WO2007061390A1 - Precision flexible current sensor - Google Patents
Precision flexible current sensor Download PDFInfo
- Publication number
- WO2007061390A1 WO2007061390A1 PCT/SK2005/000023 SK2005000023W WO2007061390A1 WO 2007061390 A1 WO2007061390 A1 WO 2007061390A1 SK 2005000023 W SK2005000023 W SK 2005000023W WO 2007061390 A1 WO2007061390 A1 WO 2007061390A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- current sensor
- sensing
- flexible current
- wires
- sensor according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R15/00—Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
- G01R15/14—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
- G01R15/18—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
- G01R15/181—Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers using coils without a magnetic core, e.g. Rogowski coils
Definitions
- the invention is related to sensor circuit for electrical alternating current. More particularly, the invention is directed to improvement of mechanical construction, electrical configuration, electronic evaluation circuit and use of flexible current sensor.
- the flexible current sensors are based on flexible inductive coil, which can be formed to create closed path around the measured current carrying conductor.
- the voltage induced into coil is proportional to the derivation of the total current flowing through the enclosed area.
- This principle of current measurement is well known as Rogowski principle or Rogowski coil following the publication by Rogowski W. and Steinhaus W. in 1912.
- Flexible current sensor generally has a form of sensing cable equipped with mechanical coupling system for either fixing or releasing said sensor cable ends to and from mutually closed position.
- the sensing cable consists of sensing coil wound on cylindrical flexible core, optional electrical shielding located over said sensing coil and outer isolation coat .
- an electronic integrator circuit is usually part of the flexible current sensor.
- the flexible sensors are advantageous for measurement of current in large size wires, difficult shape conductors and conductor groups .
- UK patent NO.GB2259150A discloses arrangements of electronic integrator with combined feedback
- European Patent EP652441A1 discloses fixed Rogowski coil arrangements for installation with earthed metal casing
- US pat. NO.6614218B1 discloses arrangements of combined passive and active integrator
- European Patent EP0834745A2 discloses arrangement of fixed Rogowski coil with high homogeneity
- Japanese patent JP2000065866 discloses multiple Rogowski coil arrangement for measurement of current flowing through large structure
- UK patent application NO.GB2332784A discloses flexible Rogowski coil arrangements consisting of sensor coil wrapped on fixed support structure
- German patent application NO.DE19811366A1 discloses flexible
- German patent application NO.DE19959789A1 discloses arrangements of electronic integrator with switched DC feedback
- the electrical shielding of the sensing cable consists of plurality of individually isolated shielding wires.
- the shielding wires are arranged into groups wound in mutually opposite directions . All shielding wires are electrically interconnected in parallel. Each shielding wire has only one connection point . Symmetrical arrangement of shielding consisting of plurality of wires yields high flexibility of sensing cable and minimizes the shielding effective impedance and thus increases the shielding performance.
- the single connection point of each shielding wire eliminates any flow of induced currents, which would affect accuracy.
- the sensing coil consists of plurality of individually isolated sensing wires .
- the sensing wires are arranged into groups wound in mutually opposite directions.
- sensing wires respective to voltages induced in sensing wires by magnetic field of sensed current, are electrically interconnected in series or in parallel or in combination of series and parallel or some sensing wires are idle.
- the interconnection configuration of sensing wires is used to determine the sensing coil sensitivity, impedance and frequency range. Symmetrical arrangement of sensing wires eliminates influence of strange current sources .
- the shielding wires wound in opposite direction can be advantageously mutually twisted.
- the shielding wire twisting improves the mechanical stability of the winding and increases effective coverage.
- the shielding wire twisting also improves the electrical symmetry of wire groups thus lowering shielding impedance yielding further increasing of shielding performance.
- the sensing wires wound in opposite direction can be advantageously mutually twisted.
- the sensing wire twisting improves the mechanical stability of the winding and thus increases the electrical stability as well.
- Essential effect of sensing wire twisting is the improvement of symmetry of sensing coil in reference to shielding. The symmetry enables elimination of all common mode residual signals induced by unwanted couplings of the sensing coil to strange sources
- the flexible current sensor cable can be advantageously manufactured as continuous cable product on coaxial cable making machine with shielding wires and sensing wires arranged according to invention.
- the final sensor is then assembled from portion of desired length cut from already manufactured continuous cable.
- Continuous cable production assures high homogeneity of windings along the cable length thus increasing the sensor's accuracy and manufacturing repeatability. Further advantage is the lower manufacturing cost compare to individual sensor production.
- Sensing coil inhomogenity caused by sensing coil termination and coupling system can be effectively reduced by compensation coil connected in series with sensing coil .
- the compensation coil can be advantageously located within the coupling system.
- the symmetrical sensing coil of flexible current sensor according to invention is electrically balanced relative to shielding. Therefore essential elimination of all common mode residual signals induced by unwanted couplings of the sensing coil to strange sources can be accomplished by differential input stage of the electronic evaluation circuit .
- the high impedance of input circuit assures high sensitivity and independence of output signal on the sensing coil resistance.
- the sensing wires of sensing coil act as balanced transmission line with distributed parameters.
- the transmission line have to be matched with impedance equal to its characteristic impedance.
- One alternative of coupling system for flexible current sensor consists of pair of cylindrical caps wherein each cap is from its back side equipped- with cable hole for sensor cable, wherein first cap of said pair is on its front side equipped with cap hole for partial sinking of the front side of said second cap of said pair, wherein the wall of the cap hole is equipped with two fixing holes perpendicular to cap axis located on cap diagonal in opposite positions, wherein said second cap of said pair is equipped with fixing tips fitting into said fixing holes of the first cap, wherein one fixing hole is equipped with guiding notch for the fixing tip.
- Another alternative of coupling system for flexible current sensor consists of plurality of segments equipped with tunnel for sensor cable and with facet or facet pairs .
- the facet system creates either closed path tunnel when multiple segments are stacked on one combination of facets and facet pairs or open path tunnel when multiple segments are stacked on another combination of facets and facet pairs .
- Segments of the coupling system can be advantageously equipped with tip/hole pairs for determination of segment position in stack of segments .
- Segments of the coupling system can be advantageously equipped with tunnels for stack positioning strings.
- Flexible current sensor according to invention can be assembled from desired length portion of continuous sensor cable. Such sensor can be advantageously used as means for residual current measurement in large conductor groups for example building wiring and measurement of surge or lightning total and/or partial current in large structures for example buildings, towers or masts.
- this flexible current sensor Due to low sensitivity of the flexible current sensor according to invention to strange signals and capability to spatial adjustment this flexible current sensor can be advantageously used as current measurement means within measuring devices for example in electricity meters .
- the DC offset on output of electronic integrator circuit for flexible current sensor can be eliminated without affecting the AC accuracy in circuit consisting of operational amplifier, input resistor, integrating capacitor, decupling capacitor, first filter resistor, second filter resistor and filter capacitor.
- the input resistor is connected between input terminal of the integrator and inverting input terminal of the operational amplifier
- the integrating capacitor is connected between inverting input terminal of the operational amplifier and output terminal of the integrator.
- the decupling capacitor is connected between output terminal of the operational amplifier and the integrator output terminal .
- the second filter resistor is connected between output terminal of the operational amplifier and first terminal of the filter capacitor.
- the first filter resistor is connected between inverting input terminal of the operational amplifier and first terminal of the filter capacitor.
- the second terminal of the filter capacitor is connected to electrical reference potential.
- the non-inverting input terminal of the operational amplifier is connected to electrical reference potential.
- the decoupling capacitor eliminates output of the DC content. The amplitude and phase accuracy is not affected by decoupling capacitor as the integrator's control feedback via integrating capacitor is taken directly from the output terminal .
- Flexible current sensor cable sample according to invention has been manufactured for verification purpose as a continuous cable with sensing coil consisting of 2 x 4 isolated wires wound and twisted in mutually opposite direction on 7 mm diameter plastic core interconnected in series and with shielding consisting of 2 x 108 isolated wires wound and twisted in mutually opposite direction interconnected in parallel .
- Total outer diameter of the outer coat was 12 mm.
- the sensor was equipped with coupling system consisting of pair of cylindrical caps according to invention.
- the realized sensor has been used in precision electrical power measurement application as input circuit of working standard for electricity meter testing.
- the accuracy of the test system inclusive flexible sensor has been determined to be within limits 0.1% in amplitude and 0.1° in phase .
- Figure 1 shows principle of wire arrangement of shielding and/or sensing coil wound on cylindrical flexible core according to invention.
- Figure 2 shows an example of parallel interconnection of shielding wires according to invention.
- Figure 3 shows an example of serial interconnection of sensing wires according to invention.
- Figure 4 shows an example of combination of serial and parallel interconnection of sensing wires.
- Figure 5 shows an example of differential input arrangement of electronic integrator circuit .
- Figure 6 shows example of minimized coupling system for flexible current sensor according to invention.
- Figure 7 shows example of flexible current sensor assembled with coupling system according to figure 6.
- Figure 8 shows an example of segment construction of coupling system for flexible current sensor according to invention.
- Figure 9 shows a closed arrangement of the coupling system according to figure 8.
- Figure 10 shows an open arrangement of the coupling system according to figure 8.
- Figure 11 shows example fragment of flexible current sensor in current measurement application inside electricity meter.
- Figure 12 shows example of flexible current sensor application for discharge current measurement on high voltage mast .
- Figure 13 shows a minimized example of electronic integrator circuit for flexible current sensor according to invention.
- Figure 1 shows the principle of wire interconnection of shielding and/or sensing coil wound on cylindrical flexible core FC according to invention.
- the coil consists of plurality of individually isolated wires .
- the wires are divided into two groups Gl and G2.
- the groups Gl and G2 are wound in mutually opposite directions and the wires of both groups are mutually twisted via periodic interchange of radial position.
- FIG. 2 shows an example of parallel interconnection of shielding wires according to invention.
- the shielding wires are divided into groups Gl and G2 wound in opposite direction. All shielding wires are electrically interconnected in parallel. Each shielding wire has only one connection point to common terminal T.
- the parallel configuration of wires of two equal groups wound in opposite direction mutually cancels the magnetic field caused by common capacitive coupling to external voltage source. Therefore the parallel configuration acts as low impedance compact shielding but with advantage of high mechanical flexibility and elimination of measurement error introduced by residual current, which would be induced by magnetic field of sensed current in compact shielding.
- Figure 3 shows an example of serial interconnection of sensing wires according to invention.
- the sensing wires are divided into two groups Gl and G2.
- the groups are wound in mutually opposite directions. All sensing wires are electrically interconnected in series .
- the voltages induced in individual wires by magnetic field of sensed current are in this arrangement added.
- the sum of voltages appears on terminals Tl and T2. This arrangement is dedicated for applications where the highest sensitivity is required.
- Figure 4 shows an example of combination of serial and parallel interconnection of sensing wires .
- the groups Gl and G2 are interconnected in series while the sensing wires of individual groups are electrically interconnected in parallel . This arrangement is dedicated for high current transient measurement applications in which low sensitivity, low coil impedance and broad frequency range is required.
- Figure 5 shows an example of differential input arrangement of electronic integrator circuit .
- the terminals Tl and T2 of sensor coil SC are connected to non-inverting and inverting inputs of differential amplifier DA.
- the common terminal T of parallel connected shielding wires is connected to electrical ground.
- the output of differential input stage DA is connected to input of electronic integrator EI.
- Optional matching by impedance ZL terminating the sensor coil optimizes the high frequency response of the sensor coil.
- FIG. 6 shows example of minimized coupling system for flexible current sensor according to invention.
- the fixing system consists of pair of cylindrical caps wherein each cap is in its back side equipped with cable hole SH for sensor cable, wherein first cap of said pair is on its front side equipped with cap hole CH for partial sinking of the front side of said second cap of said pair, wherein the wall of the cap hole CH is equipped with two fixing holes FH perpendicular to cap axis located on cap diagonal in opposite positions, wherein said second cap of said pair is equipped with fixing tips FT fitting into said fixing holes FH of the first cap, wherein one fixing hole FH is equipped with guiding notch GN for fixing tip FT.
- This fixing system has no moving part and therefore it is very compact and reliable.
- Figure 7 shows two views of flexible current sensor assembled with coupling system shown in figure 6.
- the appropriate assembling with the guiding notch GN located on the inner diameter of the closed sensor uses the natural centrifugal force of the bended sensor cable for additional fixation of the fixing caps in closed position.
- FIG 8 shows an example of segment construction of coupling system for flexible current sensor according to invention.
- Coupling system for flexible current sensor consists of plurality of segments .
- the segments are equipped with tunnel ST for sensor and with facet pairs FIa / Fib and F2a / F2b.
- the segments are equipped with tip/hole pairs THP for determination of segment position in stack of segments .
- the segments are equipped with tunnels PT for stack positioning strings .
- Figure 9 shows an example of closed arrangement of the coupling system shown in fig. 8. Multiple segments are stacked on facets F2 and create closed path tunnel for sensor core. This is the working arrangement for measurement of current flowing through wire enclosed by the sensor .
- Figure 10 shows an example of open arrangement of the coupling system shown in fig. 8. Multiple segments are stacked on facets Fl and create open path tunnel for sensor core. This is the positioning arrangement when the sensor can be positioned over current carrying wire and then closed to working arrangement .
- Figure 11 shows example fragment of flexible current sensor in current measurement application inside electricity meter. The meter's current wire CW is sensed by multiple turns of sensor cable SC according to invention. Multiple turn lead to proportional sensitivity increase.
- FIG 12 shows example of flexible current sensor application for discharge current measurement on high voltage mast.
- the mast is equipped with flexible current sensor cable SC for measurement of total current flowing through mast stem into the earth.
- FIG. 13 shows a minimized example of electronic integrator circuit for flexible current sensor according to invention.
- Electronic integrator circuit consists of operational amplifier OA, input resistor RI, integrating capacitor CI, decupling capacitor CD, first filter resistor RFl, second filter resistor RF2 and filter capacitor CF.
- the input resistor RI is connected between integrator input terminal and inverting input terminal of operational amplifier OA.
- the integrating capacitor CI is connected between inverting input terminal of the operational amplifier OA and integrator output terminal.
- the decupling capacitor CD is connected between output terminal of the operational amplifier OA and integrator output terminal .
- the second filter resistor RF2 is connected between output terminal of the operational amplifier OA and first terminal of the filter capacitor CF.
- the first filter resistor RFl is connected between inverting input terminal of the operational amplifier OA and first terminal of the filter capacitor CF. Second terminal of the filter capacitor CF is connected to electrical reference potential . Non-inverting input terminal of the operational amplifier OA is connected to electrical reference potential.
- Output signal of the integrator circuit according to invention is free of DC offset due to decoupling capacitor CD. The amplitude and phase accuracy is not affected by decoupling capacitor CD as the integrator control feedback via integrating capacitor CI is taken from the integrator output terminal .
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/SK2005/000023 WO2007061390A1 (en) | 2005-11-28 | 2005-11-28 | Precision flexible current sensor |
| JP2008542285A JP4972098B2 (ja) | 2005-11-28 | 2005-11-28 | 可撓性精密電流検出器 |
| EP05813809.0A EP1960796B1 (en) | 2005-11-28 | 2005-11-28 | Precision flexible current sensor |
| US12/154,921 US7847543B2 (en) | 2005-11-28 | 2008-05-28 | Precision flexible current sensor |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/SK2005/000023 WO2007061390A1 (en) | 2005-11-28 | 2005-11-28 | Precision flexible current sensor |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/154,921 Continuation-In-Part US7847543B2 (en) | 2005-11-28 | 2008-05-28 | Precision flexible current sensor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2007061390A1 true WO2007061390A1 (en) | 2007-05-31 |
Family
ID=36649533
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/SK2005/000023 Ceased WO2007061390A1 (en) | 2005-11-28 | 2005-11-28 | Precision flexible current sensor |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US7847543B2 (enExample) |
| EP (1) | EP1960796B1 (enExample) |
| JP (1) | JP4972098B2 (enExample) |
| WO (1) | WO2007061390A1 (enExample) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2923019A1 (fr) * | 2007-10-26 | 2009-05-01 | Schneider Electric Ind Sas | Dispositif de mesure de courant flexible et ajustable |
| FR2931945A1 (fr) * | 2008-05-22 | 2009-12-04 | Billanco | Capteur de circulation de champ magnetique et capteur de courant mettant en oeuvre un tel capteur |
| WO2011015820A1 (en) * | 2009-08-04 | 2011-02-10 | Ea Technology Limited | Current detector |
| FR2987897A1 (fr) * | 2012-03-06 | 2013-09-13 | Julien Bergoz | Dispositif de mesure d'un courant electrique circulant dans un milieu |
| FR3116125A1 (fr) * | 2020-11-09 | 2022-05-13 | Safran Electrical & Power | Capteur de courant et système d’assemblage de transducteurs d’un capteur de courant |
Families Citing this family (53)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2007061390A1 (en) * | 2005-11-28 | 2007-05-31 | Ladislav Grno | Precision flexible current sensor |
| GB2461494B (en) * | 2008-01-29 | 2012-03-07 | Weston Aerospace Ltd | Speed sensor |
| IT1391344B1 (it) * | 2008-07-14 | 2011-12-05 | Lorenzo Peretto | Trasduttore tarabile di grandezze elettriche. |
| US8421443B2 (en) * | 2008-11-21 | 2013-04-16 | Veris Industries, Llc | Branch current monitor with calibration |
| US8193818B2 (en) * | 2009-01-15 | 2012-06-05 | Hamilton Sundstrand Corporation | Partial corona discharge detection |
| US9823274B2 (en) | 2009-07-31 | 2017-11-21 | Pulse Electronics, Inc. | Current sensing inductive devices |
| US9664711B2 (en) | 2009-07-31 | 2017-05-30 | Pulse Electronics, Inc. | Current sensing devices and methods |
| US20110043190A1 (en) * | 2009-08-20 | 2011-02-24 | Farr Lawrence B | Rogowski coil, medium voltage electrical apparatus including the same, and method of providing electrostatic shielding for a rogowski coil |
| US8508071B1 (en) * | 2009-12-18 | 2013-08-13 | Synapse Wireless, Inc. | Systems and methods for combining current from solar power arrays |
| NZ704116A (en) * | 2010-07-02 | 2016-04-29 | Belkin International Inc | Magnetic field sensing device and method of providing a magnetic field sensing device |
| US9063184B2 (en) | 2011-02-09 | 2015-06-23 | International Business Machines Corporation | Non-contact current-sensing and voltage-sensing clamp |
| US8680845B2 (en) | 2011-02-09 | 2014-03-25 | International Business Machines Corporation | Non-contact current and voltage sensor |
| US9588160B2 (en) | 2011-02-09 | 2017-03-07 | International Business Machines Corporation | Wire manager with current and voltage sensing |
| US9000752B2 (en) | 2011-06-14 | 2015-04-07 | International Business Machines Corporation | Multi-conductor cable current and voltage sensors |
| US8508212B2 (en) | 2011-06-14 | 2013-08-13 | International Business Machines Corporation | Calibration of non-contact current sensors |
| US9075091B2 (en) * | 2011-09-09 | 2015-07-07 | General Electric Company | Sensor devices and methods for use in sensing current through a conductor |
| US8829888B2 (en) | 2011-09-09 | 2014-09-09 | General Electric Company | Sensor devices and methods for use in sensing current through a conductor |
| US9081040B2 (en) | 2011-09-09 | 2015-07-14 | General Electric Company | Sensor devices and methods for use in sensing current through a conductor |
| US9429595B2 (en) * | 2011-09-09 | 2016-08-30 | Aclara Meters Llc | Sensor devices and methods for use in sensing current through a conductor |
| US8912807B2 (en) | 2011-09-09 | 2014-12-16 | General Electric Company | Sensor devices and methods for use in sensing current through a conductor |
| US8799481B2 (en) | 2011-09-14 | 2014-08-05 | General Electric Company | Method and system for detection of communication activities of a meter board |
| US9015326B2 (en) | 2011-09-14 | 2015-04-21 | General Electric Company | Method and system for managing power consumption of a meter during communication activities |
| US8719681B2 (en) | 2011-09-14 | 2014-05-06 | General Electric Company | Diagnostic tool for metrology errors caused by communication activities |
| MX2014004430A (es) * | 2011-10-12 | 2014-10-06 | Cequent Performance Prod Inc | Convertidor electrico que detecta corriente. |
| TWI436083B (zh) | 2011-11-02 | 2014-05-01 | Ind Tech Res Inst | 近接式電流感測裝置與方法 |
| GB201122328D0 (en) * | 2011-12-23 | 2012-02-01 | Dames Andrew N | Flexible rogowski current sensor |
| US9304149B2 (en) | 2012-05-31 | 2016-04-05 | Pulse Electronics, Inc. | Current sensing devices and methods |
| ES2438618B8 (es) * | 2012-06-15 | 2014-09-10 | Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) | Bobina de Rogowski y procedimiento para medir la corriente que circula por un conductor |
| US9007077B2 (en) | 2012-08-28 | 2015-04-14 | International Business Machines Corporation | Flexible current and voltage sensor |
| US9310397B2 (en) | 2013-01-29 | 2016-04-12 | International Business Machines Corporation | Multi-branch current/voltage sensor array |
| US9671434B2 (en) | 2014-08-08 | 2017-06-06 | Aclara Meters Llc | Sensor devices and methods for use in sensing current through a conductor |
| US10274572B2 (en) | 2015-12-28 | 2019-04-30 | Veris Industries, Llc | Calibration system for a power meter |
| US10371730B2 (en) | 2015-12-28 | 2019-08-06 | Veris Industries, Llc | Branch current monitor with client level access |
| US10371721B2 (en) | 2015-12-28 | 2019-08-06 | Veris Industries, Llc | Configuration system for a power meter |
| US10408911B2 (en) | 2015-12-28 | 2019-09-10 | Veris Industries, Llc | Network configurable system for a power meter |
| DE102016124165A1 (de) * | 2016-12-13 | 2018-06-14 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Verfahren und Sensor zur Messung eines Wechselstroms |
| US10732208B2 (en) * | 2017-02-13 | 2020-08-04 | Ladislav Gr{hacek over (n)}o | Flexible current sensor with stranded core |
| US11215650B2 (en) | 2017-02-28 | 2022-01-04 | Veris Industries, Llc | Phase aligned branch energy meter |
| US11193958B2 (en) | 2017-03-03 | 2021-12-07 | Veris Industries, Llc | Non-contact voltage sensor |
| US10705126B2 (en) | 2017-05-19 | 2020-07-07 | Veris Industries, Llc | Energy metering with temperature monitoring |
| US10777349B2 (en) | 2017-10-23 | 2020-09-15 | Schweitzer Engineering Laboratories, Inc. | Current transformer with flexible secondary winding |
| CN107907802A (zh) * | 2017-11-17 | 2018-04-13 | 国网湖南省电力有限公司 | 一种高压电缆带电局放检测传感器及其应用方法 |
| GB2579027B (en) | 2018-11-14 | 2021-06-09 | Megger Instruments Ltd | Multi-use test lead. |
| US10984940B2 (en) | 2018-12-10 | 2021-04-20 | Schweitzer Engineering Laboratories, Inc. | Compression housing for a laminate core of an inductive current transformer |
| KR20210153148A (ko) * | 2019-05-07 | 2021-12-16 | 램 리써치 코포레이션 | 전압 및 전류 프로브 |
| EP3783370A1 (en) * | 2019-08-20 | 2021-02-24 | LEM International SA | Rogowski current transducer |
| FR3108986B1 (fr) * | 2020-04-02 | 2022-04-15 | Safran Electrical & Power | Capteur de courant à très large bande passante |
| CN111487450B (zh) * | 2020-04-29 | 2022-08-16 | 连云港灌源科技有限公司 | 一种扩展罗氏线圈电流传感器带宽的方法 |
| FR3117600B1 (fr) * | 2020-12-14 | 2022-12-23 | Safran Electrical & Power | Capteur de courant bobiné deux en un |
| US11418026B1 (en) * | 2021-03-22 | 2022-08-16 | International Business Machines Corporation | Electrostatic protection device |
| JP7663194B2 (ja) * | 2021-03-29 | 2025-04-16 | Necネットワーク・センサ株式会社 | フラックスゲート型磁気検出器 |
| WO2024081826A2 (en) * | 2022-10-14 | 2024-04-18 | Massachusetts Institute Of Technology | Twisted-pair plasma current rogowski coil |
| US12461127B2 (en) | 2023-04-14 | 2025-11-04 | Fluke Corporation | Non-contact DC current measurement device with open loop degaussing |
Citations (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2432919A1 (de) | 1974-07-05 | 1976-02-12 | Siemens Ag | Stromwandler nach dem prinzip des magnetischen spannungsmessers |
| US4689546A (en) | 1985-12-18 | 1987-08-25 | General Electric Company | Internal armature current monitoring in large three-phase generator |
| JPH02118460A (ja) * | 1988-05-07 | 1990-05-02 | Energy Support Corp | 電流検出方法および電流検出器 |
| US5012218A (en) | 1984-02-06 | 1991-04-30 | Centre National De La Recherche Scientifique | Device for measuring an electric current using a solenoid with regular pitch in the form of a torus |
| GB2259150A (en) | 1991-08-28 | 1993-03-03 | William Frederick Ray | Current measurements |
| EP0652441A1 (fr) | 1993-11-08 | 1995-05-10 | Gec Alsthom T & D Sa | Bobine de Rogowski utilisable dans une installation électrique avec enveloppe métallique à la terre et procédé de fabrication d'une telle bobine |
| US5442280A (en) | 1992-09-10 | 1995-08-15 | Gec Alstom T & D Sa | Device for measuring an electrical current in a conductor using a Rogowski coil |
| WO1996028737A1 (en) | 1995-03-16 | 1996-09-19 | Btr Plc | Measurement of supply current |
| EP0834745A2 (de) | 1996-10-04 | 1998-04-08 | Asea Brown Boveri AG | Rogowskispule |
| GB2332784A (en) | 1997-12-13 | 1999-06-30 | Rocoil Limited | Current measuring arrangement |
| DE19811366A1 (de) | 1998-03-16 | 1999-09-30 | Moeller Gmbh | Stromsensor |
| JP2000065866A (ja) | 1998-08-26 | 2000-03-03 | Nippon Telegr & Teleph Corp <Ntt> | 電流プローブ |
| GB2342783A (en) | 1998-09-30 | 2000-04-19 | David Ward | Measuring device using a toroidal coil |
| DE19959789A1 (de) | 1999-12-07 | 2001-06-13 | Siemens Ag | Integrationsschaltung für die Auslöseelektronik eines mit einer Rogowskispule zusammenwirkenden Leistungsschalters |
| US6313623B1 (en) | 2000-02-03 | 2001-11-06 | Mcgraw-Edison Company | High precision rogowski coil |
| US20030090356A1 (en) | 2001-10-29 | 2003-05-15 | Kabushiki Kaisha Toshiba | Current transformer |
| US6614218B1 (en) | 1998-04-22 | 2003-09-02 | Power Electronic Measurements Limited | Current measuring device |
| US6825650B1 (en) | 1999-01-29 | 2004-11-30 | Suparules Limited | Current measuring probe and electrical energy meter for use therewith |
| US6963195B1 (en) | 1997-08-15 | 2005-11-08 | General Electric Company | Apparatus for sensing current |
| US20050248430A1 (en) * | 2004-05-10 | 2005-11-10 | Areva T&D Sa | Current transformer with rogowski type windings, comprising an association of partial circuits forming a complete circuit |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3924223A (en) * | 1974-02-21 | 1975-12-02 | Westinghouse Electric Corp | Power line communication system having a protective terminating impedance arrangement |
| US4700131A (en) * | 1986-04-07 | 1987-10-13 | Westinghouse Electric Corp. | Mutual inductor current sensor |
| US4831327A (en) * | 1987-05-01 | 1989-05-16 | Hydro-Quebec | Self-powered electrical measuring system isolated from electrical perturbances |
| FR2692074B1 (fr) | 1992-06-05 | 1994-07-22 | Alsthom Gec | Bobine de rogowski. |
| DE69833953T2 (de) * | 1997-08-28 | 2006-12-14 | General Electric Co. | Selbstgespeister stromfühler |
| WO1999046607A1 (en) * | 1998-03-13 | 1999-09-16 | Florida International University | Apparatus for measuring high frequency currents |
| GB9918539D0 (en) * | 1999-08-06 | 1999-10-06 | Sentec Ltd | Planar current transformer |
| JP2001343402A (ja) * | 2000-06-05 | 2001-12-14 | Mitsubishi Electric Corp | 直流電流検出器 |
| DE20101454U1 (de) * | 2001-01-27 | 2001-05-23 | Phoenix Contact Gmbh & Co., 32825 Blomberg | Stromsensor auf Leiterplattenbasis |
| JP2002372552A (ja) * | 2001-06-14 | 2002-12-26 | Mitsubishi Electric Corp | 電流測定器 |
| WO2007061390A1 (en) * | 2005-11-28 | 2007-05-31 | Ladislav Grno | Precision flexible current sensor |
| US7545138B2 (en) * | 2006-07-06 | 2009-06-09 | Schweitzer Engineering Laboratories, Inc. | Precision, temperature-compensated, shielded current measurement device |
-
2005
- 2005-11-28 WO PCT/SK2005/000023 patent/WO2007061390A1/en not_active Ceased
- 2005-11-28 EP EP05813809.0A patent/EP1960796B1/en not_active Expired - Lifetime
- 2005-11-28 JP JP2008542285A patent/JP4972098B2/ja not_active Expired - Fee Related
-
2008
- 2008-05-28 US US12/154,921 patent/US7847543B2/en not_active Expired - Fee Related
Patent Citations (20)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2432919A1 (de) | 1974-07-05 | 1976-02-12 | Siemens Ag | Stromwandler nach dem prinzip des magnetischen spannungsmessers |
| US5012218A (en) | 1984-02-06 | 1991-04-30 | Centre National De La Recherche Scientifique | Device for measuring an electric current using a solenoid with regular pitch in the form of a torus |
| US4689546A (en) | 1985-12-18 | 1987-08-25 | General Electric Company | Internal armature current monitoring in large three-phase generator |
| JPH02118460A (ja) * | 1988-05-07 | 1990-05-02 | Energy Support Corp | 電流検出方法および電流検出器 |
| GB2259150A (en) | 1991-08-28 | 1993-03-03 | William Frederick Ray | Current measurements |
| US5442280A (en) | 1992-09-10 | 1995-08-15 | Gec Alstom T & D Sa | Device for measuring an electrical current in a conductor using a Rogowski coil |
| EP0652441A1 (fr) | 1993-11-08 | 1995-05-10 | Gec Alsthom T & D Sa | Bobine de Rogowski utilisable dans une installation électrique avec enveloppe métallique à la terre et procédé de fabrication d'une telle bobine |
| WO1996028737A1 (en) | 1995-03-16 | 1996-09-19 | Btr Plc | Measurement of supply current |
| EP0834745A2 (de) | 1996-10-04 | 1998-04-08 | Asea Brown Boveri AG | Rogowskispule |
| US6963195B1 (en) | 1997-08-15 | 2005-11-08 | General Electric Company | Apparatus for sensing current |
| GB2332784A (en) | 1997-12-13 | 1999-06-30 | Rocoil Limited | Current measuring arrangement |
| DE19811366A1 (de) | 1998-03-16 | 1999-09-30 | Moeller Gmbh | Stromsensor |
| US6614218B1 (en) | 1998-04-22 | 2003-09-02 | Power Electronic Measurements Limited | Current measuring device |
| JP2000065866A (ja) | 1998-08-26 | 2000-03-03 | Nippon Telegr & Teleph Corp <Ntt> | 電流プローブ |
| GB2342783A (en) | 1998-09-30 | 2000-04-19 | David Ward | Measuring device using a toroidal coil |
| US6825650B1 (en) | 1999-01-29 | 2004-11-30 | Suparules Limited | Current measuring probe and electrical energy meter for use therewith |
| DE19959789A1 (de) | 1999-12-07 | 2001-06-13 | Siemens Ag | Integrationsschaltung für die Auslöseelektronik eines mit einer Rogowskispule zusammenwirkenden Leistungsschalters |
| US6313623B1 (en) | 2000-02-03 | 2001-11-06 | Mcgraw-Edison Company | High precision rogowski coil |
| US20030090356A1 (en) | 2001-10-29 | 2003-05-15 | Kabushiki Kaisha Toshiba | Current transformer |
| US20050248430A1 (en) * | 2004-05-10 | 2005-11-10 | Areva T&D Sa | Current transformer with rogowski type windings, comprising an association of partial circuits forming a complete circuit |
Non-Patent Citations (2)
| Title |
|---|
| PATENT ABSTRACTS OF JAPAN vol. 014, no. 340 (P - 1080) 23 July 1990 (1990-07-23) * |
| TORRES H ET AL: "DESIGN, CONSTRUCTION AND CALIBRATION OF THREE DEVICES TO MEASURE DIRECTLY LIGHTNING PARAMETERS", HIGH VOLTAGE ENGINEERING, 1999. ELEVENTH INTERNATIONAL SYMPOSIUM ON (CONF. PUBL. NO. 467) LONDON, UK 23-27 AUG. 1999, LONDON, UK,IEE, UK, 23 August 1999 (1999-08-23), pages 1 - 4, XP001152461, ISBN: 0-85296-719-5 * |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2923019A1 (fr) * | 2007-10-26 | 2009-05-01 | Schneider Electric Ind Sas | Dispositif de mesure de courant flexible et ajustable |
| FR2931945A1 (fr) * | 2008-05-22 | 2009-12-04 | Billanco | Capteur de circulation de champ magnetique et capteur de courant mettant en oeuvre un tel capteur |
| WO2009153485A1 (fr) * | 2008-05-22 | 2009-12-23 | Billanco | Capteur de circulation de champ magnétique permanents ou variables et alternatifs et capteur de courant mettant en oeuvre un tel capteur |
| WO2011015820A1 (en) * | 2009-08-04 | 2011-02-10 | Ea Technology Limited | Current detector |
| FR2987897A1 (fr) * | 2012-03-06 | 2013-09-13 | Julien Bergoz | Dispositif de mesure d'un courant electrique circulant dans un milieu |
| FR3116125A1 (fr) * | 2020-11-09 | 2022-05-13 | Safran Electrical & Power | Capteur de courant et système d’assemblage de transducteurs d’un capteur de courant |
Also Published As
| Publication number | Publication date |
|---|---|
| US20080303511A1 (en) | 2008-12-11 |
| JP4972098B2 (ja) | 2012-07-11 |
| JP2009517659A (ja) | 2009-04-30 |
| US7847543B2 (en) | 2010-12-07 |
| EP1960796B1 (en) | 2014-05-07 |
| EP1960796A1 (en) | 2008-08-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP1960796B1 (en) | Precision flexible current sensor | |
| US6965225B2 (en) | Coreless current sensor | |
| EP1183543B1 (en) | Electrical current sensor | |
| US10139432B2 (en) | Methods and systems relating to improved AC signal performance of dual stage transformers | |
| CA2675971C (en) | Flexible current transformer assembly | |
| US10545178B2 (en) | Current sensor for measuring an alternating current | |
| CN103180742B (zh) | Rogowski线圈组装件 | |
| US10545177B2 (en) | Non-contact sensor based Rogowski coil | |
| US20170059621A1 (en) | Low power based rogowski coil | |
| RU2717397C1 (ru) | Устройство и способ для измерения силы тока одного отдельного провода многопроводной системы | |
| US7449637B2 (en) | Pulse current sensor | |
| US11686745B2 (en) | Rogowski current sensor which is fast and immune to voltage drifts | |
| EP3895325B1 (en) | Electrical connection for transferring signals while reducing interference | |
| Slomovitz et al. | Shielded electronic current transformer | |
| KR102687202B1 (ko) | 유도코일센서를 이용한 3상 전류 검출장치 | |
| Kusters et al. | A direct current comparator bridge for high resistance measurements | |
| EP3566061B1 (en) | Flexible current sensor with stranded core | |
| US20250048554A1 (en) | Flexible printed circuit rogowski coil | |
| CN120380350A (zh) | 电流传感器和测定装置 | |
| WO2022171216A1 (en) | Partial discharge sensor | |
| JP2005210202A (ja) | 電力計測用オペアンプのオフセット調整方法 | |
| Slomovitz et al. | Shielded Electronic Current Transformer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
| WWE | Wipo information: entry into national phase |
Ref document number: 2005813809 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2008542285 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |