WO2007060877A1 - Transparent oxide semiconductor junction - Google Patents

Transparent oxide semiconductor junction Download PDF

Info

Publication number
WO2007060877A1
WO2007060877A1 PCT/JP2006/322867 JP2006322867W WO2007060877A1 WO 2007060877 A1 WO2007060877 A1 WO 2007060877A1 JP 2006322867 W JP2006322867 W JP 2006322867W WO 2007060877 A1 WO2007060877 A1 WO 2007060877A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cucro
thin film
glass
semiconductor
Prior art date
Application number
PCT/JP2006/322867
Other languages
French (fr)
Japanese (ja)
Inventor
Naoto Kikuchi
Kazuhiko Tonooka
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2007060877A1 publication Critical patent/WO2007060877A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

Disclosed is a semiconductor junction comprising a glass substrate having a relatively low heat resistance or a plastic substrate and a p-type transparent oxide having a high visible light transmission property coated on the substrate. The semiconductor junction is characterized in that CuCrO2 is coated on the glass substrate or the plastic substrate at a temperature lower than 400˚C as the p-type oxide thin film. In place of CuCrO2, Cu(Cr,M)O2 may be used which has such a structure that Cu in the CuCrO2 is partly substituted by at least one element selected from bivalent cations M=Mg, Ca, Be, Sr, Ba, Zn, Cd, Fe and Ni.

Description

明 細 書  Specification
透明酸化物半導体接合  Transparent oxide semiconductor junction
技術分野  Technical field
[0001] 本発明は、比較的耐熱性の低!、窓ガラスやプラスチックなど安価な基板上に、可視 光に対する透過性が高い P型の透明酸ィ匕物を成膜した半導体接合に関する。  [0001] The present invention relates to a semiconductor junction in which a P-type transparent oxide film having a relatively low heat resistance and a high transmittance for visible light is formed on an inexpensive substrate such as a window glass or plastic.
背景技術  Background art
[0002] 化合物半導体の p-n半導体接合は、電子回路にお 、て整流回路として用いられる ダイオードや増幅回路として用いられるトランジスタとして広く用いられて 、る。また P- n接合界面に適当な波長の光が当たると界面において光起電力が誘起されることか ら太陽光発電として利用されたり、さらには p-n半導体接合面に適当な電圧を印加す ると光が発生することから発光ダイオードなどにも広く応用されている。  A pn semiconductor junction of a compound semiconductor is widely used as a diode used as a rectifier circuit or a transistor used as an amplifier circuit in an electronic circuit. In addition, when light of an appropriate wavelength hits the P-n junction interface, a photovoltaic force is induced at the interface, so that it can be used as solar power generation, or when an appropriate voltage is applied to the pn semiconductor junction surface. Since light is generated, it is widely applied to light emitting diodes.
[0003] こうした半導体接合に広く用いられているシリコン (Si)は、ホウ素(B)または砒素 (As )やリン (P)によって Siの一部が元素置換されることにより、それぞれ p型または n型の 伝導性制御が可能であることから、種々の目的の電子素子として広く利用されている 。し力し、 Siのバンドギャップは 1. leVであるため、可視光領域に強い吸収があり、非 常に薄くしても可視光に対する高!ヽ透過性は得られな ヽ。  [0003] Silicon (Si), which is widely used in such semiconductor junctions, is p-type or n-type by elemental substitution of part of Si by boron (B), arsenic (As), or phosphorus (P), respectively. Since the conductivity of the mold can be controlled, it is widely used as an electronic device for various purposes. However, since the Si band gap is 1. leV, it has strong absorption in the visible light region, and even if it is very thin, it is highly visible light!ヽ No permeability can be obtained.
[0004] 窒化ガリウム(GaN)は、青色発光ダイオードとして応用されて 、る透明なワイドバン ドギャップ (3.3eV)半導体である。化学気相蒸着法 (CVD)や分子ビームエピタキシー 法 (MBE)で作製された GaN結晶は n型であり、そのキャリア濃度は 1019— 102 Γ 1と高 V、ものである力 ρ型不純物である亜鉛 (Zn)やマグネシウム (Mg)を添加しても抵抗値 が高くなるが P型にはならない。 [0004] Gallium nitride (GaN) is a transparent wide band gap (3.3 eV) semiconductor that is applied as a blue light emitting diode. GaN crystals prepared by chemical vapor deposition (CVD) or molecular beam epitaxy (MBE) are n-type, and their carrier concentration is 10 19 — 10 2 Γ 1 and high V, and the force is ρ-type impurities. Even when zinc (Zn) or magnesium (Mg) is added, the resistance increases, but it does not become P-type.
[0005] 1983年に MBE法で窒化アルミニウム (A1N)を下地にバッファ一層として利用すること によって GaN結晶の結晶性が向上することが発見され (非特許文献 1)、 1989年に高 結晶性 GaNに Mgを添加し低速電子線照射することによって初めて p型が得られること が報告された (非特許文献 2)。また、ノ ッファー層としての A1Nに代わって GaNを 700 °C程度の低温で薄く成長させた後に 1000°C程度で GaNを再度成長させる二段階成 長法によっても高結晶性の GaNが得られることが報告され、その方法で作製された M g添加 GaNを窒素中で熱処理することによつても p型が得られることが報告された (非特 許文献 3)。しかしいずれの場合も、高価な単結晶基板上に高温で成長した高結晶性 GaNにお 、て初めて p型を得ることができるものであって、耐熱性の低!、ガラス基板ま たはプラスチック基板上に透明な p-n半導体接合を形成することは不可能である。 [0005] In 1983, it was discovered that the crystallinity of GaN crystals was improved by using MBN as a buffer layer with aluminum nitride (A1N) as the base (Non-patent Document 1), and in 1989 highly crystalline GaN. It was reported that p-type can be obtained for the first time by adding Mg to low-energy electron beam irradiation (Non-patent Document 2). High-crystalline GaN can also be obtained by a two-step growth method in which GaN is grown thinly at a low temperature of about 700 ° C instead of A1N as the nofer layer, and then GaN is grown again at about 1000 ° C. M produced by that method It was reported that p-type can also be obtained by heat-treating g-doped GaN in nitrogen (Non-Patent Document 3). However, in either case, p-type can be obtained for the first time in high crystalline GaN grown on high-priced single crystal substrates at high temperature, with low heat resistance !, glass substrate or plastic It is impossible to form a transparent pn semiconductor junction on the substrate.
[0006] 酸化インジウム(In 0 )、スズ (Sn)を元素置換した In 0、酸化亜鉛 (ZnO)、 A1または [0006] In 0 with indium oxide (In 0), tin (Sn) element substitution, zinc oxide (ZnO), A1 or
2 3 2 3  2 3 2 3
ガリウム(Ga)を元素置換した ZnO、酸化スズ (SnO )、アンチモン(Sb)やフッ素(F)を  ZnO, elemental substitution of gallium (Ga), tin oxide (SnO), antimony (Sb) and fluorine (F)
2  2
元素置換した SnOなどは可視光領域における高 、光透過性と高 、電気伝導性を示  Element-substituted SnO and other materials exhibit high light transmission and high electrical conductivity in the visible light region.
2  2
す材料として知られている。とくに In 0、 Snを元素置換した In 0は、非晶質でも高い  It is known as a material. Especially, In 0 with element substitution of In 0 and Sn is high even if amorphous.
2 3 2 3  2 3 2 3
電気伝導性を維持することが知られている。しかし、いずれも n型の電気伝導性を示 し、 p型は示さない。  It is known to maintain electrical conductivity. However, all show n-type conductivity, not p-type.
[0007] アルミン酸銅 (CuAlO )はデラフォサイト型構造を有する材料であり、可視光で高 ヽ  [0007] Copper aluminate (CuAlO) is a material having a delafossite-type structure, and is highly sensitive to visible light.
2  2
透過性 (バンドギャップは 3.1eV以上)と p型の電気伝導性を示し、その抵抗率は 1 m程度と報告されている(特許文献 1)。しかし作製に必要な温度が 700°Cと高ぐ耐熱 性の低 ヽガラス基板またはプラスチック基板上に成膜することは、基板の耐熱性に問 題があり不可能である。  It exhibits permeability (band gap of 3.1 eV or more) and p-type conductivity, and its resistivity is reported to be about 1 m (Patent Document 1). However, it is impossible to form a film on a low-heat-resistant glass substrate or plastic substrate, which has a high temperature of 700 ° C, and there is a problem with the heat resistance of the substrate.
[0008] ロジウム酸亜鉛 (ZnRh 0 )はスピネル型構造を有する材料であり、 p型の電気伝導  [0008] Zinc rhodate (ZnRh 0) is a material having a spinel structure, p-type conductivity
2 4  twenty four
性を示すことが知られている (非特許文献 4)。また、スパッタリングにより基板を加熱 することなく成膜された ZnRh 0薄膜は非晶質であり、かつ p型の電気伝導性を示す  It is known to exhibit sex (Non-Patent Document 4). The ZnRh 0 thin film deposited without heating the substrate by sputtering is amorphous and exhibits p-type conductivity.
2 4  twenty four
こと、および n型の電気伝導性を持つ非晶質のインジウムガリウム亜鉛酸ィ匕物(InGaZ ηθ )と組み合わせて p-n接合ダイオードが作製できることが報告されている(非特許 In addition, it has been reported that p-n junction diodes can be fabricated in combination with amorphous indium gallium zinc oxide (InGaZ ηθ) having n-type conductivity (Non-patented)
4 Four
文献 5)。し力し、 ZnRh 0はバンドギャップが 2.1eVと小さいため、可視光領域におけ  Reference 5). However, since ZnRh 0 has a small band gap of 2.1 eV, it can be used in the visible light region.
2 4  twenty four
る光透過性は高くない。  The light transmittance is not high.
[0009] 一方、クロム酸銅 (CuCrO )は CuAlOと同じくデラフォサイト型構造を有する材料で [0009] On the other hand, copper chromate (CuCrO) is a material having a delafossite structure similar to CuAlO.
2 2  twenty two
あり、 1050°Cで作製された焼結体試料では、 p型の電気伝導性を示すが、その抵抗 率は 105 Ω cmと非常に高ぐ抵抗率低下のために Crに対し Caの元素置換が必要とさ れている(非特許文献 6)。また CuCrOは薄膜化も試みられており、 400°C以上の成 Yes, the sintered body sample manufactured at 1050 ° C shows p-type conductivity, but its resistivity is 10 5 Ωcm, which is a very high resistivity drop. Replacement is required (Non-patent Document 6). In addition, CuCrO has been tried to reduce the film thickness, and it has to be formed at 400 ° C or higher.
2  2
膜で、直接許容遷移を仮定した場合のバンドギャップは 3. leVと可視光で高 、透過 性を示し、その抵抗率は 1 Ω cmであると報告されて 、る(非特許文献 7)。 [0010] CuCrO薄膜において Crの一部を Mgにより置換すると、薄膜の抵抗率を低下させるIt is reported that the band gap is 3. leV, which is high for visible light, and is transparent, assuming a direct allowable transition, and its resistivity is 1 Ωcm (Non-patent Document 7). [0010] When a part of Cr is replaced by Mg in a CuCrO thin film, the resistivity of the thin film is lowered.
2 2
とともに結晶化温度を下げる効果があると報告されている。 Mgを Crに対して 5 at.%元 素置換した CuCr Mg 0では、基板温度 400°Cにお 、て成膜した薄膜にぉ 、て多  At the same time, it has been reported to have an effect of lowering the crystallization temperature. In CuCr Mg 0 in which Mg is substituted by 5 at.% Element with respect to Cr, a thin film formed at a substrate temperature of 400 ° C is much less.
0.95 0.05 2  0.95 0.05 2
結晶体が得られ、その抵抗率は 0.01 Ω cmを示すと報告されて ヽる(非特許文献 7)。 しかし、 p型の電気伝導性をもつ CuCrOまたは一部元素置換した CuCrO薄膜を 400  A crystal is obtained, and its resistivity is reported to be 0.01 Ωcm (Non-patent Document 7). However, CuCrO with p-type electrical conductivity or CuCrO thin film partially substituted with 400
2 2  twenty two
°C未満で作製したとの報告はな!/、。  There was no report that it was produced at less than ° C! /.
[0011] 特許文献 1 :特開平 11-278834号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 11-278834
非特許文献 1 : S. Yoshida、 Appl. Phys. Lett, vol.42, p.427 (1983) )  (Non-Patent Document 1: S. Yoshida, Appl. Phys. Lett, vol.42, p.427 (1983))
非特許文献 2 : H. Amano、 Jpn. J. Appl. Phys. vol.28, p丄 2112 (1989))  (Non-Patent Document 2: H. Amano, Jpn. J. Appl. Phys. Vol. 28, p 丄 2112 (1989))
非特許文献 3 : S. Nakamuraゝ Jpn. J. Appl. Phys. vol.30, p丄 1998 (1991)) 非特許文献 4: 1. S. Shaplyginゝ J. Inorg. Chem., vol.31, ρ.1649 (1986) )  Non-Patent Literature 3: S. Nakamura ゝ Jpn. J. Appl. Phys. Vol.30, p 丄 1998 (1991)) Non-Patent Literature 4: 1. S. Shaplygin ゝ J. Inorg. Chem., Vol.31, (ρ.1649 (1986))
非特許文献 5 : S. Narushima、 Adv. Mater., vol.15, p.1409 (2003) )  (Non-Patent Document 5: S. Narushima, Adv. Mater., Vol.15, p.1409 (2003))
非特許文献 6 : F.A.Benko、 Mat. Res. Bull, vol.21, p.753 (1986) )  (Non-Patent Document 6: F.A.Benko, Mat. Res. Bull, vol.21, p.753 (1986))
非特許文献 7 : R.Nagarajan、 J. Appl. Phys., vol.89, p.8022 (2001) )  (Non-Patent Document 7: R. Nagarajan, J. Appl. Phys., Vol.89, p.8022 (2001))
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0012] 要約すると、 n型の電気伝導性と可視光領域で高 ヽ光透過性を持ち、かつプラスチ ック上に薄膜形成可能な材料はすでに知られている。一方、 p型の電気伝導性を有 する材料に関しては、 ZnRhO [0012] In summary, materials having n-type electrical conductivity and high fluorescence transmission in the visible light region and capable of forming a thin film on a plastic are already known. On the other hand, for materials with p-type conductivity, ZnRhO
4は基板加熱することなく非晶質薄膜を得ることができる ことから、プラスチック基板上への p-n半導体接合作製は可能であるが、バンドギヤッ プが 2.1eVと小さいため、可視光領域の光透過性は低い。一方、デラフォサイト型構 造を有する透明酸ィ匕物半導体はバンドギャップが広いため、高い可視光透過性を有 することが期待できるが、十分結晶化できない場合は低い抵抗率が得られな力つた。 このため、窓ガラスなどに使用されるソーダガラスやホウケィ酸ガラスまたはプラスチッ クなど熱に弱 ヽ基板上へ高 、光透過性を持つ p-n半導体接合を作製することはでき なかった。  In Fig. 4, an amorphous thin film can be obtained without heating the substrate, so it is possible to fabricate a pn semiconductor junction on a plastic substrate, but the bandgap is as small as 2.1 eV, so the light transmittance in the visible light region is low. Is low. On the other hand, a transparent oxide semiconductor having a delafossite structure has a wide band gap, so it can be expected to have a high visible light transmittance. However, if it cannot be crystallized sufficiently, a low resistivity cannot be obtained. I helped. For this reason, it has not been possible to produce a highly light-transmissive pn semiconductor junction such as soda glass, borosilicate glass, or plastic used for window glass on a heat-resistant substrate.
[0013] 本発明の目的は、上記の問題点に鑑み、比較的耐熱性の低 、ガラス基板上やブラ スチック基板上に、可視光に対する透過性が高い p型の透明酸ィ匕物を成膜した半導 体接合を提供することにある。 [0013] In view of the above problems, an object of the present invention is to form a p-type transparent oxide having a relatively low heat resistance and a high transmittance for visible light on a glass substrate or a plastic substrate. Membrane semiconductor It is to provide body joints.
課題を解決するための手段  Means for solving the problem
[0014] 上記の課題を解決するために、次のような手段を採用した。  In order to solve the above problems, the following means are adopted.
第 1の手段は、ガラス基板またはプラスチック基板上に p型の透明酸ィ匕物薄膜として CuCrOを 400°C未満で成膜したことを特徴とする半導体接合である。  The first means is a semiconductor junction characterized by forming CuCrO as a p-type transparent oxide thin film on a glass substrate or plastic substrate at a temperature of less than 400 ° C.
2  2
第 2の手段は、第 1の手段において、上記 CuCrOの Crの一部を二価の陽イオンで  The second means is that in the first means, a part of Cr of CuCrO is divalent cation.
2  2
ある M=Mg、 Ca、 Be、 Sr、 Ba、 Zn、 Cd、 Fe、 Niのいずれか一種類以上と元素置換した Cu(Cr,M)0を用いたことを特徴とする半導体接合である。  This is a semiconductor junction characterized by using Cu (Cr, M) 0 that is element-substituted with one or more of M = Mg, Ca, Be, Sr, Ba, Zn, Cd, Fe, and Ni.
2  2
第 3の手段は、第 1の手段または第 2の手段において、上記ガラス基板は、 SiOを  The third means is the first means or the second means, wherein the glass substrate is made of SiO.
2 主成分とし、ナトリウム (Na)を含むソーダガラス、ホウ素(B)を含むホウケィ酸ガラス、 またはアルミニウム (A1)を含むアルミノケィ酸ガラスの ヽずれか 1種類以上のガラスを 含む基板であることを特徴とする半導体接合である。  2 It must be a substrate containing at least one kind of glass, soda glass containing sodium (Na), borosilicate glass containing boron (B), or aluminosilicate glass containing aluminum (A1). It is a featured semiconductor junction.
第 4の手段は、第 1の手段または第 2の手段において、上記プラスチック基板は、ポ リエチレン (PE)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリエチレンテレフタレ ート(PET)、ポリスチレン (PS)、ポリエーテルサルホン(PESF)、メタクリル榭脂(PMMA) 、ポリイミド (PI)、またはポリアミド (PA)のいずれか 1つ力もなる基板あることを特徴と する半導体接合である。  The fourth means is the first means or the second means, wherein the plastic substrate is made of polyethylene (PE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), polystyrene (PS). ), Polyethersulfone (PESF), methacrylic resin (PMMA), polyimide (PI), or polyamide (PA).
発明の効果  The invention's effect
[0015] 本発明によれば、半導体接合を比較的耐熱性の低い窓ガラスやプラスチックなど 安価な基板上に大面積に形成することができ、可視光に対する透過性も高いので、 透明なダイオード、トランジスタ、太陽電池などの半導体接合素子を低コストで実現 することができる。  [0015] According to the present invention, a semiconductor junction can be formed in a large area on an inexpensive substrate such as a window glass or plastic having relatively low heat resistance, and has high transparency to visible light. Semiconductor junction elements such as transistors and solar cells can be realized at low cost.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 l]SiOを主成分とし、ナトリウム(Na)を含むソーダガラス、ホウ素(B)を含むホウケ  [0016] [Fig. L] Soda glass containing SiO (main component) and sodium (Na), baux containing boron (B)
2  2
ィ酸ガラス、またはアルミニウム (A1)を含むアルミノケィ酸ガラスの 、ずれか 1種類以 上のガラスを含むガラス基板上に、電極としての ITO、 η型半導体を構成する ΖηΟ、お よび Ρ型半導体を構成する CuCrOカゝらなる薄膜が形成された p-n接合ダイオードの  As an electrode, ITO as an electrode, ηη 型 constituting a η-type semiconductor, and Ρ-type semiconductor are formed on a glass substrate containing at least one kind of glass of an silicate glass or an aluminosilicate glass containing aluminum (A1). A pn junction diode with a thin film of CuCrO
2  2
構成を示す図である。 [図 2]同一の条件で作製した 3枚の図 1に示す p-n接合ダイオードにつ 、て、 ITO - Cu CrO薄膜間における電流電圧特性を示す図である。 It is a figure which shows a structure. FIG. 2 is a graph showing current-voltage characteristics between ITO and Cu CrO thin films for three pn junction diodes shown in FIG. 1 fabricated under the same conditions.
2  2
圆 3]作製された 1枚の図 1に示す p-n接合ダイオードの光透過特性を示す図である。 [3] FIG. 3 is a diagram showing the light transmission characteristics of the single p-n junction diode shown in FIG.
[図 4]ポリイミド基板上に、電極としての ITO、 ρ型半導体を構成する Mgを 4at.%添加し た CuCrO、および n型半導体を構成する ZnOからなる薄膜が形成された p-n接合ダイ [Fig.4] A p-n junction die with a thin film made of ITO as an electrode, CuCrO with 4at.% Mg added to form a ρ-type semiconductor, and ZnO formed from an n-type semiconductor on a polyimide substrate.
2  2
オードの構成を示す図である。 It is a figure which shows the structure of an ode.
[図 5]同一の条件で作製した 3枚の図 4に示す p-n接合ダイオードについて、 ITO— Mg 4at.%添加 CuCrO薄膜間における電流電圧特性を示す図である。  FIG. 5 is a diagram showing current-voltage characteristics between ITO—Mg 4 at.% -Added CuCrO thin films for three pn junction diodes shown in FIG. 4 fabricated under the same conditions.
2  2
[図 6]SiOを主成分とし、ナトリウム (Na)を含むソーダガラス、ホウ素(B)を含むホウケ  [Fig.6] Soda glass containing sodium (Na) as the main component and baux containing boron (B)
2  2
ィ酸ガラス、またはアルミニウム (A1)を含むアルミノケィ酸ガラスの 、ずれか 1種類以 上のガラスを含むガラス基板上に、電極としての ITO、 ρ型半導体を構成する Mgを 4at .%添加した CuCrO、および n型半導体を構成する ZnOからなる薄膜が形成された P-CuCrO with 4at.% Addition of ITO as electrode and Mg constituting ρ-type semiconductor on glass substrate containing at least one kind of glass of aluminosilicate glass containing aluminum oxide or aluminum (A1) , And P- on which a thin film made of ZnO constituting an n-type semiconductor is formed
2 2
n接合ダイオードの構成を示す図である。 It is a figure which shows the structure of an n junction diode.
[図 7]同一の条件で作製した 3枚の図 6に示す p-n接合ダイオードについて、 ITO— Zn 0間における電流電圧特性を示す図である。  FIG. 7 is a graph showing current-voltage characteristics between ITO and Zn 0 for three pn junction diodes shown in FIG. 6 fabricated under the same conditions.
[図 8]SiOを主成分とし、ナトリウム (Na)を含むソーダガラス、ホウ素(B)を含むホウケ  [Fig.8] Soda glass containing sodium (Na) as the main component and baux containing boron (B)
2  2
ィ酸ガラス、またはアルミニウム (A1)を含むアルミノケィ酸ガラスの 、ずれか 1種類以 上のガラスを含むガラス基板上に、電極としての ITO、 η型半導体を構成する ΖηΟ、 ρ 型半導体を構成する CuCrO、 n型半導体を構成する ZnOからなる薄膜が形成された A glass substrate containing at least one kind of glass of an silicate glass or an aluminosilicate glass containing aluminum (A1), ITO as an electrode, ηηΟ constituting a η-type semiconductor, and ρ-type semiconductor are constituted CuCrO, a thin film made of ZnO constituting an n-type semiconductor was formed
2  2
n-p-nトランジスタの構成を示す図である。 It is a figure which shows the structure of an npn transistor.
[図 9]図 8に示す n-p-nトランジスタ構造の CuCrO—ZnO間の測定図および上記測定  [Fig. 9] Measurement diagram of CuCrO-ZnO in the n-p-n transistor structure shown in Fig. 8 and the above measurement
2  2
図で測定した 2枚の電流電圧特性を示す図である。 It is a figure which shows the current-voltage characteristic of 2 sheets measured by the figure.
[図 10]図 8に示す n-p-nトランジスタ構造の他の CuCrO— ZnO間の測定図および上  [Fig.10] Other CuCrO-ZnO measurement diagram of np-n transistor structure shown in Fig.8 and above
2  2
記測定図で測定した 2枚の電流電圧特性を示す図である。 It is a figure which shows the current-voltage characteristic of 2 sheets measured with the said measurement figure.
[図 11]ガラス基板上に、電極としての ITO、 ρ型半導体を構成する CuCrO、 n型半導  [Fig. 11] ITO as electrode, CuCrO composing ρ-type semiconductor, n-type semiconductor on glass substrate
2 体を構成する ZnO、電極としての ITOからなる薄膜が形成された太陽電池の構成を示 す図である。  2 is a diagram showing a configuration of a solar cell in which a thin film made of ZnO constituting two bodies and ITO as an electrode is formed. FIG.
発明を実施するための最良の形態 [0017] はじめに、本発明の半導体接合が形成される透明基板および該透明基板に半導 体接合を形成する方法の種類にっ ヽて説明する。 BEST MODE FOR CARRYING OUT THE INVENTION First, the transparent substrate on which the semiconductor junction of the present invention is formed and the type of method for forming the semiconductor junction on the transparent substrate will be described.
[0018] n型または p型の透明酸化物薄膜が形成される透明基板は、室温にお ヽて可視光 透過率が高いものであることが望ましい。波長 400— 800nmの可視光領域における透 過率は 50%以上が好ましぐ 80%以上がより好ましい。透明基板としては、ポリエチレ ン (PE)、ポリプロピレン(PP)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET )、ポリスチレン (PS)、ポリエーテルサルホン(PESF)、メタクリル榭脂(PMMA)、ポリイミ ド (PI)、またはポリアミド (PA)力もなるプラスチック基板、 Naを含むソーダライムガラス 、 Bを含むホウケィ酸ガラスなどのガラス基板、 A1を含む無アルカリアルミノケィ酸ガラ スなどが挙げられるが、薄膜形成プロセスに耐える熱的、化学的性質を有する必要 がある。  [0018] The transparent substrate on which the n-type or p-type transparent oxide thin film is formed preferably has a high visible light transmittance at room temperature. The transmittance in the visible light region with a wavelength of 400 to 800 nm is preferably 50% or more, more preferably 80% or more. Transparent substrates include polyethylene (PE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), polystyrene (PS), polyethersulfone (PESF), methacrylic resin (PMMA), polyimide ( PI) or polyamide (PA) plastic substrate, soda lime glass containing Na, glass substrate such as borosilicate glass containing B, non-alkali aluminosilicate glass containing A1, etc. It must have the thermal and chemical properties to withstand.
[0019] また、 n型または p型の透明酸ィ匕物薄膜を透明基板上に形成する方法としては、例 えば、スパッタリング法、 PLD法、 CVD法、真空蒸着法などがある。スパッタリング法は 大面積成膜に適し、量産性の高い方法である。またプラズマシースにおける電位勾 配により加速されたイオン粒子の基板への衝突により基板表面でのスパッタ粒子の 表面拡散が促進されるので、比較的低温でも高 、結晶性が得られる特徴があるため 、本発明の半導体接合の製造に適している。 PLD法は透明酸化物半導体薄膜を単 結晶基板上へェピタキシャル成長させて結晶性の高 ヽ薄膜を作製するのに適した方 法である力 成膜面積が 20mm程度と小さぐ量産性には現状では課題が残っている 。 CVD法は透明酸ィ匕物半導体薄膜を大面積に均一に作製するのに優れているが、 低温で作製する場合に原料ガス中に含まれる有機物などの不純物が膜中に取り込 まれやす 、。真空蒸着法は簡便に透明酸化物半導体薄膜を作製できる方法である 力 複数の元素力 なる多成分系薄膜の場合、組成の制御が難しいという問題があ る。また、スパッタリング法などと比べて基板に到達する成膜される粒子のエネルギー が低いため、結晶性の良い透明酸ィ匕物半導体薄膜を得るには成膜時の基板温度を 高くする必要がある。いずれの方法もそれぞれ特徴があるので、好ましい特徴に着眼 して成膜法を選択すればょ ヽ。  [0019] Further, examples of a method for forming an n-type or p-type transparent oxide thin film on a transparent substrate include a sputtering method, a PLD method, a CVD method, and a vacuum deposition method. The sputtering method is suitable for large-area film formation and is a mass-productive method. Moreover, since the surface diffusion of sputtered particles on the substrate surface is promoted by collision of ion particles accelerated by the potential gradient in the plasma sheath with the substrate surface, there is a feature that high crystallinity can be obtained even at a relatively low temperature. It is suitable for manufacturing the semiconductor junction of the present invention. The PLD method is a method suitable for producing a crystalline high-thickness thin film by epitaxially growing a transparent oxide semiconductor thin film on a single crystal substrate. At present, the challenges remain. The CVD method is excellent for producing a transparent oxide semiconductor thin film uniformly over a large area. However, when producing at a low temperature, impurities such as organic substances contained in the source gas are easily taken into the film. . The vacuum deposition method is a method for easily producing a transparent oxide semiconductor thin film. In the case of a multi-component thin film having a plurality of elemental forces, there is a problem that the composition is difficult to control. In addition, since the energy of the deposited particles reaching the substrate is low compared to sputtering, etc., it is necessary to increase the substrate temperature during film formation in order to obtain a transparent oxide semiconductor thin film with good crystallinity. . Each method has its own characteristics, so it is only necessary to select a film formation method by focusing on the preferable characteristics.
[0020] なお、プラスチックなどを透明基板として使用する場合には、用いるプラスチックに よっては耐熱性の問題力 結晶性を十分に高くすることができず、その結果、特性を 劣化させる場合がある。このような場合には、透明酸ィ匕物半導体薄膜のバンドギヤッ プ付近のエネルギーをもつ光、例えば、 KrFや XeClエキシマーレーザーなどを、成膜 中または成膜後に照射することによって結晶性を進めてやることが好ましい。 [0020] When plastic or the like is used as the transparent substrate, the plastic used Therefore, the problem of heat resistance, the crystallinity cannot be sufficiently increased, and as a result, the characteristics may be deteriorated. In such a case, crystallinity is promoted by irradiating light having energy near the bandgap of the transparent oxide semiconductor thin film, for example, KrF or XeCl excimer laser during or after film formation. It is preferable to do.
[0021] 実施例 1 [0021] Example 1
本発明の半導体接合に係る p-n接合ダイオードにつ ヽて図 1な ヽし図 3を用いて説 明する。  The pn junction diode according to the semiconductor junction of the present invention will be described with reference to FIGS.
図 1は、 SiOを主成分とし、ナトリウム (Na)を含むソーダガラス、ホウ素(B)を含むホ  Figure 1 shows a soda glass containing sodium (Na) and a glass containing boron (B).
2  2
ゥケィ酸ガラス、またはアルミニウム (A1)を含むアルミノケィ酸ガラスの 、ずれか 1種類 以上のガラスを含むガラス基板上に、電極としての ITO、 η型半導体を構成する ΖηΟ、 および ρ型半導体を構成する CuCrOからなる薄膜が形成された p-n接合ダイオード  On the glass substrate containing at least one kind of glass, such as ukenate glass or aluminosilicate glass containing aluminum (A1), ITO as electrode, ΖηΟ constituting η-type semiconductor, and ρ-type semiconductor are constituted Pn junction diode with CuCrO thin film
2  2
の構成を示す図である。なお、上記 n型半導体を構成する ZnOに代えて、 In 0、 Snを  FIG. In addition, In 0 and Sn are used instead of ZnO constituting the n-type semiconductor.
2 3 元素置換した In 0、 Al、 Gaまたは Inを元素置換した Zn〇、 SnO、 Sbや Fを元素置換し  2 3 Element substitution In 0, Al, Ga or In element substitution Zn ○, SnO, Sb and F element substitution
2 3 2 た SnOを用いることちでさる。  2 3 2 By using SnO.
2  2
[0022] この p-n接合ダイオードは以下のようにして作製した。まず、純度 99.9%を Zn〇、 CuCr 〇、および Snを 10wt.%添カ卩した In 0 (以後 ITOとよぶ)粉末を直径 4インチ、厚み 5mm This pn junction diode was manufactured as follows. First, In 0 (hereinafter referred to as ITO) powder with a purity of 99.9%, ZnO, CuCrO, and Sn added at 10wt.%, Diameter 4 inches, thickness 5mm
2 2 3 2 2 3
に成型 ·焼成した焼結体をターゲットとして用意した。これらの焼結体ターゲットをスパ ッタリング用チャンバ一内の 13.56MHzの高周波電源に接続した力ソードに設置した。 ガラス基板はソーダガラスを用い、ターゲットの対向 70mmの位置に設置した。基板カロ 熱はソーダガラス基板の背面に位置する A1N均熱板背後からランプヒーターを用いて 行った。放電ガスとしてアルゴンを真空チャンバ一内に導入し、その圧力は 0.5Paとし た。高周波電源の電力は 100Wとした。すべてのターゲットに関して放電開始後、ター ゲットとガラス基板間に位置するシャッターを閉じたまま 5分間プレスパッタリングを行 い、その後、成膜を行った。  A sintered body that was molded and fired was prepared as a target. These sintered targets were placed on a force sword connected to a 13.56 MHz high frequency power source in a sputtering chamber. The glass substrate was made of soda glass and placed 70 mm away from the target. Substrate calorie heat was generated using a lamp heater from behind the A1N soaking plate located on the back of the soda glass substrate. Argon was introduced into the vacuum chamber as the discharge gas, and the pressure was 0.5 Pa. The power of the high frequency power supply was 100W. After starting discharge for all targets, pre-sputtering was performed for 5 minutes with the shutter located between the target and the glass substrate closed, and then film formation was performed.
[0023] ガラス基板上に ITO薄膜 200nm、 ZnO薄膜 200nm、 CuCrO薄膜 50nmを真空チャン [0023] An ITO thin film of 200 nm, a ZnO thin film of 200 nm, and a CuCrO thin film of 50 nm are vacuum-changed on a glass substrate.
2  2
バー中でガラス基板を加熱することなく連続成膜した。上記三種類の薄膜の成膜後 The glass substrate was continuously formed in the bar without heating. After deposition of the above three types of thin films
、外気にさらすことなく真空チャンバ一内でランプヒーターを用いて 200°Cに加熱し、 その温度で 6時間保持した後、室温まで冷却後大気中に取り出し、 p-n接合ダイォー ドを得た。 Heat to 200 ° C using a lamp heater in a vacuum chamber without exposing to outside air, hold at that temperature for 6 hours, cool to room temperature, take out into the atmosphere, and pn junction diode I got it.
[0024] 図 2は同一の条件で作製した 3枚の図 1に示す p-n接合ダイオードについて、 ITO— CuCrO薄膜間における電流電圧特性を示す図である。  FIG. 2 is a diagram showing current-voltage characteristics between ITO and CuCrO thin films for three pn junction diodes shown in FIG. 1 fabricated under the same conditions.
2  2
同図に示すように、電圧のかけられる方向により流れる電流の大きさに大きな違 、 が見られる整流特性が確認できることから、 CuCrO— ZnO間で p-n半導体接合が形  As shown in the figure, since the rectification characteristics in which a large difference in current flows depending on the direction in which the voltage is applied can be confirmed, a p-n semiconductor junction is formed between CuCrO and ZnO.
2  2
成されダイオードとして動作して ヽることがゎカゝる。  In other words, it can operate as a diode.
なお、図 1には示されていないが、 CuCrO—ZnOの界面に薄い絶縁層を挿入した p  Although not shown in Fig. 1, a thin insulating layer is inserted at the CuCrO-ZnO interface.
2  2
-i-n型構造を形成しても、界面における抵抗は増大するがダイオードとして同様に整 流特性を得ることができる。  Even if the -i-n type structure is formed, the resistance at the interface increases, but a rectifying characteristic can be obtained similarly as a diode.
[0025] 図 3は、作製された 1枚の図 1に示す p-n接合ダイオードの光透過特性を示す図であ る。 FIG. 3 is a diagram showing the light transmission characteristics of the single p-n junction diode shown in FIG.
同図に示すように、この p-n接合ダイオードは、可視光領域である 400-780nmにお V、て平均光透過率が 80%以上であることから、高 、透明性をもった薄膜が形成され ていることがわ力る。  As shown in the figure, this pn junction diode has an average light transmittance of 80% or more at 400 to 780 nm in the visible light region, so a thin film with high transparency is formed. It is powerful to be.
[0026] 実施例 2 Example 2
本発明の半導体接合に係る他の p-n接合ダイオードについて図 4および図 5を用い て説明する。  Another pn junction diode according to the semiconductor junction of the present invention will be described with reference to FIGS.
[0027] 図 4は、ポリイミド基板上に、電極としての ITO、 ρ型半導体を構成する Mgを 4at.%添 カロした CuCrO、および n型半導体を構成する ZnOからなる薄膜が形成された p-n接  [0027] Fig. 4 shows a pn contact formed on a polyimide substrate with a thin film made of ITO as an electrode, CuCrO containing 4at.% Mg constituting a ρ-type semiconductor, and ZnO constituting an n-type semiconductor.
2  2
合ダイオードの構成を示す図である。なお、上記 p型半導体を構成する Mgを 4at.%添 加した CuCrOに代えて、上記 CuCrOの Crの一部を二価の陽イオンである M=Ca、 Be  It is a figure which shows the structure of a coupling diode. Instead of CuCrO containing 4at.% Mg, which constitutes the p-type semiconductor, a part of Cr in CuCrO is a divalent cation M = Ca, Be
2 2  twenty two
、 Sr、 Ba、 Zn、 Cd、 Fe、 Niのいずれか一種類以上と元素置換した Cu(Cr,M)0を用い  Cu (Cr, M) 0 substituted with one or more of Sr, Ba, Zn, Cd, Fe, and Ni
2 ることもできる。また、上記 n型半導体を構成する ZnOに代えて、 In 0、 Snを元素置換  2 You can also. In addition, instead of ZnO constituting the n-type semiconductor, In 0 and Sn are replaced by elements.
2 3  twenty three
した In 0、 Al、 Gaまたは Inを元素置換した Zn〇、 SnO、 Sbや Fを元素置換した Sn〇を In 0, Al, Ga or In element substituted with Zn〇, SnO, Sb or F with element substituted Sn〇
2 3 2 2 用いることちでさる。 2 3 2 2
[0028] この p-n接合ダイオードは以下のようにして作製した。実施例 1と同じスパッタリング 装置を用いて、フレキシブル基板である透明ポリイミドフィルム (株式会社 1ST製、厚み 75ミクロン)上に、 ITO薄膜 200nm、 Mgを 4at.%添カ卩した CuCrO薄膜 50nm、 ZnO薄膜 200nmを真空チャンバ一中で基板を加熱することなく連続成膜した。その後、同じく 真空チャンバ一内でランプヒーターを用いて 200°Cに加熱し、その温度で 1時間保持 した後、室温まで冷却後大気中に取り出し、 p-n接合ダイオードを得た。 [0028] This pn junction diode was fabricated as follows. Using the same sputtering system as in Example 1, on a transparent polyimide film (1ST Co., Ltd., thickness 75 microns), which is a flexible substrate, CuCrO thin film 50nm, ZnO thin film with 200nm ITO thin film and 4at.% Mg added The film was continuously formed at 200 nm without heating the substrate in a vacuum chamber. After that, it was heated to 200 ° C using a lamp heater in the same vacuum chamber, kept at that temperature for 1 hour, cooled to room temperature, and taken out into the atmosphere to obtain a pn junction diode.
[0029] 図 5は同一の条件で作製した 3枚の図 4に示す p-n接合ダイオードについて、 ITO— Mg4at.%添加 CuCrO薄膜間における電流電圧特性を示す図である。 FIG. 5 is a graph showing current-voltage characteristics between ITO—Mg4 at.% Added CuCrO thin films for three pn junction diodes shown in FIG. 4 fabricated under the same conditions.
2  2
同図に示すように、実施例 1と同様に、 Mg4at.%添加 CuCrOと ZnO間に p-n半導体  As shown in the figure, in the same way as in Example 1, a p-n semiconductor was added between Mg4at.%-Added CuCrO and ZnO.
2  2
接合が形成され、整流特性が確認された。しかし、成膜後の加熱時間が短いため、 C uCrOと ZnOの界面付近に構造欠陥等が残留し、逆方向の電流を十分阻止できない A junction was formed and rectification characteristics were confirmed. However, since the heating time after film formation is short, structural defects remain near the interface between CuCrO and ZnO, and current in the reverse direction cannot be sufficiently blocked.
2 2
試料も見られた。なお、 2時間以上のァニールでは多層構造薄膜に熱応力によるクラ ックが生じ、電極間で短絡が生じたため整流特性は測定できな力つた。  A sample was also seen. When annealing was performed for more than 2 hours, cracks due to thermal stress occurred in the multilayered thin film, and a short circuit occurred between the electrodes.
[0030] 実施例 3 [0030] Example 3
本発明の半導体接合に係る他の p-n接合ダイオードについて図 6および図 7を用い て説明する。  Another pn junction diode according to the semiconductor junction of the present invention will be described with reference to FIG. 6 and FIG.
[0031] 図 6は、 SiOを主成分とし、ナトリウム (Na)を含むソーダガラス、ホウ素(B)を含むホ  [0031] Fig. 6 shows a soda glass containing sodium (Na) as a main component and a glass containing boron (B).
2  2
ゥケィ酸ガラス、またはアルミニウム (A1)を含むアルミノケィ酸ガラスの 、ずれか 1種類 以上のガラスを含むガラス基板上に、電極としての ITO、 ρ型半導体を構成する Mgを 4 at.%添加した CuCrO、および n型半導体を構成する ZnOからなる薄膜が形成された  CuCrO with 4 at.% Addition of ITO as the electrode and Mg constituting the ρ-type semiconductor on the glass substrate containing at least one kind of glass, such as ukenate glass or aluminosilicate glass containing aluminum (A1) And a thin film made of ZnO that constitutes an n-type semiconductor
2  2
p-n接合ダイオードの構成を示す図である。なお、上記 p型半導体を構成する Mgを 4a t.%添カ卩した CuCrOに代えて、上記 CuCrOの Crの一部を二価の陽イオンである M=  It is a figure which shows the structure of a pn junction diode. Instead of CuCrO with 4at.% Mg added to the p-type semiconductor, a part of Cr in the CuCrO is a divalent cation.
2 2  twenty two
Ca、 Be、 Sr、 Ba、 Zn、 Cd、 Fe、 Niのいずれか一種類以上と元素置換した Cu(Cr,M)0  Cu (Cr, M) 0 substituted with one or more of Ca, Be, Sr, Ba, Zn, Cd, Fe, and Ni
2 を用いることもできる。また、上記 n型半導体を構成する ZnOに代えて、 In 0 、 Snを元  2 can also be used. In addition, instead of ZnO constituting the n-type semiconductor, In 0 and Sn
2 3 素置換した In 0、 Al、 Gaまたは Inを元素置換した Zn〇、 SnO、 Sbや Fを元素置換した  2 3 Element substituted In 0, Al, Ga or In element substituted Zn ○, SnO, Sb or F element substituted
2 3 2  2 3 2
SnOを用いることちできる。  You can use SnO.
2  2
[0032] この p-n接合ダイオードは以下のようにして作製した。実施例 1と同じスパッタリング 装置を用いて、ガラス基板上に ITO薄膜 200nm、 Mgを 4at.%添カ卩した CuCrO薄膜 50  [0032] This p-n junction diode was fabricated as follows. Using the same sputtering system as in Example 1, an ITO thin film of 200 nm and a CuCrO thin film with 4 at.% Mg added on a glass substrate 50
2 應、 ZnO薄膜 200應を真空チャンバ一中で作製した。作製にあたり、 ITO薄膜はあら 力じめガラス基板を 200°Cまで加熱した後、その温度を保持をしながら 200應の膜厚 になるまで所定の時間成膜した。その後、室温まで基板冷却を行った。次に Mgを 4at .%添カ卩した CuCrO薄膜 50nmと ZnO薄膜 200nmを順に同様な加熱冷却を行 ヽながら 2 and ZnO thin films were fabricated in a vacuum chamber. In preparation, the ITO thin film was preliminarily heated to 200 ° C, and then the film was formed for a predetermined time until the film thickness reached 200 ° C while maintaining the temperature. Thereafter, the substrate was cooled to room temperature. Next, Mg 4at While heating and cooling the CuCrO thin film with 50% added and the ZnO thin film with 200nm in order,
2  2
成膜した。最表面の ZnO薄膜を成膜後、室温まで基板冷却された多層薄膜を真空チ ヤンバー力 取り出し、 p-n接合ダイオードを得た。  A film was formed. After forming the outermost ZnO thin film, the multilayer thin film cooled to the room temperature was extracted from the vacuum chamber force to obtain a pn junction diode.
[0033] 図 7は同一の条件で作製した 3枚の図 6に示す p-n接合ダイオードについて、 ITO— ZnO間における電流電圧特性を示す図である。 FIG. 7 is a graph showing the current-voltage characteristics between ITO and ZnO for the three pn junction diodes shown in FIG. 6 manufactured under the same conditions.
同図に示すように、実施例 1と同様に、 Mg4at.%添加 CuCrOと ZnO間に p-n半導体  As shown in the figure, in the same way as in Example 1, a p-n semiconductor was added between Mg4at.%-Added CuCrO and ZnO.
2  2
接合が形成され、整流特性が確認された。このこと力ゝら、実施例 1または実施例 2のよ うな室温成膜後に一括熱処理を行う場合と同様、各薄膜成膜時に個別に基板をカロ 熱してもよいことがわ力つた。  A junction was formed and rectification characteristics were confirmed. As a result, as in the case of performing the batch heat treatment after film formation at room temperature as in Example 1 or Example 2, it was found that the substrate may be individually heated at the time of forming each thin film.
[0034] 実施例 4 [0034] Example 4
本発明の半導体接合に係る n-p-n型トランジスタ(または p-n-p型トランジスタ)につ V、て図 8乃至図 10を用いて説明する。  An n-p-n transistor (or a p-n-p transistor) according to the semiconductor junction of the present invention will be described with reference to FIG. 8 to FIG.
[0035] 図 8は、 SiOを主成分とし、ナトリウム (Na)を含むソーダガラス、ホウ素(B)を含むホ [0035] FIG. 8 shows a soda glass containing sodium (Na) as a main component and a glass containing boron (B).
2  2
ゥケィ酸ガラス、またはアルミニウム (A1)を含むアルミノケィ酸ガラスの 、ずれか 1種類 以上のガラスを含むガラス基板上に、電極としての ITO η型半導体を構成する ΖηΟ Ρ型半導体を構成する CuCrO n型半導体を構成する ZnOからなる薄膜が形成され  A silicate glass or an aluminosilicate glass containing aluminum (A1), which constitutes an ITO η-type semiconductor as an electrode on a glass substrate containing at least one type of glass, CuCrO n-type that constitutes a ΖηΟ Ρ-type semiconductor A thin film made of ZnO that forms the semiconductor is formed.
2  2
た n-p-nトランジスタの構成を示す図である。なお、上記 p型半導体として CuCrOに  FIG. 4 is a diagram illustrating a configuration of an np-n transistor. In addition, CuCrO as the p-type semiconductor above
2 代えて、二価の陽イオンである M=Mg Ca Be Sr Ba Zn Cd Fe Niで元素置換し た Cu(Cr,M)0を用いることもできる。また、 n型半導体を構成する ZnOに代えて、 In 0  2 Alternatively, Cu (Cr, M) 0 element-substituted with a divalent cation, M = MgCaBeSrBaZnCdFeNi, can be used. In addition, instead of ZnO that constitutes an n-type semiconductor, In 0
2 2 twenty two
、 Snを元素置換した In 0、 Al、 Gaまたは Inを元素置換した Zn〇、 SnO、 Sbや Fを元素In 0, Al, Ga or Sn substituted by element, ZnO, SnO, Sb or F substituted by element
3 2 3 2 3 2 3 2
置換した SnOなどを用いることもできる。また、 p型半導体である CuCrOと n型半導体  Substituted SnO can also be used. Also, p-type semiconductor CuCrO and n-type semiconductor
2 2  twenty two
である ZnOとの組み合わせる順序を変えることによって、 p-n-p型トランジスタを作製 することも可會である。  It is also possible to fabricate p-n-p transistors by changing the order of combination with ZnO.
[0036] このトランジスタ構造となりうる n-p-n半導体接合は以下のようにして作製した。実施 例 1と同じスパッタリング装置を用いて、ガラス基板上に ITO薄膜 200 ZnO薄膜、 2 OOnrn CuCrO薄膜 150nm ZnO薄膜 200nmを真空チャンバ一中で基板カ卩熱するこ  An n-p-n semiconductor junction that can have this transistor structure was fabricated as follows. Using the same sputtering apparatus as in Example 1, an ITO thin film 200 ZnO thin film, 2 OOnrn CuCrO thin film 150 nm ZnO thin film 200 nm were heated on the glass substrate in a vacuum chamber.
2  2
となく連続成膜した。 4層薄膜を成膜後、外気にさらすことなく真空チャンバ一内でラ ンプヒーターを用いて 200°Cに加熱し、その温度で 6時間保持した後、室温まで冷却 後大気中に取り出し、トランジスタ構造となりうる n-p-n構造を得た。 The film was continuously formed. After forming a 4-layer thin film, heat it to 200 ° C using a lamp heater in a vacuum chamber without exposing it to the outside air, hold at that temperature for 6 hours, and then cool to room temperature After that, it was taken out into the atmosphere to obtain an npn structure that could be a transistor structure.
[0037] 図 9(a)は上記 n- p- n構造(トランジスタ)の CuCrO— ZnO間の測定図、図 9(b)は図 9( [0037] Fig. 9 (a) is a measurement diagram of CuCrO-ZnO in the n-pn structure (transistor), and Fig. 9 (b) is a graph of Fig. 9 (
2  2
a)に示す測定図によって測定した 2枚の電流電圧特性を示す図であり、同一条件で 成膜した 2枚の試料について測定したものである。図 9(b)で示すように、 CuCrO -Zn  It is a figure which shows the current-voltage characteristic of 2 sheets measured with the measurement figure shown to a), and measured about 2 samples formed into a film on the same conditions. As shown in Fig. 9 (b), CuCrO -Zn
2 2
0間で p-n半導体接合が形成されダイオードとして動作していることがわかる。 It can be seen that a p-n semiconductor junction is formed between 0 and operates as a diode.
[0038] 一方、図 10(a)は上記 n-p-n構造(トランジスタ)の他の CuCrO—ZnO間の測定図、 [0038] On the other hand, Fig. 10 (a) is a measurement diagram of CuCrO-ZnO between the n-p-n structure (transistor),
2  2
図 10(b)は図 10(a)に示す測定図によって測定した 2枚の電流電圧特性を示す図であ り、同一条件で成膜した 2枚の試料について測定したものである。図 10(b)に示すよう に、図 9(b)の電流電圧特性よりも、電極間の抵抗が高く特性は劣るが CuCrO -ZnO  FIG. 10 (b) is a diagram showing the two current-voltage characteristics measured by the measurement diagram shown in FIG. 10 (a), and is measured for two samples formed under the same conditions. As shown in Fig. 10 (b), the resistance between the electrodes is higher and the characteristics are inferior to those of Fig. 9 (b), but CuCrO-ZnO
2 間で p-n半導体接合が形成されダイオードとして動作して ヽることがわ力る。 CuCrO  It is surprising that a p-n semiconductor junction is formed between the two and operates as a diode. CuCrO
2 薄膜の厚みを最適化することより原理上トランジスタとして動作させることができる。  2 In principle, it can be operated as a transistor by optimizing the thickness of the thin film.
[0039] 実施例 5 [0039] Example 5
本発明の半導体接合に係る太陽電池について図 11を用いて説明する。 図 11は、 SiOを主成分とし、ナトリウム (Na)を含むソーダガラス、ホウ素(B)を含むホ  A solar cell according to the semiconductor junction of the present invention will be described with reference to FIG. Figure 11 shows a soda glass containing sodium (Na) and a glass containing boron (B).
2  2
ゥケィ酸ガラス、またはアルミニウム (A1)を含むアルミノケィ酸ガラスの 、ずれか 1種類 以上のガラスを含むガラス基板上に、電極としての ITO、 ρ型半導体を構成する CuCr 0、 n型半導体を構成する ZnO、電極としての ITOからなる薄膜が形成された太陽電 On the glass substrate containing at least one kind of glass, or aluminosilicate glass containing aluminum (A1), ITO as an electrode, CuCr 0 constituting n-type semiconductor, n-type semiconductor Solar cell with a thin film of ZnO and ITO as electrode
2 2
池の構成を示す図である。なお、上記 p型半導体を構成する CuCrOに代えて、二価  It is a figure which shows the structure of a pond. In addition, instead of CuCrO constituting the p-type semiconductor,
2  2
の陽イオンである M=Mg、 Ca、 Be、 Sr、 Ba、 Zn、 Cd、 Fe、 Niで元素置換した Cu(Cr,M) Oを用いることもできる。また、 n型半導体を構成する ZnOに代えて、 In 0、 Snを元素 It is also possible to use Cu (Cr, M) 2 O that is element-substituted with M = Mg, Ca, Be, Sr, Ba, Zn, Cd, Fe, and Ni. In addition, instead of ZnO that constitutes an n-type semiconductor, In 0 and Sn
2 2 3 置換した In 0、 Al、 Gaまたは Inを元素置換した Zn〇、 SnO、 Sbや Fを元素置換した Sn 2 2 3 Substituted elemental substitution of In 0, Al, Ga or In ZnO, SnO, Sn elemental substitution of Sb or F
2 3 2  2 3 2
0などを用!、ることもできる。  Use 0! You can also.
2  2
[0040] 同図に示すように、この太陽電池は、 p型半導体として CuCrO、 n型半導体として Zn  [0040] As shown in the figure, this solar cell is composed of CuCrO as a p-type semiconductor and Zn as an n-type semiconductor.
2  2
0を用いた。光が基板であるガラス基板あるいは ITO薄膜面から照射されると、 CuCr 0 ZnO間の界面で光励起された正孔と電子がそれぞれ CuCrOと ZnOに流れだす 0 was used. When light is irradiated from the glass substrate or ITO thin film surface as the substrate, holes and electrons photoexcited at the interface between CuCr 0 ZnO flow into CuCrO and ZnO, respectively.
2 2 twenty two
。そこに電極 ITOを取り付けることによって光起電力を得ることができる。 CuCrOと Zn  . Photovoltaic power can be obtained by attaching the electrode ITO there. CuCrO and Zn
2 2
0はいずれも可視光領域で透明であり、窓ガラスなどに一般的に利用されているナト リウム (Na)やホウ素 (B)を含むガラス基板にも成膜できることから、透明な窓ガラス型 太陽電池として応用することができる Since 0 is transparent in the visible light region and can be formed on a glass substrate containing sodium (Na) or boron (B), which is commonly used for window glass, it is a transparent window glass type. Can be applied as a solar cell

Claims

請求の範囲 The scope of the claims
[1] ガラス基板またはプラスチック基板上に p型の透明酸ィ匕物薄膜として CuCrOを 400  [1] 400% CuCrO as a p-type transparent oxide film on a glass or plastic substrate
2  2
°C未満で成膜したことを特徴とする半導体接合。  A semiconductor junction characterized by being deposited at less than ° C.
[2] 上記 CuCrOの Crの一部を二価の陽イオンである M=Mg、 Ca、 Be、 Sr、 Ba、 Zn、 Cd、 [2] A part of Cr in the above CuCrO is a divalent cation M = Mg, Ca, Be, Sr, Ba, Zn, Cd,
2  2
Fe、 Niのいずれか一種類以上と元素置換した Cu(Cr,M)0を用いたことを特徴とする  It is characterized by using Cu (Cr, M) 0 substituted with one or more of Fe and Ni.
2  2
請求項 1に記載の半導体接合。  The semiconductor junction according to claim 1.
[3] 上記ガラス基板は、 SiOを主成分とし、ナトリウム (Na)を含むソーダガラス、ホウ素( [3] The glass substrate is made of soda glass containing boron (Na), boron (
2  2
B)を含むホウケィ酸ガラス、またはアルミニウム (A1)を含むアルミノケィ酸ガラスの!/ヽ ずれカゝ 1種類以上のガラスを含む基板であることを特徴とする請求項ほたは請求項 2に記載の半導体接合。  A borosilicate glass containing B) or an aluminosilicate glass containing aluminum (A1)! Semiconductor junction.
[4] 上記プラスチック基板は、ポリエチレン (PE)、ポリプロピレン (PP)、ポリカーボネート( PC)、ポリエチレンテレフタレート(PET)、ポリスチレン (PS)、ポリエーテルサルホン(PE SF)、メタクリル樹脂(PMMA)、ポリイミド (PI)、またはポリアミド (PA)の 、ずれか 1つか らなる基板あることを特徴とする請求項 1または請求項 2に記載の半導体接合。 [4] The plastic substrate is made of polyethylene (PE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), polystyrene (PS), polyethersulfone (PE SF), methacrylic resin (PMMA), polyimide 3. The semiconductor junction according to claim 1, wherein the substrate is made of at least one of (PI) and polyamide (PA).
PCT/JP2006/322867 2005-11-24 2006-11-16 Transparent oxide semiconductor junction WO2007060877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005338639A JP2007149746A (en) 2005-11-24 2005-11-24 Transparent oxide semiconductor junction
JP2005-338639 2005-11-24

Publications (1)

Publication Number Publication Date
WO2007060877A1 true WO2007060877A1 (en) 2007-05-31

Family

ID=38067108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322867 WO2007060877A1 (en) 2005-11-24 2006-11-16 Transparent oxide semiconductor junction

Country Status (2)

Country Link
JP (1) JP2007149746A (en)
WO (1) WO2007060877A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016036156A1 (en) * 2014-09-05 2016-03-10 서울대학교산학협력단 Diode
KR101737566B1 (en) * 2014-09-11 2017-05-18 주식회사 엘지화학 Composition and method for forming conductive pattern, and resin structure having conductive pattern thereon
JP6665536B2 (en) * 2016-01-12 2020-03-13 株式会社リコー Oxide semiconductor
EP3519607A1 (en) * 2016-09-27 2019-08-07 Luxembourg Institute of Science and Technology (LIST) Transparent p-n junction providing a rectifying contact
WO2018060240A1 (en) * 2016-09-27 2018-04-05 Luxembourg Institute Of Science And Technology (List) Uv detector comprising a rectifying p-n junction
CN106807391B (en) * 2017-02-28 2019-03-26 河北工业大学 A kind of CuCrO2The preparation method of powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183984A (en) * 2003-12-17 2005-07-07 Hewlett-Packard Development Co Lp Transistor device
JP2005210008A (en) * 2004-01-26 2005-08-04 Bridgestone Corp Solar battery
JP2006013098A (en) * 2004-06-25 2006-01-12 Bridgestone Corp Manufacturing method of solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183984A (en) * 2003-12-17 2005-07-07 Hewlett-Packard Development Co Lp Transistor device
JP2005210008A (en) * 2004-01-26 2005-08-04 Bridgestone Corp Solar battery
JP2006013098A (en) * 2004-06-25 2006-01-12 Bridgestone Corp Manufacturing method of solar cell

Also Published As

Publication number Publication date
JP2007149746A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
US8278656B2 (en) Substrate for the epitaxial growth of gallium nitride
US7323356B2 (en) LnCuO(S,Se,Te)monocrystalline thin film, its manufacturing method, and optical device or electronic device using the monocrystalline thin film
JP5294565B2 (en) Light emitting device and method for manufacturing light emitting device
WO2007060877A1 (en) Transparent oxide semiconductor junction
WO2003040441A1 (en) Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
US8097885B2 (en) Compound semiconductor film, light emitting film, and manufacturing method thereof
Chiu et al. Fabrication of ZnO and CuCrO2: Mg thin films by pulsed laser deposition with in situ laser annealing and its application to oxide diodes
AU2011202691A1 (en) Modified cadmium telluride layer, a method of modifying a cadmium telluride layer, and a thin film device having a cadmium telluride layer
KR101458629B1 (en) MANUFACTURE METHOD FOR ZnO-CONTAINING COMPOUND SEMICONDUCTOR LAYER
JP2012136759A (en) Ito film, method of manufacturing the ito film, semiconductor light-emitting element, and method of manufacturing the light-emitting element
WO2007123262A1 (en) Method for manufacturing group iii nitride semiconductor light emitting element
JP2004137135A (en) Quartz substrate with thin film
CN102424951A (en) Method for preparing semi-polarity p-type ZnO polycrystalline film
CN107681028B (en) ZnO-based LED chip with vertical structure and preparation method thereof
KR101552968B1 (en) Fabrication Method of CIGS Thin Films and its application to Thin Film Solar Cells
JP5912968B2 (en) Manufacturing method of p-type ZnO-based semiconductor film and manufacturing method of ZnO-based semiconductor element
TWI834732B (en) Oxide laminate and manufacturing method thereof
JP2010056464A (en) Semiconductor light emitting element and method of manufacturing same
TW202223144A (en) Semiconductor laminate, semiconductor element, and manufacturing method thereof
KR101135928B1 (en) Method of forming zinc oxide thin layer on silicon substrate using buffer layer
JP6516258B2 (en) Method of manufacturing ZnO based semiconductor structure
JP5612521B2 (en) ZnO-based semiconductor film manufacturing method and ZnO-based semiconductor light emitting device manufacturing method
JP2014027134A (en) p-TYPE ZnO-BASED SEMICONDUCTOR SINGLE CRYSTAL LAYER, AND ZnO-BASED SEMICONDUCTOR ELEMENT
WO2004021458A1 (en) Light emitting element and process for producing the same
CN1295747C (en) Material with composite substrate of (Mg, Cd) In2O4/MgAl/204 and its prepn method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832747

Country of ref document: EP

Kind code of ref document: A1