WO2007060969A1 - Floating particle measuring device - Google Patents

Floating particle measuring device Download PDF

Info

Publication number
WO2007060969A1
WO2007060969A1 PCT/JP2006/323270 JP2006323270W WO2007060969A1 WO 2007060969 A1 WO2007060969 A1 WO 2007060969A1 JP 2006323270 W JP2006323270 W JP 2006323270W WO 2007060969 A1 WO2007060969 A1 WO 2007060969A1
Authority
WO
WIPO (PCT)
Prior art keywords
humidity
particulate matter
temperature
suspended particulate
downstream
Prior art date
Application number
PCT/JP2006/323270
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Hattori
Original Assignee
Dkk-Toa Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dkk-Toa Corporation filed Critical Dkk-Toa Corporation
Publication of WO2007060969A1 publication Critical patent/WO2007060969A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N2001/2285Details of probe structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00346Heating or cooling arrangements
    • G01N2035/00455Controlling humidity in analyser

Definitions

  • Airborne particulate matter measurement device Airborne particulate matter measurement device
  • the present invention relates to a suspended particulate matter measuring apparatus for measuring suspended particulate matter concentration in a gas.
  • SPM Suspended Particulate Matter
  • This suspended particulate matter is generated by man-made sources such as smoke generation facilities and exhaust particles from automobiles, or by natural sources such as soil and pollen, and is also generated in the atmosphere. It is under physical and physical action. Its main components are heavy metal elements (Fe, Cu, Pb, Zn, etc.), inorganic acid salts (SO 2_ , NO- ),
  • particles with a particle size of 10 / zm or more are defined as 100% cut and are referred to as “SPM”.
  • particles with a particle size of 10 ⁇ m or more are defined as 50% cut and “ ⁇ ⁇ 10 "
  • suspended particulate matter is considered to be the cause of air pollution that affects the respiratory tract, such as being deposited in the lungs and respiratory organs, environmental standards (for protecting human health) The standard is preferably maintained), and the concentration of suspended particulate matter is 0. lOmgZm 3 or less at the daily average of 1 hour value and 0.20 mgZm 3 or less at 1 hour value. It is stipulated.
  • SPM particles with a particle size of 10 m or less
  • PM10 particles with a particle size of 2.5 m or less
  • 2.5 / zm or more particles with a particle size of 2.5 m or less
  • the suspended particulate matter is collected on a filter paper, and its mass is measured using an 8-line absorption method or the like. Suspended particulate matter measuring devices that measure the concentration are well known.
  • this suspended particulate matter measuring apparatus it is possible to fully automate a series of measurement operations including collection and concentration measurement of suspended particulate matter.
  • FIG. 4 is an explanatory view of the main part of the prior art suspended particulate matter measuring device (example of PM10).
  • the measurement unit of the suspended particulate matter measuring apparatus 1000 includes a detection unit 101, a j8 radiation source 102, a semiconductor detector 103, a scraping reel 201, a filter paper 202, a capstan 203, a feed reel 204, and a motor. 205, a particle separator (for PM10) 301, a pipe 302, a pipe 303, and a pump 304.
  • the suction of pump 304 causes the sample atmosphere to flow along the path of the particle separator 301, self-pipe 302, detection unit 101, self-pipe 303, and pump 304, and the sample atmosphere containing suspended particulate matter is introduced into the detection unit 101. Is done.
  • a filter paper 202 is arranged in the detection unit 101, and the filter paper 202 collects floating particulate matter. The collected sample air is exhausted through a pipe 303 and a pump 304.
  • the suspended particulate matter concentration is measured by the ⁇ -ray absorption method for the suspended particulate matter.
  • concentration measurement by this ⁇ -ray absorption method will be described.
  • the suspended particulate matter concentration M is expressed by the following equation.
  • the concentration calculation means of the CPU board (not shown) first inputs a detection signal representing
  • a detection signal indicating ⁇ -ray intensity I passing through the filter paper 202 that collects suspended particulate matter over a predetermined period is input.
  • the detection unit 101 when ⁇ rays are emitted from the j8 radiation source 102 to the collected suspended particulate matter, a part of the ⁇ rays is absorbed by the suspended particulate matter on the filter paper 202, Unabsorbed and powerful ⁇ -rays are input to the semiconductor detector 103.
  • the semiconductor detector 103 outputs a detection signal proportional to the 13-line intensity.
  • the detection signal representing the 13-line intensity I is input by the concentration calculation means and registered in the memory unit. Concentration calculation means reads out S, k, V, I, I from the memory section and performs the calculation according to the above equation (1) to obtain suspended particulate matter.
  • the concentration M (mg / m 3 ) is calculated.
  • the motor 205 is driven by the driving means of the CPU board (not shown) to rotate the take-up linole 201. capstan 203 force S, and feed out the feed linole 204 force and the paper 202 force S.
  • the scraping reel 201 accommodates the used part of the filter paper 202.
  • the outline of the suspended particulate matter measuring apparatus 1000 is as described above.
  • the humidity of the sample atmosphere is generally suppressed to a predetermined value or less to eliminate the influence of humidity.
  • the sample atmosphere is measured by a heater 30 It is stated that heating up to ° C reduces the humidity to below 60%.
  • Patent Document 1 describes a dust radiation monitor having a configuration similar to that of a suspended particulate matter measuring device, and describes that the temperature is raised by a heater in order to remove the influence of humidity.
  • the filter paper is dried in order to facilitate the feeding of the filter paper.
  • the temperature and humidity are controlled to a predetermined value by detecting the temperature and humidity of the sample atmosphere and sample gas and adjusting the temperature and humidity of the sample gas flow to a predetermined value. There is something.
  • Patent Document 2 includes a sensor that detects the temperature and humidity of a sample gas and a sensor that detects the temperature and humidity of the atmosphere, and controls the temperature and humidity to predetermined values using detection signals of these sensor forces. is doing.
  • Non-Special Reference 1 Albert Chung et al. Comparison of Real-Time Instruments Used To
  • Patent Document 1 Japanese Patent Laid-Open No. 7-244163 (paragraph number 0017, FIG. 1)
  • Patent Document 2 Japanese Patent No. 3362255 (Fig. 1)
  • the suspended particulate matter measurement may be performed by manual analysis, and the conditioning condition before weighing the filter paper in this manual analysis is 50% humidity. Therefore, it is desirable to measure the filter paper 202 under the conditioning condition of 50% humidity even with the suspended particulate matter measuring device.
  • the suspended particulate matter concentration M is measured at a relative humidity of a predetermined value or less (for example, relative humidity of 60% or less).
  • the relative humidity is 30%
  • Measurement was possible even in the case of 50%. If the humidity of the sample atmosphere is lower than the humidity condition of 50%, which is the conditioning condition for manual prayer (for example, 30%), the humidity in the detection unit 101 also becomes lower, and the moisture of the collected particles is absorbed. The rate was different and there was a problem that it was different from the suspended particulate matter concentration M by manual analysis. If the suspended particulate matter measurement device can obtain the same suspended particulate matter concentration M as in the manual analysis, Since it is possible to perform automatic measurement with high accuracy, there has been a demand for improvement.
  • the relative humidity can be reduced to 50% by adjusting the temperature and humidity, but the measurement performance of the atmospheric temperature sensor and the atmospheric humidity sensor is quickly deteriorated.
  • the apparatus in Patent Document 2 an atmospheric temperature sensor and an atmospheric humidity sensor are exposed to the atmosphere, and the temperature and humidity of the atmosphere are measured. In this case, suspended particulate matter in the atmosphere adheres to and accumulates on the surfaces of the atmospheric temperature sensor and atmospheric humidity sensor, which degrades the measurement performance.
  • both the air temperature sensor and the air humidity sensor require periodic cleaning (cleaning once every two weeks to once a month, depending on the contamination situation at the site).
  • cleaning and recalibration had to be performed, which required considerable labor in terms of operation and maintenance.
  • a humidity sensor there is also a ceramic humidity sensor having a cleaning function by heating with a heater.
  • a capacitance type RH sensor which is inexpensive and widely used.
  • the present invention has been made to solve the above-described problems, and its purpose is to eliminate the need for cleaning the temperature sensor and the humidity sensor over a long period of time and to eliminate the influence of fluctuations in relative humidity.
  • the object is to provide a suspended particulate matter measurement device that improves measurement accuracy.
  • Such a suspended particulate matter measuring device includes:
  • Sample air collection means for collecting sample air containing suspended particulate matter having a particle size of a predetermined particle size or less by suction means;
  • a collection means for continuously collecting suspended particulate matter from the sample atmosphere
  • Upstream temperature measuring means for measuring the temperature of the sample atmosphere at the time of collection by the collecting means upstream of the suction means and outputting an upstream temperature signal
  • Downstream temperature measuring means for measuring the temperature of the sample atmosphere after being collected by the collecting means on the downstream side of the suction means and outputting a downstream temperature signal
  • Downstream humidity measuring means for measuring the humidity of the sample atmosphere after being collected by the collecting means on the downstream side of the suction means and outputting a downstream humidity signal
  • Upstream-side humidity calculating means for calculating upstream-side humidity at the location where the side temperature is measured;
  • Driving means for outputting a driving signal for causing the upstream humidity of the sample atmosphere to substantially match the set humidity based on the upstream humidity calculated by the upstream humidity calculating means;
  • Humidity adjustment means that adjusts the humidity of the sample atmosphere based on the drive signal of the drive means force and ⁇ -ray absorption based on the detection signal from the detection means in an environment approximately equal to the set humidity
  • Concentration calculating means for calculating the suspended particulate matter concentration by a method
  • the suspended particulate matter measuring device includes:
  • the upstream temperature measuring means for measuring the upstream temperature is a means that is disposed integrally with the detecting means and measures the temperature of the sample atmosphere when collected by the collecting means in the vicinity of the collecting part. It is characterized by being.
  • the suspended particulate matter measuring device includes:
  • the suspended particulate matter measuring device according to claim 1 or 2, wherein the downstream temperature measuring means and the downstream humidity measuring means are provided at the most downstream side of the flow path of the sample air sampling means. It is characterized by having a receiving means for storing in the space.
  • the suspended particulate matter measuring device includes:
  • the internal space of the accommodating means is enlarged so that the pressure in the internal space approaches the atmospheric pressure.
  • the suspended particulate matter measuring device according to claim 5 of the present invention is
  • the suspended particulate matter measuring device according to any one of claims 1 to 4, wherein the humidity adjusting unit is a unit that adjusts humidity by raising or lowering a sample atmosphere. To do.
  • the suspended particulate matter measurement apparatus that eliminates the effect of fluctuations in relative humidity without the need for cleaning the temperature sensor and the humidity sensor over a long period of time and improves the measurement accuracy. Can be provided.
  • Fig. 1 shows the configuration of the suspended particulate matter measurement device (example of PM10) 1 in this form
  • Fig. 2 shows the internal configuration of the storage unit
  • Fig. 3 shows the
  • a part overlaps with a prior art, it attaches a new code
  • the suspended particulate matter measuring device 1 includes a CPU board 11, an operation panel 12, a recorder 13, an I / O board 14, a power IZO board 15, an amplifier board 16, an external input / output terminal 17, and a detection mute. 20, j8 radiation source 21, semiconductor detector 22, feed reel 23, capstan 24, take-up reel 25, granulator (for PM10) 26, pump 27, flow sensor 28, piping 29, 30, 31, downstream temperature Sensor 32, downstream humidity sensor 33, measurement cell (temperature / humidity measurement cell) 34, heater unit 35, upstream temperature sensor 36, filter paper 40, motor Ml, motor M2, and motor M3 are provided. These are broadly classified as sample air sampling means, collection means, detection means, upstream temperature measurement means, downstream temperature measurement means, downstream humidity measurement means, storage means, upstream humidity calculation means, drive means, humidity. It becomes an adjustment means and a density calculation means. Each means is described below
  • the sample air sampling means uses a suction means to reduce the particle size to a predetermined particle size (SPM: 10 m (10 m or more, 100% cut), PM10: 10 111 (10 111 or more, 50% cut), 1 ⁇ 2.5 is a means to collect sample air containing suspended particulate matter that is 2.5 ⁇ ⁇ (cut by 50% at 2.5 m or more).
  • SPM 10 m (10 m or more, 100% cut
  • PM10 10 111 (10 111 or more, 50% cut
  • 1 ⁇ 2.5 is a means to collect sample air containing suspended particulate matter that is 2.5 ⁇ ⁇ (cut by 50% at 2.5 m or more).
  • pump 27 When pump 27 performs a suction operation, the sample air is passed through granulator 26 ⁇ piping 29 ⁇ detection unit 20 ⁇ filter paper 40 ⁇ pipe 30 ⁇ pump 27 ⁇ pipe 31 ⁇ flow sensor 28 ⁇ measurement cell 34. Exhausted to the outside.
  • the detection unit 20 is formed of an upper block 20a and a lower block 20b each having a substantially rectangular parallelepiped shape.
  • the upper block 20a is provided with a flow path connected to the pipe 29, and the lower block 20b has an upper side.
  • a lower flow path is provided so as to face the flow path.
  • a filter paper 40 is located between the upper block 20a and the lower block 20b.
  • a flow rate sensor 28 is disposed downstream of the pump 27, and the flow rate of the flowing sample atmospheric gas is accurately measured to output a flow rate signal.
  • the flow sensor 28 is, for example, a thermal flow sensor.
  • the flow rate signal output from the flow sensor 28 The number is input to the CPU board 11 via the I / O board 14.
  • a valve is provided in the flow path that bypasses the pump 27, and this valve is connected to a motor M3 for stabilizing the flow rate.
  • the motor is driven by a drive signal from the CPU board 11 via the IZO board 14. M3 is driven to control the opening and closing of the valve.
  • the particle sizer 26 (for PM10) is an impactor type particle sizer that performs, for example, PM 10 particle size classification using inertial collision of coarse particles in the sample atmosphere, and removes coarse particles from the sample atmosphere. Obtain a sample atmosphere through which airborne particles with a particle size of 10 ⁇ m or less (50% cut) are passed.
  • a cyclone-type or impactor-type granulator is installed in the subsequent stage to selectively select particles of 2.5 m or less. It may be sized. These are appropriately selected according to the measurement object.
  • the collection means is means for continuously collecting suspended particulate matter from the sample atmosphere.
  • it is provided with a feed reel 23, a capstan 24, a take-up reel 25, a filter paper 40, a motor M1, and a motor M2.
  • the drive signals of motor Ml and motor M2 are output from CPU board 11 via power IZO board 15.
  • the tape-shaped filter paper 40 can be fed by a feed reel 23 that supplies unused filter paper 40 and a scraping reel 25 that winds and stores used filter paper 40 in a roll. A fixed length is supplied into the detection unit 20.
  • the motor M1 moves the lower block 20b of the detection unit 20 up and down and opens and closes the filter paper 40 for trapping suspended particulate matter transported in the detection unit 20, and the motor M2 is an open / close operation motor.
  • This is a motor for feeding filter paper 40.
  • the filter paper 40 is rotated after the take-up reel 25 and the capstan 24 by the motor M2, so that the filter paper 40 is passed after a certain period (for example, every hour).
  • the unused portion is fed into the detection unit 20 through the feed reel 23 and the capstan 24 and is accommodated in the scraping reel 25 by the same length.
  • the detection means irradiates the suspended particulate matter collected by the collection means with ⁇ -rays and transmits the ⁇ It is a means for outputting a detection signal for the line intensity.
  • a j8 source 21, a semiconductor detector 22, and an amplifier board 16 are provided.
  • the output signal of the semiconductor detector 22 is amplified by an amplifier in the amplifier board 16 and input to the CPU board 11 via the IZO board 14.
  • a ⁇ -ray source 21 is provided in the upper block 20a of the detection unit 20, and a semiconductor detector 22 is provided in the lower block 20b so as to face the ⁇ -ray source 21, and the flow path and the radiation direction described above are provided. Are arranged to intersect.
  • the filter paper 40 passes between the upper block 20a and the lower block 20b.
  • the detection principle of the detection means adopts the ⁇ -ray absorption method as in the prior art described above, and redundant description is omitted.
  • the upstream temperature measuring means is a means for measuring the temperature of the sample atmosphere when the suspended particulate matter is collected by the collecting means on the upstream side of the suction means and outputting an upstream temperature signal.
  • the upstream side is preferably arranged integrally with the detection means, and the temperature of the sample atmosphere when being collected by the collection means is determined by the collection of the suspended particulate matter collected by the collection means.
  • the upstream temperature measuring means is the upstream temperature sensor 36 in this embodiment.
  • the upstream temperature sensor 36 is located between the filter paper 40 and the pump 27, and is disposed in the vicinity of the collection part 40a, which is a part of the filter paper 40 where floating particulate matter is collected.
  • the in-unit temperature signal output from the upstream side temperature sensor 36 is input to the CPU board 11 via the IZO board 14.
  • the downstream temperature measuring means is a means for measuring the temperature of the sample air after the suspended particulate matter is collected by the collecting means on the downstream side of the suction means and outputting a downstream temperature signal.
  • the downstream temperature measuring means is the downstream temperature sensor 32 in this embodiment. More specifically, the downstream temperature sensor 32 is disposed in a measurement cell 34 that is downstream of the pump 27 and is downstream of the flow path system.
  • the downstream temperature sensor 32 is an in-cell temperature sensor that detects the temperature in the measurement cell in the measurement cell 34 in which a clean air flow that has passed through the filter paper 40 flows.
  • the in-cell temperature signal output from the downstream temperature sensor 32 is Input to the CPU board 11 via the IZO board 14!
  • the downstream humidity measuring means is a means for measuring the humidity of the sample air after the suspended particulate matter is collected by the collecting means on the downstream side of the suction means and outputting a downstream humidity signal.
  • the downstream humidity measuring means is the downstream humidity sensor 33 in this embodiment.
  • the downstream humidity sensor 33 is disposed in the measurement cell 34 which is downstream of the pump 27 and further downstream of the flow path system.
  • the downstream humidity sensor 33 is a cell humidity sensor that detects the humidity in the measurement cell in the measurement cell 34 in which clean airflow that has passed through the filter paper 40 flows.
  • the in-cell humidity signal output from the downstream humidity sensor 33 is input to the CPU board 11 via the I / O board 14.
  • the accommodating means is a means that is provided on the most downstream side of the flow path of the sample air sampling means, and accommodates the downstream temperature measuring means and the downstream humidity measuring means in the internal space.
  • the measurement cell 34 includes a cell body 341, a seal 342, a gas inlet 343, and a gas outlet 344.
  • the downstream temperature sensor 32 and the downstream humidity sensor 33 are fixed in a state where they are accommodated in an internal space of the glass cell main body 341 while being sealed by a seal 342.
  • the cell body 341 has a large internal space, and the high-pressure sample gas introduced from the gas inlet 343 enters the large volume of the internal space to reduce the pressure and bring it closer to the atmospheric pressure.
  • the downstream temperature sensor 32 and the downstream humidity sensor 33 are disposed immediately before the gas outlet 3 44, and there is almost no flow path resistance between the glass cell body 341 and the gas outlet 344.
  • the point in the measurement cell is also close to atmospheric pressure.
  • the flow rate flowing into the cell main body 341 by the force flow sensor 28 described above is a constant amount, it is considered that the internal pressure in the measurement cell 34 does not fluctuate. As a result, the temperature and humidity of the sample atmosphere in a state close to atmospheric pressure in the measurement cell 34 can be acquired.
  • the upstream humidity calculation means is configured to convert the upstream temperature signal from the upstream temperature measurement means, the downstream temperature signal from the downstream temperature measurement means, and the downstream humidity signal from the downstream humidity measurement means. Based on this, it is a means for calculating the upstream humidity in the vicinity of the collecting part for measuring the upstream temperature upstream of the suction means.
  • the drive means is means for outputting a drive signal for making the upstream humidity of the sample atmosphere substantially coincide with the set humidity based on the upstream humidity calculated by the upstream humidity calculation means.
  • the CPU board 11, operation panel 12, recorder 13, IZO board 14, power I / O board 15, external input / output terminal 17 are provided. Outputs a drive signal that makes the internal humidity approximately equal to the set humidity (50% relative humidity).
  • the drive means has the same configuration as the upstream humidity calculation means described above. Details of driving will be described later.
  • the humidity adjusting means is means for changing the humidity of the sample atmosphere based on the drive signal from the drive means.
  • the heater unit 35 raises or lowers the temperature of the sample atmosphere.
  • the drive signal output from the CPU board 11 and amplified by the power I / O board 15 is input to the heater unit 35.
  • the concentration calculation means is means for calculating the concentration of suspended particulate matter by the ⁇ -ray absorption method based on the detection signal from the detection means.
  • the CPU board 11, the operation panel 12, the recorder 13, IZO board 14, power ⁇ board 15, external input / output terminal 17 are provided, and density calculation is performed by CPU board 11 program processing.
  • This concentration calculation means has a common configuration for the upstream humidity calculation means and drive means described above. The concentration calculation will be described in detail later.
  • the characteristic diagram in Fig. 3 shows the error between the ⁇ -ray absorption method analysis value and the manual analysis value due to relative humidity, and the ⁇ -ray absorption method at atmospheric pressure and relative humidity of 50%, which is the conditioning condition for manual analysis.
  • the humidity sensor is larger than the temperature sensor and is not easily installed in the detection unit 20, as is apparent from the comparison between the downstream temperature sensor 32 and the downstream humidity sensor 33 in FIG. There was a problem.
  • a temperature sensor much smaller than the humidity sensor is installed in the detection unit 20, and the relative humidity under atmospheric pressure is calculated from the detected temperature in the detection unit 20 to calculate the humidity in the unit. Based on the internal humidity, the humidity is adjusted so that the relative humidity of the detection cell 20 is 50%.
  • the upstream temperature sensor 36 measures the temperature of the sample atmosphere in the detection unit 20 and outputs a unit temperature signal.
  • the CPU board 11 calculates the unit internal temperature based on the unit internal temperature signal, and calculates the unit saturated water vapor pressure using the following equation.
  • the downstream temperature sensor 32 measures the temperature of the sample atmosphere in the measurement cell 34 and outputs an in-cell temperature signal.
  • the CPU board 11 calculates the in-cell temperature based on the in-cell temperature signal, and calculates the in-cell saturated water vapor pressure as in the following equation.
  • the downstream humidity sensor 33 measures the humidity of the sample atmosphere in the measurement cell 34 and outputs a humidity signal in the cell.
  • CPU board 11 is a cell based on the humidity signal in the cell. Calculate the relative humidity inside.
  • the CPU board 11 functions as upstream humidity calculation means, and calculates the in-unit relative water vapor pressure, the in-unit saturated water vapor pressure, and the in-cell humidity force obtained previously as in the following equation.
  • Relative humidity in unit relative humidity in cell X saturated water vapor pressure in cell / saturated water vapor pressure in unit
  • the relative humidity in the unit is calculated.
  • the relative humidity (set humidity) set in advance in the memory unit (not shown) is registered as 50%.
  • the CPU board 11 When the calculated relative humidity in the unit is higher than 50%, the CPU board 11 functions as a drive means for driving the humidity adjustment means, and the heater unit 35, which is the humidity adjustment means, is driven to rise through the power IZO board 15. To do. Then, the temperature of the sample air rises and the relative humidity decreases, and the relative humidity in the unit of the sample air is maintained at 50%.
  • the CPU board 11 functions as a driving means for driving the humidity adjusting means, and the heater unit 35 that is a humidity adjusting means is connected via the power IZO board 15. Drive down the temperature. Then, the temperature of the sample atmosphere drops and the relative humidity increases, and the relative humidity of the sample atmosphere is maintained at 50%. These samples are heated and lowered only when necessary.
  • the set humidity is 50% in order to match the manual analysis value, but a different value may be adopted for the purpose of limiting the humidity to 50%.
  • the manual analysis conditioning conditions described above are 30% to 40%, and the set humidity may be set to 30% to 40% as necessary. These set humidity can be changed appropriately according to the circumstances.
  • the operation signal force is such that measurement starts. Is input to mode 11.
  • the CPU board 11 outputs a control signal to each part.
  • the uncollected portion of the filter paper 40 is already placed on the detection unit 20 and is firmly sandwiched between the upper block 20a and the lower block 20b and sealed so that the j8 line does not leak. .
  • 8 rays are emitted from the j8 source 21.
  • the detection signal from the semiconductor detector 22 is temporarily stored in the memory unit of the CPU board 11.
  • the detection signal stored first is ⁇ -ray intensity I
  • a drive signal is output to the pump 27 via the ⁇ board 14.
  • the sample atmosphere is aspirated from the atmosphere, and sampling of the sample atmosphere is started.
  • the flow rate signal from the flow rate sensor 28 is input to the CPU board 11 via the 14 board 14, and a drive signal that maintains a predetermined set flow rate is sent to the motor via the IZO board 14. This is sent to M3, and the valve is controlled to open and close by motor ⁇ 3, and the flow rate is adjusted to the predetermined set flow rate.
  • the suspended particulate matter concentration ⁇ is calculated by the ⁇ -ray absorption method.
  • the CPU board 11 records the suspended particulate matter concentration ⁇ on the recorder 13.
  • the filter paper 40 is moved.
  • the CPU board 11 drives the motor Ml via the IZO board 14 and the power IZO board 15 to lower the lower block 20b of the detection unit 20 so that the filter paper 40 can be moved.
  • the CPU board 11 drives the motor 2 through the IZO board 14 and the power board 15 to send the filter paper 40, and places the unused part in the detection unit 20.
  • the lower block 20b rises and returns to the initial state, and thereafter, the same operation is repeated to automatically measure suspended particulate matter.
  • the suspended particulate matter measuring device 1 has been described. It should be noted that the set humidity described above is a force described as being pre-registered in the memory unit of the CPU board 11. For example, it may be possible to newly register in the memory unit of the CPU board 11 via the operation panel 12. Good.
  • the suspended particulate matter concentration M has been described as being recorded on the recorder 13.
  • a display unit (not shown) connected to the IZO board 14 is further mounted to display the suspended particulate matter concentration M.
  • a form may be added.
  • the sample atmosphere collecting means for collecting and releasing the sample atmosphere
  • the system detects the temperature and humidity at the most downstream side.
  • the sample atmosphere after collection of suspended particulate matter by the collection means is free of suspended particulate matter! It is a flow of clean air. Even for long-term measurements, the upstream temperature sensor, downstream temperature sensor, Any downstream humidity sensor is hardly contaminated, and can maintain a clean state semipermanently.
  • the detection unit since the temperature sensor, which is generally small, is arranged in the detection unit, the detection unit is not required to be downsized and the humidity sensor is not cleaned, so that disassembly and maintenance are unnecessary. .
  • FIG. 1 is a configuration diagram of a suspended particulate matter measuring apparatus (example of PM10) of the best mode for carrying out the present invention.
  • FIG. 2 is an internal configuration diagram of the storage unit.
  • FIG. 3 is a characteristic diagram illustrating an error between the ⁇ -ray absorption method analysis value and the manual analysis value due to relative humidity.

Abstract

[PROBLEMS] To provide a floating particle measuring device capable of eliminating cleaning of a temperature sensor or a humidity sensor for a long period of time and improving measurement accuracy by excluding the affect by fluctuation of the relative humidity. [MEANS FOR SOLVING PROBLEMS] A floating particle measuring device calculates humidity in a detection unit (20) by using temperature in the detection unit (20) and temperature and humidity in a measurement cell (34). A heater unit (35) controls temperature increase/decrease of a sample atmosphere so that the calculated humidity substantially coincide with the set humidity (relative humidity 50%), thereby eliminating the affect by relative humidity fluctuation.

Description

明 細 書  Specification
浮遊粒子状物質測定装置  Airborne particulate matter measurement device
技術分野  Technical field
[0001] 本発明は、気体中の浮遊粒子状物質濃度を測定する浮遊粒子状物質測定装置に 関する。  [0001] The present invention relates to a suspended particulate matter measuring apparatus for measuring suspended particulate matter concentration in a gas.
背景技術  Background art
[0002] 浮遊粒子状物質(SPM: Suspended Particulate Matter)とは、大気中に浮遊する粒 子状物質のうち、直径が 10 m(l μ m=千分の lmm)以下の固体及び液体粒子な どである。この浮遊粒子状物質は、煤煙発生施設や自動車からの排出粒子などの人 為的発生源によって発生されるものや、土壌や花粉などの自然的発生源によって発 生されるものであり、さらに大気中で物理的'ィ匕学的作用を受けている。その主要な 成分としては、重金属元素(Fe、 Cu、 Pb、 Zn等)、無機酸の塩類(SO 2_、 NO ―)、 [0002] Suspended Particulate Matter (SPM) refers to solid and liquid particles with a diameter of 10 m (l μm = lmm / thousand) or less among particles suspended in the atmosphere. It is. This suspended particulate matter is generated by man-made sources such as smoke generation facilities and exhaust particles from automobiles, or by natural sources such as soil and pollen, and is also generated in the atmosphere. It is under physical and physical action. Its main components are heavy metal elements (Fe, Cu, Pb, Zn, etc.), inorganic acid salts (SO 2_ , NO- ),
4 3 炭素系化合物等が含まれている。ちなみに浮遊粒子状物質はエアロゾルと呼ばれる ことちある。  4 3 Contains carbon compounds. By the way, suspended particulate matter is sometimes called aerosol.
なお、国内においては、 10 /z m以上の粒子を 100%カットと定義して「SPM」として いるが、海外においては、 10 μ mまたはそれ以上の粒子を 50%カットと定義して「Ρ Μ10」としている。  In Japan, particles with a particle size of 10 / zm or more are defined as 100% cut and are referred to as “SPM”. However, overseas, particles with a particle size of 10 μm or more are defined as 50% cut and “Ρ Μ10 "
[0003] このような浮遊粒子状物質については、肺や呼吸器に沈着するなど呼吸器へ影響 を及ぼす大気汚染等の原因とされていることから、環境基準 (人の健康を保護する上 で維持することが望ましい基準)が設定されており、浮遊粒子状物質濃度が 1時間値 の 1日平均値で 0. lOmgZm3以下であり、かつ、 1時間値で 0. 20mgZm3以下で あること、と定められている。 [0003] Since these suspended particulate matter is considered to be the cause of air pollution that affects the respiratory tract, such as being deposited in the lungs and respiratory organs, environmental standards (for protecting human health) The standard is preferably maintained), and the concentration of suspended particulate matter is 0. lOmgZm 3 or less at the daily average of 1 hour value and 0.20 mgZm 3 or less at 1 hour value. It is stipulated.
[0004] また、近年では、浮遊粒子状物質のうち、粒子径が 10 m以下のもの(以下、 10 m以上の粒子を 100%カットしたものを「SPM」、 10 μ mまたはそれ以上の粒子を 50 %カットしたものを「PM10」という)に代えて、粒子径が 2. 5 m以下のもの(以下、 2 . 5 /z mまたはそれ以上の粒子を 50%カットしたものを「PM2. 5」という)が測定対象 として重視されつつある。 [0005] さて、これら大気中の SPM、 PM10又は PM2. 5という浮遊粒子状物質の計測手 段として、浮遊粒子状物質を濾紙上に捕集し、)8線吸収方式等を用いてその質量濃 度を測定する浮遊粒子状物質測定装置が従来より周知である。 [0004] In recent years, among suspended particulate matter, particles with a particle size of 10 m or less (hereinafter referred to as “SPM”, which is a 100% cut of particles of 10 m or more, 10 μm or more particles) Is replaced with “PM10”). Particles with a particle size of 2.5 m or less (hereinafter referred to as 2.5 / zm or more) are cut with 50%. ”) Is being emphasized as a measurement target. [0005] Now, as a means of measuring the suspended particulate matter SPM, PM10 or PM2.5 in the atmosphere, the suspended particulate matter is collected on a filter paper, and its mass is measured using an 8-line absorption method or the like. Suspended particulate matter measuring devices that measure the concentration are well known.
この浮遊粒子状物質測定装置によれば、浮遊粒子状物質の捕集及び濃度の測定 、つた一連の測定動作を全自動化することが可能である。  According to this suspended particulate matter measuring apparatus, it is possible to fully automate a series of measurement operations including collection and concentration measurement of suspended particulate matter.
[0006] このような浮遊粒子状物質測定装置の従来技術について図を参照しつつ説明する 図 4は従来技術の浮遊粒子状物質測定装置 (PM10の例)の要部説明図である。 浮遊粒子状物質測定装置 1000の測定部は、図 4で示すように、検出ユニット 101、 j8線源 102、半導体検出器 103、卷取りリール 201、濾紙 202、キヤプスタン 203、送 りリール 204、モータ 205、分粒器(PM10用) 301、配管 302、配管 303、ポンプ 30 4を備えている。  [0006] The prior art of such a suspended particulate matter measuring device will be described with reference to the drawings. FIG. 4 is an explanatory view of the main part of the prior art suspended particulate matter measuring device (example of PM10). As shown in FIG. 4, the measurement unit of the suspended particulate matter measuring apparatus 1000 includes a detection unit 101, a j8 radiation source 102, a semiconductor detector 103, a scraping reel 201, a filter paper 202, a capstan 203, a feed reel 204, and a motor. 205, a particle separator (for PM10) 301, a pipe 302, a pipe 303, and a pump 304.
[0007] この浮遊粒子状物質測定装置による測定処理について説明する。  [0007] Measurement processing by this suspended particulate matter measuring device will be described.
ポンプ 304の吸引により分粒器 301、酉己管 302,検出ユニット 101、酉己管 303、ポン プ 304の経路で試料大気が流れ、浮遊粒子状物質を含む試料大気が検出ユニット 1 01に導入される。検出ユニット 101内では濾紙 202が配置されており、濾紙 202が浮 遊粒子状物質を捕集する。捕集後の試料大気は、配管 303、ポンプ 304を経て排気 される。  The suction of pump 304 causes the sample atmosphere to flow along the path of the particle separator 301, self-pipe 302, detection unit 101, self-pipe 303, and pump 304, and the sample atmosphere containing suspended particulate matter is introduced into the detection unit 101. Is done. A filter paper 202 is arranged in the detection unit 101, and the filter paper 202 collects floating particulate matter. The collected sample air is exhausted through a pipe 303 and a pump 304.
[0008] 上記浮遊粒子状物質に対し、 β線吸収方式により浮遊粒子状物質濃度が測定さ れる。この β線吸収方式による濃度測定について説明する。  [0008] The suspended particulate matter concentration is measured by the β-ray absorption method for the suspended particulate matter. The concentration measurement by this β-ray absorption method will be described.
測定原理であるが、浮遊粒子状物質が未捕集状態である最新の濾紙 202を通過さ せた場合の ι8線強度 Iと、浮遊粒子状物質を捕集した状態の濾紙 202を通過させた  Although it is the measurement principle, ι8 line intensity I when passing through the latest filter paper 202 in which suspended particulate matter is not collected, and filter paper 202 in the state where suspended particulate matter is collected
0  0
場合の β線強度 Iと、浮遊粒子状物質の単位質量当りの β線吸収断面積 kと、濾紙 2 02の単位捕集面積当りの粒子の質量 mと、全捕集面積 Sと、積算吸引流量 Vとを用 いて、浮遊粒子状物質濃度 Mは、次式のようになる。  Β-ray intensity I, β-ray absorption cross section k per unit mass of suspended particulate matter, mass m of particles per unit area of filter paper 202, total collection area S, integrated suction Using the flow rate V, the suspended particulate matter concentration M is expressed by the following equation.
[0009] [数 1] [0009] [Equation 1]
M= (m/V) = ( S / k V) I n ( I。/ I ) [0010] これら S, k, Vを予めメモリ部(図示せず)に登録しておき、 β線強度 I , β線強度 I M = (m / V) = (S / k V) I n (I. / I) [0010] These S, k, V are registered in advance in a memory unit (not shown), and β-ray intensity I, β-ray intensity I
0  0
を検出して浮遊粒子状物質濃度 Μを算出する。  Is detected and the suspended particulate matter concentration Μ is calculated.
[0011] CPUボード(図示せず)の濃度演算手段は、まず未捕集状態である最新の濾紙 20 2を通過させた場合の |8線強度 Iを表す検出信号を入力してメモリ部に登録する。続 [0011] The concentration calculation means of the CPU board (not shown) first inputs a detection signal representing | 8-line intensity I when the latest filter paper 202 that has not been collected is passed to the memory unit. sign up. Continued
0  0
いて所定期間にわたり浮遊粒子状物質を捕集した濾紙 202を通過する β線強度 Iを 表す検出信号を入力する。このとき、検出ユニット 101では、捕集された浮遊粒子状 物質に対して j8線源 102から β線が放射されると、 β線の一部は濾紙 202上の浮遊 粒子状物質に吸収され、吸収されな力つた β線が半導体検出器 103に入力される。 半導体検出器 103は 13線強度に比例する検出信号を出力する。この 13線強度 Iを表 す検出信号を濃度演算手段が入力してメモリ部に登録する。濃度演算手段は、メモ リ部から S, k, V, I , Iを読み出して上記数 1による演算を行って、浮遊粒子状物質  Then, a detection signal indicating β-ray intensity I passing through the filter paper 202 that collects suspended particulate matter over a predetermined period is input. At this time, in the detection unit 101, when β rays are emitted from the j8 radiation source 102 to the collected suspended particulate matter, a part of the β rays is absorbed by the suspended particulate matter on the filter paper 202, Unabsorbed and powerful β-rays are input to the semiconductor detector 103. The semiconductor detector 103 outputs a detection signal proportional to the 13-line intensity. The detection signal representing the 13-line intensity I is input by the concentration calculation means and registered in the memory unit. Concentration calculation means reads out S, k, V, I, I from the memory section and performs the calculation according to the above equation (1) to obtain suspended particulate matter.
0  0
濃度 M (mg/m3)を算出している。 The concentration M (mg / m 3 ) is calculated.
[0012] そして、計測終了後にモータ 205が CPUボード(図示せず)の駆動手段により駆動 されて、卷取リーノレ 201.キヤプスタン 203力 S回転し、送りリーノレ 204力ら據紙 202力 S 繰り出されて新しい部分がセットされるとともに、卷取りリール 201が濾紙 202の使用 済み部分を収容する。 [0012] Then, after the measurement is completed, the motor 205 is driven by the driving means of the CPU board (not shown) to rotate the take-up linole 201. capstan 203 force S, and feed out the feed linole 204 force and the paper 202 force S. As the new part is set, the scraping reel 201 accommodates the used part of the filter paper 202.
浮遊粒子状物質測定装置 1000の概略はこのようなものである。  The outline of the suspended particulate matter measuring apparatus 1000 is as described above.
[0013] さて、このような浮遊粒子状物質測定装置では、計測精度が湿度により影響される ことが知られている。湿度が高い大気力 収集した試料大気を用いると、水分や水分 を含む浮遊粒子状物質なども濾紙 202に捕集される。この水分は β線を遮蔽する機 能を有している。 [0013] Now, in such a suspended particulate matter measuring apparatus, it is known that measurement accuracy is affected by humidity. Atmospheric force with high humidity When collected sample air is used, water and suspended particulate matter containing water are also collected on the filter paper 202. This moisture has the function of shielding β rays.
このため、浮遊粒子状物質による j8線の吸収以外にも水分が j8線を透過させない こととなって半導体検出器 103へ到達する β線強度が減少し、湿度が高い場合には 実際よりも浮遊粒子状物質濃度を高く測定するおそれがある。そこで、従来技術では 一般的に試料大気の湿度を所定値以下に抑えることで湿度の影響を取り除いている 例えば外国論文に係る非特許文献 1では浮遊粒子状物質の測定では試料大気を ヒータにより 30°Cまで加温することで、湿度を 60%以下に減らすことが記載されてい る。 For this reason, in addition to the absorption of the j8 line by suspended particulate matter, the moisture does not pass through the j8 line and the β-ray intensity reaching the semiconductor detector 103 is reduced, and when the humidity is high, it floats more than it actually is There is a risk of measuring the particulate matter concentration high. Therefore, in the conventional technology, the humidity of the sample atmosphere is generally suppressed to a predetermined value or less to eliminate the influence of humidity. For example, in Non-Patent Document 1 related to a foreign paper, the sample atmosphere is measured by a heater 30 It is stated that heating up to ° C reduces the humidity to below 60%. The
また、特許文献 1には、浮遊粒子状物質測定装置に類似した構成を有するダスト放 射線モニタが記載され、湿度の影響を取り除くためにヒータにより昇温する点が記載 されている。なお、特許文献 1では測定精度を向上する目的ではなぐ濾紙の送りを 円滑にするために濾紙を乾燥させて 、る。  Patent Document 1 describes a dust radiation monitor having a configuration similar to that of a suspended particulate matter measuring device, and describes that the temperature is raised by a heater in order to remove the influence of humidity. In Patent Document 1, in order to improve the measurement accuracy, the filter paper is dried in order to facilitate the feeding of the filter paper.
[0014] また、従来技術の他の例としては試料大気やサンプルガスの温度や湿度を検出し てサンプルガス流の温度や湿度を所定値に調整することで温度や湿度を所定値に 制御するものがある。  [0014] As another example of the prior art, the temperature and humidity are controlled to a predetermined value by detecting the temperature and humidity of the sample atmosphere and sample gas and adjusting the temperature and humidity of the sample gas flow to a predetermined value. There is something.
特許文献 2には、サンプルガスの温度や湿度を検出するセンサと、大気の温度や 湿度を検出するセンサと、を備え、これらセンサ力 の検出信号を用いて温度や湿度 を所定の値に制御している。  Patent Document 2 includes a sensor that detects the temperature and humidity of a sample gas and a sensor that detects the temperature and humidity of the atmosphere, and controls the temperature and humidity to predetermined values using detection signals of these sensor forces. is doing.
[0015] 非特干文献 1: Albert Chung et al. Comparison of Real-Time Instruments Used To[0015] Non-Special Reference 1: Albert Chung et al. Comparison of Real-Time Instruments Used To
Monitor Airborne Particulate Matter", Journal of the Air & Waste Management Asso ciation, JANUARY, VOLUME 51, Number 1, pi 09— pi 20 Monitor Airborne Particulate Matter ", Journal of the Air & Waste Management Asso ciation, JANUARY, VOLUME 51, Number 1, pi 09— pi 20
特許文献 1 :特開平 7— 244163号公報 (段落番号 0017,図 1)  Patent Document 1: Japanese Patent Laid-Open No. 7-244163 (paragraph number 0017, FIG. 1)
特許文献 2:特許第 3362255号公報(図 1)  Patent Document 2: Japanese Patent No. 3362255 (Fig. 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0016] 浮遊粒子状物質測定では手分析で行うことがあり、この手分析での濾紙秤量前の コンディショニング条件が湿度 50%となっている。そこで、浮遊粒子状物質測定装置 でも濾紙 202を湿度 50%のコンディショニング条件で計測することが望ましい。 [0016] The suspended particulate matter measurement may be performed by manual analysis, and the conditioning condition before weighing the filter paper in this manual analysis is 50% humidity. Therefore, it is desirable to measure the filter paper 202 under the conditioning condition of 50% humidity even with the suspended particulate matter measuring device.
しかしながら、従来技術の浮遊粒子状物質測定装置では、相対湿度を所定値以下 (例えば相対湿度 60%以下)にして浮遊粒子状物質濃度 Mの測定を行っており、例 えば、相対湿度 30%, 50%という場合であっても測定が可能であった。そして、手分 祈のコンディショニング条件である湿度 50%よりも試料大気の湿度が低 、場合 (例え ば 30%の場合)には、検出ユニット 101内の湿度も低くなり、捕集粒子の水分吸着率 が異なり、手分析による浮遊粒子状物質濃度 Mと異なるという問題があった。浮遊粒 子状物質測定装置でも手分析と同じ浮遊粒子状物質濃度 Mを得ることができれば、 高精度に自動測定することが可能になるので、その改善が要請されていた。 However, in the prior art suspended particulate matter measuring device, the suspended particulate matter concentration M is measured at a relative humidity of a predetermined value or less (for example, relative humidity of 60% or less). For example, the relative humidity is 30%, Measurement was possible even in the case of 50%. If the humidity of the sample atmosphere is lower than the humidity condition of 50%, which is the conditioning condition for manual prayer (for example, 30%), the humidity in the detection unit 101 also becomes lower, and the moisture of the collected particles is absorbed. The rate was different and there was a problem that it was different from the suspended particulate matter concentration M by manual analysis. If the suspended particulate matter measurement device can obtain the same suspended particulate matter concentration M as in the manual analysis, Since it is possible to perform automatic measurement with high accuracy, there has been a demand for improvement.
[0017] そこで、 β線吸収方式分析値と手分析値とを一致させるため試料大気の相対湿度 を手分析値でのコンディショニング条件である 50%で測定すれば、手分析値と一致 させて測定精度の向上が見込めるが、現状の β線吸収方式による浮遊粒子状物質 測定では、相対湿度の変動による影響を排除した上で測定することは困難であった また、特許文献 1に記載されたダストモニタは、濾紙を乾燥させる目的であって相対 湿度を著しく低くするものであり、相対湿度が 50%よりも低くなつて浮遊粒子状物質 濃度が手分析値より少なく測定されるという問題があった。  [0017] Therefore, if the relative humidity of the sample atmosphere is measured at 50%, which is the conditioning condition of the manual analysis value, in order to match the β-ray absorption method analysis value and the manual analysis value, the measurement is made to match the manual analysis value. Although improvement in accuracy can be expected, it was difficult to measure the suspended particulate matter using the current β-ray absorption method after eliminating the effects of fluctuations in relative humidity. The monitor is intended to dry the filter paper and lower the relative humidity significantly. There was a problem that the suspended particulate matter concentration was measured below the manual analysis value when the relative humidity was lower than 50%. .
[0018] また、特許文献 2における装置では、温度や湿度を調整することで相対湿度を 50 %にすることも可能であるが、大気温度センサや大気湿度センサの測定性能がすぐ に劣化するという問題があった。例えば、特許文献 2における装置では、大気温度セ ンサと大気湿度センサを大気に暴露して大気の温度や湿度を測定して 、る。この場 合、大気中の浮遊粒子状物質などが大気温度センサと大気湿度センサの表面に付 着'堆積していき、測定性能が劣化する。 [0018] Also, in the apparatus in Patent Document 2, the relative humidity can be reduced to 50% by adjusting the temperature and humidity, but the measurement performance of the atmospheric temperature sensor and the atmospheric humidity sensor is quickly deteriorated. There was a problem. For example, in the apparatus in Patent Document 2, an atmospheric temperature sensor and an atmospheric humidity sensor are exposed to the atmosphere, and the temperature and humidity of the atmosphere are measured. In this case, suspended particulate matter in the atmosphere adheres to and accumulates on the surfaces of the atmospheric temperature sensor and atmospheric humidity sensor, which degrades the measurement performance.
そこで、大気温度センサと大気湿度センサと両方とも定期的な清掃 (現場の汚染状 況によるが、 2週間から 1ヶ月に 1回の清掃)が必要であり、場合によっては持ち帰つ て分解作業による清掃や再校正を行う必要があり、運用面 ·保守面で著しい手間を 要するという問題があった。さらに清掃作業の間はデータが抜けて欠測するおそれも めつに。  Therefore, both the air temperature sensor and the air humidity sensor require periodic cleaning (cleaning once every two weeks to once a month, depending on the contamination situation at the site). There was a problem that cleaning and recalibration had to be performed, which required considerable labor in terms of operation and maintenance. In addition, there is a risk of missing data during cleaning work.
[0019] さらに湿度センサとしては、ヒーター加熱によるクリーニング機能がついたセラミック 湿度センサもある力 安価で広く普及している静電容量式の RHセンサを使用したい という要請がある。  [0019] Further, as a humidity sensor, there is also a ceramic humidity sensor having a cleaning function by heating with a heater. There is a demand to use a capacitance type RH sensor which is inexpensive and widely used.
この RHセンサの場合は、エアーでダストを吹き飛ばしたり、センサの電気配線にダ メージを与えないように、アルコール、洗剤、水などで洗い、乾燥させる必要がある、 というものであり、現場で清掃することは困難であり、上記のように清掃に手間を要す るという問題があった。  In the case of this RH sensor, it is necessary to wash it with alcohol, detergent, water, etc. and dry it in order not to blow off dust with air or damage the sensor's electrical wiring. It was difficult to do this, and there was a problem that it took time to clean as described above.
これらのような事情力 温度センサや湿度センサに大気中の浮遊粒子などが付着 しないようにして清掃作業を可能な限り不要とし、長期間にわたり計測可能にしたいと いう要請があった。 Conditions such as these: Airborne particles in the atmosphere adhere to the temperature sensor and humidity sensor. There was a request to make the cleaning work unnecessary as much as possible and to enable measurement over a long period of time.
[0020] そこで、本発明は上記問題点を解決するためになされたものであり、その目的は、 長期間にわたり温度センサや湿度センサの清掃を不要にして相対湿度の変動による 影響を排除して測定精度の向上を実現する浮遊粒子状物質測定装置を提供するこ とにある。  [0020] Therefore, the present invention has been made to solve the above-described problems, and its purpose is to eliminate the need for cleaning the temperature sensor and the humidity sensor over a long period of time and to eliminate the influence of fluctuations in relative humidity. The object is to provide a suspended particulate matter measurement device that improves measurement accuracy.
課題を解決するための手段  Means for solving the problem
[0021] このような本発明の請求項 1に係る浮遊粒子状物質測定装置は、 [0021] Such a suspended particulate matter measuring device according to claim 1 of the present invention includes:
吸引手段により粒子径が所定粒径以下である浮遊粒子状物質を含む試料大気を 採取する試料大気採取手段と、  Sample air collection means for collecting sample air containing suspended particulate matter having a particle size of a predetermined particle size or less by suction means; and
試料大気から浮遊粒子状物質を連続的に捕集する捕集手段と、  A collection means for continuously collecting suspended particulate matter from the sample atmosphere;
捕集手段で捕集された浮遊粒子状物質がある捕集部と、捕集部に β線を照射し、 透過した 13線強度につ!、ての検出信号を出力する検出手段と、  A collection unit having suspended particulate matter collected by the collection unit, and a detection unit that irradiates the collection unit with β-rays and outputs a detection signal corresponding to the transmitted 13-line intensity;
捕集手段により捕集される時の試料大気の温度を吸引手段の上流側で計測して上 流側温度信号を出力する上流側温度計測手段と、  Upstream temperature measuring means for measuring the temperature of the sample atmosphere at the time of collection by the collecting means upstream of the suction means and outputting an upstream temperature signal; and
捕集手段により捕集された後の試料大気の温度を吸引手段の下流側で計測して 下流側温度信号を出力する下流側温度計測手段と、  Downstream temperature measuring means for measuring the temperature of the sample atmosphere after being collected by the collecting means on the downstream side of the suction means and outputting a downstream temperature signal; and
捕集手段により捕集された後の試料大気の湿度を吸引手段の下流側で計測して 下流側湿度信号を出力する下流側湿度計測手段と、  Downstream humidity measuring means for measuring the humidity of the sample atmosphere after being collected by the collecting means on the downstream side of the suction means and outputting a downstream humidity signal;
上流側温度計測手段からの上流側温度信号、下流側温度計測手段からの下流側 温度信号、および下流側湿度計測手段からの下流側湿度信号に基づいて、吸引手 段の上流側であって上流側温度を計測する箇所における上流側湿度を算出する上 流側湿度算出手段と、  Based on the upstream temperature signal from the upstream temperature measurement means, the downstream temperature signal from the downstream temperature measurement means, and the downstream humidity signal from the downstream humidity measurement means, the upstream side of the suction means and the upstream side. Upstream-side humidity calculating means for calculating upstream-side humidity at the location where the side temperature is measured;
上流側湿度算出手段で算出した上流側湿度に基づいて試料大気の上流側湿度を 設定湿度と略一致させる駆動信号を出力する駆動手段と、  Driving means for outputting a driving signal for causing the upstream humidity of the sample atmosphere to substantially match the set humidity based on the upstream humidity calculated by the upstream humidity calculating means;
駆動手段力 の駆動信号に基づいて試料大気の湿度を調整する湿度調整手段と 設定湿度と略等しい環境の下で、検出手段からの検出信号に基づいて β線吸収 方式により浮遊粒子状物質濃度を算出する濃度演算手段と、 Humidity adjustment means that adjusts the humidity of the sample atmosphere based on the drive signal of the drive means force and β-ray absorption based on the detection signal from the detection means in an environment approximately equal to the set humidity Concentration calculating means for calculating the suspended particulate matter concentration by a method;
を備えることを特徴とする。  It is characterized by providing.
[0022] また、本発明の請求項 2に係る浮遊粒子状物質測定装置は、  [0022] In addition, the suspended particulate matter measuring device according to claim 2 of the present invention includes:
請求項 1に記載の浮遊粒子状物質測定装置にお!、て、  In the suspended particulate matter measuring device according to claim 1,!
前記上流側温度を計測する上流側温度計測手段は、検出手段に一体的に配置さ れ、捕集手段により捕集される時の試料大気の温度を、前記捕集部近傍において計 測する手段であることを特徴とする。  The upstream temperature measuring means for measuring the upstream temperature is a means that is disposed integrally with the detecting means and measures the temperature of the sample atmosphere when collected by the collecting means in the vicinity of the collecting part. It is characterized by being.
[0023] また、本発明の請求項 3に係る浮遊粒子状物質測定装置は、 [0023] Further, the suspended particulate matter measuring device according to claim 3 of the present invention includes:
請求項 1または請求項 2に記載の浮遊粒子状物質測定装置において、 試料大気採取手段の流路の最下流側に設けられ、前記下流側温度計測手段およ び前記下流側湿度計測手段を内部空間内に収容する収容手段を備えることを特徴 とする。  3. The suspended particulate matter measuring device according to claim 1 or 2, wherein the downstream temperature measuring means and the downstream humidity measuring means are provided at the most downstream side of the flow path of the sample air sampling means. It is characterized by having a receiving means for storing in the space.
[0024] また、本発明の請求項 4に係る浮遊粒子状物質測定装置は、  [0024] In addition, the suspended particulate matter measuring device according to claim 4 of the present invention includes:
請求項 3に記載の浮遊粒子状物質測定装置において、  In the suspended particulate matter measuring device according to claim 3,
前記収容手段の内部空間を大きくして内部空間内の圧力を大気圧に近づけること を特徴とする。  The internal space of the accommodating means is enlarged so that the pressure in the internal space approaches the atmospheric pressure.
[0025] また、本発明の請求項 5に係る浮遊粒子状物質測定装置は、  [0025] Further, the suspended particulate matter measuring device according to claim 5 of the present invention is
請求項 1〜請求項 4の何れか一項に記載の浮遊粒子状物質測定装置において、 前記湿度調整手段は、試料大気を昇温または降温させることにより湿度を調整する 手段であることを特徴とする。  The suspended particulate matter measuring device according to any one of claims 1 to 4, wherein the humidity adjusting unit is a unit that adjusts humidity by raising or lowering a sample atmosphere. To do.
発明の効果  The invention's effect
[0026] 以上のような本発明によれば、長期間にわたり温度センサや湿度センサの清掃を 不要にして相対湿度の変動による影響を排除して測定精度の向上を実現する浮遊 粒子状物質測定装置を提供することができる。  [0026] According to the present invention as described above, the suspended particulate matter measurement apparatus that eliminates the effect of fluctuations in relative humidity without the need for cleaning the temperature sensor and the humidity sensor over a long period of time and improves the measurement accuracy. Can be provided.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 続いて本発明を実施するための最良の形態の浮遊粒子状物質測定装置について 図を参照しつつ説明する。図 1は本形態の浮遊粒子状物質測定装置 (PM10の例) 1の構成図、図 2は収容ユニットの内部構成図、図 3は相対湿度による |8線吸収方式 分析値と手分析値との誤差を説明する特性図である。なお、従来技術と構成が一部 重複するが、新しい符号を付すとともに再度説明する。 [0027] Next, the suspended particulate matter measuring device of the best mode for carrying out the present invention will be described with reference to the drawings. Fig. 1 shows the configuration of the suspended particulate matter measurement device (example of PM10) 1 in this form, Fig. 2 shows the internal configuration of the storage unit, and Fig. 3 shows the | 8-line absorption method based on relative humidity. It is a characteristic figure explaining the error of an analysis value and a manual analysis value. In addition, although a part overlaps with a prior art, it attaches a new code | symbol and demonstrates again.
[0028] 浮遊粒子状物質測定装置 1は、 CPUボード 11、操作パネル 12、記録計 13、 I/O ボード 14、パワー IZOボード 15、アンプボード 16、外部入出力端子 17、検出ュ-ッ ト 20、 j8線源 21、半導体検出器 22、送りリール 23、キヤプスタン 24、卷取リール 25、 分粒器(PM10用) 26、ポンプ 27、流量センサ 28、配管 29, 30, 31、下流側温度セ ンサ 32、下流側湿度センサ 33、測定セル (温度湿度測定セル) 34、ヒータユニット 35 、上流側温度センサ 36,濾紙 40、モータ Ml、モータ M2、モータ M3を備えている。 これらは、大別すると試料大気採取手段、捕集手段、検出手段、上流側温度計測 手段、下流側温度計測手段、下流側湿度計測手段、収容手段、上流側湿度算出手 段、駆動手段、湿度調整手段、濃度演算手段となる。以下各手段について説明する  [0028] The suspended particulate matter measuring device 1 includes a CPU board 11, an operation panel 12, a recorder 13, an I / O board 14, a power IZO board 15, an amplifier board 16, an external input / output terminal 17, and a detection mute. 20, j8 radiation source 21, semiconductor detector 22, feed reel 23, capstan 24, take-up reel 25, granulator (for PM10) 26, pump 27, flow sensor 28, piping 29, 30, 31, downstream temperature Sensor 32, downstream humidity sensor 33, measurement cell (temperature / humidity measurement cell) 34, heater unit 35, upstream temperature sensor 36, filter paper 40, motor Ml, motor M2, and motor M3 are provided. These are broadly classified as sample air sampling means, collection means, detection means, upstream temperature measurement means, downstream temperature measurement means, downstream humidity measurement means, storage means, upstream humidity calculation means, drive means, humidity. It becomes an adjustment means and a density calculation means. Each means is described below
[0029] まず、試料大気採取手段について説明する。試料大気採取手段は、吸引手段によ り粒子径が所定粒径以下(SPMで 10 m ( 10 m以上で 100%カット)、 PM10で 1 0 111 ( 10 111またはそれ以上で50%カット)、?1^2. 5で 2. 5 μ ηι (2. 5 mまたは それ以上で 50%カット)である浮遊粒子状物質を含む試料大気を採取する手段であ る。例えば本形態のように、分粒器 (PM10用) 26、配管 29、検出ユニット 20、濾紙 4 0、配管 30、ポンプ 27 (本発明の吸引手段の具体例である)、配管 31、流量センサ 2 8、測定セル 34を備える。ポンプ 27が吸引動作を行うと、試料大気が分粒器 26→配 管 29→検出ユニット 20→濾紙 40→配管 30→ポンプ 27→配管 31→流量センサ 28 →測定セル 34と通流して外部へ排気される。 First, the sample air sampling means will be described. The sample air sampling means uses a suction means to reduce the particle size to a predetermined particle size (SPM: 10 m (10 m or more, 100% cut), PM10: 10 111 (10 111 or more, 50% cut), 1 ^ 2.5 is a means to collect sample air containing suspended particulate matter that is 2.5 μ ηι (cut by 50% at 2.5 m or more). Granulator (for PM10) 26, piping 29, detection unit 20, filter paper 40, piping 30, pump 27 (specific example of suction means of the present invention), piping 31, flow sensor 2 8, measurement cell 34 When pump 27 performs a suction operation, the sample air is passed through granulator 26 → piping 29 → detection unit 20 → filter paper 40 → pipe 30 → pump 27 → pipe 31 → flow sensor 28 → measurement cell 34. Exhausted to the outside.
[0030] なお、検出ユニット 20は、略直方体形状の上部ブロック 20aと下部ブロック 20bで形 成され、上部ブロック 20aには配管 29と接続される流路が設けられ、下部ブロック 20 bには上側の流路と対向するように下側の流路が設けられている。この上部ブロック 2 0aと下部ブロック 20bとの間を濾紙 40が位置する。  [0030] The detection unit 20 is formed of an upper block 20a and a lower block 20b each having a substantially rectangular parallelepiped shape. The upper block 20a is provided with a flow path connected to the pipe 29, and the lower block 20b has an upper side. A lower flow path is provided so as to face the flow path. A filter paper 40 is located between the upper block 20a and the lower block 20b.
[0031] このような流路系において、ポンプ 27の下流側に流量センサ 28が配置され、通流 する試料大気ガスの流量を正確に計測して流量信号が出力される。流量センサ 28 は、例えば、熱式流量センサなどである。さて、流量センサ 28から出力された流量信 号は I/Oボード 14を介して CPUボード 11に入力されている。更に、ポンプ 27をバイ パスする流路にはバルブが設けられており、このバルブは流量安定用のモータ M3 が接続されており、 IZOボード 14を介して CPUボード 11からの駆動信号によりモー タ M3を駆動してバルブを開閉制御する。このような構成により流量を一定量とし、先 の数 1で挙げた積算吸引流量 Vを正確にする。これにより分粒器 26は、試料大気を 一定流量で吸引する。 In such a flow path system, a flow rate sensor 28 is disposed downstream of the pump 27, and the flow rate of the flowing sample atmospheric gas is accurately measured to output a flow rate signal. The flow sensor 28 is, for example, a thermal flow sensor. The flow rate signal output from the flow sensor 28 The number is input to the CPU board 11 via the I / O board 14. Furthermore, a valve is provided in the flow path that bypasses the pump 27, and this valve is connected to a motor M3 for stabilizing the flow rate. The motor is driven by a drive signal from the CPU board 11 via the IZO board 14. M3 is driven to control the opening and closing of the valve. With such a configuration, the flow rate is made constant, and the integrated suction flow rate V mentioned in the previous equation 1 is made accurate. As a result, the granulator 26 sucks the sample air at a constant flow rate.
[0032] 分粒器 26 (PM10用)は、例えば試料大気中の粗大粒子の慣性衝突を用いて PM 10の分粒を行なうインパクタ方式分粒器であり、試料大気カゝら粗大粒子を取り除き、 粒子径が 10 μ m以下(50%カット)の浮遊粒子を通過させた試料大気を得る。  [0032] The particle sizer 26 (for PM10) is an impactor type particle sizer that performs, for example, PM 10 particle size classification using inertial collision of coarse particles in the sample atmosphere, and removes coarse particles from the sample atmosphere. Obtain a sample atmosphere through which airborne particles with a particle size of 10 μm or less (50% cut) are passed.
また、 PM2. 5 (粒径 2. 5 mの浮遊粒子)については、後段にサイクロン方式の分 粒器またはインパクタ方式の分粒器を設置して、 2. 5 m以下の微粒子を選択的に 分粒しても良い。これらは測定対象に応じて適宜選択される。  For PM2.5 (floating particles with a particle size of 2.5 m), a cyclone-type or impactor-type granulator is installed in the subsequent stage to selectively select particles of 2.5 m or less. It may be sized. These are appropriately selected according to the measurement object.
[0033] このような浮遊粒子状物質を含む試料大気は捕集手段を通過する。 [0033] The sample atmosphere containing such suspended particulate matter passes through the collection means.
捕集手段は、試料大気カゝら浮遊粒子状物質を連続的に捕集する手段である。例え ば本形態のように送りリール 23、キヤプスタン 24、卷取リール 25、濾紙 40、モータ M 1、モータ M2を備える。モータ Ml、モータ M2の駆動信号はパワー IZOボード 15を 介して CPUボード 11から出力されている。  The collection means is means for continuously collecting suspended particulate matter from the sample atmosphere. For example, as in this embodiment, it is provided with a feed reel 23, a capstan 24, a take-up reel 25, a filter paper 40, a motor M1, and a motor M2. The drive signals of motor Ml and motor M2 are output from CPU board 11 via power IZO board 15.
テープ状の濾紙 40は、未使用の濾紙 40を供給する送りリール 23と、使用済みの濾 紙 40をロール状に卷回して収容する卷取りリール 25と、により送り可能になされてお り、検出ユニット 20内に一定長さが供給される。  The tape-shaped filter paper 40 can be fed by a feed reel 23 that supplies unused filter paper 40 and a scraping reel 25 that winds and stores used filter paper 40 in a roll. A fixed length is supplied into the detection unit 20.
モータ Mlは検出ユニット 20の下部ブロック 20bを上下動し、検出ユニット 20内に 搬送された浮遊粒子状物質捕集用の濾紙 40を上下力 挟み込んで固定するための 開閉動作用モータ、モータ M2は濾紙 40の送り用モータである。この濾紙 40は、モ ータ Mlにより検出ユニット 20が開かれたときに、モータ M2により卷取リール 25及び キヤプスタン 24を回転駆動することにより、一定周期(例えば 1時間おき)経過後に濾 紙 40の未使用部分が送りリール 23、キヤプスタン 24を経て検出ユニット 20内へ送ら れるとともに、同じ長さだけ卷取りリール 25に収容される。  The motor M1 moves the lower block 20b of the detection unit 20 up and down and opens and closes the filter paper 40 for trapping suspended particulate matter transported in the detection unit 20, and the motor M2 is an open / close operation motor. This is a motor for feeding filter paper 40. When the detection unit 20 is opened by the motor Ml, the filter paper 40 is rotated after the take-up reel 25 and the capstan 24 by the motor M2, so that the filter paper 40 is passed after a certain period (for example, every hour). The unused portion is fed into the detection unit 20 through the feed reel 23 and the capstan 24 and is accommodated in the scraping reel 25 by the same length.
[0034] 検出手段は、捕集手段で捕集された浮遊粒子状物質に β線を照射し、透過した β 線強度についての検出信号を出力する手段である。例えば本形態のように、 j8線源 21、半導体検出器 22、アンプボード 16を備える。半導体検出器 22の出力信号はァ ンプボード 16内のアンプにより増幅され、 IZOボード 14を介して CPUボード 11に入 力されている。 [0034] The detection means irradiates the suspended particulate matter collected by the collection means with β-rays and transmits the β It is a means for outputting a detection signal for the line intensity. For example, as in this embodiment, a j8 source 21, a semiconductor detector 22, and an amplifier board 16 are provided. The output signal of the semiconductor detector 22 is amplified by an amplifier in the amplifier board 16 and input to the CPU board 11 via the IZO board 14.
検出ユニット 20の上部ブロック 20aには β線源 21が、下部ブロック 20bには β線源 21と対向するように半導体検出器 22が設けられており、先に説明した流路と 線放 射方向が交差するように配置される。この上部ブロック 20aと下部ブロック 20bとの間 を濾紙 40が通過する。検出手段の検出原理は先に説明した従来技術と同様に β線 吸収方式を採用しており、重複する説明を省略する。  A β-ray source 21 is provided in the upper block 20a of the detection unit 20, and a semiconductor detector 22 is provided in the lower block 20b so as to face the β-ray source 21, and the flow path and the radiation direction described above are provided. Are arranged to intersect. The filter paper 40 passes between the upper block 20a and the lower block 20b. The detection principle of the detection means adopts the β-ray absorption method as in the prior art described above, and redundant description is omitted.
[0035] 上流側温度計測手段は、捕集手段により浮遊粒子状物質が捕集される時の試料 大気の温度を、吸引手段の上流側で計測して上流側温度信号を出力する手段であ る。そして、上流側として好ましくは、検出手段に一体的に配置され、捕集手段により 捕集される時の試料大気の温度を、捕集手段により捕集される浮遊粒子状物質があ る捕集部近傍において計測する手段としている。上流側温度計測手段は、本形態で は上流側温度センサ 36である。そして、この上流側温度センサ 36は、濾紙 40とボン プ 27との間にあるとともに、濾紙 40のうち、浮遊粒子状物質が捕集される箇所である 捕集部 40a近傍に配置され、詳しくは濾紙 40を通過した清浄な空気流が流れる検出 ユニット 20の下部ブロック 20b側であって半導体検出器 22の近傍に配置され、ュニ ット内温度を検出するユニット内温度センサである。この上流側温度センサ 36から出 力されたユニット内温度信号は、 IZOボード 14を介して CPUボード 11に入力されて いる。 [0035] The upstream temperature measuring means is a means for measuring the temperature of the sample atmosphere when the suspended particulate matter is collected by the collecting means on the upstream side of the suction means and outputting an upstream temperature signal. The The upstream side is preferably arranged integrally with the detection means, and the temperature of the sample atmosphere when being collected by the collection means is determined by the collection of the suspended particulate matter collected by the collection means. As a means for measuring in the vicinity of the part. The upstream temperature measuring means is the upstream temperature sensor 36 in this embodiment. The upstream temperature sensor 36 is located between the filter paper 40 and the pump 27, and is disposed in the vicinity of the collection part 40a, which is a part of the filter paper 40 where floating particulate matter is collected. Is a temperature sensor inside the unit that detects the temperature inside the unit and is arranged near the semiconductor detector 22 on the lower block 20b side of the detection unit 20 through which the clean air flow that has passed through the filter paper 40 flows. The in-unit temperature signal output from the upstream side temperature sensor 36 is input to the CPU board 11 via the IZO board 14.
[0036] 下流側温度計測手段は、捕集手段により浮遊粒子状物質が捕集された後の試料 大気の温度を、吸引手段の下流側で計測して下流側温度信号を出力する手段であ る。下流側温度計測手段は、本形態では下流側温度センサ 32である。そして、この 下流側温度センサ 32は、詳しくはポンプ 27の下流であるとともに流路系の最下流に ある測定セル 34内に配置される。下流側温度センサ 32は、濾紙 40を通過した清浄 な空気流が流れ込むような測定セル 34内における測定セル内温度を検出するセル 内温度センサである。この下流側温度センサ 32から出力されたセル内温度信号は、 IZOボード 14を介して CPUボード 11に入力されて!ヽる。 [0036] The downstream temperature measuring means is a means for measuring the temperature of the sample air after the suspended particulate matter is collected by the collecting means on the downstream side of the suction means and outputting a downstream temperature signal. The The downstream temperature measuring means is the downstream temperature sensor 32 in this embodiment. More specifically, the downstream temperature sensor 32 is disposed in a measurement cell 34 that is downstream of the pump 27 and is downstream of the flow path system. The downstream temperature sensor 32 is an in-cell temperature sensor that detects the temperature in the measurement cell in the measurement cell 34 in which a clean air flow that has passed through the filter paper 40 flows. The in-cell temperature signal output from the downstream temperature sensor 32 is Input to the CPU board 11 via the IZO board 14!
[0037] 下流側湿度計測手段は、捕集手段により浮遊粒子状物質が捕集された後の試料 大気の湿度を、吸引手段の下流側で計測して下流側湿度信号を出力する手段であ る。下流側湿度計測手段は、本形態では下流側湿度センサ 33である。そして、下流 側湿度センサ 33は、詳しくはポンプ 27の下流であるとともに流路系の最下流にある 測定セル 34内に配置される。下流側湿度センサ 33は、濾紙 40を通過した清浄な空 気流が流れ込むような測定セル 34内における測定セル内湿度を検出するセル内湿 度センサである。この下流側湿度センサ 33から出力されたセル内湿度信号は、 I/O ボード 14を介して CPUボード 11に入力されて!、る。  [0037] The downstream humidity measuring means is a means for measuring the humidity of the sample air after the suspended particulate matter is collected by the collecting means on the downstream side of the suction means and outputting a downstream humidity signal. The The downstream humidity measuring means is the downstream humidity sensor 33 in this embodiment. In detail, the downstream humidity sensor 33 is disposed in the measurement cell 34 which is downstream of the pump 27 and further downstream of the flow path system. The downstream humidity sensor 33 is a cell humidity sensor that detects the humidity in the measurement cell in the measurement cell 34 in which clean airflow that has passed through the filter paper 40 flows. The in-cell humidity signal output from the downstream humidity sensor 33 is input to the CPU board 11 via the I / O board 14.
[0038] 収容手段は、試料大気採取手段の流路の最下流側に設けられ、下流側温度計測 手段および下流側湿度計測手段を内部空間に収容する手段である。本形態では、 図 1や特に図 2でも示すように、測定セル 34である。測定セル 34は、図 2のように、セ ル本体 341、シール 342、ガス導入口 343、ガス排出口 344を備える。下流側温度セ ンサ 32や下流側湿度センサ 33は、シール 342により封止された状態で、ガラス製の セル本体 341の内部空間に収容された状態で固定されている。セル本体 341は、内 部空間を大きくしており、ガス導入口 343から導入された高圧な試料気体は大容積 の内部空間に入り込んで圧力を低下させて大気圧に近づけて力 ガス排出口 344を 通過して排気される。下流側温度センサ 32や下流側湿度センサ 33は、ガス排出口 3 44の直前に配置されており、また、ガラス製のセル本体 341とガス排出口 344の間に はほとんど流路抵抗はなぐこの点でも測定セル内を大気圧に近づけている。また、 先に説明した力 流量センサ 28によりセル本体 341へ流入する流量も一定量となつ て 、るため測定セル 34内の内部気圧が変動しな 、ように配慮されて 、る。これにより 、測定セル 34内では大気圧に近 、状態における試料大気の温度と湿度を取得する ことができる。  The accommodating means is a means that is provided on the most downstream side of the flow path of the sample air sampling means, and accommodates the downstream temperature measuring means and the downstream humidity measuring means in the internal space. In this embodiment, as shown in FIG. 1 and particularly FIG. As shown in FIG. 2, the measurement cell 34 includes a cell body 341, a seal 342, a gas inlet 343, and a gas outlet 344. The downstream temperature sensor 32 and the downstream humidity sensor 33 are fixed in a state where they are accommodated in an internal space of the glass cell main body 341 while being sealed by a seal 342. The cell body 341 has a large internal space, and the high-pressure sample gas introduced from the gas inlet 343 enters the large volume of the internal space to reduce the pressure and bring it closer to the atmospheric pressure. Exhaust after passing through. The downstream temperature sensor 32 and the downstream humidity sensor 33 are disposed immediately before the gas outlet 3 44, and there is almost no flow path resistance between the glass cell body 341 and the gas outlet 344. The point in the measurement cell is also close to atmospheric pressure. In addition, since the flow rate flowing into the cell main body 341 by the force flow sensor 28 described above is a constant amount, it is considered that the internal pressure in the measurement cell 34 does not fluctuate. As a result, the temperature and humidity of the sample atmosphere in a state close to atmospheric pressure in the measurement cell 34 can be acquired.
[0039] 上流側湿度算出手段は、上流側温度計測手段からの上流側温度信号、下流側温 度計測手段からの下流側温度信号、および、下流側湿度計測手段からの下流側湿 度信号に基づいて、吸引手段の上流側であって上流側温度を計測する捕集部近傍 における上流側湿度を算出する手段である。例えば本形態では、 CPUボード 11、操 作パネル 12、記録計 13、 IZOボード 14、パワー ΙΖΟボード 15、外部入出力端子 1 7を備え、 CPUボード 11のプログラム演算により、上流側温度センサ 36からのュ-ッ ト内温度信号、下流側温度センサ 32からのセル内温度信号、および、下流側湿度セ ンサ 33からのセル内湿度信号に基づいて、ポンプ 27の上流側であってユニット内温 度を計測する箇所 (上流側温度センサ 36を設置した箇所)の近傍におけるユニット内 湿度を算出する手段である。なお、上流側湿度算出の詳細については後述する。 [0039] The upstream humidity calculation means is configured to convert the upstream temperature signal from the upstream temperature measurement means, the downstream temperature signal from the downstream temperature measurement means, and the downstream humidity signal from the downstream humidity measurement means. Based on this, it is a means for calculating the upstream humidity in the vicinity of the collecting part for measuring the upstream temperature upstream of the suction means. For example, in this embodiment, CPU board 11, Panel 12, recorder 13, IZO board 14, power ΙΖΟ board 15, external input / output terminal 1 7 and CPU board 11 program calculation, temperature signal in the boot from upstream temperature sensor 36, downstream Based on the temperature signal in the cell from the side temperature sensor 32 and the humidity signal in the cell from the downstream humidity sensor 33, the location where the unit temperature is measured upstream of the pump 27 (upstream temperature sensor This is a means for calculating the humidity inside the unit in the vicinity of the place where 36 is installed. Details of upstream humidity calculation will be described later.
[0040] 駆動手段は、上流側湿度算出手段で算出した上流側湿度に基づいて試料大気の 上流側湿度を設定湿度と略一致させる駆動信号を出力する手段である。例えば本形 態では CPUボード 11、操作パネル 12、記録計 13、 IZOボード 14、パワー I/Oボ ード 15、外部入出力端子 17を備え、 CPUボード 11のプログラム処理により、算出し たユニット内湿度を設定湿度湘対湿度 50%)と略一致させる駆動信号を出力する。 駆動手段は、先に説明した上流側湿度算出手段と共通構成とする。なお、駆動の詳 細については後に詳述する。  [0040] The drive means is means for outputting a drive signal for making the upstream humidity of the sample atmosphere substantially coincide with the set humidity based on the upstream humidity calculated by the upstream humidity calculation means. For example, in this embodiment, the CPU board 11, operation panel 12, recorder 13, IZO board 14, power I / O board 15, external input / output terminal 17 are provided. Outputs a drive signal that makes the internal humidity approximately equal to the set humidity (50% relative humidity). The drive means has the same configuration as the upstream humidity calculation means described above. Details of driving will be described later.
[0041] 湿度調整手段は、駆動手段からの駆動信号に基づ!、て試料大気の湿度を変更さ せる手段である。例えば本形態では試料大気を昇温または降温させるヒータユニット 35である。 CPUボード 11から出力され、パワー I/Oボード 15により電力増幅された 駆動信号がヒータユニット 35へ入力される。  [0041] The humidity adjusting means is means for changing the humidity of the sample atmosphere based on the drive signal from the drive means. For example, in this embodiment, the heater unit 35 raises or lowers the temperature of the sample atmosphere. The drive signal output from the CPU board 11 and amplified by the power I / O board 15 is input to the heater unit 35.
[0042] 濃度演算手段は検出手段からの検出信号に基づいて β線吸収方式により浮遊粒 子状物質濃度を算出する手段であり、例えば本形態では、 CPUボード 11、操作パ ネル 12、記録計 13、 IZOボード 14、パワー ΙΖΟボード 15、外部入出力端子 17を 備え、 CPUボード 11のプログラム処理により、濃度演算を行う。この濃度演算手段は 、先に説明した上流側湿度算出手段 ·駆動手段を共通構成とする。なお、濃度算出 については後に詳述する。  [0042] The concentration calculation means is means for calculating the concentration of suspended particulate matter by the β-ray absorption method based on the detection signal from the detection means. For example, in this embodiment, the CPU board 11, the operation panel 12, the recorder 13, IZO board 14, power ΙΖΟ board 15, external input / output terminal 17 are provided, and density calculation is performed by CPU board 11 program processing. This concentration calculation means has a common configuration for the upstream humidity calculation means and drive means described above. The concentration calculation will be described in detail later.
[0043] 続いて浮遊粒子状物質測定装置 1の各動作のうち、湿度調整について図を参照し つつ説明する。図 3の特性図は、相対湿度による β線吸収方式分析値と手分析値と の誤差を表しており、手分析でのコンディショニング条件である大気圧下 ·相対湿度 5 0%で β線吸収方式による浮遊粒子状物質濃度 Μと、手分析による浮遊粒子状物 質濃度 Μとが一致する。そこで、コンディショニング条件である相対湿度 50%に維持 することで、手分析と同じ値が求められることとなり計測精度を高められる。しかしなが ら、検出ユニット 20内はポンプ 27の真空吸引により減圧下であるため検出ユニット 2 0内の湿度をそのまま検出しても大気圧下の湿度とは相違しており、何らかの調整を 施さないと湿度調整に用いることができない。また、一般に湿度センサは、図 2の下流 側温度センサ 32と下流側湿度センサ 33とを比較しても明らかなように、温度センサよ りも大型であり、検出ユニット 20への設置も容易でないという問題があった。 [0043] Next, among the operations of the suspended particulate matter measuring device 1, humidity adjustment will be described with reference to the drawings. The characteristic diagram in Fig. 3 shows the error between the β-ray absorption method analysis value and the manual analysis value due to relative humidity, and the β-ray absorption method at atmospheric pressure and relative humidity of 50%, which is the conditioning condition for manual analysis. The suspended particulate matter concentration に よ る due to coincides with the suspended particulate matter concentration に よ る due to manual analysis. Therefore, the relative humidity of 50% is maintained as a conditioning condition. By doing so, the same value as the manual analysis is obtained, and the measurement accuracy can be improved. However, since the inside of the detection unit 20 is under reduced pressure due to the vacuum suction of the pump 27, even if the humidity in the detection unit 20 is detected as it is, it is different from the humidity under atmospheric pressure, and some adjustment is made. Otherwise, it cannot be used for humidity adjustment. In general, the humidity sensor is larger than the temperature sensor and is not easily installed in the detection unit 20, as is apparent from the comparison between the downstream temperature sensor 32 and the downstream humidity sensor 33 in FIG. There was a problem.
そこで、検出ユニット 20内に湿度センサよりもはるかに小型である温度センサを設 置し、検出した検出ユニット 20内の温度から大気圧下における相対湿度を割り出し てユニット内湿度を算出し、このユニット内湿度に基づいて検出セル 20内が相対湿 度 50%となるように湿度調整するものである。  Therefore, a temperature sensor much smaller than the humidity sensor is installed in the detection unit 20, and the relative humidity under atmospheric pressure is calculated from the detected temperature in the detection unit 20 to calculate the humidity in the unit. Based on the internal humidity, the humidity is adjusted so that the relative humidity of the detection cell 20 is 50%.
[0044] 続、て検出中に湿度調整を行う各部の動作にっ 、て説明する。  Next, the operation of each unit that performs humidity adjustment during detection will be described.
ポンプ 27の動作により試料大気を分粒器 26 ·配管 29を経て検出ユニット 20へ導 入し、濾紙 40の表面で浮遊粒子状物質を捕集しているものとする。このような状況下 で試料大気に対して湿度調節動作を行って!/ヽる。  It is assumed that the sample air is introduced to the detection unit 20 through the granulator 26 and the pipe 29 by the operation of the pump 27, and the suspended particulate matter is collected on the surface of the filter paper 40. Under such circumstances, adjust the humidity to the sample atmosphere!
[0045] 上流側温度センサ 36は検出ユニット 20内における試料大気の温度を計測してュ ニット内温度信号を出力している。 CPUボード 11は、このユニット内温度信号に基づ いてユニット内温度を割出し、次式のようにユニット内飽和水蒸気圧を算出する。  The upstream temperature sensor 36 measures the temperature of the sample atmosphere in the detection unit 20 and outputs a unit temperature signal. The CPU board 11 calculates the unit internal temperature based on the unit internal temperature signal, and calculates the unit saturated water vapor pressure using the following equation.
[0046] [数 2] (7. 5 Χユニット内 £¾/(237. 3+ユニット内? ¾©) ュニット内飽和水蒸気圧 =6. 11 X 10  [0046] [Equation 2] (7.5 内 in unit £ ¾ / (237. 3+ in unit? ¾ ©) Saturated water vapor pressure in unit = 6. 11 X 10
[0047] 下流側温度センサ 32は測定セル 34内における試料大気の温度を計測してセル内 温度信号を出力している。 CPUボード 11は、このセル内温度信号に基づいてセル 内温度を割出し、次式のようにセル内飽和水蒸気圧を算出する。 [0047] The downstream temperature sensor 32 measures the temperature of the sample atmosphere in the measurement cell 34 and outputs an in-cell temperature signal. The CPU board 11 calculates the in-cell temperature based on the in-cell temperature signal, and calculates the in-cell saturated water vapor pressure as in the following equation.
[0048] [数 3] 7. 5 Xセル内温度/ (237. 3+セル内温度)) セノレ内飽和水蒸気圧 = 6. 11 X 10  [0048] [Equation 3] 7.5 X cell temperature / (237.3 + cell temperature)) Saturated saturated water vapor pressure = 6. 11 X 10
[0049] 下流側湿度センサ 33は測定セル 34内における試料大気の湿度を計測してセル内 湿度信号を出力している。 CPUボード 11は、このセル内湿度信号に基づいてセル 内相対湿度を割出す。 The downstream humidity sensor 33 measures the humidity of the sample atmosphere in the measurement cell 34 and outputs a humidity signal in the cell. CPU board 11 is a cell based on the humidity signal in the cell. Calculate the relative humidity inside.
続いて、 CPUボード 11は、上流側湿度算出手段として機能し、先に求めたセル内 飽和水蒸気圧、ユニット内飽和水蒸気圧およびセル内湿度力 次式のようにユニット 内相対湿度を算出する。  Subsequently, the CPU board 11 functions as upstream humidity calculation means, and calculates the in-unit relative water vapor pressure, the in-unit saturated water vapor pressure, and the in-cell humidity force obtained previously as in the following equation.
[0050] 画 ュニット内相対湿度 =セル内相対湿度 Xセル内飽和水蒸気圧/ュニット内飽和水蒸気圧  [0050] Relative humidity in unit = relative humidity in cell X saturated water vapor pressure in cell / saturated water vapor pressure in unit
[0051] これにより、ユニット内相対湿度が算出される。 CPUボード 11では図示しないメモリ 部に予め設定したユニット内相対湿度 (設定湿度)を 50%として登録している。 Thereby, the relative humidity in the unit is calculated. In CPU board 11, the relative humidity (set humidity) set in advance in the memory unit (not shown) is registered as 50%.
算出したユニット内相対湿度が 50%より高いとき、 CPUボード 11は、湿度調整手 段を駆動する駆動手段として機能し、パワー IZOボード 15を介して湿度調整手段で あるヒータユニット 35を昇温駆動する。すると試料大気が温度上昇して相対湿度が低 くなつていき、試料大気のユニット内相対湿度が 50%となるように維持される。  When the calculated relative humidity in the unit is higher than 50%, the CPU board 11 functions as a drive means for driving the humidity adjustment means, and the heater unit 35, which is the humidity adjustment means, is driven to rise through the power IZO board 15. To do. Then, the temperature of the sample air rises and the relative humidity decreases, and the relative humidity in the unit of the sample air is maintained at 50%.
一方、算出したユニット内相対湿度が 50%より低いとき、 CPUボード 11は、湿度調 整手段を駆動する駆動手段として機能し、パワー IZOボード 15を介して湿度調整手 段であるヒータユニット 35を降温駆動する。すると試料大気が温度降下して相対湿度 が高くなつていき、試料大気の相対湿度が 50%となるように維持される。これら試料 大気の昇温 ·降温は必要時のみ行うこととなる。  On the other hand, when the calculated relative humidity in the unit is lower than 50%, the CPU board 11 functions as a driving means for driving the humidity adjusting means, and the heater unit 35 that is a humidity adjusting means is connected via the power IZO board 15. Drive down the temperature. Then, the temperature of the sample atmosphere drops and the relative humidity increases, and the relative humidity of the sample atmosphere is maintained at 50%. These samples are heated and lowered only when necessary.
以下同様の湿度調整を順次自動的に行い、ユニット内相対湿度は設定湿度と一致 するようになされる。  Thereafter, the same humidity adjustment is performed automatically in sequence, so that the relative humidity in the unit matches the set humidity.
[0052] なお、本形態の説明では手分析値と一致させるため設定湿度 50%としているが、 湿度は 50%に限定する趣旨ではなぐ違う値を採用しても良い。例えば、海外では 上記した手分析のコンディショニング条件が 30%〜40%であり、必要に応じて設定 湿度 30%〜40%としても良 、。これら設定湿度は事情に応じて適宜変更することが できる。  [0052] In the description of the present embodiment, the set humidity is 50% in order to match the manual analysis value, but a different value may be adopted for the purpose of limiting the humidity to 50%. For example, in the overseas, the manual analysis conditioning conditions described above are 30% to 40%, and the set humidity may be set to 30% to 40% as necessary. These set humidity can be changed appropriately according to the circumstances.
[0053] 続いて、上記浮遊粒子状物質測定装置により上記のように相対湿度を一定にさせ た状態での大気中の浮遊粒子状物質濃度の連続測定について説明する。  [0053] Subsequently, continuous measurement of the concentration of suspended particulate matter in the atmosphere with the relative humidity kept constant as described above by the suspended particulate matter measuring apparatus will be described.
オペレータが操作パネル 12を操作すると、測定開始するような操作信号力 SCPUボ ード 11へ入力される。 CPUボード 11は各部へ制御信号を出力する。このとき既に検 出ユニット 20には濾紙 40の未捕集部分が載置され、上部ブロック 20aと下部ブロック 20bとにより強固に挟持されるともに、 j8線が漏出しないように密封されるものとする。 まず、 j8線源 21により |8線を照射する。そして、半導体検出器 22からの検出信号が 、 CPUボード 11のメモリ部に一時的に記憶される。一番最初に記憶された検出信号 は、 β線強度 I When the operator operates the operation panel 12, the operation signal force is such that measurement starts. Is input to mode 11. The CPU board 11 outputs a control signal to each part. At this time, the uncollected portion of the filter paper 40 is already placed on the detection unit 20 and is firmly sandwiched between the upper block 20a and the lower block 20b and sealed so that the j8 line does not leak. . First, | 8 rays are emitted from the j8 source 21. Then, the detection signal from the semiconductor detector 22 is temporarily stored in the memory unit of the CPU board 11. The detection signal stored first is β-ray intensity I
0となる。  0.
続いて、 ΙΖΟボード 14を介してポンプ 27へ駆動信号を出力する。大気中から試料 大気が吸引され、試料大気の採取が開始される。この場合、上記したように流量セン サ 28からの流量信号を ΙΖΟボード 14を介して CPUボード 11が入力しており、所定 設定流量を維持するような駆動信号を、 IZOボード 14を介してモータ M3へ送信し ており、モータ Μ3によりバルブが開閉制御されて、流量が所定設定流量となるように 調節される。  Subsequently, a drive signal is output to the pump 27 via the ΙΖΟ board 14. The sample atmosphere is aspirated from the atmosphere, and sampling of the sample atmosphere is started. In this case, as described above, the flow rate signal from the flow rate sensor 28 is input to the CPU board 11 via the 14 board 14, and a drive signal that maintains a predetermined set flow rate is sent to the motor via the IZO board 14. This is sent to M3, and the valve is controlled to open and close by motor Μ3, and the flow rate is adjusted to the predetermined set flow rate.
[0054] そして、ポンプ 27が所定時間作動して予め決められた流量の試料大気が吸引され ると、 CPUボード 11がポンプ 27の稼働を停止し、試料大気の採集は停止される。続 いて、再度 j8線源 21により |8線を照射する。そして、半導体検出器 22からの検出信 号力 CPUボード 11のメモリに一時的に記憶される。この検出信号は、 j8線強度 Iと なる。  [0054] Then, when the pump 27 operates for a predetermined time and the sample atmosphere at a predetermined flow rate is sucked, the CPU board 11 stops the operation of the pump 27, and the collection of the sample atmosphere is stopped. Next, | 8 rays are irradiated again by j8 source 21. The detected signal power from the semiconductor detector 22 is temporarily stored in the memory of the CPU board 11. This detection signal is j8 line intensity I.
そしてメモリに登録された、 j8線強度 I 、 j8線強度 Iに加え上記定数 S, k, Vを読み  Then, in addition to the j8 line intensity I and j8 line intensity I registered in the memory, the above constants S, k, V are read.
0  0
出して、上記数 1に基づいて β線吸収方式により浮遊粒子状物質濃度 Μを算出する 。この浮遊粒子状物質濃度 Μを CPUボード 11が記録計 13に記録させる。  Based on the above formula 1, the suspended particulate matter concentration 線 is calculated by the β-ray absorption method. The CPU board 11 records the suspended particulate matter concentration に on the recorder 13.
記録終了後、濾紙 40を移動させる。まず、 CPUボード 11は IZOボード 14、パワー IZOボード 15を介してモータ Mlを駆動し、検出ユニット 20の下部ブロック 20bを降 下させて、濾紙 40を移動可能な状態とする。続いて、 CPUボード 11は IZOボード 1 4、パワー ΙΖΟボード 15を介してモータ Μ2を駆動して濾紙 40を送り、未使用部分を 検出ユニット 20に配置する。そして、下部ブロック 20bが上昇して最初の状態に戻り、 以後、同様の動作を繰り返して自動的に浮遊粒子状物質測定を行うというものである  After recording is completed, the filter paper 40 is moved. First, the CPU board 11 drives the motor Ml via the IZO board 14 and the power IZO board 15 to lower the lower block 20b of the detection unit 20 so that the filter paper 40 can be moved. Subsequently, the CPU board 11 drives the motor 2 through the IZO board 14 and the power board 15 to send the filter paper 40, and places the unused part in the detection unit 20. Then, the lower block 20b rises and returns to the initial state, and thereafter, the same operation is repeated to automatically measure suspended particulate matter.
[0055] 以上本形態の浮遊粒子状物質測定装置 1につ!/、て説明した。 なお、先に説明した設定湿度は予め CPUボード 11のメモリ部に設定登録されてい るものとして説明した力 例えば、操作パネル 12を介して CPUボード 11のメモリ部に 新たに登録できるようにしても良 、。 As described above, the suspended particulate matter measuring device 1 according to the present embodiment has been described. It should be noted that the set humidity described above is a force described as being pre-registered in the memory unit of the CPU board 11. For example, it may be possible to newly register in the memory unit of the CPU board 11 via the operation panel 12. Good.
また、浮遊粒子状物質濃度 Mを記録計 13に記録するものとして説明したが、さらに IZOボード 14に接続された表示部(図示しない)を搭載し、浮遊粒子状物質濃度 M を表示するような形態を追加しても良い。さらにまた、ハードディスク、光磁気ディスク 、 USBメモリと接続可能、もしくは、搭載するようにして、これら記憶部にデータを出力 するような形態を追加しても良い。  Also, the suspended particulate matter concentration M has been described as being recorded on the recorder 13. However, a display unit (not shown) connected to the IZO board 14 is further mounted to display the suspended particulate matter concentration M. A form may be added. Furthermore, it is possible to add a form in which data can be output to the storage unit so that it can be connected to or mounted on a hard disk, a magneto-optical disk, or a USB memory.
[0056] このように本発明の浮遊粒子状物質測定装置によれば、試料大気の温度および相 対湿度を大気から直接検出する方式に代えて、試料大気を採取して放出する試料 大気採取手段の最下流で温度と湿度を検出する方式とした。捕集手段により浮遊粒 子状物質を捕集した後の試料大気は、浮遊粒子状物質がな!、清浄な空気の流れで あり、長期間の測定でも上流側温度センサ、下流側温度センサ、下流側湿度センサ は何れも汚れることは殆どなくなり、清浄な状態を半永久的に保つことができる。  As described above, according to the suspended particulate matter measuring device of the present invention, instead of the method of directly detecting the temperature and relative humidity of the sample atmosphere from the atmosphere, the sample atmosphere collecting means for collecting and releasing the sample atmosphere The system detects the temperature and humidity at the most downstream side. The sample atmosphere after collection of suspended particulate matter by the collection means is free of suspended particulate matter! It is a flow of clean air. Even for long-term measurements, the upstream temperature sensor, downstream temperature sensor, Any downstream humidity sensor is hardly contaminated, and can maintain a clean state semipermanently.
[0057] また、検出ユニット内は一般的に小型である温度センサを配置するようにしたため、 検出ユニットの小型化や、湿度センサの清掃を不要として、分解整備等の不要化を 実現している。  [0057] Further, since the temperature sensor, which is generally small, is arranged in the detection unit, the detection unit is not required to be downsized and the humidity sensor is not cleaned, so that disassembly and maintenance are unnecessary. .
また、一定の選択可能な湿度及び温度条件を維持して、湿度や温度の影響による 粒子状物質測定における標準測定法の手分析との差をなくすことができる。  In addition, by maintaining certain selectable humidity and temperature conditions, it is possible to eliminate differences from the manual analysis of standard measurement methods in the measurement of particulate matter due to the influence of humidity and temperature.
図面の簡単な説明  Brief Description of Drawings
[0058] [図 1]本発明の実施するための最良の形態の浮遊粒子状物質測定装置 (PM10の 例)の構成図である。  [0058] FIG. 1 is a configuration diagram of a suspended particulate matter measuring apparatus (example of PM10) of the best mode for carrying out the present invention.
[図 2]収容ユニットの内部構成図である。  FIG. 2 is an internal configuration diagram of the storage unit.
[図 3]相対湿度による β線吸収方式分析値と手分析値との誤差を説明する特性図で ある。  FIG. 3 is a characteristic diagram illustrating an error between the β-ray absorption method analysis value and the manual analysis value due to relative humidity.
圆 4]従来技術の浮遊粒子状物質測定装置の要部説明図である。  圆 4] It is an explanatory view of the main part of the prior art suspended particulate matter measuring device.

Claims

請求の範囲 The scope of the claims
[1] 吸引手段により粒子径が所定粒径以下である浮遊粒子状物質を含む試料大気を 採取する試料大気採取手段と、  [1] Sample air sampling means for collecting sample air containing suspended particulate matter having a particle size of a predetermined particle size or less by suction means;
試料大気から浮遊粒子状物質を連続的に捕集する捕集手段と、  A collection means for continuously collecting suspended particulate matter from the sample atmosphere;
捕集手段で捕集された浮遊粒子状物質がある捕集部と、捕集部に β線を照射し、 透過した 13線強度につ!、ての検出信号を出力する検出手段と、  A collection unit having suspended particulate matter collected by the collection unit, and a detection unit that irradiates the collection unit with β-rays and outputs a detection signal corresponding to the transmitted 13-line intensity;
捕集手段により捕集される時の試料大気の温度を吸引手段の上流側で計測して上 流側温度信号を出力する上流側温度計測手段と、  Upstream temperature measuring means for measuring the temperature of the sample atmosphere at the time of collection by the collecting means upstream of the suction means and outputting an upstream temperature signal; and
捕集手段により捕集された後の試料大気の温度を吸引手段の下流側で計測して 下流側温度信号を出力する下流側温度計測手段と、  Downstream temperature measuring means for measuring the temperature of the sample atmosphere after being collected by the collecting means on the downstream side of the suction means and outputting a downstream temperature signal; and
捕集手段により捕集された後の試料大気の湿度を吸引手段の下流側で計測して 下流側湿度信号を出力する下流側湿度計測手段と、  Downstream humidity measuring means for measuring the humidity of the sample atmosphere after being collected by the collecting means on the downstream side of the suction means and outputting a downstream humidity signal;
上流側温度計測手段からの上流側温度信号、下流側温度計測手段からの下流側 温度信号、および下流側湿度計測手段からの下流側湿度信号に基づいて、吸引手 段の上流側であって上流側温度を計測する箇所における上流側湿度を算出する上 流側湿度算出手段と、  Based on the upstream temperature signal from the upstream temperature measurement means, the downstream temperature signal from the downstream temperature measurement means, and the downstream humidity signal from the downstream humidity measurement means, the upstream side of the suction means and the upstream side. Upstream-side humidity calculating means for calculating upstream-side humidity at the location where the side temperature is measured;
上流側湿度算出手段で算出した上流側湿度に基づいて試料大気の上流側湿度を 設定湿度と略一致させる駆動信号を出力する駆動手段と、  Driving means for outputting a driving signal for causing the upstream humidity of the sample atmosphere to substantially match the set humidity based on the upstream humidity calculated by the upstream humidity calculating means;
駆動手段力 の駆動信号に基づいて試料大気の湿度を調整する湿度調整手段と 設定湿度と略等しい環境の下で、検出手段からの検出信号に基づいて β線吸収 方式により浮遊粒子状物質濃度を算出する濃度演算手段と、  The humidity adjustment means that adjusts the humidity of the sample atmosphere based on the drive signal of the drive means force. Under an environment that is approximately equal to the set humidity, the suspended particulate matter concentration is determined by the β-ray absorption method based on the detection signal from the detection means Concentration calculating means for calculating;
を備えることを特徴とする浮遊粒子状物質測定装置。  A suspended particulate matter measuring device comprising:
[2] 請求項 1に記載の浮遊粒子状物質測定装置にお!、て、 [2] In the suspended particulate matter measuring device according to claim 1,!
前記上流側温度を計測する上流側温度計測手段は、検出手段に一体的に配置さ れ、捕集手段により捕集される時の試料大気の温度を、前記捕集部近傍において計 測する手段であることを特徴とする浮遊粒子状物質測定装置。  The upstream temperature measuring means for measuring the upstream temperature is a means that is disposed integrally with the detecting means and measures the temperature of the sample atmosphere when collected by the collecting means in the vicinity of the collecting part. A suspended particulate matter measuring apparatus characterized by
[3] 請求項 1または請求項 2に記載の浮遊粒子状物質測定装置にお 、て、 試料大気採取手段の流路の最下流側に設けられ、前記下流側温度計測手段およ び前記下流側湿度計測手段を内部空間内に収容する収容手段を備えることを特徴 とする浮遊粒子状物質測定装置。 [3] In the suspended particulate matter measuring device according to claim 1 or claim 2, Floating particulate matter, characterized in that it is provided on the most downstream side of the flow path of the sample air sampling means, and includes a storage means for storing the downstream temperature measurement means and the downstream humidity measurement means in an internal space. measuring device.
[4] 請求項 3に記載の浮遊粒子状物質測定装置において、  [4] In the suspended particulate matter measuring device according to claim 3,
前記収容手段の内部空間を大きくして内部空間内の圧力を大気圧に近づけること を特徴とする浮遊粒子状物質測定装置。  The suspended particulate matter measuring device characterized in that the internal space of the housing means is enlarged to bring the pressure in the internal space close to atmospheric pressure.
[5] 請求項 1〜請求項 4の何れか一項に記載の浮遊粒子状物質測定装置にお 、て、 前記湿度調整手段は、試料大気を昇温または降温させることにより湿度を調整する 手段であることを特徴とする浮遊粒子状物質測定装置。 [5] The suspended particulate matter measuring device according to any one of claims 1 to 4, wherein the humidity adjusting means adjusts the humidity by increasing or decreasing the temperature of the sample atmosphere. A suspended particulate matter measuring apparatus characterized by
PCT/JP2006/323270 2005-11-28 2006-11-22 Floating particle measuring device WO2007060969A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-341962 2005-11-28
JP2005341962A JP4839069B2 (en) 2005-11-28 2005-11-28 Airborne particulate matter measurement device

Publications (1)

Publication Number Publication Date
WO2007060969A1 true WO2007060969A1 (en) 2007-05-31

Family

ID=38067195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323270 WO2007060969A1 (en) 2005-11-28 2006-11-22 Floating particle measuring device

Country Status (2)

Country Link
JP (1) JP4839069B2 (en)
WO (1) WO2007060969A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234881A (en) * 2013-04-09 2013-08-07 安徽省安光环境光学工程技术研究中心有限公司 Atmospheric particulate matter monitor
CN103411852A (en) * 2013-08-15 2013-11-27 山东方圆建筑工程检测中心 Smoke density test apparatus
CN104483249A (en) * 2014-12-31 2015-04-01 江苏天瑞仪器股份有限公司 Automatic two-ray detection device for mass concentration of particulate matters and element components in air
FR3066600A1 (en) * 2017-05-17 2018-11-23 Eco Logic Sense Sas SENSOR FOR MEASURING CONCENTRATION OF PARTICLES IN THE AIR
CN111239013A (en) * 2018-11-28 2020-06-05 常熟南师大发展研究院有限公司 Device and processing system for testing PM2 and 5 values in air
CN112649336A (en) * 2020-12-15 2021-04-13 北京雪迪龙科技股份有限公司 Humidity interference removing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012127727A (en) * 2010-12-14 2012-07-05 Sharp Corp Detector and detection method
JP6350662B2 (en) 2014-07-25 2018-07-04 富士通株式会社 Measuring apparatus, measuring system and measuring method for measuring particles and gas
JP6515683B2 (en) * 2015-05-29 2019-05-22 富士通株式会社 Measuring device and measuring system
JP6586929B2 (en) * 2016-07-29 2019-10-09 東亜ディーケーケー株式会社 measuring device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537321U (en) * 1991-10-28 1993-05-21 電気化学計器株式会社 Dehumidifier
JPH06235690A (en) * 1993-02-09 1994-08-23 Dkk Corp Environmental atmosphere analyzing method
JPH07244163A (en) * 1994-03-04 1995-09-19 Toshiba Corp Dust-radiation monitor
JPH11502303A (en) * 1995-03-13 1999-02-23 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Method and apparatus for measuring particulate matter in gas
JP3362255B2 (en) * 1998-01-27 2003-01-07 ラプレット アンド パタシュニック カンパニー,インコーポレーテッド Gas flow regulator, system and method for measuring particulate matter
JP2003240685A (en) * 2002-02-18 2003-08-27 Konica Corp Chemical material collecting device and method
JP2006003090A (en) * 2004-06-15 2006-01-05 Dkk Toa Corp Suspended particulate matter measurement device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537321A (en) * 1991-08-02 1993-02-12 Nec Corp Output circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0537321U (en) * 1991-10-28 1993-05-21 電気化学計器株式会社 Dehumidifier
JPH06235690A (en) * 1993-02-09 1994-08-23 Dkk Corp Environmental atmosphere analyzing method
JPH07244163A (en) * 1994-03-04 1995-09-19 Toshiba Corp Dust-radiation monitor
JPH11502303A (en) * 1995-03-13 1999-02-23 プレジデント・アンド・フェローズ・オブ・ハーバード・カレッジ Method and apparatus for measuring particulate matter in gas
JP3362255B2 (en) * 1998-01-27 2003-01-07 ラプレット アンド パタシュニック カンパニー,インコーポレーテッド Gas flow regulator, system and method for measuring particulate matter
JP2003240685A (en) * 2002-02-18 2003-08-27 Konica Corp Chemical material collecting device and method
JP2006003090A (en) * 2004-06-15 2006-01-05 Dkk Toa Corp Suspended particulate matter measurement device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234881A (en) * 2013-04-09 2013-08-07 安徽省安光环境光学工程技术研究中心有限公司 Atmospheric particulate matter monitor
CN103411852A (en) * 2013-08-15 2013-11-27 山东方圆建筑工程检测中心 Smoke density test apparatus
CN103411852B (en) * 2013-08-15 2015-12-09 山东方圆建筑工程检测中心 A kind of smoke density test device
CN104483249A (en) * 2014-12-31 2015-04-01 江苏天瑞仪器股份有限公司 Automatic two-ray detection device for mass concentration of particulate matters and element components in air
CN104483249B (en) * 2014-12-31 2017-08-11 江苏天瑞仪器股份有限公司 Particulate matter quality concentration and elemental composition dual-beam automatic detection device in gas
FR3066600A1 (en) * 2017-05-17 2018-11-23 Eco Logic Sense Sas SENSOR FOR MEASURING CONCENTRATION OF PARTICLES IN THE AIR
CN111239013A (en) * 2018-11-28 2020-06-05 常熟南师大发展研究院有限公司 Device and processing system for testing PM2 and 5 values in air
CN112649336A (en) * 2020-12-15 2021-04-13 北京雪迪龙科技股份有限公司 Humidity interference removing method

Also Published As

Publication number Publication date
JP4839069B2 (en) 2011-12-14
JP2007147437A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4839069B2 (en) Airborne particulate matter measurement device
JP2006003090A (en) Suspended particulate matter measurement device
JP3574045B2 (en) Continuous measurement system for suspended particulate matter
CN206339465U (en) A kind of binary channels air detection instrument
CN201637649U (en) Measuring instrument for atmospheric particulate matter
JP2008261712A (en) System for measuring suspended particular substance
JP4879921B2 (en) Continuous collection device for atmospheric fallout
CN102841044A (en) Beta-ray atmospheric particulate monitor and monitoring method thereof
CN105092441A (en) Fine particle matter measuring device and measuring method
JP2009031227A (en) Device for measuring suspended particular substances
CN109540754A (en) A kind of Atmospheric particulates on-Line Monitor Device and method based on β ray method
CN104297020A (en) Flue gas pollution collection device and method
CN105092442B (en) A kind of fine particle measuring device and its measurement method
CN102866091A (en) Particulate matter differential concentration measuring system based on beta ray method
CN107449685A (en) A kind of integrated β rays dust concentration direct-reading measurement device
JP4014596B2 (en) Airborne particulate matter measurement device
Rasmussen et al. Buoyancy-corrected gravimetric analysis of lightly loaded filters
CN203606135U (en) CCD online aerosol monitoring device
CN209485926U (en) A kind of Atmospheric particulates on-Line Monitor Device based on β ray method
CN104792676B (en) The method that air nano-scale particle concentration is measured using ionization method
CN201795995U (en) On-line continuous sampling and detecting device for water content of grains
KR102290065B1 (en) Beta-ray type chimney fine dust measuring device with diffusion pipe
CN206960173U (en) A kind of airborne particulate harvester
CN203941085U (en) A kind of fine particle measurement mechanism
CN203929580U (en) A kind of laser light scattering device for detection of fine particle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823497

Country of ref document: EP

Kind code of ref document: A1