WO2007063110A1 - Dispositif thermique pour determiner et/ou controler le debit massique d'un milieu fluide - Google Patents

Dispositif thermique pour determiner et/ou controler le debit massique d'un milieu fluide Download PDF

Info

Publication number
WO2007063110A1
WO2007063110A1 PCT/EP2006/069155 EP2006069155W WO2007063110A1 WO 2007063110 A1 WO2007063110 A1 WO 2007063110A1 EP 2006069155 W EP2006069155 W EP 2006069155W WO 2007063110 A1 WO2007063110 A1 WO 2007063110A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
temperature sensor
medium
mass flow
control
Prior art date
Application number
PCT/EP2006/069155
Other languages
German (de)
English (en)
Inventor
Oliver Popp
Ole Koudal
Chris Gimson
Mohammed Khan
Jonathan Bailey
Original Assignee
Endress+Hauser Flowtec Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser Flowtec Ag filed Critical Endress+Hauser Flowtec Ag
Priority to EP06841277A priority Critical patent/EP1955022A1/fr
Publication of WO2007063110A1 publication Critical patent/WO2007063110A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters

Definitions

  • Thermal device for determining and / or monitoring the mass flow of a fluid medium
  • the invention relates to a thermal or calorimetric device for determining and / or monitoring the mass flow of a flowing through a pipe or through a measuring tube medium.
  • the medium is a flowable medium, in particular a liquid, a vaporous or a gaseous medium.
  • the two temperature sensors are installed in a measuring tube, through which the medium to be measured flows.
  • One of the two temperature sensors is a so-called passive temperature sensor; it records the current temperature of the medium.
  • the second temperature sensor is a so-called active temperature sensor, which is usually heated by a heating unit.
  • the heating unit is either an additional resistance heater, or the temperature sensor itself is a resistance element, e.g. around a RTD (Resistance Temperature Detector) temperature sensor, which is about the implementation of a supplied electric power, e.g. due to an increased measuring current is heated.
  • RTD Resistance Temperature Detector
  • the heatable temperature sensor is heated so that sets a fixed temperature difference between the two temperature sensors.
  • it has also become known, via a control / control unit to feed a time-constant heating power and to use the corresponding temperature change as a measure of the mass flow.
  • Heat from the heated temperature sensor via heat conduction, heat radiation and possibly also free Kmvetation within the medium. If the medium to be measured is in motion, an additional cooling of the heated temperature sensor is added by the colder medium flowing past. Due to the passing medium, heat transport due to a forced convection occurs here as well. Consequently, in order to maintain the fixed temperature difference between the two temperature sensors, a higher heating power is required for the heated temperature sensor Infeed of a time-constant heating power is reduced as a result of the flow of the medium to measure the temperature difference between the two temperature sensors.
  • Temperature sensor necessary heating power and the mass flow of the medium through a pipe or through the measuring tube.
  • Parameters are the thermophysical properties of the medium itself and the pressure prevailing in the medium. Once the corresponding flow-dependent characteristic curves have been created for these parameters or the corresponding parameters are known in the function equations, the mass flow rate of the medium can be determined with high accuracy.
  • Thermal measuring instruments based on the principle described above are offered and sold by Endress + Hauser under the name 't-mass'. The installation position of the flowmeter in the pipeline must always be selected so that it is ensured that the medium with the temperature sensors is in constant thermal contact.
  • the flowmeter according to the invention should therefore also provide information about a malfunction in a system and / or process variable in addition to the actual measured value, that is, the mass flow.
  • the faulty system and / or process variable is, for example, a deposit or condensate on at least one temperature sensor, a defect in the measuring device or a flow or temperature profile that negatively influences the measuring accuracy of the flowmeter.
  • the two temperature sensors are arranged in a medium-facing region of a housing and are in thermal contact with the flowing through the pipe or through the measuring tube medium that a first temperature sensor and a second temperature sensor designed to be heated are, wherein the first temperature sensor and the second temperature sensor alternately as a passive, unheated temperature sensor, which provides information about the current temperature of the medium during a first measurement interval, and as an active, heated temperature sensor, during a second measurement interval information about the mass flow of the medium through the pipe or through the measuring tube provides, can be controlled.
  • a control / evaluation unit which outputs a message and / or performs a correction of the determined mass flow, if during the first measurement interval and the second measurement interval provided corresponding measured values of the two temperature sensors from each other.
  • the flowable medium is a liquid, a gaseous or a vaporous medium.
  • the control / evaluation unit during the second measurement interval, the mass flow based on the prevailing between the two temperature sensors temperature difference when supplying a defined heat output and / or based on the respective heated temperature sensor heating power Maintaining a constant temperature difference determined.
  • An advantageous embodiment of the device according to the invention provides that the two temperature sensors are dimensioned differently and / or configured.
  • the control / evaluation unit outputs an error message 'impermissible deposit formation' when a deviation outside the predetermined tolerance value occurs in the temperature measured values and / or in the mass flow values of the two temperature sensors.
  • the control / evaluation unit feeds a first heat quantity to the first temperature sensor and a second heat output to the second temperature sensor which fed to the temperature sensors Heating outputs are dimensioned so that the temperature of the first temperature sensor and the temperature of the second temperature sensor are above the dew point of flowing in the pipe or in the measuring tube medium. Again, based on the temperature difference occurring between the two temperature sensors, the mass flow of the medium through the measuring tube or through the pipeline is determined.
  • the control / evaluation unit in the case of a gaseous or vaporous medium, the control / evaluation unit the first temperature sensor, a first heating power and the second temperature sensor, a second heating power or more different heating supplies that the control / evaluation based the respective different temperature values and supplied heating powers the corresponding mass flow values and temperature measured values calculated, the control / evaluation unit outputs in case of deviations in the calculated mass flow values the error message that Kmdensat has formed at one of the two temperature sensors.
  • the control / evaluation unit from the different, according to the o.g. Calculated procedure mass flow values including the nature of the medium selects a high probability of correct value for the mass flow and / or determined.
  • FIG. 1 shows a schematic representation of a thermal flow meter according to the invention
  • FIG. 2 shows a block diagram for controlling the thermal flow meter according to the invention
  • FIG. 3 shows a flow chart for the diagnosis and compensation of system and / or process errors or process faults
  • FIG. 5 shows a flow chart for controlling the control / evaluation unit in the event that there is the risk of medium condensing on at least one of the temperature sensors
  • FIG. 6 shows a flowchart for the detection of a Kmdensat- or deposit formation on a temperature sensor.
  • Fig. 1 shows a schematic representation of the thermal flow smes ses device 1 according to the invention with a thermal flow sensor 6 and a Transmitter 7.
  • the Durdimannmess réelle 1 is mounted via a screw thread 9 in a nozzle 4, which is located on the pipe 2.
  • the flowmeter 1 with integrated measuring tube as an inline measuring device.
  • the medium flows in the pipeline 2 in the flow direction S indicated by an arrow.
  • the temperature measuring device which is an essential part of the flow sensor 6, is located in the region of the housing 5 which faces the medium 3.
  • the two temperature sensors 11, 12 are electrically heatable resistance elements, so-called RTD sensors.
  • a conventional temperature sensor e.g. a PtIOO or PtIOOO or a thermocouple to which a thermally coupled heating unit 13 is assigned.
  • the heating unit 13 is arranged in the housing 5 in FIG. 1 and thermally coupled to the heatable temperature sensor 11, 12, but largely decoupled from the medium.
  • the coupling or decoupling is preferably carried out via the filling of the corresponding intermediate spaces with a thermally highly conductive or a thermally poorly conductive material.
  • this is a potting material used.
  • Determination of the temperature and the mass flow via the two alternating passively and actively operated temperature sensors 11, 12 Information about possible malfunctions in the system or in the process is provided. Preferably, the information is communicated to the operating personnel by means of a display not shown separately in FIG.
  • This possibility of providing the operator of a measuring device 1 with information about possible disturbances in the process or in the system in addition to the desired measured value has become well known in the literature of process automation under the terms 'Advanced Diagnostics' and 'Enhanced Diagnostics'.
  • Fig. 2 is an example of a block diagram for controlling the thermal flow meter 1 according to the invention to see.
  • a variety of heated temperature sensors 11, 12, ... 111 is successively supplied via the controller 14 and the heating unit 13 with the predetermined heating power P.
  • the heating power P supplied to each individual temperature sensor 11, 12,..., 111 during a predetermined period of time is constant.
  • the temperature measurement 15 determines the temperature value determined by each of the temperature sensors 11, 12,.
  • FIG. 3 shows a flow chart of a control program which is activated in the control / evaluation unit for the purpose of diagnosis and compensation of system and / or process errors.
  • the flowchart starts at the time when the heating power is turned off or when the heating power supplied to the heated temperature sensor 12 is interrupted. As soon as an equilibrium state has been reached, the temperature value T1 measured by the temperature sensor 11 and the temperature value T2 measured by the temperature sensor 12 are interrogated under the program points 11 and 12.
  • Heating power P O formed. Under the program item 14 is a maximum allowable temperature difference
  • the mass flow rate of the medium 3 through the pipeline 2 is then determined under program point 21. If no compensation is required, the determination of the mass flow rate is made under point 21 on the basis of the currently measured temperature values Tl, T2.
  • FIG. 4 is a flowchart for the diagnosis of a system and / or
  • the temperature sensor 11 is acted upon by the heating power P.
  • the temperatures T 1, T 2 of the heated temperature sensor 11 and the unheated temperature sensor 12 are measured under the program points 31, 32.
  • the supply of the heating power P to the temperature sensor 11 is interrupted.
  • the second temperature sensor 12 is connected to the heater terminals and applied with the heating power P.
  • the temperature value Tl of the temperature sensor 11 and the temperature value T2 of the temperature sensor 12 are determined under the program points 37 and 38.
  • Temperature difference .DELTA.T2 and the first temperature difference .DELTA.T1 determined.
  • the difference ⁇ T formed under point 40 is compared with a maximum permissible temperature difference ⁇ T given under point 41 (point 42). If the measured temperature difference ⁇ T is greater than the maximum permissible temperature difference
  • the heating power supplied to the temperature sensor 12 is interrupted (point 44). At point 45, the heater ports are in turn connected to the temperature sensor 11 and the program restarts with the program point 30.
  • FIG. 5 shows a flow diagram for controlling the control / evaluation unit 10 in the event that medium 3 condenses on one of the temperature sensors 11, 12.
  • Critical here is always the temperature sensor, at which the low temperature is measured. In the case shown, the temperature sensor 11 has the lower temperature.
  • the program starts under the program point 50 with the measurement of
  • T is lying. If this condition is met, the flow sensor 1 operates in normal operation and determines the mass flow of the medium 3 through the pipe 2.
  • the heating power P 1 supplied to the temperature sensor 11 is increased.
  • the temperature sensor 11 is acted upon by the heating power P 1 (point 55) and the temperature sensor 12 is charged with the heating power P 2, where P 2 is greater than P 1.
  • the point 57 determines the mass flow rate of the medium 3 in the usual manner. This loop from the program points 50 to 57 is cycled until T 1 is greater than r d (W , that is recorded under program point 53 normal operation.
  • Fig. 6 a flowchart is shown, with which it is possible to recognize condensate or coating, which has formed on one of the temperature sensors 11, 12.
  • the heating power P2 is supplied to the temperature sensor 12; as soon as an equilibrium state is reached, the temperature value T2 is measured.
  • the temperature Tl of the unheated temperature sensor 11 is determined under the program points 62, 63. Based on the heating power P2 and the determined temperature difference T2 - Tl the coefficient PCl and subsequently (point 65) determines the mass flow rate of the medium 3.
  • the calculated variation is compared under point 73 with a maximum permissible variation of the mass flow rate specified under point 74.
  • the predetermined maximum value is based on experimental investigations. If the maximum permissible value is exceeded, the error message or 'suspected odor formation' warning is output at point 75. If the variation in the mass flow rate remains within the specified tolerance, the flow sensor 6 or the flowmeter 1 operates in normal operation and determines the mass flow rate of the medium 3 through the pipeline 2 or through the measuring tube 2.
  • information about a possible Kmdensat- or deposit formation on one or more of the temperature sensors 11, 12, .., 111 also recognize that the temperature sensors 11, 12, ... 111 different dimensioned and / or configured. Due to the changed heat transfer coefficients with different shape and shape of the temperature sensors 11, 12 deposits can be detected even if they are identical in terms of their nature and thickness at each of the temperature sensors. Furthermore, with such an embodiment of the temperature sensors 11, 12, it is possible to detect undesired changes in the temperature profile or in the flow profile of the medium 3. Furthermore, according to the invention, information about a malfunction of the flowmeter 1 can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un dispositif permettant de déterminer et/ou de contrôler le débit massique d'un milieu fluide à travers une conduite (2) et à travers un tube de mesure avec au moins deux thermosondes (11, 12) et une unité de régulation/d'évaluation (10). Les deux capteurs thermiques (11, 12) sont disposés dans une zone du boîtier (5) tournée vers le milieu (3) et sont en contact thermique avec le milieu (3) s'écoulant à travers la conduite (2) et à travers le tube de mesure. Un premier capteur thermique (11) et un second capteur thermique (12) sont conçus de manière à pouvoir être chauffés. Le premier capteur thermique (11) et le second capteur thermique (12) peuvent être régulés en alternance, comme capteur thermique passif, non chauffé, qui fournit des informations sur la température actuelle du milieu (3), au cours d'un premier intervalle de mesure, et comme capteur thermique actif, chauffé, qui fournit des informations sur le débit massique du milieu (3) à travers la conduite (2) et à travers le tube de mesure (2), au cours d'un second intervalle de mesure. L'unité de régulation/d'évaluation (10) sort un message et/ou procède à une correction du débit massique déterminé, si les valeurs mesurées correspondantes des deux capteurs thermiques, fournies au cours du premier intervalle de mesure et au cours du second intervalle de mesure (11, 12), diffèrent les unes des autres.
PCT/EP2006/069155 2005-12-01 2006-11-30 Dispositif thermique pour determiner et/ou controler le debit massique d'un milieu fluide WO2007063110A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06841277A EP1955022A1 (fr) 2005-12-01 2006-11-30 Dispositif thermique pour determiner et/ou controler le debit massique d'un milieu fluide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005057687A DE102005057687A1 (de) 2005-12-01 2005-12-01 Vorrichtung zur Bestimmung und/oder Überwachung des Massedurchflusses eines fluiden Mediums
DE102005057687.7 2005-12-01

Publications (1)

Publication Number Publication Date
WO2007063110A1 true WO2007063110A1 (fr) 2007-06-07

Family

ID=37872477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/069155 WO2007063110A1 (fr) 2005-12-01 2006-11-30 Dispositif thermique pour determiner et/ou controler le debit massique d'un milieu fluide

Country Status (3)

Country Link
EP (1) EP1955022A1 (fr)
DE (1) DE102005057687A1 (fr)
WO (1) WO2007063110A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105714A1 (fr) 2008-03-28 2009-09-30 Hitachi, Ltd. Débitmètre thermique à gaz
WO2019120873A1 (fr) * 2017-12-21 2019-06-27 Innovative Sensor Technology Ist Ag Capteur d'écoulement thermique servant à définir la température et la vitesse d'écoulement d'un milieu de mesure s'écoulant
US10508966B2 (en) 2015-02-05 2019-12-17 Homeserve Plc Water flow analysis
US10704979B2 (en) 2015-01-07 2020-07-07 Homeserve Plc Flow detection device
CN113739959A (zh) * 2021-08-23 2021-12-03 上海科华热力管道有限公司 一种用于测定蒸汽管网热流密度的方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007023823B4 (de) * 2007-05-21 2014-12-18 Abb Ag Thermischer Massendurchflussmesser und Verfahren zu seinem Betrieb
EP2193362A2 (fr) 2007-10-01 2010-06-09 Hauser, Andreas Capteur de charge en suie
DE102009060302A1 (de) * 2009-12-23 2011-06-30 Truma Gerätetechnik GmbH & Co. KG, 85640 Gaszuführungsvorrichtung mit Massendurchflusssensor
DE102010018948B4 (de) 2010-04-30 2018-08-16 Abb Schweiz Ag Thermischer Massendurchflussmesser mit zusätzlichen Sensormitteln sowie Verfahren zum Betrieb desselben
DE102011081922B4 (de) * 2011-08-31 2021-12-23 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Strömumgssensor zur Bestimmung eines Strömungsparameters
DE102011089598A1 (de) * 2011-12-22 2013-06-27 Endress + Hauser Flowtec Ag Verfahren zur Erkennung eines Tröpfchenniederschlags an einem beheizten Temperaturfühler
DE102011089600A1 (de) * 2011-12-22 2013-06-27 Endress + Hauser Flowtec Ag Verfahren zur Erkennung eines Tröpfchenniederschlags an einem beheizten Temperaturfühler
DE102012102094A1 (de) * 2012-03-13 2013-09-19 Pierburg Gmbh Vorrichtung zur Bestimmung eines Gasmassenstroms sowie Verfahren zur Rekalibrierung einer derartigen Vorrichtung
DE102013114486A1 (de) 2013-12-19 2015-06-25 Innovative Sensor Technology Ist Ag Vorrichtung und Verfahren zum Bestimmen des Durchflusses eines Mediums
DE102014119223B3 (de) 2014-12-19 2016-03-31 Endress + Hauser Flowtec Ag Thermisches Durchflussmessgerät mit Diagnosefunktion
DE102014119237B4 (de) 2014-12-19 2021-12-16 Endress + Hauser Flowtec Ag Thermisches Durchflussmessgerät mit Diagnosefunktion und zugehöriges Betriebsverfahren
DE102014119231B4 (de) * 2014-12-19 2021-07-15 Endress + Hauser Flowtec Ag Thermisches Durchflussmessgerät mit Diagnosefunktion sowie zugehöriges Betriebsverfahren
DE102017116408A1 (de) 2017-07-20 2019-01-24 Endress + Hauser Wetzer Gmbh + Co. Kg Thermisches Durchflussmessgerät
DE102020205846A1 (de) 2020-05-08 2021-11-11 Vega Grieshaber Kg Füll- und Grenzstandsensor mit kalorimetrischer Sensorik
DE102021122790A1 (de) 2021-09-02 2023-03-02 Innovative Sensor Technology Ist Ag Verfahren zum Detektieren von Blasen oder Tröpfchen eines ersten Mediums in einem ein Messrohr durchströmenden fluiden zweiten Medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1065475A2 (fr) * 1999-05-31 2001-01-03 Sensirion AG Procédé pour mesurer un courant de gaz
US6272919B1 (en) * 1997-07-29 2001-08-14 Gascontrol B.V. Method for measuring a gas flow rate and a gasmeter therefore
WO2003006931A2 (fr) * 2001-07-11 2003-01-23 Robert Bosch Gmbh Procede permettant de compenser l'ecart de mesure d'un capteur de debit d'air

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4651564A (en) * 1982-09-30 1987-03-24 Honeywell Inc. Semiconductor device
DE4205207A1 (de) * 1992-02-20 1993-08-26 Siemens Ag Vorrichtung zur messung einer gas- oder fluessigkeitsstroemung
JP3493116B2 (ja) * 1996-05-24 2004-02-03 株式会社リコー 流量測定装置及び流量測定方法
NL1008665C1 (nl) * 1998-03-20 1999-09-21 Berkin Bv Mediumstroommeter.
JP3969167B2 (ja) * 2002-04-22 2007-09-05 三菱電機株式会社 流体流量測定装置
DE102005015692A1 (de) * 2004-08-20 2006-02-23 Endress + Hauser Wetzer Gmbh + Co Kg Vorrichtung zur Bestimmung und/oder Überwachung des Massedurchflusses eines Messmediums

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272919B1 (en) * 1997-07-29 2001-08-14 Gascontrol B.V. Method for measuring a gas flow rate and a gasmeter therefore
EP1065475A2 (fr) * 1999-05-31 2001-01-03 Sensirion AG Procédé pour mesurer un courant de gaz
WO2003006931A2 (fr) * 2001-07-11 2003-01-23 Robert Bosch Gmbh Procede permettant de compenser l'ecart de mesure d'un capteur de debit d'air

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1955022A1 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2105714A1 (fr) 2008-03-28 2009-09-30 Hitachi, Ltd. Débitmètre thermique à gaz
US10704979B2 (en) 2015-01-07 2020-07-07 Homeserve Plc Flow detection device
US10942080B2 (en) 2015-01-07 2021-03-09 Homeserve Plc Fluid flow detection apparatus
US11209333B2 (en) 2015-01-07 2021-12-28 Homeserve Plc Flow detection device
US10508966B2 (en) 2015-02-05 2019-12-17 Homeserve Plc Water flow analysis
WO2019120873A1 (fr) * 2017-12-21 2019-06-27 Innovative Sensor Technology Ist Ag Capteur d'écoulement thermique servant à définir la température et la vitesse d'écoulement d'un milieu de mesure s'écoulant
US11650088B2 (en) 2017-12-21 2023-05-16 Innovative Sensor Technology Ist Ag Thermal flow sensor for determining the temperature and the flow velocity of a flowing measuring medium
CN113739959A (zh) * 2021-08-23 2021-12-03 上海科华热力管道有限公司 一种用于测定蒸汽管网热流密度的方法
CN113739959B (zh) * 2021-08-23 2024-03-22 上海科华热力管道有限公司 一种用于测定蒸汽管网热流密度的方法

Also Published As

Publication number Publication date
EP1955022A1 (fr) 2008-08-13
DE102005057687A1 (de) 2007-06-06

Similar Documents

Publication Publication Date Title
WO2007063110A1 (fr) Dispositif thermique pour determiner et/ou controler le debit massique d'un milieu fluide
EP3234515B1 (fr) Appareil de mesure de débit thermique avec fonction de diagnostic
DE60014709T2 (de) Zweidraht-sender mit selbstprüfung und niedriger leistung
DE102008043887B4 (de) Verfahren und Messsystem zur Bestimmung und/oder Überwachung einer Aggregatszustandsänderung eines Messmediums an einem thermischen Durchflussmessgerät
EP2932205B1 (fr) Débitmetre thermique et procede de determination et/ou de surveillance d'un débit d'un fluide
EP2791629B1 (fr) Dispositif et procédé pour la détermination du débit massique d'un fluide
DE102007023823B4 (de) Thermischer Massendurchflussmesser und Verfahren zu seinem Betrieb
EP2758755B1 (fr) Procédé servant à appréhender une propriété d'écoulement d'un milieu fluide en écoulement
DE102006057208A1 (de) Vorrichtung zur Bestimmung und/oder Überwachung des Massedurchflusses
WO2007063114A2 (fr) Dispositif pour determiner et/ou controler le debit massique d'un milieu gazeux
DE102009047664B4 (de) Messeinrichtung zur Bestimmung einer Wärmemenge
WO2009135504A1 (fr) Dispositif et procédé pour détecter des dépôts
EP1955021B1 (fr) Dispositif pour déterminer et/ou surveiller le débit massique d'une substance fluidique
EP3234519B1 (fr) Débitmètre thermique muni d'une fonction de diagnostic
WO2006058863A1 (fr) Dispositif permettant de determiner et/ou de surveiller le debit d'un agent a mesurer
EP2100112A1 (fr) Dispositif de mesure de temperature
EP2342541A1 (fr) Procédé et débitmètre thermique pour déterminer et/ou surveiller au moins une grandeur dépendant de la composition chimique d'un fluide à mesurer
DE3529257C2 (de) Verfahren und Anordnung zur Ermittlung der Wärmeabgabe von Heizflächen einer Heizungsanlage
DE102010030952B4 (de) Vorrichtung zur Bestimmung und/oder Überwachung eines Volumendurchflusses und/oder einer Durchflussgeschwindigkeit
WO2013156277A1 (fr) Appareil d'analyse de gaz pouvant être chauffé
EP3708984B1 (fr) Procédé de détermination, permettant au moins de déterminer au moins une valeur c pour un répartiteur électronique de frais de chauffage, procédé de paramétrage du répartiteur électronique de frais de chauffage et dispositif permettant de mettre en uvre au moins le procédé de détermination
DE102017113155A1 (de) Vorrichtung und Verfahren zum Ermitteln von Heizkosten
WO2020109394A1 (fr) Installation de chauffage et procédé pour faire fonctionner une installation de chauffage
DE102008004968A1 (de) Messeinheit zur Erfassung der Temperatur von Medien, vorzugsweise von Fluiden, sowie Temperaturmessvorrichtung mit solchen Messeinheiten
DE2521008B2 (de) Verfahren zum zaehlen von waermemengen und waermemengenzaehler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006841277

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006841277

Country of ref document: EP