WO2007063677A1 - 半導体ウエーハの平面研削方法および製造方法 - Google Patents

半導体ウエーハの平面研削方法および製造方法 Download PDF

Info

Publication number
WO2007063677A1
WO2007063677A1 PCT/JP2006/322070 JP2006322070W WO2007063677A1 WO 2007063677 A1 WO2007063677 A1 WO 2007063677A1 JP 2006322070 W JP2006322070 W JP 2006322070W WO 2007063677 A1 WO2007063677 A1 WO 2007063677A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
wafer
semiconductor wafer
surface grinding
polishing
Prior art date
Application number
PCT/JP2006/322070
Other languages
English (en)
French (fr)
Inventor
Masashi Ichikawa
Toshiaki Otaka
Original Assignee
Shin-Etsu Handotai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Handotai Co., Ltd. filed Critical Shin-Etsu Handotai Co., Ltd.
Priority to US12/084,486 priority Critical patent/US20090203212A1/en
Priority to EP06822984A priority patent/EP1956641A4/en
Publication of WO2007063677A1 publication Critical patent/WO2007063677A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02013Grinding, lapping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only

Definitions

  • the present invention relates to a surface grinding method performed in a process of manufacturing a semiconductor wafer such as silicon and a method of manufacturing a semiconductor wafer using the surface grinding method, and in particular, during a process of manufacturing a semiconductor substrate (wafer).
  • the present invention relates to a method for effectively reducing adhering heavy metal contaminants.
  • the semiconductor substrate (UENO) used for semiconductor devices is manufactured by processing ingot blocks grown mainly by the pulling method (Chiyoklarsky method, CZ method) into a mirror-like thin plate.
  • the machining process mainly includes a slicing process for slicing an ingot block in a wafer shape, a chamfering process for chamfering the outer periphery of the sliced wafer, and the chamfered wafer is flattened by lapping or surface grinding.
  • the present invention has been made in view of such problems, and a semiconductor wafer surface grinding method capable of effectively reducing contaminants, particularly heavy metals, adhering to the wafer, and finally clean.
  • the purpose is to provide a manufacturing method for manufacturing high-quality wafers.
  • the present invention has been made to solve the above problems, and is a method of surface grinding a semiconductor wafer sliced into a thin plate shape, and at least a heavy metal is applied before surface grinding of the semiconductor wafer.
  • the cleaning process to be removed is performed, and the planar polishing is performed after the cleaning process is performed.
  • a surface grinding method for a semiconductor wafer characterized by performing a grinding process.
  • the cleaning step of removing heavy metals before surface grinding of the semiconductor wafer it is possible to perform surface grinding after removing heavy metals adhering to the wafer. Therefore, in the process where the mechanical action generates a large amount of heat, such as surface grinding, the contamination level of the wafer finally obtained can be lowered without the contaminants diffusing into the wafer.
  • any one or more of SC-1 cleaning, SC-2 cleaning, and cleaning with a mixed solution containing taenic acid'peroxide-hydrogenated water may be performed. it can.
  • the wafer to be ground is a wafer etched after slicing.
  • the wafer surface is in an active state, and the etchant used contains a large amount of contaminants, so there is a high risk of contamination adhering to the wafer surface. If surface grinding is performed after cleaning the wafers with contaminants removed during the etching process and removing heavy metals, surface contamination will not diffuse into the wafers due to surface grinding, resulting in a reduction in wafer contamination levels. be able to.
  • the present invention is a method for manufacturing a semiconductor wafer including at least a surface grinding step, wherein at least a cleaning step for removing heavy metals is performed before the semiconductor wafer is surface ground, and the cleaning step is performed.
  • a method of manufacturing a semiconductor wafer, characterized by performing a surface grinding step after the step is provided.
  • any one or more of SC-1 washing, SC-2 washing, and washing with a mixed solution containing taenic acid'peracid-hydrogenated water may be performed. it can.
  • SC-l cleaning, SC-2 cleaning, and cleaning with a mixed solution containing citrate'peracid-hydrogenated water heavy metal is removed before surface grinding. It can be removed effectively and wafers can be produced with low contamination levels without diffusing heavy metals inside during surface grinding.
  • the wafer to be ground is a wafer etched after slicing.
  • the wafer surface is in an active state, and the etchant used contains a large amount of contaminants, so there is a high risk of contamination adhering to the wafer surface. If surface grinding is performed after cleaning the wafers with contaminants removed during the etching process to remove heavy metals, surface contamination will not diffuse into the wafers due to surface grinding, producing a wafer with a low contamination level. be able to.
  • a polishing step for polishing at least the semiconductor wafer is performed, and a cleaning step is performed after the polishing step.
  • the semiconductor wafer surface grinding method is characterized in that the surface grinding step is performed after the cleaning step for removing heavy metal is performed and the contamination level of the heavy metal in the wafer is lowered. And a manufacturing method are provided. By washing before surface grinding in this way, heavy metal adhering to the wafer can be effectively removed, and the possibility of heavy metal diffusing inside the wafer due to the subsequent surface grinding process with a large mechanical action. Can be reduced. Therefore, high quality wafers with high cleanliness can be finally produced.
  • FIG. 1 is a schematic diagram for explaining an example of a surface grinding method and a manufacturing method of a semiconductor wafer according to the present invention.
  • FIG. 3 is a graph showing the results of measuring the surface Cu impurity concentration for wafers of Example 3 and Comparative Examples 3 and 4 (the vertical axis is a relative value).
  • FIG. 4 is a graph showing the results of measuring the Cu impurity concentration on the surface of a wafer that has been subjected to a lapping process as a flattening process and a wafer that has been subjected to a surface grinding process (the vertical axis is a relative value).
  • the present inventors have performed a processing flow for lapping (slice ⁇ lapping ⁇ etching ⁇ polishing ⁇ cleaning) and a processing flow for surface grinding (slicing ⁇ surface grinding ⁇ etching ⁇ polishing ⁇ cleaning). For each wafer manufactured, the impurity concentration of Cu was measured.
  • the wafer surface was etched by about 0.1 ⁇ m with hydrofluoric acid, and the liquid was analyzed by atomic absorption.
  • the results obtained are shown in FIG. From Fig. 4, it can be seen that the Cu impurity concentration of the wafer obtained by flattening by surface grinding is high.
  • the processing flow of V and misalignment there is a difference in the Cu impurity concentration on the obtained wafer surface even though the wafer was cleaned last. Therefore, it was found that there is a high possibility that Cu is diffused not only in the wafer surface but also in the surface grinding process.
  • the present inventors have intensively studied for a surface grinding step capable of obtaining a wafer having a Cu impurity concentration as low as that in the case of lapping. Then, after performing a cleaning process to remove heavy metals and performing surface grinding, Cu impurity concentration The present invention was completed by finding that a low degree wafer can be obtained.
  • the semiconductor wafer surface grinding method of the present invention is a method of surface grinding a semiconductor wafer sliced into a thin plate shape, and at least a cleaning step of removing heavy metals before surface grinding the semiconductor wafer And a planar polishing step is performed after the cleaning step.
  • FIG. 1 is a schematic view for explaining an example of the semiconductor wafer manufacturing method and the surface grinding method of the present invention.
  • a silicon single crystal ingot pulled up by the Chiyoklarsky method or the like is sliced and processed into a thin disk wafer (slicing process, Fig. 1 (a)).
  • a cleaning process is performed to remove heavy metals adhering to the wafer (cleaning process to remove heavy metals, Fig. L (b)). If heavy metal adhering to the wafer is removed by this cleaning, contaminants will not diffuse into the wafer due to surface grinding in the subsequent process. Therefore, the wafer contamination level can be lowered.
  • the washing step is not particularly limited, and a conventional one can be used.
  • SC-1 cleaning For example, one or more of SC-1 cleaning, SC-2 cleaning, and cleaning with a mixture containing citrate and hydrogen peroxide water can be performed.
  • the concentration of the cleaning liquid for SC-1 cleaning is not particularly limited, and can be, for example, 1 to 10% (volume%) of ammonia and 1 to 10% (volume%) of hydrogen peroxide water.
  • Chemical temperature is 60 ° C ⁇ 9
  • the temperature is preferably 0 ° C.
  • the concentration of the cleaning solution for SC-2 cleaning is not particularly limited.
  • the concentration of the mixed solution containing quenoic acid 'peracid-hydrogenated water is not particularly limited. For example if Kuen acid concentration 0.005% to 0. 5% (volume 0/0), can be the concentration of hydrogen peroxide 0.01% to 1. 0% and (% by volume).
  • the chemical temperature is preferably 20 ° C to 60 ° C.
  • the cleaning time may be set appropriately depending on the process status (contamination status), the chemical concentration, and the processing temperature. However, if the cleaning time is as described above, it is sufficient to process for 60 seconds or longer. An effect is obtained. Furthermore, if the treatment time is extended to about 180 seconds, a more stable cleaning effect can be obtained. However, even if it is too long, the effect will not increase any further, so it is better to set it to 10 minutes or less.
  • the cleaning method is not particularly limited.
  • the cleaning can be performed by immersing the semiconductor wafer in the cleaning liquid.
  • the above SC-1 cleaning, SC-2 cleaning, and cleaning with a mixed solution containing citrate 'hydrogen peroxide solution may be performed alone or in combination of two or more. May be.
  • the wafer is subjected to surface grinding (including double-head grinding) in order to remove the damaged layer induced on the wafer surface by the cutting process in the slicing process and to flatten the wafer. Grinding process, Fig. L (c)).
  • the surface grinding step can be performed, for example, by holding one surface of a wafer by vacuum suction and bringing the wafer and a cup-shaped fine diamond boulder into contact with each other while rotating.
  • the outer periphery of the wafer can be held and rotated at three points, and grinding can be performed by contacting the diamond grinding wheel with each side force of the wafer. .
  • the wafer is alkali-etched (alkali etching process, FIG. 1 (d)).
  • Etchant is not particularly limited, and can be carried out using, for example, a 30-60% NaOH aqueous solution or a KOH aqueous solution.
  • a polishing step for polishing the wafer is performed to make the surface of the wafer more highly flat (Fig. L (e)).
  • the polishing method is not particularly limited, and a generally used method can be applied.
  • a wafer having a large diameter is held by holding a wafer on a polishing head and sliding it on a polishing surface plate to which a polishing cloth is attached while rotating the wafer.
  • a cleaning process is finally performed to clean the wafer (FIG. 1 (f)).
  • the cleaning method is not particularly limited, and RCA cleaning, which is a commonly used method, can be applied.
  • RCA cleaning which is a commonly used method, can be applied.
  • H 2 O + H 2 O liquid immersion treatment (1: 1: 6, 80 ° C, 10 minutes), (6) pure water rinse, (7) until drying
  • a semiconductor wafer can be obtained by the above manufacturing method and surface grinding method.
  • the heavy metal adhering to the wafer is removed by a cleaning process, and then surface grinding is performed.
  • grinding is performed after removing heavy metal contamination, it is possible to easily obtain a clean and high-quality wafer without diffusing heavy metal impurities into the wafer.
  • a lapping process or an etching process may be performed after the slicing process, and then a cleaning process and a surface grinding process for removing heavy metal may be performed to grind the etched wafer after slicing.
  • the surface is active, and the etchant used contains a large amount of contaminants, so there is a high possibility that the contaminants will adhere to the wafer surface.
  • the surface grinding method and manufacturing method for semiconductor wafers of the present invention heavy metal impurities adhering to the wafer surface after etching are cleaned and then surface grinding is performed, which may cause heavy metal impurities to diffuse into the wafer. Clean and high quality wafers can be easily obtained.
  • a silicon single crystal ingot pulled up by the Chiyoklarsky method was sliced using a wire saw and processed into a thin disc-shaped ueno (diameter 300mm, P-type, orientation 100>) (slicing process, Fig. 1). (a)).
  • SC-1 cleaning cleaning process for removing heavy metals, Fig. 1 (b)
  • the SC-1 cleaning solution was a mixed solution of ammonia, hydrogen peroxide and pure water, and the concentration was adjusted to 3% (volume%) ammonia and 3% (volume%) hydrogen peroxide.
  • the chemical solution temperature was set to 80 ° C. and washing was performed for 180 seconds. After washing, it was rinsed in a pure water rinse and spun and dried by spin drying.
  • the wafer was subjected to surface grinding in order to remove the damaged layer induced on the wafer surface by cutting in the slicing process and to flatten the wafer (planar grinding process, Fig. L). (c)). Each side of the wafer was ground with a turret and both sides were ground.
  • the wafer was subjected to alkali etching (alkali etching process, FIG. L (d)) in order to remove the processing distortion generated in the wafer surface layer in the above process.
  • alkali etching process FIG. L (d)
  • an etchant an aqueous NaOH solution with a concentration of 52% was used, and the liquid temperature was 80 ° C.
  • finish cleaning was performed by RCA cleaning (cleaning process, Fig. 1 (f)).
  • a slicing process, a surface grinding process, an alkali etching process, a 'polishing process', and a cleaning process were performed under the same conditions as in Example 1 except that the cleaning process for removing heavy metals was not performed.
  • the slicing process was performed under the same conditions as in Example 1.
  • the wafer was flattened by lapping using a free barrel (lapping process).
  • the wafer was etched (etching process) in order to remove the cache distortion generated in the wafer surface layer in the lapping process.
  • etching process a 52% NaOH aqueous solution was used, and the liquid temperature was 80 ° C.
  • the slicing process, lapping process, etching process, surface grinding process, alkaline etching process, polishing process, and cleaning were performed under the same conditions as in Example 2 except that the cleaning process for removing heavy metals was not performed. The process was performed.
  • SC-1 cleaning solution A mixed solution of ammonia, hydrogen peroxide, and pure water. The concentration was adjusted to 3% ammonia (volume%) and 3% hydrogen peroxide water (volume%) ( Same as Example 2). The chemical temperature was 80 ° C and the cleaning time was 180 seconds.
  • SC-2 cleaning solution A mixed solution of hydrochloric acid, hydrogen peroxide, and pure water. The concentration was adjusted to 3% hydrochloric acid (volume%) and 3% hydrogen peroxide water (volume%). The chemical temperature was 80 ° C, and the cleaning time was 180 seconds.
  • Chenic acid / Peracid / hydrogenated water mixture Chenic acid, hydrogen peroxide, pure water mixed solution (Hereinafter, this solution may be abbreviated as “Chenic acid / Hydrogenous water”), and the concentration was adjusted to be 0.05% (Volume%), and hydrogen peroxide (HO) 0.1% (Volume%).
  • Chemical temperature is 30 ° C
  • the cleaning time was 180 seconds.
  • Comparative Example 4 a slicing process, a lapping process, an alkali etching process, a polishing process, and a cleaning process were performed in the same conditions as Comparative Example 1 except that a lapping process was performed instead of the surface grinding process of Comparative Example 1.
  • the impurity concentration of Cu was measured for the silicon wafers obtained in Example 3 and Comparative Examples 3 and 4 above.
  • the measurement method was as follows: the wafer surface was etched about 0. 0 mm with hydrofluoric acid, and the solution was analyzed by atomic absorption. The results obtained are shown in FIG.
  • the cleaning process for removing heavy metals before surface grinding can be carried out by any of SC-1 cleaning, SC-2 cleaning, and citrate / overwater cleaning. It was confirmed that the Cu impurity concentration was reduced compared to Comparative Example 3 where the pre-planar cleaning was performed. In particular, when SC-2 cleaning and succinic acid / hydrogen peroxide cleaning were performed in Example 3, the Cu impurity concentration was greatly reduced, and similar to Comparative Example 4 in which only lapping was performed without surface grinding. Improved to the level, it is awkward.
  • the present invention is not limited to the above-described embodiment.
  • the above embodiment is an exemplification, and the present invention has the same configuration as the technical idea described in the scope of claims of the present invention, and any device that exhibits the same function and effect is the present embodiment. It is included in the technical scope of the invention.
  • the surface grinding method and the manufacturing method of the present invention are not limited to silicon wafers. Needless to say, the present invention can be applied to various semiconductor wafers such as compound semiconductors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

 本発明は、薄板状にスライスされた半導体ウエーハを平面研削する方法であって、少なくとも、前記半導体ウエーハを平面研削する前に重金属を除去する洗浄工程を行い、該洗浄工程を行った後に平面研削工程を行うことを特徴とする半導体ウエーハの平面研削方法を提供する。これにより、半導体ウエーハの表面に付着している汚染物、たとえばCuなどの重金属を効果的に低減することができる半導体ウエーハの平面研削方法および製造方法が提供される。

Description

半導体ゥエーハの平面研削方法および製造方法
技術分野
[0001] 本発明は、シリコン等の半導体ゥエーハを製造する工程で行われる平面研削方法 およびこの平面研削方法を用いた半導体ゥエーハの製造方法に係り、特に、半導体 基板 (ゥエーハ)の製造工程中に付着する重金属汚染物質を効果的に低減する方 法に関する。
背景技術
[0002] 半導体デバイスの製造では、ゥエーハ自体に重金属ゃゥエーハ表面に微粒子の 汚染物が存在した場合、デバイスの性能特性に悪影響を及ぼすことがある。半導体 デバイスに用いられる半導体基板 (ゥエーノ、)は、主に引上げ法 (チヨクラルスキー法 、 CZ法)で育成されたインゴットブロックを鏡面状の薄板に加工することで製造される 。その加工工程は主にインゴットブロックをゥエーハ状にスライスするスライス工程と該 スライスされたゥエーハの外周部を面取りする面取り工程と、該面取りされたゥエーハ をラッピングまたは平面研削等を用いて平坦ィ匕する平坦ィ匕工程と、該平坦化されたゥ エーハの加工歪を除去する為のエッチング工程と、該エッチングされたゥエーハの両 面、または片面を研磨する研磨工程カゝらなる。更に熱処理工程や検査工程、各種洗 浄工程などを有する。
[0003] 半導体基板の洗浄や熱酸化工程の前洗浄、 CVD工程の前洗浄、またはリンガラス 除去等における半導体ゥエーハの洗浄には、従来より(1) NH OH + H O +H O
4 2 2 2 混合液浸漬処理(1 : 1 : 5、 80°C、 10分)、(2)純水リンス、 (3) HF+H O浸漬処理(
2
HF1%含有)、(4)純水リンス、 (5) HC1+H O +H O混合液浸漬処理(1: 1 : 6、 8
2 2 2
0°C、 10分)、(6)純水リンス、 (7)乾燥までを連続して行ういわゆる RCA洗浄法 (W.K ern et.al.:RCA Reveiw,31,p.l87,1970)を基本とし、それぞれの処理液の混合割合 ゃ浸漬時間、加熱温度、また、上記(1)、 (2)および (3)の洗浄液による洗浄処理の 順番を入替える等、工程に合わせ適宜選択して用いる洗浄方法が一般的である。 [0004] ここで、(1) NH OH+H O +H O混合液を用いた洗浄 (SC— 1洗浄)は有機物
4 2 2 2
等の異物除去および重金属除去等に効果があり、 (3) HF + H Oは酸化膜の除去と
2
同時に基板表面上に付着した異物の除去に効果があり、また、(5) HC1+H O +H
2 2
O混合液を用いた洗浄 (SC— 2洗浄)は重金属除去に効果があるとされて 、る。
2
[0005] 従来、上記のような洗浄は半導体基板 (ゥエーハ)の製造工程の中でも後工程に近 い鏡面研磨されたゥエーハに対して実施されてきた (たとえば、特開平 8— 115894 号公報参照)。なぜならば、 RCA洗浄は工程も長ぐ最終的に鏡面研磨されたゥェ ーハが清浄であればよぐ加工途中のゥエーハに適用することが実質上無駄であると 考えられているからである。
[0006] そして、加工途中における汚染の影響は、一般的にその後の研磨や洗浄により少 なくなる。また汚染物を捕獲するための各種ゲッタリング技術によりデバイスに影響し な 、ようなデバイス製造がされて 、る。
[0007] し力し近年、研磨前、特にエッチング工程での汚染物の影響も重要になりつつある 。エッチング工程では表面が活性な状況になっており、また用いるエツチャント中にも 汚染物質を多く含んでいるため、汚染物がゥエーハ表面に付着及び内部に拡散す る可能性等が懸念される。
[0008] 特に、加工途中でゥエーハ表面が重金属汚染されると、汚染物がゥエーハ内部へ 拡散したり、またデバイスプロセスの低温ィ匕によるゲッタリング能力不足の問題により 、従来より、ゥエーハの汚染レベルをより低くすることが必要となってきた。 発明の開示
[0009] 本発明は、このような問題点に鑑みてなされたもので、ゥエーハに付着している汚 染物、特に重金属を効果的に低減できる半導体ゥエーハの平面研削方法および最 終的に清浄で高品質のゥエーハを製造する製造方法を提供することを目的としたも のである。
[0010] 本発明は、上記課題を解決するためになされたもので、薄板状にスライスされた半 導体ゥエーハを平面研削する方法であって、少なくとも、前記半導体ゥエーハを平面 研削する前に重金属を除去する洗浄工程を行い、該洗浄工程を行った後に平面研 削工程を行うことを特徴とする半導体ゥエーハの平面研削方法を提供する。
[0011] このように、半導体ゥエーハを平面研削する前に重金属を除去する洗浄工程を行う ことで、ゥエーハに付着した重金属を除去した後で平面研削を行うことができる。従つ て、平面研削のように機械的作用が大きく発熱する工程において、汚染物がゥエー ハ内部へ拡散することがなぐ最終的に得られるゥエーハの汚染レベルを低くするこ とがでさる。
[0012] この場合、前記重金属を除去する洗浄工程として、 SC—1洗浄、 SC— 2洗浄、タエ ン酸'過酸ィ匕水素水を含む混合液による洗浄のいずれか一以上を行うことができる。
[0013] このように、 SC—1洗浄、 SC— 2洗浄、クェン酸'過酸ィ匕水素水を含む混合液によ る洗浄のいずれか一以上を行うことで、平面研削前に重金属を効果的に除去するこ とがでさる。
[0014] また、前記研削するゥエーハを、スライス後にエッチングしたゥエーハとすることが好 ましい。
[0015] エッチング工程ではゥエーハ表面が活性な状況になっており、また用いるエツチヤ ント中にも汚染物質を多く含んでいるため、汚染物がゥエーハ表面に付着する恐れ が高 、。エッチング工程で汚染物が付着したゥエーハを洗浄して重金属を除去した 後で平面研削を行えば、平面研削により汚染物がゥエーハ内部へ拡散することがな ぐ結果的にゥエーハの汚染レベルを低減することができる。
[0016] また、本発明は、少なくとも平面研削工程を含む半導体ゥエーハの製造方法であつ て、少なくとも、前記半導体ゥエーハを平面研削する前に重金属を除去する洗浄ェ 程を行い、該洗浄工程を行った後に平面研削工程を行うことを特徴とする半導体ゥ エーハの製造方法を提供する。
[0017] このように、半導体ゥエーハを平面研削する前に重金属を除去する洗浄工程を行う ことで、ゥエーハに付着した重金属を除去した後で平面研削を行うことができる。従つ て、平面研削により汚染物がゥエーハ内部へ拡散することがなぐ汚染レベルが低い ゥエーハを製造することができる。
[0018] この場合、前記重金属を除去する洗浄工程として、 SC—1洗浄、 SC— 2洗浄、タエ ン酸'過酸ィ匕水素水を含む混合液による洗浄のいずれか一以上を行うことができる。 [0019] このように、 SC—l洗浄、 SC— 2洗浄、クェン酸'過酸ィ匕水素水を含む混合液によ る洗浄のいずれか一以上を行うことで、平面研削前に重金属を効果的に除去して、 平面研削中に重金属を内部に拡散させることなく、汚染レベルが低 、ゥエーハを製 造することができる。
[0020] また、前記研削するゥエーハを、スライス後にエッチングしたゥエーハとすることが好 ましい。
[0021] エッチング工程ではゥエーハ表面が活性な状況になっており、また用いるエツチヤ ント中にも汚染物質を多く含んでいるため、汚染物がゥエーハ表面に付着する恐れ が高 、。エッチング工程で汚染物が付着したゥエーハを洗浄して重金属を除去した 後で平面研削を行えば、平面研削により汚染物がゥエーハ内部へ拡散することがな く、汚染レベルが低 、ゥエーハを製造することができる。
[0022] また、前記平面研削工程を行った後に、少なくとも半導体ゥエーハを研磨する研磨 工程を行 ヽ、該研磨工程後に洗浄工程を行うことが好ま 、。
[0023] このように、洗浄後に平面研削工程を行った後に、少なくとも半導体ゥエーハを研 磨する研磨工程を行い、該研磨工程後に RCA洗浄などの洗浄工程を行えば、平坦 度に優れ、より確実に汚染レベルが低 、ゥエーハを製造することができる。
[0024] 以上説明したように、本発明によれば、重金属を除去する洗浄工程を行いゥエーハ の重金属の汚染レベルを低くした後に平面研削工程を行うことを特徴とする半導体ゥ エーハの平面研削方法および製造方法が提供される。このように平面研削の前に洗 浄を行うことで、ゥエーハに付着した重金属を効果的に除去することができ、続く機械 的作用の大きい平面研削工程により重金属がゥエーハ内部へ拡散する可能性を低 減できる。従って、最終的に清浄度の高い高品質のゥエーハを製造することができる
図面の簡単な説明
[0025] [図 1]本発明の半導体ゥエーハの平面研削方法および製造方法の一例を説明する 概略図である。
[図 2]実施例 1、 2と比較例 1、 2のゥエーハについて、表面の Cu不純物濃度を測定し た結果を示すグラフである(縦軸は相対値)。
[図 3]実施例 3と比較例 3、 4のゥエーハについて、表面の Cu不純物濃度を測定した 結果を示すグラフである(縦軸は相対値)。
[図 4]平坦ィ匕工程としてラッピング工程を行ったゥエーハと平面研削工程を行ったゥ エーハについて、表面の Cu不純物濃度を測定した結果を示すグラフである(縦軸は 相対値)。
発明を実施するための最良の形態
[0026] 以下、本発明についてより詳細に説明する力 本発明はこれらに限定されるもので はない。
[0027] 従来、半導体ゥエーハの製造にぉ 、て、スライスゥエーハの平坦ィ匕と加工変質層 の除去を目的としたラッピングが行われている。しかし、近年ではより加工精度および 加工能率の高 、平面研削が用いられることが多くなつて 、る。
[0028] 本発明者等は、半導体ゥエーハの製造にお!ヽて、スライス工程後の平坦ィ匕工程と して、ラッピングの代わりに平面研削を行うと、得られるゥエーハの重金属汚染濃度が 高くなることを見出した。
[0029] すなわち、本発明者等は、ラッピングを行う加工フロー (スライス→ラッピング→エツ チング→研磨→洗浄)および、平面研削を行う加工フロー (スライス→平面研削→ェ ツチング→研磨→洗浄)により製造されたそれぞれのゥエーハについて、 Cuの不純 物濃度を測定した。
[0030] 測定方法としては、フッ硝酸によりゥエーハ表面を約 0. 1 μ mエッチングし、その液 を原子吸光により分析した。得られた結果を図 4に示す。図 4から、平面研削により平 坦ィ匕を行って得られたゥエーハの Cu不純物濃度が高 、ことがわかる。 V、ずれの加工 フローも最後にゥエーハを洗浄しているにもかかわらず、得られたゥエーハ表面の C u不純物濃度に差が生じている。従って、平面研削工程で、 Cuをゥエーハ表面のみ ならず内部に拡散させて 、る可能性が高 、ことが判った。
[0031] 本発明者等は、このような問題点に鑑み、ラッピングを行う場合と同等の Cu不純物 濃度が低いゥエーハを得ることができる平面研削工程を求めて鋭意検討を行った。 そして、重金属を除去する洗浄工程を行ってカゝら平面研削を行えば、 Cu不純物濃 度の低いゥエーハを得られることを見出し、本発明を完成させた。
[0032] すなわち本発明の半導体ゥエーハの平面研削方法は、薄板状にスライスされた半 導体ゥエーハを平面研削する方法であって、少なくとも、前記半導体ゥエーハを平面 研削する前に重金属を除去する洗浄工程を行い、該洗浄工程を行った後に平面研 削工程を行うことを特徴とする。
[0033] このように、半導体ゥエーハを平面研削する前に重金属を除去する洗浄工程を行う ことで、ゥエーハに付着した重金属を除去した後で平面研削を行うことができる。従つ て、平面研削のように機械的作用が大きく発熱する工程において、汚染物がゥエー ハ内部へ拡散することがなぐ最終的に得られるゥエーハの汚染レベルを低くするこ とがでさる。
[0034] ここで、図 1は本発明の半導体ゥエーハの製造方法および平面研削方法の一例を 説明する概略図である。
まず、チヨクラルスキー法等により引上げたシリコン単結晶インゴットをスライスして薄 円板状のゥエーハに加工する (スライス工程、図 1 (a) )。
[0035] 続いて、ゥエーハに付着している重金属を除去する洗浄工程を行う(重金属を除去 する洗浄工程、図 l (b) )。この洗浄により、あら力じめゥエーハに付着した重金属を 除去しておけば、後工程の平面研削により汚染物がゥエーハ内部へ拡散することが ない。従って、ゥエーハの汚染レベルを低くすることができる。
[0036] この洗浄工程は、特に限定されず従来行われているものを使用することができる。
たとえば、 SC— 1洗浄、 SC— 2洗浄、クェン酸 '過酸ィ匕水素水を含む混合液による 洗净の 、ずれか一以上を行うことができる。
[0037] SC— 1洗浄の洗浄液の濃度は、特に限定されず、たとえばアンモニア 1〜10% ( 容量%)、過酸ィ匕水素水 1〜10% (容量%)とすることができる。薬液温度は 60°C〜9
0°Cとするのが好ましい。
[0038] SC— 2洗浄の洗浄液の濃度についても、特に限定されず、たとえば塩酸 1〜10%
(容量%)、過酸ィ匕水素水 1〜10% (容量%)とすることができる。薬液温度は 60°C〜
90°Cとするのが好ましい。
[0039] クェン酸'過酸ィ匕水素水を含む混合液の濃度についても、特に限定されないが、た とえばクェン酸濃度 0.005%〜0. 5% (容量0 /0)、過酸化水素の濃度が 0. 01%〜1 . 0% (容量%)とすることができる。薬液温度は 20°C〜60°Cとするのが好ましい。
[0040] 洗浄時間については、工程の状況 (汚染の状況)や薬液濃度、処理温度により適 宜設定すればよいが、上記のような洗浄条件で実施した場合、 60秒以上処理すれ ば十分な効果が得られる。更に処理時間を延ばして 180秒程度とすれば、より安定し た洗浄効果が得られる。但し、余りに長くしても、それ以上効果が上がらないので、 1 0分以下とする方がよい。
[0041] 洗浄方式は特に限定されないが、たとえば、半導体ゥエーハを洗浄液中に浸漬さ せて行うことができる。
[0042] 以上の SC— 1洗浄、 SC— 2洗浄、クェン酸'過酸化水素水を含む混合液による洗 浄は、いずれかを単独で行ってもよいし、 2つ以上を組合わせて行ってもよい。
[0043] 次に、スライス工程での切断加工によってゥエーハ表層に誘起されたカ卩ェ変質層 を除去するとともにゥエーハを平坦ィ匕するために、ゥエーハを平面研削(両頭研削を 含む)する (平面研削工程、図 l (c) )。
[0044] 平面研削工程は、たとえば、ゥエーハの片面を真空吸着により保持し、このゥエー ハおよびカップ形状の微細ダイヤモンド砲石を回転させつつ互いに接触させて行うこ とがでさる。
[0045] また、平面研削工程として両頭研削を行うのであれば、ゥエーハの外周を 3点で保 持して回転させ、ゥエーハの両側力ゝらそれぞれダイヤモンド砥石を接触させて研削を 行うことができる。
[0046] さらに、上記の工程でゥエーハ表層に生じた加工歪みを除去するために、ゥエーハ をアルカリエッチングする(アルカリエッチング工程、図 l (d) )。エツチャントは特に限 定されず、たとえば濃度 30〜60%の NaOH水溶液や KOH水溶液を用いて行うこと ができる。
[0047] 次に、ゥエーハを研磨する研磨工程を行って、ゥエーハの表面をより高度に平坦ィ匕 する(図 l (e) )。研磨方法は特に限定されず、一般に用いられている方法を適用する ことができる。例えば、枚葉方式で、研磨ヘッドにゥエーハを保持し、回転させながら 研磨布を貼付した研磨定盤に研磨液を供給しつつ摺接することで、大口径ゥエーハ を鏡面研磨することができる。
[0048] 上記研磨後、最終的にゥエーハを洗浄する洗浄工程を行う(図 1 (f) )。洗浄方法は 特に限定されず、一般に用いられている方法である RCA洗浄を適用することができ る。例えば、(1) NH OH+H O +H O混合液浸漬処理(1 : 1 : 5、 80°C、 10分)、 (
4 2 2 2
2)純水リンス、 (3) HF+H O浸漬処理 (HF1%含有)、(4)純水リンス、 (5) HC1+
2
H O +H O混合液浸漬処理(1 : 1 : 6、 80°C、 10分)、(6)純水リンス、 (7)乾燥まで
2 2 2
を連続して行うことができる。
[0049] 以上のような製造方法および平面研削方法により、半導体ゥエーハを得ることがで きる。
本発明では、ゥエーハに付着した重金属を洗浄工程により除去した後で平面研削 を行う。このように、重金属汚染を除去した後に研削するので、重金属不純物をゥェ ーハ中に拡散させてしまうようなこともなぐ結果的に清浄で高品質のゥエーハを容易 に得ることができる。
[0050] なお、上記スライス工程の後にラッピング工程やエッチング工程を行 ヽ、その後に 重金属を除去する洗浄工程および平面研削工程を行って、スライス後にエッチング したゥエーハを研削するようにしてもょ 、。エッチング工程では表面が活性な状況に なっており、また用いるエツチャント中にも汚染物質を多く含んでいるため、汚染物が ゥエーハ表面に付着する可能性が大きい。本発明の半導体ゥエーハの平面研削方 法および製造方法であれば、エッチング後にゥエーハ表面に付着した重金属を洗浄 した後、平面研削を行うため、重金属不純物をゥエーハ中に拡散させてしまうようなこ ともなぐ清浄で高品質のゥエーハを容易に得ることができる。
[0051] また、上記では本発明に必須の重金属を除去する洗浄工程および平面研削工程 以外に、アルカリエッチング工程、研磨工程および洗浄工程を行う場合について説 明したが、これらの工程は省略してもよい。また、この他にも面取り'ラッピング'洗浄' 熱処理等の工程が加わってもよぐ一部工程の省略'入換え ·繰返し等本発明にお Vヽても従来行われて 、る種々の工程を採用し得る。
[0052] 以下に、本発明の実施例を説明するが、本発明はこれに限定されるものではない。 (実施例 1)
まず、チヨクラルスキー法により引上げたシリコン単結晶インゴットをワイヤーソーを 用いてスライスして薄円板状のゥエーノ、(直径 300mm、 P型、方位く 100>)に加工 した (スライス工程、図 1 (a) )。
[0053] 続いて、ゥエーハに付着している重金属を SC— 1洗浄により除去した(重金属を除 去する洗浄工程、図 1 (b) )。 SC— 1洗浄液は、アンモニア、過酸化水素と純水の混 合溶液であり、濃度はアンモニア 3% (容量%)、過酸化水素水 3% (容量%)となるよ うに調整した。調整後、薬液温度を 80°Cとし 180秒の洗浄を行った。洗浄後、純水リ ンス中ですすぎ、スピン乾燥により回転させ乾燥した。
[0054] 次に、スライス工程での切断加工によってゥエーハ表層に誘起されたカ卩ェ変質層 を除去するとともにゥエーハを平坦ィ匕するために、ゥエーハを平面研削した (平面研 削工程、図 l (c) )。砲石によりゥエーハの片面ずつを研削し、両面平面研削を行った
[0055] さらに、上記の工程でゥエーハ表層に生じた加工歪みを除去するために、ゥエーハ をアルカリエッチングした (アルカリエッチング工程、図 l (d) )。エツチャントとして濃度 52%の NaOH水溶液を用い、液温は 80°Cとした。
[0056] その後、ゥエーハを研磨する研磨工程を行った(図 1 (e) )。
最後に、 RCA洗浄により仕上げ洗浄を行った (洗浄工程、図 1 (f) )。
[0057] (比較例 1)
比較例として、重金属を除去する洗浄工程を行わなカゝつた以外は、実施例 1と同条 件でスライス工程 .平面研削工程 .アルカリエッチング工程 '研磨工程'洗浄工程を行 つた o
[0058] (実施例 2)
実施例 1と同条件で、スライス工程を行った。
その後、遊離砲粒を用いたラッピング加工によりゥエーハを平坦ィ匕した (ラッピング 工程)。 [0059] 次に、ラッピング工程でゥエーハ表層に生じたカ卩ェ歪みを除去するために、ゥエー ハをエッチングした(エッチング工程)。エツチャントとして濃度 52%の NaOH水溶液 を用い、液温は 80°Cとした。
[0060] 続いて実施例 1と同条件で、重金属を除去する洗浄工程、平面研削工程、アルカリ エッチング工程、研磨工程、洗浄工程を行った。
[0061] (比較例 2)
比較例として、重金属を除去する洗浄工程を行わなカゝつた以外は、実施例 2と同条 件でスライス工程 ·ラッピング工程 ·エッチング工程 ·平面研削工程 ·アルカリエツチン グ工程 ·研磨工程 ·洗浄工程を行った。
[0062] 上記、実施例 1、 2および比較例 1、 2で得られたシリコンゥエーハについて、 Cuの 不純物濃度を測定した。測定方法は、フッ硝酸によりゥエーハ表面を約 0. エツ チングし、その液を原子吸光により分析した。得られた結果を図 2に示す。
[0063] 図 2において、比較例 1および実施例 1、比較例 2および実施例 2から、平面研削前 に重金属を除去する洗浄工程を行うことで、 Cu不純物濃度が低減して ヽることが確 f*i¾ れ 。
[0064] (実施例 3)
重金属を除去する洗浄工程における洗浄液を、下記の異なる 3条件とした以外は、 実施例 2と同条件で、スライス工程 ·ラッピング工程 ·エッチング工程 ·重金属を除去す る洗浄工程 .平面研削工程 .アルカリエッチング工程 '研磨工程'洗浄工程を行った。
[0065] (1) SC—1洗浄液:アンモニア、過酸化水素、純水の混合溶液であり、濃度はアンモ ニァ 3% (容量%)、過酸化水素水 3% (容量%)に調整した (実施例 2と同じ)。薬液 温度は 80°Cで、洗浄時間は 180秒とした。
(2) SC— 2洗浄液:塩酸、過酸化水素、純水の混合溶液であり、濃度は塩酸 3% (容 量%)、過酸化水素水 3% (容量%)に調整した。薬液温度は 80°Cで、洗浄時間は 1 80秒とした。
(3)クェン酸 ·過酸ィ匕水素水を含む混合液:クェン酸、過酸化水素、純水の混合溶液 (以下この液をクェン酸/過水と略すことがある)であり、濃度はクェン酸 0.05% (容量 %)、過酸化水素 (H O ) 0.1% (容量%)となるように調整した。薬液温度は 30°Cで
2 2
、洗浄時間は 180秒とした。
[0066] (比較例 3)
比較例 2と全く同じ工程を行った。すなわち重金属を除去する洗浄工程を行わず、 スライス工程 ·ラッピング工程 ·エッチング工程 ·平面研削工程 ·アルカリエッチングェ 程 ·研磨工程,洗浄工程を行つた。
[0067] (比較例 4)
比較例 4として、比較例 1の平面研削工程の代わりにラッピング工程を行った以外 は、比較例 1と同条件でスライス工程 ·ラッピング工程 ·アルカリエッチング工程 ·研磨 工程 ·洗浄工程の順に行った。
[0068] 上記、実施例 3および比較例 3、 4で得られたシリコンゥエーハにつ!/、て、 Cuの不純 物濃度を測定した。測定方法は、フッ硝酸によりゥエーハ表面を約 0. エツチン グし、その液を原子吸光により分析した。得られた結果を図 3に示す。
[0069] 図 3において、比較例 3および実施例 3から、平面研削前に重金属を除去する洗浄 工程を SC— 1洗浄、 SC— 2洗浄、クェン酸/過水洗浄のいずれで行っても、平面研 削前洗浄を行わな力つた比較例 3と比較して Cu不純物濃度が低減していることが確 認された。特に、実施例 3で SC— 2洗浄およびクェン酸/過水洗浄を行った場合には 、 Cu不純物濃度が大きく低減されており、平面研削を行わずラッピングのみを行った 比較例 4と同様なレベルまで改善されて 、ることがわ力る。
[0070] 尚、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示 であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成 を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範 囲に包含される。
[0071] たとえば、本発明の平面研削方法および製造方法は、シリコンゥエーハのみならず 化合物半導体等の種々の半導体ゥエーハに適用できることは言うまでもない。

Claims

請求の範囲
[1] 薄板状にスライスされた半導体ゥエーハを平面研削する方法であって、少なくとも、 前記半導体ゥエーハを平面研削する前に重金属を除去する洗浄工程を行い、該洗 浄工程を行った後に平面研削工程を行うことを特徴とする半導体ゥエーハの平面研 削方法。
[2] 前記重金属を除去する洗浄工程として、 SC— 1洗浄、 SC— 2洗浄、クェン酸 '過酸 化水素水を含む混合液による洗浄のいずれか一以上を行うことを特徴とする請求項 1に記載の半導体ゥエーハの平面研削方法。
[3] 前記研削するゥエーハを、スライス後にエッチングしたゥエーハとすることを特徴と する請求項 1または請求項 2に記載の半導体ゥエーハの平面研削方法。
[4] 少なくとも平面研削工程を含む半導体ゥエーハの製造方法であって、少なくとも、 前記半導体ゥエーハを平面研削する前に重金属を除去する洗浄工程を行い、該洗 浄工程を行った後に平面研削工程を行うことを特徴とする半導体ゥエーハの製造方 法。
[5] 前記重金属を除去する洗浄工程として、 SC— 1洗浄、 SC— 2洗浄、クェン酸 '過酸 化水素水を含む混合液による洗浄のいずれか一以上を行うことを特徴とする請求項 4に記載の半導体ゥエーハの製造方法。
[6] 前記研削するゥエーハを、スライス後にエッチングしたゥエーハとすることを特徴と する請求項 4または請求項 5に記載の半導体ゥエーハの製造方法。
[7] 前記平面研削工程を行った後に、少なくとも半導体ゥエーハを研磨する研磨工程 を行 ヽ、該研磨工程後に洗浄工程を行うことを特徴とする請求項 4乃至請求項 6の ヽ ずれか一項に記載の半導体ゥエーハの製造方法。
PCT/JP2006/322070 2005-11-30 2006-11-06 半導体ウエーハの平面研削方法および製造方法 WO2007063677A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/084,486 US20090203212A1 (en) 2005-11-30 2006-11-06 Surface Grinding Method and Manufacturing Method for Semiconductor Wafer
EP06822984A EP1956641A4 (en) 2005-11-30 2006-11-06 SURFACE GRINDING PROCESS OF SEMICONDUCTOR WAFER AND METHOD FOR MANUFACTURING SEMICONDUCTOR WAFER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-345531 2005-11-30
JP2005345531A JP2007150167A (ja) 2005-11-30 2005-11-30 半導体ウエーハの平面研削方法および製造方法

Publications (1)

Publication Number Publication Date
WO2007063677A1 true WO2007063677A1 (ja) 2007-06-07

Family

ID=38092014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322070 WO2007063677A1 (ja) 2005-11-30 2006-11-06 半導体ウエーハの平面研削方法および製造方法

Country Status (6)

Country Link
US (1) US20090203212A1 (ja)
EP (1) EP1956641A4 (ja)
JP (1) JP2007150167A (ja)
KR (1) KR20080075508A (ja)
TW (1) TW200725724A (ja)
WO (1) WO2007063677A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200360A (ja) * 2008-02-22 2009-09-03 Tkx:Kk シリコン部材の表面処理方法
JP2016028454A (ja) * 2009-01-14 2016-02-25 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC 半導体ウェハをクリーニングする方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6312976B2 (ja) * 2012-06-12 2018-04-18 Sumco Techxiv株式会社 半導体ウェーハの製造方法
JP7115850B2 (ja) * 2017-12-28 2022-08-09 株式会社ディスコ 被加工物の加工方法および加工装置
JP7472546B2 (ja) 2020-03-03 2024-04-23 住友金属鉱山株式会社 圧電性酸化物単結晶基板の製造方法
EP4047635A1 (de) 2021-02-18 2022-08-24 Siltronic AG Verfahren zur herstellung von scheiben aus einem zylindrischen stab aus halbleitermaterial

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092777A (ja) * 1996-09-12 1998-04-10 Komatsu Electron Metals Co Ltd 半導体ウェハの製造方法
JP2000091282A (ja) * 1998-09-10 2000-03-31 Mitsubishi Materials Silicon Corp 高平坦度ウェーハの製造方法
JP2000243731A (ja) * 1999-02-18 2000-09-08 Mitsubishi Materials Silicon Corp 高平坦度ウェーハの製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19525521B4 (de) * 1994-07-15 2007-04-26 Lam Research Corp.(N.D.Ges.D.Staates Delaware), Fremont Verfahren zum Reinigen von Substraten
JPH1022239A (ja) * 1996-06-29 1998-01-23 Komatsu Electron Metals Co Ltd 半導体ウェハの製造方法およびその洗浄装置
JP3296781B2 (ja) * 1998-04-21 2002-07-02 信越半導体株式会社 水性切削液、その製造方法、ならびにこの水性切削液を用いた切削方法
JP2000012494A (ja) * 1998-06-25 2000-01-14 Mitsubishi Materials Silicon Corp 溶液による半導体基板の処理方法
JP3328193B2 (ja) * 1998-07-08 2002-09-24 信越半導体株式会社 半導体ウエーハの製造方法
JP3003684B1 (ja) * 1998-09-07 2000-01-31 日本電気株式会社 基板洗浄方法および基板洗浄液
US6214704B1 (en) * 1998-12-16 2001-04-10 Memc Electronic Materials, Inc. Method of processing semiconductor wafers to build in back surface damage
JP2000277473A (ja) * 1999-03-24 2000-10-06 Mitsubishi Materials Silicon Corp シリコンウエーハの洗浄方法
US6338805B1 (en) * 1999-07-14 2002-01-15 Memc Electronic Materials, Inc. Process for fabricating semiconductor wafers with external gettering
KR20010021299A (ko) * 1999-08-14 2001-03-15 조셉 제이. 스위니 스크루버에서의 후면부 에칭
US6230720B1 (en) * 1999-08-16 2001-05-15 Memc Electronic Materials, Inc. Single-operation method of cleaning semiconductors after final polishing
EP1091388A3 (en) * 1999-10-06 2005-09-21 Ebara Corporation Method and apparatus for cleaning a substrate
JP3953265B2 (ja) * 1999-10-06 2007-08-08 株式会社荏原製作所 基板洗浄方法及びその装置
AU2001247500A1 (en) * 2000-03-17 2001-10-03 Wafer Solutions, Inc. Systems and methods to reduce grinding marks and metallic contamination
JP2002076082A (ja) * 2000-08-31 2002-03-15 Shin Etsu Handotai Co Ltd シリコンウエーハの検査方法及び製造方法、半導体デバイスの製造方法及びシリコンウエーハ
JP2002231665A (ja) * 2001-02-06 2002-08-16 Sumitomo Metal Ind Ltd エピタキシャル膜付き半導体ウエーハの製造方法
US20020142617A1 (en) * 2001-03-27 2002-10-03 Stanton Leslie G. Method for evaluating a wafer cleaning operation
US7416962B2 (en) * 2002-08-30 2008-08-26 Siltronic Corporation Method for processing a semiconductor wafer including back side grinding
JP4259881B2 (ja) * 2003-01-07 2009-04-30 コバレントマテリアル株式会社 シリコンウエハの清浄化方法
JP2004241723A (ja) * 2003-02-07 2004-08-26 Shin Etsu Handotai Co Ltd 半導体ウエーハの製造方法、サポートリング及びサポートリング付ウエーハ
JP4943636B2 (ja) * 2004-03-25 2012-05-30 エルピーダメモリ株式会社 半導体装置及びその製造方法
JP2005305591A (ja) * 2004-04-21 2005-11-04 Naoetsu Electronics Co Ltd シリコンウエーハの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092777A (ja) * 1996-09-12 1998-04-10 Komatsu Electron Metals Co Ltd 半導体ウェハの製造方法
JP2000091282A (ja) * 1998-09-10 2000-03-31 Mitsubishi Materials Silicon Corp 高平坦度ウェーハの製造方法
JP2000243731A (ja) * 1999-02-18 2000-09-08 Mitsubishi Materials Silicon Corp 高平坦度ウェーハの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1956641A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009200360A (ja) * 2008-02-22 2009-09-03 Tkx:Kk シリコン部材の表面処理方法
JP2016028454A (ja) * 2009-01-14 2016-02-25 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC 半導体ウェハをクリーニングする方法

Also Published As

Publication number Publication date
JP2007150167A (ja) 2007-06-14
EP1956641A4 (en) 2009-02-18
KR20080075508A (ko) 2008-08-18
EP1956641A1 (en) 2008-08-13
TW200725724A (en) 2007-07-01
US20090203212A1 (en) 2009-08-13

Similar Documents

Publication Publication Date Title
EP1737026B1 (en) Method of surface treating III-V semiconductor compound based substrates and method of manufacturing III-V compound semiconductors
US6376335B1 (en) Semiconductor wafer manufacturing process
US6338805B1 (en) Process for fabricating semiconductor wafers with external gettering
JP2006222453A (ja) シリコンウエーハの製造方法及びシリコンウエーハ並びにsoiウエーハ
KR101286171B1 (ko) 에피택셜 실리콘 웨이퍼의 제조 방법
US20130224954A1 (en) Silicon carbide single crystal substrate
EP1830397A2 (en) Surface treatment method of compound semiconductor substrate, fabrication method of compound semiconductor, compound semiconductor substrate, and semiconductor wafer
WO2007063677A1 (ja) 半導体ウエーハの平面研削方法および製造方法
US20100140746A1 (en) Improved process for preparing cleaned surfaces of strained silicon
TWI753114B (zh) GaAs基板及其製造方法
JP2010034128A (ja) ウェーハの製造方法及び該方法により得られたウェーハ
JP4857738B2 (ja) 半導体ウエーハの洗浄方法および製造方法
CN113690128A (zh) 一种磷化铟晶片的清洗方法
KR101275384B1 (ko) 실리콘 웨이퍼 처리 방법
KR20110036990A (ko) 균일 산화막 형성 방법 및 세정 방법
US20040266191A1 (en) Process for the wet-chemical surface treatment of a semiconductor wafer
KR20230172472A (ko) 실리콘 웨이퍼의 제조방법
WO2007049435A1 (ja) 半導体ウエーハの製造方法及び半導体ウエーハの洗浄方法
JP6421505B2 (ja) サファイア基板の製造方法
CN113043159A (zh) 硅晶圆的研磨方法
JPH1070099A (ja) サンドブラストを施した半導体ウエーハの洗浄方法およびこの方法で洗浄した半導体ウエーハ
US20240213329A1 (en) SiC WAFER AND SiC EPITAXIAL WAFER
WO2001054178A1 (en) Semiconductor wafer manufacturing process
JP2009182233A (ja) アニールウェーハの洗浄方法
JPH08115918A (ja) 単結晶シリコンウェーハの製造方法および単結晶シリコンウェーハ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12084486

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006822984

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087012702

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE