 75 ° C and 1,05 ° C in order, and finally weighing the remaining residue at 105 ° C. The value to be measured.
  • the holding time at each temperature is not 5 minutes described in the AS TM method, but a sufficient time is taken until almost no evaporation is observed at that temperature.
  • the liquefied fuel gas composition of the present invention preferably has a pH of the residue at 105 ° C of 6 or more.
  • the pH of the residue at 105 ° C is less than 6, there is a risk of increased deposit formation inside the vaporizer.
  • the pH is preferably 8 or less in terms of preventing corrosion between the fuel line and the vaporizer. More preferably, the pH is 6-7, and even more preferably the pH is 7.
  • 105 at 11 residue means that the residue at 105 ° C obtained by the above method for measuring the residue at 105 ° C is 1000 times the amount of distilled water (residue is 1 mg). In the following cases, 1 mL of distilled water) is added and stirred, and then the value obtained by measuring the pH of the aqueous phase with a pH test paper.
  • the sulfur content of the liquefied fuel gas composition of the present invention is preferably 0.02 mass% or less on the basis of the total amount of liquefied fuel gas from the viewpoint of preventing corrosion of the fuel line and preventing sulfur oxide emission into the exhaust gas, More preferably, the content is 0.01% by mass or less, more preferably 0.005% by mass or less, and 0.001% by mass. Most preferably, it is less than or equal to 0 .
  • the sulfur content here means a value measured by J I S K 2240 “Liquefied petroleum gas (LP gas) single sulfur content test method”.
  • the vapor pressure at 40 ° C of the liquefied fuel gas composition of the present invention is preferably 0.28 MPa or more, more preferably 0.38 MPa or more from the viewpoint of securing startability at low temperatures. .
  • it is preferably 1.55 MPa or less, 1. 25 MPa or less is more preferable, and 0.52 MPa or less is most preferable.
  • the vapor pressure at 40 ° C here refers to the value measured by J I S K 2240 “Liquid fossil oil gas (LP gas) one vapor pressure test method”.
  • the density at 15 ° C of the liquefied fuel gas composition of the present invention is preferably 0.500 gZcm 3 or more from the viewpoint of improving fuel efficiency, while it is 0.620 from the viewpoint of preventing heavy components from being mixed. preferably GZC m 3 or less, 0. e OO gZcm 3 below Is more preferable. ,
  • the density at 15 ° C. means a value measured by J I S K 2 2 40 “Liquefied petroleum gas (L P G) —Density test method”.
  • the copper plate corrosion of the liquefied fuel gas composition of the present invention is preferably 1 or less, more preferably la, from the viewpoint of preventing corrosion of fuel piping.
  • copper plate corrosion here means the value measured by JISK 2240. “Liquefied petroleum gas (LP gas) monocopper plate corrosion test method”.
  • the liquefied fuel gas composition of the present invention can be suitably used as a fuel for automobiles.
  • the liquefied fuel gas composition of the present invention comprises at least one selected from Group 6A and Group 8 of the periodic table using a hydrocarbon fraction containing components derived from animal and vegetable oils and animal fats as a feedstock.
  • the liquefied fuel gas compositions of Examples 1 and 2 were prepared using hydrocarbons obtained by contacting a hydrocracking catalyst containing hydrogen under pressure of hydrogen.
  • a liquefied fuel gas composition of Comparative Example 1 was prepared using butane, propane, imported propane, and imported propane produced from a refinery. Table 1 shows the properties of each liquefied fuel gas composition used in Examples and Comparative Examples.
  • an exhaust gas test was conducted and an exhaust gas evaluation was carried out by the following method. The results are shown in Table 2. Again. Then the discharge of these Examples and Comparative Example 0 2 La I conducted Fusaikuru assess the (LCA), were shown in Table 2 by calculating the discharged is C0 2.
  • composition analysis of propane, butane, etc. is the value measured by JIS K 2240 “Liquefied petroleum gas (LL gas) one composition analysis method (gas chromatograph method)”.
  • the initial sample amount was changed from 10 OmL described in the AS TM method to 4 L according to the method specified in ASTM D 2 1 58, and the set temperature was 38 described in the AS TM method. It is a value measured by weighing the residue remaining at 105 ° C in the order of 75 ° C and 105 ° C in order from ° C.
  • the pH of the residue at 05 ° C is 10 000 times the amount of distilled water (residue content is 1 mg). In the following cases, 1 mL of distilled water) is added and stirred, and then the pH of the aqueous phase is obtained by measuring with a pH test paper (pH test paper manufactured by Toyo Roshi Kaisha).
  • Sulfur content is a value measured by J I S K 2240 “Liquefied petroleum gas (LP gas) — Sulfur content test method IV”.
  • Vapor pressure at 40 ° C is a value measured by J I S K 2240 “Liquefied petroleum gas (L ⁇ gas)-Vapor pressure test method”.
  • Density at 5 ° C is a value measured according to JIS K 2240, “Liquefied Petroleum Gas (LPG) — Density Test Method”.
  • Copper plate corrosion is a value measured according to JIS K 2240 “Liquid petroleum gas (LP gas) monocopper plate corrosion test method”. .
  • Fuel supply system Electronically controlled carburetor
  • Table 2 As shown in Table 2, it can be seen that the liquefied fuel gas composition of the present invention can reduce exhaust gas components (THC, CO, NO x) compared to conventional LPG fuel.
  • the present invention provides a liquefied fuel gas composition excellent in the effect of reducing exhaust gas and CO 2 emission from components derived from animal and vegetable fats and oils.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Disclosed is a liquefied fuel gas composition as a fuel derived from a biomass, which is obtained by bringing a raw material oil into contact with a hydrogenolysis catalyst under hydrogen pressure. The raw material oil is composed of animal and plant fats and oils and/or a hydrocarbon distillate containing a component derived from animal and plant fats and oils; and the hydrogenolysis catalyst contains at least one metal selected from group 6A and group 8 elements of the periodic table and an inorganic oxide having acidic properties. The liquefied fuel gas composition contains a hydrocarbon having a sulfur content of not more than 10 ppm by mass, not less than 1.0 mol% but not more than 99.0 mol% of hydrocarbons with 3 carbon atoms, and not less than 1.0 mol% but not more than 99.0 mol% of hydrocarbons with 4 carbon atoms.

Description

液化燃料ガス組成物  Liquefied fuel gas composition
[技術分野] [Technical field]
本発明は液化燃料ガス組成物に関し、 特に動植物油脂および動物油脂由来成分 を含有した炭化水素留分を原料油として、 周期律表第 6 A族および第 8族から選 ばれる少なくとも一種類以上の金属と酸性質を有する無機酸化物を含有する水素 明  The present invention relates to a liquefied fuel gas composition, and in particular, using at least one metal selected from Groups 6A and 8 of the Periodic Table using a hydrocarbon fraction containing components derived from animal and vegetable oils and animal fats as a feedstock. And hydrogen containing an inorganic oxide with acid properties
化分解触媒と水素加圧下で接触させることにより得られる炭化水素を含む液化燃 料ガス組成物に関するものである。The present invention relates to a liquefied fuel gas composition containing hydrocarbons obtained by contacting a hydrocracking catalyst with hydrogen under pressure.
-糸  -Thread
 Rice field
[背景技術] 書 [Background]
近年、 大気汚染状況の悪化に伴い自動車の排気ガスに対する規制が強化されて おり、 軽油を燃料とするディーゼル車、 ことにディーゼルトラック車の使用が制 限される状況が起きてきている。 これに対応するためディーゼル車の排気ガス浄 化システムの開発が行なわれているが、 より排出ガスがクリーンな低公害車への 代替も検討されており、 液化石油ガス (L P G ) を燃料とする トラックなどがデ イーゼルトラック車の代替として期待されている。 さらに、 タクシーでは L P G がその主たる燃料として過去 4 0年近くにわたり使用されている実績がある。(例 えば、 非特許文献 1参照。)。 また、 自動車用液化石油ガス (オートガス) の品質 に関しても、 排気ガスの更なる低減を目指して検討された例はあるが (例えば、 特許文献 1参照。)、 二酸化炭素低減について検討された例はない。  In recent years, as the air pollution situation worsens, regulations on automobile exhaust gas have been tightened, and there has been a situation where the use of diesel vehicles that use light oil as fuel, especially diesel trucks, is restricted. In response to this, an exhaust gas purification system for diesel vehicles has been developed, but alternatives to low-emission vehicles with cleaner emissions are also being considered, and liquefied petroleum gas (LPG) is used as fuel. Trucks are expected to replace diesel trucks. Furthermore, in taxis, LPG has been used as the main fuel for nearly 40 years. (For example, see Non-Patent Document 1.) In addition, regarding the quality of liquefied petroleum gas (autogas) for automobiles, there are examples that have been studied with the aim of further reducing exhaust gas (see, for example, Patent Document 1), but examples of studies on reducing carbon dioxide. There is no.
特許文献 1 :特開平 1 0— 1 2 1 0 7 0号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-1 2 10 70
非特許文献 1: Γ L Pガス'データ必携( L Pガス'データ必携編集委員会編)」, 産報, 科学技術庁資源局監修, 1 9 6 4年, p . 1 6 6 わが国で使用される L P Gは、 その約 1 / 4を国内生産により、 約 3 4を輸 入によりまかなわれている。 昨今、 輸入 L P G供給源の多様化を図るため輸入先 を広げる試みなども行なわれており、 また国内生産分も製油所にて原油蒸留時に 分離されるもの以外に各種石油精製プラントや石油化学工場のプラントなどから の副生物などより得られるものもあり、 L P Gの品質に関し必ずしも従来と同一 とはいえない状況になりつつある。 しかしながらそれらはいずれも化石燃料由来 のものに限定されていた。 Non-Patent Document 1: Γ LP Gas 'Data Required (LP Gas' Data Required Editorial Committee) ", industry bulletin, supervised by the Science and Technology Agency, Resource Bureau, 1 96 4 years, p. 1 6 6 Used in Japan About one-quarter of LPG is provided by domestic production and about 34 by import. In recent years, attempts have been made to expand import destinations in order to diversify import LPG supply sources, and domestic production is separated from oil refineries at the time of crude oil distillation. Some of these are obtained from by-products from other plants, etc., and the LPG quality is not necessarily the same as before. That is not the case. However, they were all limited to those derived from fossil fuels.
排出ガスの低減と同時に地球温暖化問題にも対応するため、 二酸化炭素削減に 効果的な燃料性状が求められており、 その解決手段の 1つとして再生可能エネル ギ一であるバイオマス由来燃料を代替燃料として用いることが検討されている。 現在は、 バイオエタノールや E T B E、 バイオディーゼルなど、 従来の化石燃料 であるガソリンや軽油に直接混合し、 代替できる燃料が検討されている。 しかし ながら従来の液化石油ガスに直接混合して用いる事のできるバイオマス由来液化 燃料ガス組成物に関する検討例、 知見は存在していない。  In order to respond to global warming issues while reducing emissions, there is a need for effective fuel properties to reduce carbon dioxide, and one of the solutions is to replace biomass-derived fuel, which is the most renewable energy. Use as a fuel is being studied. Currently, fuels that can be mixed directly with gasoline and light oil, which are conventional fossil fuels, such as bioethanol, ETB, and biodiesel are being investigated. However, there are no examples or knowledge of biomass-derived liquefied fuel gas compositions that can be directly mixed with conventional liquefied petroleum gas.
[発明の開示] ' [Disclosure of the Invention] '
本発明者らは、 前記課題について鋭意研究を重ねた結果、 動植物油脂および動 物油脂由来成分を含有した炭化水素留分を原料油として、 周期律表第 6 A族およ び第 8族から選ばれる少なくとも一種類以上の金属と酸性質を有する無機酸化物 を含有する水素化分解触媒と水素加圧下で接触させることにより得られる炭化水 素を用いた液化燃料ガス組成物を見出し、本発明を完成するに至ったものである。 すなわち、 本発明は、 動植物油脂および/または動物油脂由来成分を含有した 炭化水素留分からなる原料油を、 周期律表第 6 A族および第 8族から選ばれる少 なくとも一種類以上の金属と酸性質を有する無機酸化物を含有する水素化分解触 媒と水素加圧下で接触させることにより得られる、 硫黄分含有量 1 0質量 p p m 以下、 炭素数 3の炭化水素が 1 . 0モル%以上9 9 . 0モル%以下、 炭素数 4の 炭化水素が 1 . 0モル%以上9 9 . 0モル%以下である炭化水素を含有すること を特徴とする液化燃料ガス組成物に関する。  As a result of intensive research on the above problems, the present inventors have used hydrocarbon fractions containing animal and vegetable fats and animal fats and oils as feedstocks, starting from groups 6A and 8 of the periodic table. A liquefied fuel gas composition using a hydrocarbon obtained by contacting a hydrocracking catalyst containing at least one selected metal and an inorganic oxide having acid properties with hydrogen under pressure is found, and the present invention Has been completed. That is, the present invention provides a feedstock consisting of a hydrocarbon fraction containing a component derived from animal and vegetable fats and / or animal fats and at least one metal selected from Groups 6A and 8 of the periodic table. Sulfur content of 10 mass ppm or less and carbon number of 3 hydrocarbons of 1.0 mol% or more obtained by contacting a hydrocracking catalyst containing an inorganic oxide with acid properties under hydrogen pressure The present invention relates to a liquefied fuel gas composition characterized by containing a hydrocarbon having 9 9.0 mol% or less and a C 4 hydrocarbon of 1.0 mol% or more and 99.0 mol% or less.
また本発明は、 動植物油脂および Zまたは動物油脂由来成分を含有した炭化水 素留分と原油等から精製された灯油留分を有する石油系炭化水素留分を任意の比 率で混合した混合油からなる原料油を、 周期律表第 6 A族および第 8族から選ば れる少なく とも一種類以上の金属と酸性質を有する無機酸化物を含有する水素化 分解触媒と水素加圧下で接触させることにより得られる、 硫黄分含有量 1 0質量 p p m以下、 炭素数 3の炭化水素が 1 . 0モル%以上 9 9 . 0モル。 /。以下、 炭素 数 4の炭化水素が 1 . 0モル%以上 9 9 . 0モル。 /0以下である炭化水素を含有す ることを特徴とする液化燃料ガス組成物に関する。 The present invention also provides a mixed oil obtained by mixing a hydrocarbon hydrocarbon fraction containing a component derived from animal and vegetable fats and oils and Z or animal fats and a petroleum hydrocarbon fraction having a kerosene fraction purified from crude oil or the like at an arbitrary ratio. A feedstock comprising: a hydrocracking catalyst containing at least one metal selected from Groups 6A and 8 of the Periodic Table and an inorganic oxide having acid properties under hydrogen pressure. A sulfur content of 10 mass ppm or less and a carbon number of 3 hydrocarbons obtained by the above is 1.0 mol% or more and 99.0 mol. /. Hereinafter, the hydrocarbon having 4 carbon atoms is 1.0 mol% or more and 99.0 mol. Contains hydrocarbons that are less than or equal to 0 The present invention relates to a liquefied fuel gas composition.
[発明を実施するための最良の形態] [Best Mode for Carrying Out the Invention]
以下、 本発明について詳述する。  Hereinafter, the present invention will be described in detail.
本発明は、 動植物油脂および Zま は動物油脂由来成分を含有した炭化水素留 分を原料油として用いるものである。 .  In the present invention, a hydrocarbon fraction containing animal and vegetable fats and oils and components derived from Z or animal fats is used as a raw material oil. .
また本発明は、 動植物油脂および または動物油脂由来成分を含有した炭化水 素留分とを任意の比率で混合した混合油を原料油として用いるものである。  In the present invention, a mixed oil obtained by mixing animal and vegetable oils and / or hydrocarbon fractions containing animal fats and oils at an arbitrary ratio is used as a raw material oil.
本発明における動植物油脂および動植物油脂由来成分とは、 天然もしくは人工 的に生産、 製造される動植物油脂および動植物油脂由来成分を示している。 動物 油脂および動物油の原料としては、牛脂、牛乳脂質(バタ一)、豚脂、羊脂、鯨油、 魚油、 肝油等が挙げられ、 植物油脂および植物油原料としては、 ココヤシ、 パー ムヤシ、 ォリーブ、 べにばな、 菜種 (菜の花)、 米ぬか、 ひまわり、 綿実、 とうも ろこし、 大豆、 ごま、 アマ二等の種子部及ぴその他の部分が挙げられるが、 これ 以外の油脂、 油であっても使用に問題はない。 これらの原料油に関してはその状 態が固体、 液体であることは問わないが、 取り扱いの容易さおよび二酸化炭素吸 収能ゃ生産性の高さから植物油脂、 植物油を原料とする方が好ましい。 また、 本 発明においては、 これらの動物油、 植物油を民生用、 産業用、 食用等で使用した 廃油も雑物等の除去工程を加えた後に原料とすることができる。  The animal and vegetable fats and oils and animal fats and oils-derived components in the present invention refer to animal and vegetable fats and oils and animal and vegetable fats and oils components that are produced or manufactured naturally or artificially. Examples of animal fats and animal oils include beef tallow, milk lipid (batter), pork tallow, sheep fat, whale oil, fish oil, liver oil, etc. Vegetable oils and vegetable oil ingredients include coconut palm, olive palm, olive, There are seeds and other parts such as banana, rapeseed (rapeseed), rice bran, sunflower, cottonseed, corn, soybeans, sesame seeds, Amami, etc. There is no problem in use. These raw oils may be solid or liquid, but it is preferable to use vegetable oils or vegetable oils as raw materials because of easy handling and high carbon dioxide absorption. In the present invention, waste oils obtained by using these animal oils and vegetable oils for consumer use, industrial use, food use, etc. can be used as raw materials after adding a step for removing impurities.
これらの原料中に含有されるグリセライ ド化合物の脂肪酸部分の代表的な組成 としては、 飽和脂肪酸と称する分子構造中に不飽和結合を有しない脂肪酸である 酪酸 (C3H7COOH)、 カプロン酸 (CsHnCOOH 力プリル酸 (C?!^ 5COOH)、カプリン酸(C9H19COOH)、ラウリン酸(C i
Figure imgf000005_0001
Typical compositions of the fatty acid part of the glyceride compounds contained in these raw materials include butyric acid (C 3 H 7 COOH) and caproic acid, which are fatty acids having no unsaturated bonds in the molecular structure called saturated fatty acids. (CsHnCOOH force prillic acid (C?! ^ 5 COOH), capric acid (C 9 H 19 COOH), lauric acid (C i
Figure imgf000005_0001
ミリスチン酸 (C! 3H27COOH)、 パルミチン酸 (C! 5H3 i COOH)、 ステ アリン酸 (C17H35COOH)、 及び不飽和結合を 1つもしくは複数有する不飽 和脂肪酸であるォレイン酸 (C 7H33COOH)、 リノール酸 (C17H31COO H)、 リノレン酸 (C i 7H29COOH)、 リシノレン酸 (C17H32 (OH) CO OH) 等が挙げられる。 自然界の物質におけるこれら脂肪酸の炭化水素部は一般 に直鎖であることが多いが、 本発明において本発明で規定する性状を満たす限り で、側鎖を有する構造、すなわち異性体であっても使用することができる。また、 不飽和脂肪酸における分子中の不飽和結合の位置も、 本発明において本発明で規 定する性状を満たす限りで、自然界で一般に存在確認されているものだけでなく、 化学合成によって任意の位置に設定されたものも使用することができる。 Myristic acid (C! 3 H 27 COOH), palmitic acid (C! 5 H 3 i COOH), stearic acid (C 17 H 35 COOH), and unsaturated fatty acids with one or more unsaturated bonds Examples include oleic acid (C 7 H 33 COOH), linoleic acid (C 17 H 31 COO H), linolenic acid (C i 7 H 29 COOH), and ricinolenic acid (C 17 H 32 (OH) CO OH). The hydrocarbon part of these fatty acids in natural substances is generally straight chain, but as long as the properties defined in the present invention are satisfied in the present invention, even a structure having a side chain, that is, an isomer is used. can do. Also, The position of the unsaturated bond in the molecule of the unsaturated fatty acid is not limited to those generally found in nature as long as the properties specified in the present invention are satisfied in the present invention, but are also set at arbitrary positions by chemical synthesis. It can also be used.
上述の原料油 (動植物油脂および動植物油脂由来成分) はこれらの脂肪酸を 1 種または複数種有しており、 原料によってその有する脂肪酸類は異なっている。 例えば、 ココヤシ油はラウリン酸、 ミリスチン酸等の飽和脂肪酸を比較的多く有 しているが、 大豆油はォレイン酸、 リノール酸等の不飽和脂肪酸を多く有してい る。 .  The above-mentioned raw oils (components derived from animal and vegetable fats and oils and animal fats and oils) have one or more of these fatty acids, and the fatty acids they have differ depending on the raw materials. For example, coconut oil has a relatively large amount of saturated fatty acids such as lauric acid and myristic acid, while soybean oil has a large amount of unsaturated fatty acids such as oleic acid and linoleic acid. .
動植物油脂および または動物油脂由来成分を含有した炭化水素留分に、 任意 の比率で混合して用いる原油等から精製された灯油留'分を有する石油系炭化水素 留分とは、 一般的な石油精製工程で得られる留分を用いることができ、 例えば、 常圧蒸留装置や減圧蒸留装置から得られる所定の沸点範囲に相当する留分ゃ水素 化脱硫装置、 水素化分解装置、 残油直接脱硫装置、 流動接触分解装置などから得 られる、 相当する沸点範囲の留分を単独で混合していてもよく、 複数の装置から の相当する留分を混合していてもよい。 該石油系炭化水素留分は少なくとも沸点 Petroleum hydrocarbon fractions with kerosene fractions refined from crude oil, etc. used by mixing them in any proportion with hydrocarbon fractions containing animal and vegetable fats and / or animal fats and oils. The fraction obtained in the refining process can be used. For example, the fraction hydrodesulfurization apparatus, hydrocracking apparatus, hydrocracking apparatus, and residual oil direct desulfurization corresponding to a predetermined boiling range obtained from an atmospheric distillation apparatus or a vacuum distillation apparatus. A fraction having a corresponding boiling range obtained from an apparatus, a fluid catalytic cracker, or the like may be mixed alone, or corresponding fractions from a plurality of apparatuses may be mixed. The petroleum hydrocarbon fraction has at least a boiling point
3 0 0 °C以上の留分を含んでいることが望ましく、 沸点 7 0. 0 °Cより重質な留分 を含んでいないことがより望ましい。 該石油系炭化水素留分が 3 0 0 °C以上の留 分を含んでいない場合、 過度の分解によって十分な液収率が得られない恐れがあ り、 7 0 0 °Cより重質な留分を含む場合、 重質成分によって触媒上での炭素質形 成が促進されることによって活性点を被覆し、 活性低下に繫がる恐れがある。 な お、 本明細書における沸点範囲とは、 J I S K 2 2 5 4 「蒸留試験方法卜ま たは A S T M— D 8 6に記載の方法に準拠して測定される値である。 It is desirable to contain a fraction with a temperature of 300 ° C or higher, and it is more desirable not to contain a fraction with a boiling point higher than 70 ° C. If the petroleum hydrocarbon fraction does not contain a fraction of 300 ° C or higher, there is a risk that a sufficient liquid yield may not be obtained due to excessive decomposition, which is heavier than 700 ° C. When a fraction is included, the active component is covered by the carbon component formation on the catalyst by the heavy component, which may lead to a decrease in activity. The boiling point range in this specification is a value measured according to the method described in JI S K 2 2 5 4 “Distillation test method” or A STM — D 8 6.
動植物油脂おょぴ または動物油脂由来成分を含有した炭化水素留分からなる 原料油、 または動植物油脂および または動物油脂由来成分を含有した炭化水素 留分と原油等から精製された灯油留分を有する石油系炭化水素留分を任意の比率 で混合した混合油を原料油は、 次に周期律表第 6 A族および第 8族から選ばれる 少なくとも一種類以上の金属と酸性質を有する無機酸化物を含有する水素化分解 触媒と水素加圧下で接触させる。  Petroleum containing raw material oil consisting of hydrocarbon fractions containing components derived from animal and vegetable oils and fats or animal oils, or hydrocarbons containing components derived from animal and vegetable oils and / or animal oils and oils having kerosene fractions refined from crude oil, etc. The mixed oil in which the hydrocarbon fractions are mixed in an arbitrary ratio is the raw material oil. Next, an inorganic oxide having at least one metal selected from Group 6A and Group 8 of the periodic table and an acid property is used. The hydrocracking catalyst contained is brought into contact with hydrogen under pressure.
水素化分解触媒としては、 周期律表第 6 A族および第 8族金属から選ばれる少 なくとも一種類の金属を含有し、 望ましくは第 6 A族および第 8族から二種類以 上の金属を含有している。 例えば C o— M o , N i - M o , N i— C o— M o , N i— Wが挙げられ、 望ましくは N i— M o、 N i— C o— M o , N i— Wが選 ばれる。 水素化分解に際しては水素化前処理触媒と同様にこれらの金属を硫化物 の状態に転換して使用する。 The hydrocracking catalyst contains at least one type of metal selected from Group 6A and Group 8 metals of the periodic table, and preferably two or more types from Group 6A and Group 8. Contains the above metals. For example, C o—M o, N i -M o, N i—C o—M o, N i—W are preferable, N i—M o, N i—C o—M o, N i— W is selected. In hydrocracking, these metals are converted into sulfides and used in the same manner as the pretreatment catalyst for hydrogenation.
水素化分解触媒の担体としては、 酸性質を有する無機酸化物が採用されるが、 シリカ、 アルミナ、 ポリア、 ジルコニァ、 マグネシア、 ゼォライ トのうち少なく とも二種類を含有していることが望ましい。 例えば、 シリカ一アルミナ、 チタ二 ァ一アルミナ、 ボリァーアルミナ、 ジルコユア一アルミナ、 チタニア—ジルコ二 ァ一アルミナ、 シリカ—ボリァーアルミナ、 シリカ—ジルコユア—アルミナ、 シ リカ一チタニア一アルミナ、 シリカ—チタユア—ジルコニァ—アルミナが望まし く、 シリカ—アルミナ、 ボリア一アルミナ、 ジルコユア一アルミナ、 チタニア一 ジルコユア—アルミナ、 シリカ—ボリァーアルミナ、 シリカ—ジルコユア—アル ミナ、 シリカ一チタニア一アルミナがより望ましく、 シリカ一アルミナ、 シリカ —ジルコニァ—アルミナがさらにより望ましい。 これらの複合酸化物にゼォライ トを含有されていることがもっとも望ましい。 アルミナが含まれる場合、 アルミ ナと他の成分との比率は担体に対して任意の割合を取り うるが、 アルミナの含有 量が担体重量の 9 6重量。 /0以下であることが望ましく、 9 0重量。 /0以下であるこ とがより望ましい。 アルミナ含有量が 9 6重量%を越える場合には、 十分な酸性 質が得られず所定の水素化分解活性を発揮することが難しい傾向にある。 As the carrier for the hydrocracking catalyst, an inorganic oxide having an acid property is adopted, but it is desirable to contain at least two of silica, alumina, polya, zirconia, magnesia, and zeolite. For example, silica-alumina, titania-alumina, poly-alumina, zirco-alumina, titania-zirconia-alumina, silica-bora-alumina, silica-zirco-alumina, silica-titania-alumina, silica-tita-zirconia-alumina Silica-alumina, boria-alumina, zirconia-alumina, titania-zirconia-alumina, silica-boria-alumina, silica-zircoua-alumina, silica-titania-alumina are more desirable, silica-alumina, silica-zirconia —Alumina is even more desirable. It is most desirable that these composite oxides contain zeolite. When alumina is included, the ratio of alumina to other components can be any ratio to the support, but the alumina content is 96% of the support weight. / 0 or less, preferably 90 weight. It is more desirable that it be less than 0 . When the alumina content exceeds 96% by weight, sufficient acidity cannot be obtained, and it tends to be difficult to exhibit a predetermined hydrocracking activity.
水素化分解触媒に用いられるゼォライ トの結晶骨格を構成する成分としては、 シリカのほかアルミナ、 チタ二了、 ポリア、.ガリウムなどがあるが、 シリカとァ ルミナを含むゼォライ ト、 すなわちアルミノシリケ一卜が望ましい。 ゼォライ ト の結晶構造には多くの種類が報告されているが、 たとえばフォージャサイ ト型、 ベータ型、 モルデナィ ト型、 ペンタシル型などがある。 本発明においては、 十分 な水素化分解活性を発揮するという点でフォージャサイ 卜型、 ベータ型、 ペンタ シル型がより望ましく、 特にフォージャサイ ト型、 ベータ型がさらにより望まし い。 これらのゼォライ トは、 合成開始時の原材料の量論比に応じてアルミナ含有 量を調整したもの、 あるいは所定の水熱処理および または酸処理を施したもの を用いることができる。 このうち、 水熱処理および または酸処理により超安定 化した超安定化 Y型がもっとも望ましい。 この超安定化 Y型はゼォライ ト本来の 2 O A以下のミク口細孔と呼ばれる微細細孔構造に加え、 2 0〜 1 0 O Aの範囲 に新たな細孔が形成されており油脂成分の酸素分を転換するために良好な反応場 を提供しているものと推察され、 該細孔直径を有する細孔の容積は 0 . 0 3 m l / g以上が ましく、 0 , 0 4 m 1 / gがより望ましい。 なお、 ここでいう細孔 容積は、 一般的には水銀圧入法によって求めることができる。 水熱処理条件とし ては公知の条件を用いることができる。 超安定化 Y型の物性としては、 シリカ . アルミナのモル比率として 1 0〜 1 2 0が好ましく、 1 5〜 7 0がより好ましく、 2 0〜 5 0がさらにより好ましい。 シリカ Zアルミナのモル比率が 1 2 0よりも 高い場合酸性質が低く、十分な水素化分解活性を発揮できない恐れがある。また、 シリカ Zアルミナのモル比率が 1 0より低い場合には酸性質が強すぎ、 コーク生 成反応を促進することにより急激な活性低下を ¾く恐れがある。 ゼォライ 卜の含 有量は担体重量に対して 2〜8 0重量%が望ましく、 4〜 7 5重量%がより望ま しい。 ゼォライ ト含有量が前記下限値に満たない場合には水素化分解活性を発揮 できない恐れがあり、 ゼォ'ライ ト含有量が前記上限値を超える場合には酸性質が 強すぎ、 コーク生成反応を促進する恐れがある。 In addition to silica, there are alumina, titania, polya, gallium, and other components that form the zeolite crystal skeleton used in hydrocracking catalysts. Is desirable. Many types of crystal structures of zeolite have been reported, such as faujasite, beta, mordenite, and pentasil. In the present invention, the faujasite type, beta type, and pentasil type are more preferable, and particularly the faujasite type and beta type are even more desirable in that sufficient hydrocracking activity is exhibited. As these zeolites, those having an alumina content adjusted according to the stoichiometric ratio of raw materials at the start of synthesis, or those subjected to a predetermined hydrothermal treatment and / or acid treatment can be used. Of these, ultra-stabilized Y type that is super-stabilized by hydrothermal treatment and / or acid treatment is most desirable. This ultra-stabilized Y-type 2 In addition to the fine pore structure called Miku mouth pores below OA, new pores are formed in the range of 20 to 10 OA, which provides a good reaction field for converting the oxygen content of fats and oils. The volume of the pores having the pore diameter is preferably 0.03 ml / g or more, more preferably 0,04 4 m 1 / g. The pore volume mentioned here can be generally determined by a mercury intrusion method. Known conditions can be used as the hydrothermal treatment conditions. As the physical property of the ultra-stabilized Y type, the molar ratio of silica and alumina is preferably 10 to 120, more preferably 15 to 70, and even more preferably 20 to 50. If the molar ratio of silica Z-alumina is higher than 120, the acidity is low, and sufficient hydrocracking activity may not be exhibited. On the other hand, when the molar ratio of silica Z alumina is lower than 10, the acidity is too strong, and there is a risk that the activity is rapidly lowered by promoting the coke formation reaction. The content of zeoli cake is preferably 2 to 80% by weight, more preferably 4 to 75% by weight, based on the weight of the carrier. If the zeolite content is less than the lower limit, the hydrocracking activity may not be exhibited. If the zeolite content exceeds the upper limit, the acidity is too strong and the coke formation reaction There is a risk of promoting.
本発明では、 原料油を水素加圧下で接触処理するに際しては、 周期律表第 6 A 族および第 8族から選ばれる少なくとも一種類以上の金属を含有する水素化前処 理触媒と水素加圧下で接触させた後に、 前記水素化分解触媒と水素加圧下で接触 させることが好ましい。  In the present invention, when the feedstock is subjected to contact treatment under hydrogen pressure, a hydrogenation pretreatment catalyst containing at least one metal selected from Group 6A and Group 8 of the periodic table and hydrogen pressure is used. It is preferable to contact with the hydrocracking catalyst under hydrogen pressure after contacting with.
水素化前処理触媒の活性金属としては、 周期律表第 6 A族および第 8族金属か ら選ばれる少なくとも一種類の金属を含有し、 望ましくは第 6 A族および第 8族 から選択される二種類以上の金属を含有している。 例えば C o— M o , N i -M - - o , N i - C o -M o , N i— Wが挙げられ、 水素化前処理に際しては、 これら の金属を硫化物の状態に転換して使用する。  The active metal of the hydrogenation pretreatment catalyst contains at least one metal selected from Group 6A and Group 8 metals of the periodic table, and preferably selected from Group 6A and Group 8 Contains two or more metals. For example, Co-Mo, Ni-M--o, Ni-Co-Mo, Ni--W, and these metals are converted to sulfide during the pretreatment of hydrogenation. To use.
水素化前処理触媒の担体としては多孔性の無機酸化物が用いられる。 一般的に はアルミナを含む多孔性無機酸化物であり、 その他の担体構成成分としてはシリ 力、 チタニア、 ジルコユア、 ポリアなどが挙げられる。 望ましくはアルミナとそ の他構成成分から選ばれる少なくとも 1種類以上を含む複合酸化物である。また、 このほかの成分として、 リンを含んでいてもよい。 アルミナ以外の成分の合計含 有量は 1〜2 0重量0 /0であることが好ましく、 2〜 1 5重量%含有していること がより望ましい。 含有量が 1重量%に満たない場合、 十分な触媒表面積を得るこ とが出来ず、 活性が低くなる恐れがあり、 含有量が 2 0重量%を超える場合、 担 体の酸性質が上昇し、 コ一ク生成による活性低下を招く恐れがある。 リンを担体 構成成分として含む場合には、 その含有量は、 酸化物換算で 1〜5重量%である ことが望ましく、 2 ~ 3 . 5重量%がさらに望ましい。 A porous inorganic oxide is used as the support for the hydrogenation pretreatment catalyst. Generally, it is a porous inorganic oxide containing alumina, and other carrier constituents include siri force, titania, zircoua, and polya. Desirably, it is a complex oxide containing at least one selected from alumina and other constituent components. Moreover, phosphorus may be included as another component. Preferably the total free Yuryou ingredient other than alumina is 1 to 2 0 weight 0/0, 2-1 5 to contain by weight% Is more desirable. If the content is less than 1% by weight, a sufficient catalyst surface area cannot be obtained, and the activity may be lowered. If the content exceeds 20% by weight, the acidity of the support increases. There is a risk of reducing the activity due to the generation of the core. When phosphorus is included as a carrier constituent, its content is preferably 1 to 5% by weight, more preferably 2 to 3.5% by weight in terms of oxide.
アルミナ以外の担体構成成分である、 シリカ、 チタニア、 ジルコユア、 ポリア の前駆体となる原料は特に限定されず、一般的なケィ素、チタン、ジルコニウム、 ボロンを含む溶液を用いることができる。 例えば、 ケィ素についてはヶィ酸、 水 ガラス、 シリカゾルなど、 チタンについては硫酸チタン、 四塩化チタンや各種ァ ルコキサイド塩など、 ジルコニウムについては硫酸ジルコニウム、 各種アルコキ サイ ド塩など、 ボロンについてはホウ酸などを用いることができる。 リンとして は、 リン酸あるいはリン酸のアルカリ金属塩などを用いることができる。  There are no particular limitations on the raw material that is a precursor of silica, titania, zircoure, and polya, which are carrier constituents other than alumina, and a solution containing general silicon, titanium, zirconium, and boron can be used. For example, calcium for acid, water glass, silica sol, titanium sulfate for titanium, titanium tetrachloride and various alkoxide salts, zirconium for zirconium sulfate and various alkoxide salts, boron for boric acid, etc. Can be used. As phosphorus, phosphoric acid or an alkali metal salt of phosphoric acid can be used.
とれらのアルミナ以外の担体構成成分の原料は、 担体の焼成より前のいずれか の工程において添加する方法が望ましい。 例えば予めアルミニウム水溶液に添加 した後にこれらの構成成分を含む水酸化アルミニウムゲルとしてもよく、 調合し た水酸化アルミニゥムゲルに添加してもよく、 あるいは市販のアルミナ中間体や ベーマイ トバウダーに水あるいは酸性水溶液を添加して混練する工程に添加して もよいが、 水酸化アルミニウムゲルを調合する段階で共存させる方法がより望ま しい。 これらのアルミナ以外の担体構成成分の効果発現機構は解明できていない が、 アルミニウムと複合的な酸化物状態を形成していると思われ、 このことが担 体表面積の増加や、 活性金属となんらかの相互作用を生じることにより、 活性に 影響を及ぼしていることが考えられる。  It is desirable that the raw materials for the carrier constituents other than these aluminas are added in any step prior to the firing of the carrier. For example, it may be added to an aluminum aqueous solution in advance and then an aluminum hydroxide gel containing these components, may be added to a prepared aluminum hydroxide gel, or water or an acidic aqueous solution may be added to a commercially available alumina intermediate or boehmite powder. Although it may be added to the step of adding and kneading, a method of coexisting at the stage of preparing aluminum hydroxide gel is more desirable. Although the mechanism of the effect of these carrier constituents other than alumina has not been elucidated, it is thought that they form a complex oxide state with aluminum, which increases the surface area of the support, and some sort of active metal. It is considered that the activity is affected by the interaction.
活性金属の含有量は、 例えば、 Wと M oの合計担持量は、 望ましくは酸化物換 算で触媒重量に対して 1 2〜3 5重量%、 より望ましくは 1 5〜 3 0重量%であ る。 Wと M oの合計担持量が前記下限値に満たない場合、 活性点数の減少により 活性が低下する可能性があり、 前記上限値を超える場合には、 金属が効果的に分 散せず、 同様に活性の低下を招く可能性がある。 また、 じ 0と ^ 1の合計担持量 は、 望ましくは酸化物換算で触媒重量に対して 1 . 5〜 1 0重量%、 より望まし くは 2〜8重量%である。 コバルトとニッケルの合計担持量が 1 . 5重量%未満 の場合には充分な助触媒効果が得られず活性が低下してしまう恐れがあり、 1 0 重量%より多い場合には、 金属が効果的に分散せず、 同様に活性を招く可能性が ある o The active metal content is, for example, the total supported amount of W and Mo is preferably 12 to 35% by weight, more preferably 15 to 30% by weight based on the catalyst weight in terms of oxide conversion. is there. If the total supported amount of W and Mo is less than the lower limit, the activity may decrease due to a decrease in the number of active points.If the upper limit is exceeded, the metal is not effectively dispersed, Similarly, the activity may be reduced. The total supported amount of 0 and ^ 1 is preferably 1.5 to 10% by weight, more preferably 2 to 8% by weight based on the catalyst weight in terms of oxide. If the total supported amount of cobalt and nickel is less than 1.5% by weight, a sufficient promoter effect may not be obtained and the activity may decrease. If it is higher than% by weight, the metal will not disperse effectively and may lead to activity as well o
水素加圧下における接触反応条件としては、 水素圧力 5〜20MP a、 液空間 速度 (LHSV) 0. :!〜 2. 2 h 1、 水素 Z油比 300〜: I 500 N LZLと いった条件で行われるこどが望ましく、 水素圧力 6. 5〜1 8MP a、 液空間速 度 0. 2〜2. 0 h 1、 水素/油比 300〜 1 500 NL/Lといった条件がよ り望ましく、 水素圧力 8〜 1 5MP a、 液空間速度 0. 3〜: I. 5 h 水素 油比 350〜 1000 N LZLといつだ条件がさらにより望ましレ、。 The catalytic reaction conditions under hydrogen pressure are as follows: hydrogen pressure 5 to 20 MPa, liquid space velocity (LHSV) 0.:! To 2.2 h 1 , hydrogen Z oil ratio 300 to: I 500 N LZL Desirable conditions are: hydrogen pressure 6.5 to 18 MPa, liquid space velocity 0.2 to 2.0 h 1 , hydrogen / oil ratio 300 to 1 500 NL / L. Pressure 8 ~ 15MPa, Liquid space velocity 0.3 ~: I.5h Hydrogen Oil ratio 350 ~ 1000N LZL and when the conditions are even more desirable.
水素加圧下での接触処理により、 硫黄分含有量 10質量 p pm以下、 炭素数 3 の炭化水素が 1. 0モル%以上99. 0モル%以下、 炭素数 4の炭化水素が 1. 0モル%以上 99. 0モル%以下である炭化水素が得られる。  By contact treatment under hydrogen pressure, sulfur content 10 mass p pm or less, carbon number 3 hydrocarbons 1.0 mol% to 99.0 mol%, carbon number 4 hydrocarbons 1.0 mol % To 99.0 mol% of hydrocarbon is obtained.
本発明の液化燃料ガス組成物はかかる炭化水素を含有するものであり、 その含 有割合は少なく とも 1. 0容量%以上であり、 好ましくは 20. 0容量%以上、 さらに好ましくは 98. 0容量%以上である。  The liquefied fuel gas composition of the present invention contains such a hydrocarbon, and its content is at least 1.0% by volume, preferably at least 20.0% by volume, more preferably at 98.0%. It is more than volume%.
本発明の液化燃料ガス組成物は、 主成分として炭素数 3の炭化水素であるプロ パン混合物と炭素数 4の炭化水素であるブタン混合物とからなる。 両者の割合は 使用地^、 季節により任意に規定できる。 プロパン混合物は主にプロパンおよび プロピレンよりなり、 ブタン混合物は主にブタンおよびブチレンよりなる。 本発 明の液化燃料ガス組成物の組成はこれら以外に少量のェタン混合物、ブタジエン、 ペンタンなどを含有することができる。 ェタン混合物はェタンおよびエチレンよ りなり、 液化燃料ガス組成物中におけるェタン混合物の含有量は 5モル%以下で あることが好ましい。 また液化燃料ガス組成物中におけるブタジエンの含有量は 0. 5モル0 /0以下であることが好ましく、 ペンタンの含有量は 2モル0 /。以下であ ることが好ましい。 The liquefied fuel gas composition of the present invention comprises a propane mixture which is a hydrocarbon having 3 carbon atoms as a main component and a butane mixture which is a hydrocarbon having 4 carbon atoms. The ratio of the two can be arbitrarily defined according to the location of use and season. The propane mixture is mainly composed of propane and propylene, and the butane mixture is mainly composed of butane and butylene. In addition to these, the composition of the liquefied fuel gas composition of the present invention can contain a small amount of ethane mixture, butadiene, pentane and the like. The ethane mixture is composed of ethane and ethylene, and the content of the ethane mixture in the liquefied fuel gas composition is preferably 5 mol% or less. The content of butadiene in the liquefied fuel gas composition is preferably 5 mol 0/0 below 0.1, the content of pentane 2 mol 0 /. The following is preferable.
本発明の液化燃料ガス組成物は、 105°C残渣分が 10質量 p pm以下である ことが好ましい。 105。C残渣分は、 デポジット生成速度おょぴドレン抜き出し 頻度を減少させることができる観点から 5質量 p pm以下であることがより好ま しく、 2質量 p pm以下であることが特に好ましい。  The liquefied fuel gas composition of the present invention preferably has a residue at 105 ° C of 10 mass ppm or less. 105. The C residue content is more preferably 5 mass ppm or less, and particularly preferably 2 mass ppm or less from the viewpoint of reducing the deposit generation rate and the frequency of drain extraction.
なお、 ここでいう 105°C残渣分とは、 ASTM D 2 1 58に定める方法に 準拠して測定される値であるが、 初期サンプル量を AS TM法記載の 10 OmL から 4 Lに変更し、 設定温度を 38°Cからさらに 75°C、 1,05 °Cと順に変えて ゆき、 最終的には 105°Cにて残った残渣の重量を枰量することにより測定され る値のことをいう。 この際、 各温度での保持時間は AS TM法記載の 5分ではな くその温度での蒸発がほぼ認められなくなるまでの十分な時間をとるものとする。 本発明の液化燃料ガス組成物は、 105°C残渣分の pHが 6以上であることが 好ましい。 105°C残渣分の pHが 6未満であると、 ベーパライザ一内部のデポ ジッ ト生成が増加する恐れがある。 一方、 燃料ラインとベーパライザ一の腐食防 止の点で pHは 8以下であることが好ましい。 より好ましくは pHが 6〜7であ り、 さらに好ましくは p Hが 7である。 The residue at 105 ° C here is a value measured according to the method specified in ASTM D 2 1 58, but the initial sample amount is 10 OmL as described in the AS TM method. By changing the set temperature from 38 ° C to 75 ° C and 1,05 ° C in order, and finally weighing the remaining residue at 105 ° C. The value to be measured. At this time, the holding time at each temperature is not 5 minutes described in the AS TM method, but a sufficient time is taken until almost no evaporation is observed at that temperature. The liquefied fuel gas composition of the present invention preferably has a pH of the residue at 105 ° C of 6 or more. If the pH of the residue at 105 ° C is less than 6, there is a risk of increased deposit formation inside the vaporizer. On the other hand, the pH is preferably 8 or less in terms of preventing corrosion between the fuel line and the vaporizer. More preferably, the pH is 6-7, and even more preferably the pH is 7.
なお、 ここでいう 105で残渣分の 11とは、 上述の 105 °C残渣分の測定方 法で得られた 105 °C残渣分に残渣分の 1000倍量の蒸留水 (残渣分が 1 mg 以下の場合は 1 mLの蒸留水) を加え攪拌した後、 水相部分の pHを pH試験紙 により測定することによって得られる値のことをいう。  Note that “105 at 11 residue” means that the residue at 105 ° C obtained by the above method for measuring the residue at 105 ° C is 1000 times the amount of distilled water (residue is 1 mg). In the following cases, 1 mL of distilled water) is added and stirred, and then the value obtained by measuring the pH of the aqueous phase with a pH test paper.
本発明の液化燃料ガス組成物の硫黄分は、 燃料ラインの腐食防止と排気ガス中 への硫黄酸化物排出防止の点から液化燃料ガス全量基準で 0. 02質量%以下で あることが好ましく、 0. 01 5質量%以下であることがより好ましく、 0. 0 05質量%以下であることがさらに好ましく、 0. 001質量。 /0以下であること が最も好ましい。 The sulfur content of the liquefied fuel gas composition of the present invention is preferably 0.02 mass% or less on the basis of the total amount of liquefied fuel gas from the viewpoint of preventing corrosion of the fuel line and preventing sulfur oxide emission into the exhaust gas, More preferably, the content is 0.01% by mass or less, more preferably 0.005% by mass or less, and 0.001% by mass. Most preferably, it is less than or equal to 0 .
なお、 ここでいう硫黄分とは、 J I S K 2240 「液化石油ガス (LPガ ス) 一硫黄分試験方法」 により測定される値を意味する。  The sulfur content here means a value measured by J I S K 2240 “Liquefied petroleum gas (LP gas) single sulfur content test method”.
本発明の液化燃料ガス組成物の 40°Cにおける蒸気圧は、 低温時始動性確保の 点から 0. 28MP a以上であることが好ましく、 0. 38 MP a以上がより好 - - ましレ、。 一方、 取り扱い上の安全性の点から 1. 55 MP a以下であることが好 ましく、 1. 25MP a以下がより好ましく、 0. 52 M P a以下が最も好まし レ、。  The vapor pressure at 40 ° C of the liquefied fuel gas composition of the present invention is preferably 0.28 MPa or more, more preferably 0.38 MPa or more from the viewpoint of securing startability at low temperatures. . On the other hand, from the viewpoint of handling safety, it is preferably 1.55 MPa or less, 1. 25 MPa or less is more preferable, and 0.52 MPa or less is most preferable.
なお、 ここでいう 40°Cにおける蒸気圧とは、 J I S K 2240 「液化石 油ガス (LPガス) 一蒸気圧試験方法」 により測定される値を意味する。  The vapor pressure at 40 ° C here refers to the value measured by J I S K 2240 “Liquid fossil oil gas (LP gas) one vapor pressure test method”.
本発明の液化燃料ガス組成物の 1 5 °Cにおける密度は、 燃費向上の点から 0. 500 gZc m3以上であることが好ましく、 一方、 重質分の混入を防止する点 から 0. 620 gZc m3以下であることが好ましく、 0. e O O gZcm3以下 がより好ましい。 , The density at 15 ° C of the liquefied fuel gas composition of the present invention is preferably 0.500 gZcm 3 or more from the viewpoint of improving fuel efficiency, while it is 0.620 from the viewpoint of preventing heavy components from being mixed. preferably GZC m 3 or less, 0. e OO gZcm 3 below Is more preferable. ,
なお、 ここでいう 1 5 °Cにおける密度とは、 J I S K 2 2 4 0 「液化石油 ガス (L P G ) —密度試験方法」 により測定される値を意味する。  Here, the density at 15 ° C. means a value measured by J I S K 2 2 40 “Liquefied petroleum gas (L P G) —Density test method”.
本発明の液化燃料ガス組成物の銅板腐食は、 燃料配管の腐食防止の点から 1以 下であることが好ましく、 l aがより好ましい。  The copper plate corrosion of the liquefied fuel gas composition of the present invention is preferably 1 or less, more preferably la, from the viewpoint of preventing corrosion of fuel piping.
なお、 ここでいう銅板腐食とは、 J I S K 2 2 4 0 .「液化石油ガス (L P ガス) 一銅板腐食試験方法」 により測定される値を意味する。  In addition, copper plate corrosion here means the value measured by JISK 2240. “Liquefied petroleum gas (LP gas) monocopper plate corrosion test method”.
本発明の液化燃料ガス組成物は自動車用燃料として好適に使甩する'ことができ る。  The liquefied fuel gas composition of the present invention can be suitably used as a fuel for automobiles.
[発明の効果] ' [The invention's effect] '
本発明の液化燃料ガス組成物は、 動植物油脂および動物油脂由来成分を含有し た炭化水素留分を原料油として、 周期律表第 6 A族および第 8族から選ばれる少 なくとも一種類以上の金属と酸性質を有する無機酸化物を含有する水素化分解触 媒と水素加圧下で接触させることにより得られる炭化水素を用いることにより、 排出ガスを低減し、 かつ C O 2排出量を低減することができる。 The liquefied fuel gas composition of the present invention comprises at least one selected from Group 6A and Group 8 of the periodic table using a hydrocarbon fraction containing components derived from animal and vegetable oils and animal fats as a feedstock. By using hydrocarbons obtained by contacting hydrogenolysis catalysts containing inorganic metals with acid properties with hydrogen metals under hydrogen pressure, emissions are reduced and CO 2 emissions are reduced. be able to.
[実施例] [Example]
以下に実施例により本発明を具体的に説明するが、 本発明はこれらによって何 ら限定されるものではない。  EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
<実施例 1〜 2および比較例 > <Examples 1-2 and comparative examples>
動植物油脂および/または動物油脂由来成分を含有した炭化水素留分からなる 原料油を周期律表第 6 A族および第 8族から選ばれる少なく とも一種類以上の金 属と酸性質を有する無機酸化物を含有する水素化分解触媒と水素加圧下で接触さ せることにより得られる炭化水素を用いて、 実施例 1および 2の液化燃料ガス組 成物を調製した。 一方、 製油所より生産されるブタン、 プロパンおよび輸入プタ ン、輸入プロパンを用いて、比較例 1の液化燃料ガス組成物を調製した。実施例、 比較例に用いた各液化燃料ガス組成物の性状を表 1に示す。 これらの液化燃料ガ ス組成物について、 排出ガス試験を行い、 排出ガス評価を下記の方法により実施 し、 その結果を表 2に記した。 またこれら実施例および比較例の排出じ0 2のラ ィフサイクルアセスメント (LCA) を実施し、 排出される C02を計算して表 2に併記した。 Inorganic oxide having at least one metal selected from Group A and Group 8 of the Periodic Table and acid properties, consisting of hydrocarbon fractions containing components derived from animal and vegetable fats and / or animal fats The liquefied fuel gas compositions of Examples 1 and 2 were prepared using hydrocarbons obtained by contacting a hydrocracking catalyst containing hydrogen under pressure of hydrogen. On the other hand, a liquefied fuel gas composition of Comparative Example 1 was prepared using butane, propane, imported propane, and imported propane produced from a refinery. Table 1 shows the properties of each liquefied fuel gas composition used in Examples and Comparative Examples. For these liquefied fuel gas compositions, an exhaust gas test was conducted and an exhaust gas evaluation was carried out by the following method. The results are shown in Table 2. Again. Then the discharge of these Examples and Comparative Example 0 2 La I conducted Fusaikuru assess the (LCA), were shown in Table 2 by calculating the discharged is C0 2.
( a ) 性状測定  (a) Property measurement
各液化燃料ガス組成物の性状は以下の方法により測定した。  The properties of each liquefied fuel gas composition were measured by the following method.
プロパン、 ブタン等の組成分析は、 J I S K 2240 「液化石油ガス (L Ρガス) 一組成分析方法 (ガスクロマトグラフ法)」 によ,り測定される値である。  The composition analysis of propane, butane, etc. is the value measured by JIS K 2240 “Liquefied petroleum gas (LL gas) one composition analysis method (gas chromatograph method)”.
1 05°C残渣分は、 ASTM D 2 1 58に定める方法に準拠し、 初期サンプ ル量を AS TM法記載の 1 0 OmLから 4 Lに変更し、 設定温度を AS TM法記 載の 38°Cからさらに 75°C、 1 05°Cと順に変えてゆき、 最終的には 1 05°C にて残った残渣の重量を秤量することにより測定される値である。  1 For the residue at 05 ° C, the initial sample amount was changed from 10 OmL described in the AS TM method to 4 L according to the method specified in ASTM D 2 1 58, and the set temperature was 38 described in the AS TM method. It is a value measured by weighing the residue remaining at 105 ° C in the order of 75 ° C and 105 ° C in order from ° C.
1 05°C残渣分の p Hは、 上記 1 05 °C残渣分の測定方法にて得られた 1 0 5 °C残渣分に残渣分の 1 000倍量の蒸留水 (残渣分が 1 mg以下の場合は 1 m Lの蒸留水) を加え攪拌した後、 水相部分の pHを pH試験紙 (東洋濾紙社製 p H試験紙) により測定することによって得られる値である。  1 The pH of the residue at 05 ° C is 10 000 times the amount of distilled water (residue content is 1 mg). In the following cases, 1 mL of distilled water) is added and stirred, and then the pH of the aqueous phase is obtained by measuring with a pH test paper (pH test paper manufactured by Toyo Roshi Kaisha).
硫黄分含有量は、 J I S K 2240 「液化石油ガス (L Pガス) —硫黄分 試験方法丄 により測定される値である。  Sulfur content is a value measured by J I S K 2240 “Liquefied petroleum gas (LP gas) — Sulfur content test method IV”.
40°Cにおける蒸気圧は、 J I S K 2240 「液化石油ガス (L Ρガス) —蒸気圧試験方法」 により測定される値である。  Vapor pressure at 40 ° C is a value measured by J I S K 2240 “Liquefied petroleum gas (LΡ gas)-Vapor pressure test method”.
1 5°Cにおける密度は、 J I S K 2240, 「液化石油ガス (LPG) —密 度試験方法」 により測定される値である。  1 Density at 5 ° C is a value measured according to JIS K 2240, “Liquefied Petroleum Gas (LPG) — Density Test Method”.
銅板腐食は、 J I S K 2240 「液化石油ガス (LPガス) 一銅板腐食試 験方法」 により測定される値である。 .  Copper plate corrosion is a value measured according to JIS K 2240 “Liquid petroleum gas (LP gas) monocopper plate corrosion test method”. .
( b ) 排出ガス評価  (b) Emission evaluation
下記試験車両を用いて、 1 0 * 1 5モードによる排出ガス測定を行った。 排ガ ス試験および CO 2排出量 L C Aの評価結果を表 2に記した。 Using the following test vehicle, exhaust gas measurement was performed in the 10 * 15 mode. Table 2 shows the evaluation results of the exhaust gas test and CO 2 emissions LCA.
(試験車両)  (Test vehicle)
エンジン :直列 4気筒  Engine: Inline 4 cylinder
排気量: 1 998 c c  Displacement: 1 998 c c
燃料供給方式:電子制御式キャブレター  Fuel supply system: Electronically controlled carburetor
ミ ッション : ォートマチック トランスミ ッション 表 1
Figure imgf000014_0001
Mission: Automatic Transmission table 1
Figure imgf000014_0001
表 2
Figure imgf000014_0002
表 2に示すとおり、 本発明の液化燃料ガス組成物は、 従来の L P G燃料に比べ 排出ガス成分 (THC, CO, NO x) を低減できることがわかる。
Table 2
Figure imgf000014_0002
As shown in Table 2, it can be seen that the liquefied fuel gas composition of the present invention can reduce exhaust gas components (THC, CO, NO x) compared to conventional LPG fuel.
さらにこれら実施例および比較例の排出 CO 2のライフサイクルアセスメント (LCA) を実施し、 排出される C02を計算した。 本実施例では燃焼時に生じ る C02についてバイオマス由来分はゼロカウントとなるため大幅な C02削減 を達成することがでぎた。 . Furthermore, a life cycle assessment (LCA) of the emitted CO 2 of these examples and comparative examples was performed, and the C 0 2 emitted was calculated. In this example, the biomass-derived component of C0 2 generated during combustion becomes zero count, so it was possible to achieve a significant C0 2 reduction. .
[産業上の利用可能性] - 本発明により動植物油脂由来成分から排出ガスおよび CO 2排出量の低減効果 に優れる液化燃料ガス組成物が提供される。 [Industrial Applicability]-The present invention provides a liquefied fuel gas composition excellent in the effect of reducing exhaust gas and CO 2 emission from components derived from animal and vegetable fats and oils.

Claims

1 . 動植物油脂および または動物油脂由来成分を含有した炭化水素留分 からなる原料油を、 周期律表第 6 Α族および第 8族から選ばれる少なくとも一種 類以上の金属と酸性質を有する無機酸化物を含有する水素化分解触媒と水素加圧 下で接触させることにより得られる、 硫黄分含有量 1 0質量 p p m以下、 炭素数1. Inorganic oxidation having at least one metal selected from Group 6 and Group 8 of the Periodic Table and acid properties from a feedstock consisting of a hydrocarbon fraction containing components derived from animal and vegetable oils and / or animal oils and fats Sulfur content, 10 mass ppm or less, carbon number, obtained by contacting the hydrocracking catalyst containing the product under hydrogen pressure
3の炭化水素が 1 . 0モル%以上9 9 . 0モル%以下、炭素数 4の炭化水素が 1 .The hydrocarbon of 3 is 1.0 mol% or more and 99.0 mol% or less, and the hydrocarbon of 4 carbon atoms is 1.0.
0モル%以上 9 9 . 0モル。 /。以さ下である炭化水素を含有することを特徴とする液 青 0 mol% or more 99.0 mol. /. Liquid blue characterized by containing hydrocarbons below
化燃料ガス組成物。  Fuel gas composition.
2 . 動植物油脂および または動物油脂由来成分を含有した炭化水素留分 と原油等から精製された灯油留分を有する石油系炭化水素留分を任意の比率で混 2. Mix hydrocarbon fractions containing components derived from animal and vegetable oils and / or animal fats and petroleum-based hydrocarbon fractions containing kerosene fractions refined from crude oil, etc., in any ratio.
. 合した混合油からなる原料油を、 周期律表第 6 A族および第 8族から選ばれる少 囲 A feedstock composed of the combined oil mixture is selected from groups 6A and 8 of the periodic table.
なくとも一種類以上の金属と酸性質を有する無機酸化物を含有する水素化分解触 媒と水素加圧下で接触させることにより得られる、 硫黄分含有量 1 0質量 p p m 以下、 炭素数 3の炭化水素が 1 . 0モル。/。以上 9 9 . 0モル%以下、 炭素数 4の 炭化水素が 1 . 0モル%以上9 9 . 0モル%以下である炭化水素を含有すること を特徴とする液化燃料ガス組成物。  Sulfur content of 10 mass ppm or less, carbon number 3 carbonized, obtained by contacting under hydrogen pressure with a hydrocracking catalyst containing at least one kind of metal and an inorganic oxide having acid properties Hydrogen is 1.0 mole. /. A liquefied fuel gas composition comprising a hydrocarbon having 9 to 9 mol% or less and a hydrocarbon having 4 carbon atoms of 1.0 mol% or more and 99.0 mol% or less.
3 . 原料油を、 周期律表第 6 A族および第 8族から選ばれる少なくとも一 種類以上の金属を含有する水素化前処理触媒と水素加圧下で接触させた後に、 前 記水素化分解触媒と水素加圧下で接触させることを特徴とする請求項 1または 2 に記載の液化燃料ガス組成物。  3. After contacting the feedstock with a hydrotreating catalyst containing at least one metal selected from Groups 6A and 8 of the periodic table under hydrogen pressure, the hydrocracking catalyst The liquefied fuel gas composition according to claim 1, wherein the liquefied fuel gas composition is contacted with hydrogen under pressure.
4 . 液化燃料ガス組成物を構成する炭化水素が、 請求項 1または 2に記載 - の炭化水素および化石燃料由来の炭化水素との混合物であり、 請求項 1または 2 に記載の炭化水素を 1モル%以上含むことを特徴とする液化燃料ガス組成物。  4. The hydrocarbon constituting the liquefied fuel gas composition is a mixture of the hydrocarbon of claim 1 or 2 and the hydrocarbon derived from fossil fuel, and the hydrocarbon of claim 1 or 2 is 1 A liquefied fuel gas composition comprising at least mol%.
5 . 自動車用燃料に使用することを特徴とする請求項 1〜 4のいずれかに 記載の液化燃料ガス組成物。  5. The liquefied fuel gas composition according to any one of claims 1 to 4, which is used for an automobile fuel.
6 . 1 0 5 °C残渣分が 1 0質量 p p m以下であり、 かつ 1 0 5 °C残渣分の p Hが 6以上 8以下であることを特徴とする請求項 1〜 5のいずれかに記載の液 化燃料ガス組成物。  6. The residue at 10 5 ° C is 10 mass ppm or less, and the pH of the residue at 10 5 ° C is 6 or more and 8 or less. The liquefied fuel gas composition as described.
PCT/JP2006/324306 2005-11-30 2006-11-29 Liquefied fuel gas composition WO2007064019A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005347278A JP4925653B2 (en) 2005-11-30 2005-11-30 Method for producing liquefied fuel gas composition
JP2005-347278 2005-11-30

Publications (1)

Publication Number Publication Date
WO2007064019A1 true WO2007064019A1 (en) 2007-06-07

Family

ID=38092349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324306 WO2007064019A1 (en) 2005-11-30 2006-11-29 Liquefied fuel gas composition

Country Status (4)

Country Link
JP (1) JP4925653B2 (en)
KR (1) KR20080071580A (en)
CN (1) CN101341232A (en)
WO (1) WO2007064019A1 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915460B2 (en) 2007-09-20 2011-03-29 Uop Llc Production of diesel fuel from biorenewable feedstocks with heat integration
US7982076B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7982077B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7982079B2 (en) 2008-09-11 2011-07-19 Uop Llc Integrated process for production of diesel fuel from renewable feedstocks and ethanol denaturizing
US7982078B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7982075B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with lower hydrogen consumption
US7999142B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7999143B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from renewable feedstocks with reduced hydrogen consumption
US8003834B2 (en) 2007-09-20 2011-08-23 Uop Llc Integrated process for oil extraction and production of diesel fuel from biorenewable feedstocks
US8039682B2 (en) 2008-03-17 2011-10-18 Uop Llc Production of aviation fuel from renewable feedstocks
US8058492B2 (en) 2008-03-17 2011-11-15 Uop Llc Controlling production of transportation fuels from renewable feedstocks
US8193399B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel and aviation fuel from renewable feedstocks
US8193400B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel from renewable feedstocks
US8198492B2 (en) 2008-03-17 2012-06-12 Uop Llc Production of transportation fuel from renewable feedstocks
US8283506B2 (en) 2008-12-17 2012-10-09 Uop Llc Production of fuel from renewable feedstocks using a finishing reactor
US8304592B2 (en) 2008-06-24 2012-11-06 Uop Llc Production of paraffinic fuel from renewable feedstocks
US8314274B2 (en) 2008-12-17 2012-11-20 Uop Llc Controlling cold flow properties of transportation fuels from renewable feedstocks
US8324438B2 (en) 2008-04-06 2012-12-04 Uop Llc Production of blended gasoline and blended aviation fuel from renewable feedstocks
US8329969B2 (en) 2008-04-06 2012-12-11 Uop Llc Fuel and fuel blending components from biomass derived pyrolysis oil
US8329968B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended gasoline aviation and diesel fuels from renewable feedstocks
US8329967B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended fuel from renewable feedstocks
US8471081B2 (en) 2009-12-28 2013-06-25 Uop Llc Production of diesel fuel from crude tall oil
US8471079B2 (en) 2008-12-16 2013-06-25 Uop Llc Production of fuel from co-processing multiple renewable feedstocks
US8742183B2 (en) 2007-12-21 2014-06-03 Uop Llc Production of aviation fuel from biorenewable feedstocks
US8766025B2 (en) 2008-06-24 2014-07-01 Uop Llc Production of paraffinic fuel from renewable feedstocks
US8900443B2 (en) 2011-04-07 2014-12-02 Uop Llc Method for multi-staged hydroprocessing using quench liquid
US8921627B2 (en) 2008-12-12 2014-12-30 Uop Llc Production of diesel fuel from biorenewable feedstocks using non-flashing quench liquid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110072715A1 (en) * 2009-09-25 2011-03-31 Exxonmobil Research And Engineering Company Fuel production from feedstock containing triglyceride and/or fatty acid alkyl ester
US8816144B2 (en) * 2012-10-04 2014-08-26 Gas Technology Institute Direct production of fractionated and upgraded hydrocarbon fuels from biomass

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397784A (en) * 1989-07-25 1991-04-23 Hans Schur Liquid fuel mixture, its manufacture, and its use for two-stroke engine
JPH08283748A (en) * 1994-12-13 1996-10-29 Shell Internatl Res Maatschappij Bv Method of converting hydrocarbon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397784A (en) * 1989-07-25 1991-04-23 Hans Schur Liquid fuel mixture, its manufacture, and its use for two-stroke engine
JPH08283748A (en) * 1994-12-13 1996-10-29 Shell Internatl Res Maatschappij Bv Method of converting hydrocarbon

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7915460B2 (en) 2007-09-20 2011-03-29 Uop Llc Production of diesel fuel from biorenewable feedstocks with heat integration
US7982076B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7982077B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7982078B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with selective separation of converted oxygen
US7982075B2 (en) 2007-09-20 2011-07-19 Uop Llc Production of diesel fuel from biorenewable feedstocks with lower hydrogen consumption
US7999142B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from biorenewable feedstocks
US7999143B2 (en) 2007-09-20 2011-08-16 Uop Llc Production of diesel fuel from renewable feedstocks with reduced hydrogen consumption
US8003834B2 (en) 2007-09-20 2011-08-23 Uop Llc Integrated process for oil extraction and production of diesel fuel from biorenewable feedstocks
US8742183B2 (en) 2007-12-21 2014-06-03 Uop Llc Production of aviation fuel from biorenewable feedstocks
US8193400B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel from renewable feedstocks
US8058492B2 (en) 2008-03-17 2011-11-15 Uop Llc Controlling production of transportation fuels from renewable feedstocks
US8193399B2 (en) 2008-03-17 2012-06-05 Uop Llc Production of diesel fuel and aviation fuel from renewable feedstocks
US8039682B2 (en) 2008-03-17 2011-10-18 Uop Llc Production of aviation fuel from renewable feedstocks
US8198492B2 (en) 2008-03-17 2012-06-12 Uop Llc Production of transportation fuel from renewable feedstocks
US8324438B2 (en) 2008-04-06 2012-12-04 Uop Llc Production of blended gasoline and blended aviation fuel from renewable feedstocks
US8329969B2 (en) 2008-04-06 2012-12-11 Uop Llc Fuel and fuel blending components from biomass derived pyrolysis oil
US8329968B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended gasoline aviation and diesel fuels from renewable feedstocks
US8329967B2 (en) 2008-04-06 2012-12-11 Uop Llc Production of blended fuel from renewable feedstocks
US8304592B2 (en) 2008-06-24 2012-11-06 Uop Llc Production of paraffinic fuel from renewable feedstocks
US8766025B2 (en) 2008-06-24 2014-07-01 Uop Llc Production of paraffinic fuel from renewable feedstocks
US7982079B2 (en) 2008-09-11 2011-07-19 Uop Llc Integrated process for production of diesel fuel from renewable feedstocks and ethanol denaturizing
US8921627B2 (en) 2008-12-12 2014-12-30 Uop Llc Production of diesel fuel from biorenewable feedstocks using non-flashing quench liquid
US8471079B2 (en) 2008-12-16 2013-06-25 Uop Llc Production of fuel from co-processing multiple renewable feedstocks
US8314274B2 (en) 2008-12-17 2012-11-20 Uop Llc Controlling cold flow properties of transportation fuels from renewable feedstocks
US8283506B2 (en) 2008-12-17 2012-10-09 Uop Llc Production of fuel from renewable feedstocks using a finishing reactor
US8471081B2 (en) 2009-12-28 2013-06-25 Uop Llc Production of diesel fuel from crude tall oil
US8900443B2 (en) 2011-04-07 2014-12-02 Uop Llc Method for multi-staged hydroprocessing using quench liquid

Also Published As

Publication number Publication date
CN101341232A (en) 2009-01-07
JP2007153940A (en) 2007-06-21
KR20080071580A (en) 2008-08-04
JP4925653B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4925653B2 (en) Method for producing liquefied fuel gas composition
JP4878824B2 (en) Manufacturing method of environmentally low load type fuel and environmentally low load type fuel
WO2007064015A1 (en) Gas oil composition
JP5114164B2 (en) Method for producing gasoline composition
JP5142588B2 (en) Method for producing gasoline composition
WO2009020055A1 (en) Gas oil composition
JP5072008B2 (en) Method for producing light oil composition
US20110219677A1 (en) Process for producing aviation fuel base oil
AU2010287445B2 (en) Aviation fuel oil composition
WO2008117856A1 (en) Gas oil composition
JP2007153937A (en) Gas oil composition
JP4776287B2 (en) Clean gasoline composition and method for producing the same
JP5137335B2 (en) Method for producing gasoline composition
JP5072005B2 (en) Method for producing unleaded gasoline composition
CN101473016A (en) Hydrotreating process, low environmental load gasoline base material and lead-free gasoline compositions
WO2007132939A1 (en) Gas-oil composition
JP5072010B2 (en) Light oil composition
JP5072444B2 (en) Method for producing light oil composition
WO2007142013A1 (en) Hydrotreating process, low environmental load gasoline base material and lead-free gasoline compositions
JP2007308567A (en) Hydrogenation purification method and environmental low load type gasoline base material
WO2007132938A1 (en) Gas-oil composition
JP5186183B2 (en) Gasoline composition
JP5072007B2 (en) Method for producing light oil composition
JP4948018B2 (en) Method for producing unleaded gasoline composition
JP4847116B2 (en) A method for producing a liquefied fuel gas composition.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680044999.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12008501157

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2703/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087013041

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834061

Country of ref document: EP

Kind code of ref document: A1