WO2007123262A1 - Method for manufacturing group iii nitride semiconductor light emitting element - Google Patents

Method for manufacturing group iii nitride semiconductor light emitting element Download PDF

Info

Publication number
WO2007123262A1
WO2007123262A1 PCT/JP2007/059001 JP2007059001W WO2007123262A1 WO 2007123262 A1 WO2007123262 A1 WO 2007123262A1 JP 2007059001 W JP2007059001 W JP 2007059001W WO 2007123262 A1 WO2007123262 A1 WO 2007123262A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
type semiconductor
light emitting
nitride semiconductor
Prior art date
Application number
PCT/JP2007/059001
Other languages
French (fr)
Japanese (ja)
Inventor
Tetsuo Sakurai
Original Assignee
Showa Denko K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko K.K. filed Critical Showa Denko K.K.
Publication of WO2007123262A1 publication Critical patent/WO2007123262A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Definitions

  • the present invention is characterized in that the light emission output is high and the driving voltage is low.
  • the present invention relates to a method for manufacturing a group I I I nitride semiconductor light emitting device.
  • a group III nitride semiconductor light-emitting device is configured such that an n-type semiconductor layer and a P-type semiconductor layer are arranged with a light-emitting layer sandwiched therebetween, and holes are formed from a negative electrode and a positive electrode provided in contact with each other.
  • Light is emitted by injecting electrons and recombining them at the PN junction in the semiconductor layer. Since the intensity of this light emission is proportional to the number of carriers of holes and electrons to be recombined, the light emission output of the light emitting element becomes higher as more current flows. However, in actuality, since there is heat generation due to the bulk resistance of the semiconductor layer and the resistance of the electrode constituent material, it is not practical to increase the applied current in order to increase the light emission output.
  • the driving voltage V depends on the configuration of the n-type semiconductor layer and the p-type semiconductor layer.
  • the resistance generated by the P-type semiconductor layer must be as low as possible in order to reduce the drive voltage V ( It is necessary to suppress.
  • an object of the present invention is to provide a group III nitride semiconductor light emitting device having a high light emission output and a low driving voltage.
  • FIG. 1 shows a forward direction of a group III nitride semiconductor light emitting device.
  • the driving voltage V f of the rated current I f which is an intersection between the rated current I f (line A in the figure) the ideal characteristics of the current - voltage characteristic And the ohmic voltage V c between the p-type semiconductor layer and the electrode material. Therefore, the voltage V is used to reduce the drive voltage V f at the rated current. And voltage V. Must be lowered.
  • the voltage V e depends on the type of electrode material used, it is substantially determined by the selection. Therefore, in order to use a wide range of electrode materials, it is necessary to lower the voltage V fl instead of V e .
  • Current Speaking of the graph of voltage characteristics the voltage is V under a constant current. Lowering the value increases the slope of the straight line A, which is the ideal line.
  • the following formula (1) is often used to represent the ideal characteristics of light-emitting elements.
  • the present inventors grow a p-type semiconductor layer of a group III nitride semiconductor under a growth condition such that the growth rate is 8 to 20 nmZ, the p-type III having excellent crystallinity.
  • a group nitride semiconductor layer was obtained, and the present invention was completed by finding that the above-mentioned n-value was as extremely low as 2 or less.
  • the present invention provides the following inventions.
  • a negative electrode and a p-type semiconductor layer are formed on the n-type semiconductor layer and the P-type semiconductor layer.
  • n-type semiconductor layer, a light-emitting layer, and a P-type semiconductor layer made of a group III nitride semiconductor are stacked in this order on the substrate, and the positive electrode and the negative electrode are in contact with the P-type semiconductor layer and the n-type semiconductor layer, respectively.
  • a lamp comprising the group III nitride semiconductor light-emitting device according to item 3 or 4.
  • FIG. 1 is a diagram for explaining forward current-voltage characteristics of a light emitting device.
  • FIG. 2 is a schematic diagram showing a cross section of a group II I nitride semiconductor light emitting device of the present invention.
  • FIG. 3 is a graph showing the measurement result of the current-voltage characteristic curve of the light-emitting element obtained in Example 1.
  • FIG. 4 is a graph showing the measurement result of the current-voltage characteristic curve of the light-emitting element obtained in Example 2.
  • FIG. 5 is a graph showing the measurement result of the current-voltage characteristic curve of the light emitting device obtained in Comparative Example 1.
  • FIG. 6 is a graph showing the measurement result of the current-voltage characteristic curve of the light-emitting element obtained in Comparative Example 2.
  • the present invention provides a method for manufacturing a group III nitride semiconductor light emitting device, wherein the growth rate of the P type semiconductor layer is set to 8 ZO nm Z in the P type group III nitride semiconductor layer.
  • FIG. 2 is a schematic view showing a cross section of an I I I group nitride semiconductor light emitting device having a p-type semiconductor layer according to the present invention.
  • reference numeral 7 denotes a positive electrode, which is composed of a light-transmitting or reflective positive electrode 7 and a bonding pad layer 7b.
  • Reference numeral 5 denotes a p-type semiconductor layer, which is composed of a p-type cladding layer 5 a and a p-type contact layer 5 b.
  • 1 is a substrate
  • 2 is a buffer layer
  • 3 is an n-type semiconductor layer
  • 4 is a light emitting layer
  • 6 is a negative electrode.
  • the substrate 1 includes a sapphire single crystal (A 1 2 0 3 ; A plane, C plane, M plane, R plane), spinel single crystal (Mg Al 2 0 4 ), Z ⁇ ⁇ single crystal.
  • the plane orientation of the substrate is not particularly limited, and the off-angle may be arbitrarily selected.
  • the group III nitride semiconductors that make up the buffer layer, n-type semiconductor layer, light-emitting layer, and p-type semiconductor layer include the general formula A lx I ny G a ⁇ — y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ Semiconductors of various compositions represented by 1, 0 ⁇ x + y ⁇ 1) are known.
  • the general formula A 1 x I y G a y N (0 ⁇ x ⁇ 1 , 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1), semiconductors with various compositions can be used without any limitation.
  • III-nitride semiconductors include organic metal vapor phase epitaxy (MO C VD), molecular beam epitaxy (MB) E) and hydride vapor phase epitaxy (HVPE).
  • MO C VD organic metal vapor phase epitaxy
  • MB molecular beam epitaxy
  • HVPE hydride vapor phase epitaxy
  • the composition control is easy and the MO CVD method with mass productivity is suitable, but it is not necessarily limited to this method.
  • trimethyl gallium (TMG a) or triethyl gallium (TEG a), which is an organometallic material, is used as a raw material for Group III Ga.
  • Trimethylaluminum (TMA 1) or triethylaluminum (TEA 1) is mainly used as the raw material for the group A 1.
  • TMI trimethylindium
  • TEI triethylindium
  • Ammonia (NH 3 ) or hydrazine (N 2 H 4 ) is used as the Group V N source.
  • Si or Ge is used as a dopant material for the n-type semiconductor layer.
  • Mg is used as a dopant.
  • the raw material for example, biscyclopentadienyl magnesium (C p 2 Mg) or bisethyl cyclopentadienyl magnesium ((E t C p) 2 Mg) is used.
  • the low temperature buffer layer disclosed in Japanese Patent No. 3 0 2 6 0 8 7 or the like may be the high temperature buffer layer disclosed in Japanese Patent Application Laid-Open No. 2 0 0 3-2 4 3 3 0 2 or the like.
  • These buffer layers can be used without any limitation.
  • the substrate for growth 1 can be selected from the previous list, but here The case where a sapphire substrate is used will be described.
  • the substrate is placed on a SiC film-coated jig (susceptor) installed in a reaction space where the temperature and pressure can be controlled, and hydrogen carrier gas and nitrogen carrier gas are placed there.
  • the Graphite jig with SiC film is heated to the required temperature by induction heating with an RF coil, and an A 1 N buffer layer is formed on the substrate.
  • the temperature is controlled from 5 00 ° C. to 700 ° C., and then raised to a temperature around 1 100 ° C. for crystallization.
  • a 1 N buffer layer When growing a high-temperature A 1 N buffer layer, it is not possible to perform two-step heating, but at a temperature of 100 ° C. to 120 ° C. at a time.
  • a 1 N single crystal substrate or the GaN single crystal substrate described above it is not always necessary to grow a buffer layer, and an n-type semiconductor layer described later is directly grown on the substrate.
  • the n-type semiconductor layer includes an underlayer composed of an ampere G a N layer, an n-type dopant such as Si or Ge, and more than the n-type contact layer and the light-emitting layer in which the negative electrode is provided. It consists of an n-type cladding layer with a large band gap energy.
  • the n-type contact layer can double as the n-type cladding layer and the Z or underlayer.
  • an underlayer composed of an undoped GaN layer is grown on the buffer layer.
  • Temperature is set to 1 0 0 0-1 2 0 0, under pressure control, Komu feeding NH 3 gas and TMG a to both the buffer layer and the carrier gas.
  • TMG a supply flow at the same time
  • controlling the growth rate between 1 Am / hour and 3 ⁇ mZ is effective in suppressing the occurrence of crystal defects such as dislocations.
  • the region of 20 to 60 kPa (20 00 to 60 mb ar) is optimal for securing the above growth rate.
  • the n-type contact layer is grown.
  • the growth conditions are the same as those for the undoped GaN layer.
  • the dopant is supplied together with the carrier gas, but the supply concentration is controlled by the ratio with the TMG a supply amount.
  • the driving voltage of the light emitting element is lowered by forming a p-type semiconductor layer to be described later at a specific growth rate.
  • the driving voltage is naturally affected by the concentration of dopant in the n-type contact layer. Therefore, the droop concentration of the n-type contact layer is determined according to the growth conditions of the p-type semiconductor layer.
  • the M / Ga ratio (M S i or G e
  • oxi cr 3 can be ⁇ 6, 0 X low driving voltage by the 1 0 3 range.
  • the thicknesses of the undoped GaN layer and the dopant-containing n-type semiconductor layer are preferably 1 to 4 m, but are not necessarily limited to this range.
  • As a means to suppress the propagation of crystal defects from the substrate and buffer layer to the upper layer it is possible to increase the film thickness of the undoped GaN layer and / or the dopant-containing n-type semiconductor layer. Filming induces warpage of the wafer itself, which is not a good idea. In the present invention, it is preferable to set the film thickness of each layer within the above range.
  • any composition and structure including these known ones are known. Can also be used.
  • a light emitting layer having a multiple quantum well structure is formed by alternately laminating n-type G a N layers as barrier layers and G aln N layers as well layers.
  • For carrier gas select N 2 or H 2 for use.
  • NH 3 and TEG a or TMG a are supplied together with this carrier gas.
  • TM I is further supplied for the growth of the GaInN layer. In other words, it takes a process of supplying In intermittently while controlling the growth time. Since the control of I n concentration is difficult by H 2 is interposed in the carrier gas in the growth of G a I n N layer, it is not advisable to use of H 2 as a carrier gas at this layer.
  • the film thickness of the barrier layer (n-type G a N layer) and well layer (G a I n N layer) is selected so that the light emission output is the highest. Once the optimal film thickness has been determined, select the Group III material supply and growth time appropriately.
  • the amount of dopant in the barrier layer also depends on the driving voltage of the light emitting element, and the concentration is selected according to the growth conditions of the p-type semiconductor layer. Either S i or G e can be used as the target.
  • the growth temperature is preferably between 700 ° C. and 100 ° C., but is not necessarily limited to this range.
  • the growth temperature should be selected within a range that does not increase too much.
  • the growth temperature of the light emitting layer is set in the range of 700 ° C. to 100 ° C., but there is no problem even if the growth temperature of the barrier layer and the well layer is changed.
  • the growth pressure is set in balance with the growth rate. In the present invention, the growth pressure is preferably between 20 kPa (20 00 mb a r) and 60 k Pa (60 m mb a), but is not necessarily limited to this range.
  • the light-emitting layer is finished by finally growing the barrier layer (final barrier layer).
  • This barrier layer prevents the carrier from overflowing from the well layer, and also prevents the elimination of In from the final well layer in the subsequent growth of the P-type semiconductor layer.
  • the P-type semiconductor layer is also known in various compositions and structures, and in the present invention, those having any composition and structure can be used including those known.
  • the P-type semiconductor layer is formed of mm, a P-type contact layer on which a positive electrode is formed, and a P-type cladding layer having a bandgap energy larger than that of the light emitting layer.
  • P-type contact layer can also serve as P-type cladding layer
  • the P-type semiconductor layer whose growth rate is controlled to 8 to 20 nm is a P-type contact layer on which a positive electrode is formed.
  • the growth rate of the P-type cladding layer does not necessarily need to be within this range.
  • the concentration of the Mg-and-pan cake in the P-type composite layer with a controlled growth rate is not particularly limited, but it has good crystallinity. in order to ensure the concentration of M g de one pan I 0. 9 X 1 0 2 0 ⁇ 2 X 1 0 2 ° atoms Z cm 3 Dearuko and are preferred.
  • the P-type configuration Yuku coat layer in water atom may be present in a concentration of about 1 X 1 0 1 8 ⁇ 1 X 1 0 2 1 atom / cm 3 with M g dopant.
  • the P-type cladding layer which is directly in contact with the final barrier layer of the light-emitting layer, is controlled on the growth rate of 8 to 20 nm / min. Layer. It is preferable to use G a N or G a A 1 N for the p-type cladding layer.
  • the ⁇ -type cladding layer may be formed by alternately stacking layers having different compositions or lattice constants, and the thickness of the layer and the concentration of Mg as a dopant may be changed. It is preferable to use Ga A 1 N for the p-type contact layer whose growth rate is controlled to 8 to 20 nm / min according to the present invention.
  • the growth is carried out as follows. TMG a, TMA 1 and dopant C p 2 Mg are fed onto the above p-type cladding layer together with a carrier gas (hydrogen or nitrogen, or a mixture of both) and NH 3 gas.
  • a carrier gas hydrogen or nitrogen, or a mixture of both
  • the well layer is placed in a high temperature environment during the growth process of the P-type semiconductor layer among the lower light emitting layers.
  • the growth pressure is not particularly limited, but preferably 50 k Pa (50 mbar) or less.
  • the reason for this is that if grown below this pressure, the in-plane A 1 concentration in the p-type semiconductor layer can be made uniform, and if necessary, the A 1 composition of Ga A 1 N can be increased. This is because control is easy when growing the changed p-type semiconductor layer. Under conditions higher than this pressure, the reaction between the supplied TMA 1 and NH 3 becomes prominent, and TM A 1 is consumed before reaching the substrate in the middle of growth, and the desired A 1 composition is obtained. Becomes difficult. The same can be said for Mg sent as a dopant.
  • the Mg concentration distribution in the two-dimensional direction (in-plane direction of the growth substrate) in the p-type semiconductor layer is uniform (the growth substrate surface). Internal uniformity).
  • the distribution of A 1 composition and Mg concentration in the in-plane direction of the Ga A 1 N contact layer changes depending on the carrier gas flow rate used.
  • the in-plane uniformity of the A 1 composition and Mg in the contact layer was greatly influenced by the growth pressure condition rather than the carrier gas condition. Therefore, it is appropriate to set the growth pressure below 50 k Pa (50 00 mbar) and above 10 k Pa (lOOmbar) .
  • the growth rate of the p-type semiconductor layer is mainly from the Ga source. Depends on the amount of TMG a supplied. If the TMGa supply amount per unit time is increased, the desired film thickness can be obtained in such a short time.
  • the supply amount of the dopant raw material may be increased as well.
  • the p-type semiconductor layer with a high growth rate is likely to introduce crystal defects, and even if the required concentration of doppins is included, donor levels increase due to crystal defects, resulting in a driving voltage V f will not go down.
  • the growth rate is too low, the growth time until the target film thickness is reached becomes longer, and there is a risk of increasing thermal damage to the light emitting layer during the growth period.
  • the growth condition of the p-type contact layer that satisfies the low drive voltage V f and the absence of thermal damage to the light emitting layer is that the growth rate is 8 to 20 nmZ. Was found to be preferable.
  • the growth rate is determined by measuring the thickness of the P-type contact layer by electron microscope (TEM) observation of the UA-8 cross section and dividing it by the growth time. Therefore, the necessary growth conditions are determined in advance by preparing samples for observation with different conditions and investigating the relationship between the growth rate and the supply amount of TMGa per unit time in advance. Can.
  • TEM electron microscope
  • the substrate heating is stopped and N Infeed 2 gas, as well as purge the reaction space, cooled Ueha, cooled until taken out to the outside of the growth apparatus.
  • the P-type semiconductor layer was confirmed to be the target P-type at this point. Therefore, heat treatment for activation after this is not indispensable.
  • the negative electrode those having various compositions and structures are known, and those of any composition and structure including these known ones can be used in the present invention.
  • Various production methods are known as the production method, and these known methods can be used.
  • a known photolithography technique and a general etching technique can be used for producing the negative electrode forming surface on the n-type contact layer. With these technologies, it is possible to dig from the uppermost layer of We 18 to the position of the n-type contact layer, and to expose the n-type contact layer in the region where the negative electrode is to be formed.
  • the negative electrode material metal materials such as Cr, W, and V as well as Al, Ti, Ni, and Au can be used as the contact metal in contact with the n-type contact layer.
  • a multilayer structure in which a plurality of contact metals are selected from the above metals may be used. When the outermost surface is Au, the bonding property is good.
  • the positive electrode provided on the P-type contact layer As the positive electrode provided on the P-type contact layer, light-transmitting or reflective positive electrodes having various compositions and structures are known, and the present invention also has any composition and structure including those known. Can be used. Various manufacturing methods are well known, and those public Knowledge methods can be used.
  • the composition of I T O is 50% ⁇ I n ⁇ 100% and 0% and S n ⁇ 50%. Within this range, low film resistance and high light transmittance can be satisfied. It is particularly preferable that I n is 90% and S n is 10%.
  • ITO may contain elements of Group I, Group I, Group I, Group I or Group V as impurities. In addition, SnO, ZnO, or InO can be used instead of ITO.
  • the thickness of the I T O film is desirably 50 to 500 nm. If it is 50 nm or less, the film resistance of the ITO film itself increases and the drive voltage increases. Conversely, if it is thicker than 50 O nm, the extraction efficiency of light emission to the upper surface is lowered, and the light emission output does not increase.
  • a known vacuum deposition method or sputtering method can be used as a method for forming the ITO film.
  • a method can be used in which the compound as a raw material is made liquid and applied to the surface to form an oxide film by appropriate treatment.
  • the crystallinity of the I T O film is affected by conditions, but this is not the case if the conditions are properly selected. If an ITO film is prepared at room temperature, heat treatment for transparency is required.
  • the surface of the p-type contact layer is easily damaged by the plasma because it is placed in a high-energy plasma environment, so the contact resistance tends to increase. By doing so, the influence on the surface of the p-type contact layer can be reduced.
  • a bonding pad layer constituting a bonding pad portion is formed on a part of the surface. Together with the bonding pad layer, a positive electrode is formed.
  • the material for the bonding pad layer materials having various structures are known, and these well-known materials can be used in the present invention without any particular limitation.
  • T i, N i and A u used for the negative electrode material, Cr, W and V can be used without any limitation. However, it is desirable to use a material having good adhesion to the light transmissive or reflective positive electrode used. The thickness must be sufficiently thick so as not to damage the light-transmitting or reflective positive electrode against the stress during bonding.
  • the outermost layer is preferably made of a material having good adhesion to the bonding pole, such as Au.
  • the I I I group nitride semiconductor light-emitting device of the present invention can be formed into a lamp by providing a transparent cover by means well known in the art, for example.
  • a white lamp can be manufactured by combining the gallium nitride compound semiconductor light emitting device of the present invention and a force bar having a phosphor.
  • a lamp manufactured from the Group III nitride semiconductor light-emitting device of the present invention has a low driving voltage and a high light-emitting output. Therefore, electronic devices such as mobile phones, displays, and panels incorporating lamps manufactured by this technology Mechanical devices such as automobiles, computers, and game machines that incorporate the electronic devices can be driven with low power and can achieve high characteristics. In particular, it can save power in battery-powered devices such as mobile phones, game machines, toys, and automobile parts.
  • substrate temperature is controlled to 1 100 ° C
  • TMA 1 and NH 3 are sent onto the substrate together with H 2 carrier gas, and A 1 N buffer layer is formed did.
  • the growth time was 10 minutes.
  • TMG a and NH 3 were supplied at a pressure of 40 k Pa (4 0 0 mbar), a temperature of 10 0 30 ° C, and an ampere G a N was formed on the A 1 N buffer layer. The formation was grown for 3 hours.
  • tetramethyl germanium was supplied as an n-type dopant, and an n-type GaN layer was grown for 1 hour.
  • the supply amount of tetramethylgermanium was adjusted so that the carrier concentration of the n-type GaN layer was 4.0 ⁇ 10 18 cm ⁇ 3 . As a result, an n-type contact layer was formed.
  • the pressure is 40 kPa (400 mbar)
  • the temperature is 7500 ° C
  • the carrier gas is switched from H 2 to N 2
  • Si H 4 as the dopant are supplied While growing the barrier layer for 7 minutes
  • the well layer was further grown for 5 minutes by supplying TMIn. This growth of the barrier layer and well layer was repeated five times alternately, and finally the final barrier layer was grown to form a light emitting layer.
  • the amount of Si H 4 in the dopant was adjusted so that the Si concentration in the barrier layer and well layer was 2.0 X 10 17 atoms / cm 3 .
  • the pressure is 20 k Pa (2 00 mbar)
  • the temperature is 10 00 ° C.
  • the carrier gas is switched to H 2 again
  • TMG a and TMA 1 are supplied
  • C p 2 is used as a dopant.
  • Q 5 N was grown for 3 minutes by feeding Mg.
  • n-type contact layer of the I II I nitride semiconductor laminate taken out of the furnace was exposed by photolithography and dry etching, and a negative electrode composed of a Cr and Ti metal layer was formed thereon.
  • the obtained light emitting device was caused to emit light by passing a current of 20 mA, and the drive voltage V f and the light emission output were measured and found to be 3.2 V and 9 mW.
  • Figure 3 shows the measurement results of the current-voltage characteristic curve. From this figure, the n value obtained using the above equation (1) was 1.8.
  • a group I I I nitride semiconductor light emitting device was fabricated in the same manner as in Example 1 except that the growth conditions of the P-type contact layer were set to 20 nmZ for the growth rate and 6 minutes for the growth time.
  • a II-I group nitride semiconductor light-emitting device was fabricated in the same manner as in Example 1 except that the growth conditions of the p-type contact layer were set to 7 nmZ for the growth rate and 17.2 minutes for the growth time.
  • the obtained light emitting device was evaluated in the same manner as in Example 1. As a result, the driving voltage was 3.3 V and the light emission output was 8 mW.
  • Figure 5 shows the measurement results of the current-voltage characteristic curve. From this figure, the n value obtained using the above equation (1) was 2.6.
  • a II-I group nitride semiconductor light-emitting device was fabricated in the same manner as in Example 1 except that the growth conditions of the P-type contact layer were set to 21 nm mZ and the growth time was 5.7 min.
  • the Group III nitride semiconductor light-emitting device of the present invention has a good light output and a low driving voltage, and thus has a very high industrial utility value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

Provided is a method for manufacturing a group III nitride semiconductor light emitting element having a high light emission output and a low drive voltage. In the method, an n-type semiconductor layer, a light emitting layer and a p-type semiconductor layer, which are composed of a group III nitride semiconductor, are grown in this order on a substrate. Then, at the time of forming a negative electrode and a positive electrode on the n-type semiconductor layer and the p-type semiconductor layer to manufacture the group III nitride semiconductor light emitting element, the growing speed of the p-type semiconductor layer is adjusted to 8-20nm/min.

Description

明 細 書  Specification
I I I族窒化物半導体発光素子の製造方法 技術分野 I I Group I Nitride Semiconductor Light-Emitting Device Manufacturing Method Technical Field
本発明は発光出力が高く、 かつ駆動電圧が低いことを特徴とした The present invention is characterized in that the light emission output is high and the driving voltage is low.
I I I族窒化物半導体発光素子の製造方法に関する。 背景技術 The present invention relates to a method for manufacturing a group I I I nitride semiconductor light emitting device. Background art
I I I族窒化物半導体発光素子は発光層を間に挟む形で n型半導 体層と P型半導体層を配置するように構成され、 それぞれに接触し て設けられている負極および正極から正孔および電子を注入して半 導体層内の P N接合において再結合することで発光を得る。 この発 光の強さは再結合する正孔と電子のキヤリア数に比例するので、 よ り多くの電流を流せば発光素子の発光出力はそれだけ高くなること になる。 しかし、 実際は、 半導体層のバルク抵抗および電極構成材 料の抵抗による発熱があるため、 発光出力を高くするために印加電 流を増加してゆく ことは実用的ではない。  A group III nitride semiconductor light-emitting device is configured such that an n-type semiconductor layer and a P-type semiconductor layer are arranged with a light-emitting layer sandwiched therebetween, and holes are formed from a negative electrode and a positive electrode provided in contact with each other. Light is emitted by injecting electrons and recombining them at the PN junction in the semiconductor layer. Since the intensity of this light emission is proportional to the number of carriers of holes and electrons to be recombined, the light emission output of the light emitting element becomes higher as more current flows. However, in actuality, since there is heat generation due to the bulk resistance of the semiconductor layer and the resistance of the electrode constituent material, it is not practical to increase the applied current in order to increase the light emission output.
そのため、 発光素子の特性を評価するうえでは、 一定電流 (定格 電流という) を供給した場合の発光出力とそのときの順方向電圧 ( これを駆動電圧 V f とする) を比較することが良い。 すなわち、 定 格電流 I f において、 より低い駆動電圧 v f でかつ発光出力が高いこ とが発光素子の良好な特性として目指すところとなる。 Therefore, when evaluating the characteristics of a light-emitting element, it is good to compare the light-emission output when a constant current (referred to as the rated current) is supplied and the forward voltage at that time (this is called the drive voltage V f). That is, in the rated current I f, the place where the lower drive voltage v f a and the light emitting output is high this aim as good characteristics of the light-emitting element.
発光素子を構成する電極材料を一定とした場合、 駆動電圧 V ま n型半導体層と p型半導体層の構成に依存する。 特に p型半導体層 は電極材料との接触する領域が広いため、 駆動電圧 V (を下げるた めには、 P型半導体層が関与して発生する抵抗分を出来るだけ低く 抑えることが必要となる。 When the electrode material constituting the light emitting element is constant, the driving voltage V depends on the configuration of the n-type semiconductor layer and the p-type semiconductor layer. In particular, since the p-type semiconductor layer has a wide contact area with the electrode material, the resistance generated by the P-type semiconductor layer must be as low as possible in order to reduce the drive voltage V ( It is necessary to suppress.
例えば、 P型半導体層と電極材料との間に高濃度に不純物をドー ビングした第 2の p型半導体層 ( p型コンタク ト層) をさらに挿入 することで、 電極材料とのォーミック性を良好にして駆動電圧 Vf を低くすることが行われている (例えば、 特開平 8 — 9 7 4 1号公 報参照) 。 しかし、 駆動電圧 Vf の低下はまだ不十分である。 発明の開示 For example, by inserting a second p-type semiconductor layer (p-type contact layer) doped with impurities at a high concentration between the P-type semiconductor layer and the electrode material, the ohmic property with the electrode material is improved. Thus, the drive voltage Vf is lowered (see, for example, the publication of Japanese Patent Laid-Open No. 8-9741). However, the decrease in drive voltage V f is still insufficient. Disclosure of the invention
本発明の目的は、 上述の状況に鑑みて、 発光出力が高く、 かつ駆 動電圧が低い I I I族窒化物半導体発光素子を提供することである 図 1 に I I I族窒化物半導体発光素子の順方向の電流一電圧特性 図を示す。 この図において、 定格電流 I f での駆動電圧 Vf は、 電流 一電圧特性の理想特性 (図中の直線 A) と定格電流 I f との交点で ある電圧 V。と p型半導体層と電極材料間のォーミック性の電圧 Vc との加算されたものとして表わされる。 したがって、 定格電流での 駆動電圧 Vf を下げるためには電圧 V。と電圧 V。を低くすることが 必要となる。 In view of the above situation, an object of the present invention is to provide a group III nitride semiconductor light emitting device having a high light emission output and a low driving voltage. FIG. 1 shows a forward direction of a group III nitride semiconductor light emitting device. The current-voltage characteristic diagram of In this figure, the voltage V. The driving voltage V f of the rated current I f, which is an intersection between the rated current I f (line A in the figure) the ideal characteristics of the current - voltage characteristic And the ohmic voltage V c between the p-type semiconductor layer and the electrode material. Therefore, the voltage V is used to reduce the drive voltage V f at the rated current. And voltage V. Must be lowered.
電圧 Veは使用する電極材料種に依存するため、 その選択によつ て実質的に決まってしまう。 そのため広い範囲の電極材料を使用す るために Veではなく、 電圧 Vflを低くすることが必要となる。 電流 一電圧特性の図でいえば、 一定電流下において電圧 V。を低くする ことは、 理想線である直線 Aの傾きを大きく してゆく ことになる。 発光素子の理想特性を表す上で、 次の式 ( 1 ) がよく利用されて いる。 Since the voltage V e depends on the type of electrode material used, it is substantially determined by the selection. Therefore, in order to use a wide range of electrode materials, it is necessary to lower the voltage V fl instead of V e . Current Speaking of the graph of voltage characteristics, the voltage is V under a constant current. Lowering the value increases the slope of the straight line A, which is the ideal line. The following formula (1) is often used to represent the ideal characteristics of light-emitting elements.
I = I 0 (E X P ( q VXn - k T) - l ) ( 1 ) この式は、 図 1の順方向の電流一電圧特性図における直線 Aを表 す式であり、 直線 Aの傾きは式中の i Zn · k Tとなる。 この nは この式において n値と呼ばれている力 s、 電圧 V。を低くすることは 直線 Aの傾きを大きくすることすなわち n値を小さくすることを目 指すことになる。 I = I 0 (EXP (q VXn-k T)-l) (1) This equation represents the straight line A in the forward current vs. voltage characteristic diagram of Fig. 1. The slope of the straight line A is i Zn · k T in the equation. This n is the force s, voltage V, which is called the n value in this equation. Decreasing the value means increasing the slope of the straight line A, that is, reducing the n value.
本発明者は、 I I I族窒化物半導体の p型半導体層を成長させる 際に、 その成長速度が 8〜 2 0 nmZ分となるような成長条件で行 なうと、 結晶性に優れた p型 I I I族窒化物半導体層が得られ、 上 記 n値は 2以下と極めて小さくなることを見出し、 本発明を完成し た。  When the present inventors grow a p-type semiconductor layer of a group III nitride semiconductor under a growth condition such that the growth rate is 8 to 20 nmZ, the p-type III having excellent crystallinity. A group nitride semiconductor layer was obtained, and the present invention was completed by finding that the above-mentioned n-value was as extremely low as 2 or less.
即ち、 本発明は下記の発明を提供する。  That is, the present invention provides the following inventions.
( 1 ) 基板上に I I I族窒化物半導体からなる、 n型半導体層、 発光層および P型半導体層をこの順序で成長させた後、 該 n型半導 体層および P型半導体層に負極および正極をそれぞれ形成すること からなる I I I族窒化物半導体発光素子の製造方法において、 該 p 型半導体層の成長速度が 8〜 2 O nmZ分であることを特徴とする I I I族窒化物半導体発光素子の製造方法。  (1) After growing an n-type semiconductor layer, a light-emitting layer, and a P-type semiconductor layer made of a group III nitride semiconductor on the substrate in this order, a negative electrode and a p-type semiconductor layer are formed on the n-type semiconductor layer and the P-type semiconductor layer. A method of manufacturing a group III nitride semiconductor light-emitting device comprising forming each positive electrode, wherein the growth rate of the p-type semiconductor layer is 8 to 2 O nmZ, Production method.
( 2 ) p型半導体層を成長させる際の成長装置内圧力が 1 0〜 5 O k P aである上記 1項に記載の製造方法。  (2) The manufacturing method according to the above item (1), wherein the pressure in the growth apparatus when growing the p-type semiconductor layer is 10 to 5 O k Pa.
( 3 ) 上記 1 または 2項に記載の製造方法によって製造された I I I族窒化物半導体発光素子。  (3) A group I I I nitride semiconductor light-emitting device manufactured by the manufacturing method according to item 1 or 2.
( 4 ) 基板上に I I I族窒化物半導体からなる、 n型半導体層、 発光層および P型半導体層がこの順序で積層され、 正極および負極 がそれぞれ P型半導体層および n型半導体層に接して設けられた発 光素子において、 下記式 ( 1 ) で表される発光素子の電流-電圧曲 線の n値が 2以下であることを特徴とする I I I族窒化物半導体発 光素子。  (4) An n-type semiconductor layer, a light-emitting layer, and a P-type semiconductor layer made of a group III nitride semiconductor are stacked in this order on the substrate, and the positive electrode and the negative electrode are in contact with the P-type semiconductor layer and the n-type semiconductor layer, respectively. The group III nitride semiconductor light emitting device, wherein the n value of the current-voltage curve of the light emitting device represented by the following formula (1) is 2 or less in the provided light emitting device.
I = I 0 (E X P ( q V/n - k T) - l ) ( 1 ) ( 5 ) 上記 3または 4項に記載の I I I族窒化物半導体発光素子 からなるランプ。 I = I 0 (EXP (q V / n-k T)-l) (1) (5) A lamp comprising the group III nitride semiconductor light-emitting device according to item 3 or 4.
( 6 ) 上記 5項に記載のランプが組み込まれている電子機器。 ( 7 ) 上記 6項に記載の電子機器が組み込まれている機械装置。 p型半導体層の成長速度を 8〜 2 0 n m Z分に制御することを骨 子とする本発明によれば、 結晶性に優れた p型 I I I族窒化物半導 体層が得られ、 その結果、 駆動電圧が低く且つ発光出力が高い I I (6) An electronic device in which the lamp described in item 5 above is incorporated. (7) A mechanical device in which the electronic device described in the above item 6 is incorporated. According to the present invention, which is based on controlling the growth rate of the p-type semiconductor layer to 8 to 20 nm Z, a p-type group III nitride semiconductor layer having excellent crystallinity is obtained. As a result, drive voltage is low and light output is high II
I族窒化物半導体発光素子が得られる。 図面の簡単な説明 A group I nitride semiconductor light emitting device is obtained. Brief Description of Drawings
図 1は、 発光素子の順方向の電流一電圧特性を説明する図である 図 2は、 本発明の I I I族窒化物半導体発光素子の断面を示した 模式図である。  FIG. 1 is a diagram for explaining forward current-voltage characteristics of a light emitting device. FIG. 2 is a schematic diagram showing a cross section of a group II I nitride semiconductor light emitting device of the present invention.
図 3は、 実施例 1で得られた発光素子の電流一電圧特性曲線の測 定結果を示した図である。  FIG. 3 is a graph showing the measurement result of the current-voltage characteristic curve of the light-emitting element obtained in Example 1.
図 4は、 実施例 2で得られた発光素子の電流一電圧特性曲線の測 定結果を示した図である。  FIG. 4 is a graph showing the measurement result of the current-voltage characteristic curve of the light-emitting element obtained in Example 2.
図 5は、 比較例 1で得られた発光素子の電流一電圧特性曲線の測 定結果を示した図である。  FIG. 5 is a graph showing the measurement result of the current-voltage characteristic curve of the light emitting device obtained in Comparative Example 1.
図 6は、 比較例 2で得られた発光素子の電流一電圧特性曲線の測 定結果を示した図である。 発明を実施するための最良の形態  FIG. 6 is a graph showing the measurement result of the current-voltage characteristic curve of the light-emitting element obtained in Comparative Example 2. BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 P型 I I I族窒化物半導体層において、 P型半導体層 の成長速度を 8 Z O n m Z分とすることを特徴とする I I I族窒 化物半導体発光素子の製造方法を提供する。 以下に発明の詳細な内容を述べる。 The present invention provides a method for manufacturing a group III nitride semiconductor light emitting device, wherein the growth rate of the P type semiconductor layer is set to 8 ZO nm Z in the P type group III nitride semiconductor layer. The detailed contents of the invention will be described below.
図 2は本発明に係わる、 p型半導体層を備えた I I I族窒化物半 導体発光素子の断面を示した模式図である。 本図において 7が正極 であり、 光透過性または反射性正極 7 とボンディ ングパッ ド層 7 bから構成されている。 5が p型半導体層であり、 これは p型クラ ッ ド層 5 aと p型コンタク ト層 5 bから構成される。 1は基板、 2 はバッファ層、 3は n型半導体層、 4は発光層および 6は負極であ る。  FIG. 2 is a schematic view showing a cross section of an I I I group nitride semiconductor light emitting device having a p-type semiconductor layer according to the present invention. In this figure, reference numeral 7 denotes a positive electrode, which is composed of a light-transmitting or reflective positive electrode 7 and a bonding pad layer 7b. Reference numeral 5 denotes a p-type semiconductor layer, which is composed of a p-type cladding layer 5 a and a p-type contact layer 5 b. 1 is a substrate, 2 is a buffer layer, 3 is an n-type semiconductor layer, 4 is a light emitting layer, and 6 is a negative electrode.
本願発明において、 基板 1 には、 サファイア単結晶 (A 1203 ; A面、 C面、 M面、 R面) 、 スピネル単結晶 (M g A l 24) 、 Z η θ単結晶、 L i A l 〇2単結晶、 L i G a〇2単結晶、 M g〇単結 晶または G a23単結晶などの酸化物単結晶基板、 および S i 単結 晶、 S i C単結晶、 G a A s単結晶、 A 1 N単結晶、 G a N単結晶 または Z r B2などのホウ化物単結晶などの非酸化物単結晶基板か ら選ばれた公知の基板材料を何ら制限なく用いることができる。 な お、 基板の面方位は特に限定されず、 そのオフ角は任意に選択され たものでよい。 In the present invention, the substrate 1 includes a sapphire single crystal (A 1 2 0 3 ; A plane, C plane, M plane, R plane), spinel single crystal (Mg Al 2 0 4 ), Z η θ single crystal. , L i A l 0 2 single crystal, L i G a 0 2 single crystal, Mg 0 single crystal or oxide single crystal substrate such as G a 2 0 3 single crystal, and S i single crystal, S i C single crystal, G a a s single crystal, a 1 N single crystal, G a N single crystal or Z r non-oxide single-crystal substrate or we selected known substrate material such as boride single crystal such as B 2 Can be used without any limitation. The plane orientation of the substrate is not particularly limited, and the off-angle may be arbitrarily selected.
バッファ層、 n型半導体層、 発光層および p型半導体層を構成す る I I I族窒化物半導体としては、 一般式 A l x I ny G a ^— yN ( 0≤ x≤ 1 , 0≤ y < 1 , 0≤ x + y≤ 1 ) で表わされる各種組 成の半導体が公知である。 本発明におけるバッファ層、 n型半導体 層、 発光層および p型半導体層を構成する I I I族窒化物半導体に おいても、 一般式 A 1 x I n y G aい y N ( 0≤ x≤ 1 , 0≤ y < 1, 0≤ x + y≤ 1 ) で表わされる各種組成の半導体を何ら制限な く用いることができる。 The group III nitride semiconductors that make up the buffer layer, n-type semiconductor layer, light-emitting layer, and p-type semiconductor layer include the general formula A lx I ny G a ^ — y N (0≤ x≤ 1, 0≤ y < Semiconductors of various compositions represented by 1, 0≤ x + y≤ 1) are known. In the group III nitride semiconductor constituting the buffer layer, the n-type semiconductor layer, the light-emitting layer, and the p-type semiconductor layer in the present invention, the general formula A 1 x I y G a y N (0≤ x≤ 1 , 0≤ y <1, 0≤ x + y≤ 1), semiconductors with various compositions can be used without any limitation.
これらの I I I族窒化物半導体を成長する方法としては、 有機金 属気相成長法 (MO C VD法) 、 分子線エピタキシー成長法 (MB E) 、 ハイ ドライ ド気相成長法 (H V P E ) などがある。 望ましく は組成制御が容易であり、 量産性を備えた MO C V D法が適してい るが、 必ずしも同法に限定されるものではない。 Methods for growing these III-nitride semiconductors include organic metal vapor phase epitaxy (MO C VD), molecular beam epitaxy (MB) E) and hydride vapor phase epitaxy (HVPE). Desirably, the composition control is easy and the MO CVD method with mass productivity is suitable, but it is not necessarily limited to this method.
MO C VD法を上記半導体層の成長方法として採用する場合は、 I I I族である G aの原料として、 有機金属材料である トリメチル ガリウム ( T M G a ) またはトリェチルガリウム ( T E G a ) を、 同じく I I I族の A 1 の原料として、 トリメチルアルミニウム (T M A 1 ) またはトリェチルアルミニウム (T E A 1 ) を主として用 いる。 また発光層の構成材料である I nについてはその原料として 卜リメチルインジウム (TM I ) または卜リエチルインジウム (T E I ) を用いる。 V族の N源として、 アンモニア (NH3) または ヒ ドラジン ( N 2 H 4 ) などを用いる。 When the MO C VD method is adopted as the method for growing the semiconductor layer, trimethyl gallium (TMG a) or triethyl gallium (TEG a), which is an organometallic material, is used as a raw material for Group III Ga. Trimethylaluminum (TMA 1) or triethylaluminum (TEA 1) is mainly used as the raw material for the group A 1. In addition, as a raw material for In, which is a constituent material of the light emitting layer, trimethylindium (TMI) or triethylindium (TEI) is used. Ammonia (NH 3 ) or hydrazine (N 2 H 4 ) is used as the Group V N source.
n型半導体層にはドーパント材料として、 S i あるいは G eを用 いる。 S i 原料としてモノシラン ( S i H 4 ) またはジシラン ( S i 2 H6) を、 G e原料としてゲルマン (G e H4) または有機ゲル マニウム化合物を用いる。 p型半導体層では、 ドーパントして M g を使用する。 その原料としては、 例えばビスシクロペンタジェニル マグネシウム ( C p 2 M g ) またはビスェチルシクロペンタジェ二 ルマグネシウム ( ( E t C p ) 2 M g ) を用いる。 Si or Ge is used as a dopant material for the n-type semiconductor layer. Monosilane (S i H 4) or disilane (S i 2 H 6) as the S i raw material, using germane (G e H 4) or an organic gel Maniumu compound as G e material. In the p-type semiconductor layer, Mg is used as a dopant. As the raw material, for example, biscyclopentadienyl magnesium (C p 2 Mg) or bisethyl cyclopentadienyl magnesium ((E t C p) 2 Mg) is used.
次に、 成長法として一般的な MO C VD法を採用した各半導体層 について述べる。  Next, we describe each semiconductor layer that employs the general MO C VD method as a growth method.
(バッファ層)  (Buffer layer)
バッファ層としては、 特許第 3 0 2 6 0 8 7号公報等に開示され た低温バッファ層ゃ特開 2 0 0 3 - 2 4 3 3 0 2号公報等に開示さ れた高温バッファ層が知られており、 これらのバッファ層を何ら制 限無く用いることができる。  As the buffer layer, the low temperature buffer layer disclosed in Japanese Patent No. 3 0 2 6 0 8 7 or the like may be the high temperature buffer layer disclosed in Japanese Patent Application Laid-Open No. 2 0 0 3-2 4 3 3 0 2 or the like. These buffer layers can be used without any limitation.
成長に供する基板 1は前期記載の中から選択できるが、 ここでは サフアイァ基板を使用した場合について述べる。 同基板を温度およ び圧力の制御の可能な反応空間に設置された S i C膜付グラファ ト ィ製治具 (サセプター) 上に配置した状態で、 その場所に水素キヤ リアガス、 窒素キャリアガスとともに NH3ガスと TMA 1 を送り こむ。 S i C膜付グラフア トィ製治具は R Fコイルによる誘導加熱 によって必要な温度にまで加熱され、 基板上では A 1 Nバッファ層 が形成される。 温度として、 A 1 Nの低温バッファを成長させるに は 5 0 0 °Cから 7 0 0での温度に制御し、 その後結晶化のために 1 1 0 0 °C前後の温度にまで上げる。 高温 A 1 Nバッファ層を成長さ せる場合は 2段の加熱ではなく、 一度に 1 0 0 0 °Cから 1 2 0 0 °C の温度下において可能である。 なお、 前記記載中の A 1 N単結晶基 板、 G a N単結晶基板を使う場合はかならずしもバッファ層を成長 させる必要はなく、 上記基板上に後述する n型半導体層を直接成長 させる。 The substrate for growth 1 can be selected from the previous list, but here The case where a sapphire substrate is used will be described. The substrate is placed on a SiC film-coated jig (susceptor) installed in a reaction space where the temperature and pressure can be controlled, and hydrogen carrier gas and nitrogen carrier gas are placed there. At the same time, send NH 3 gas and TMA 1. The Graphite jig with SiC film is heated to the required temperature by induction heating with an RF coil, and an A 1 N buffer layer is formed on the substrate. In order to grow a low temperature buffer of A 1 N, the temperature is controlled from 5 00 ° C. to 700 ° C., and then raised to a temperature around 1 100 ° C. for crystallization. When growing a high-temperature A 1 N buffer layer, it is not possible to perform two-step heating, but at a temperature of 100 ° C. to 120 ° C. at a time. When using the A 1 N single crystal substrate or the GaN single crystal substrate described above, it is not always necessary to grow a buffer layer, and an n-type semiconductor layer described later is directly grown on the substrate.
(n型半導体層)  (n-type semiconductor layer)
n型半導体層としても各種組成および構造のものが公知であり、 本願発明においてもこれら公知のものを含めて、 如何なる組成およ び構造のものも用いることができる。 通常、 n型半導体層はアンド ープ G a N層からなる下地層、 S iや G e等の n型ド一パントを含 有し、 負極が設けられる n型コンタク ト層および発光層よりも大き なバンドギャップエネルギーを有する n型クラッ ド層から構成され る。 n型コンタク ト層は、 n型クラッ ド層および Zまたは下地層を 兼ねることができる。  As the n-type semiconductor layer, those having various compositions and structures are known, and those having any composition and structure can be used in the present invention, including those known. Usually, the n-type semiconductor layer includes an underlayer composed of an ampere G a N layer, an n-type dopant such as Si or Ge, and more than the n-type contact layer and the light-emitting layer in which the negative electrode is provided. It consists of an n-type cladding layer with a large band gap energy. The n-type contact layer can double as the n-type cladding layer and the Z or underlayer.
バッファ層の形成に引き続いて、 バッファ層上にアンドープ G a N層からなる下地層を成長させる。 温度は 1 0 0 0〜 1 2 0 0でと して、 圧力制御下のもと、 NH3ガスと TMG aをキャリアガスと ともにバッファ層上に送り こむ。 TMG aの供給量は、 同時に流す NH3との比率によって制限されるが、 成長速度として 1 A m/時 〜 3 ^mZ時の間に制御することが転位など結晶欠陥の発生を抑制 することに有効である。 成長圧力については上記の成長速度を確保 するうえで、 2 0〜 6 0 k P a ( 2 0 0〜 6 0 0 mb a r ) の領域 が最適である。 Subsequent to the formation of the buffer layer, an underlayer composed of an undoped GaN layer is grown on the buffer layer. Temperature is set to 1 0 0 0-1 2 0 0, under pressure control, Komu feeding NH 3 gas and TMG a to both the buffer layer and the carrier gas. TMG a supply flow at the same time Although limited by the ratio with NH 3 , controlling the growth rate between 1 Am / hour and 3 ^ mZ is effective in suppressing the occurrence of crystal defects such as dislocations. As for the growth pressure, the region of 20 to 60 kPa (20 00 to 60 mb ar) is optimal for securing the above growth rate.
アンド一プ G a N層の成長に引き続いて、 n型コンタク ト層を成 長させる。 その成長条件はアンドープ G a N層の成長条件と同じで ある。 ドーパントはキャリアガスとともに供給されるが、 その供給 濃度は TMG a供給量との比率で制御する。 本発明は後述する p型 半導体層を特定の成長速度で形成することにより、 発光素子の駆動 電圧を低く したものであるが、 駆動電圧は n型コンタク ト層のドー パン卜濃度によっても当然影響を受けるので、 p型半導体層の成長 条件に合わせながら n型コンタク ト層のド一パン卜濃度を決定する 。 ド一パントの供給条件としては M / G a比 ( M = S i または G e Then, following the growth of the G a N layer, the n-type contact layer is grown. The growth conditions are the same as those for the undoped GaN layer. The dopant is supplied together with the carrier gas, but the supply concentration is controlled by the ratio with the TMG a supply amount. In the present invention, the driving voltage of the light emitting element is lowered by forming a p-type semiconductor layer to be described later at a specific growth rate. However, the driving voltage is naturally affected by the concentration of dopant in the n-type contact layer. Therefore, the droop concentration of the n-type contact layer is determined according to the growth conditions of the p-type semiconductor layer. As a supply condition for the first punch, the M / Ga ratio (M = S i or G e
) を 1. o x i cr3〜 6, 0 X 1 0— 3の範囲にすることで駆動電圧 を低くすることが可能となる。 ) Becomes a 1. oxi cr 3 can be ~ 6, 0 X low driving voltage by the 1 0 3 range.
アンドープ G a N層およびドーパント含有 n型半導体層の膜厚は 、 それぞれ l〜 4 ; mとすることが好ましいが必ずしもこの範囲に 限定されるものではない。 基板およびバッファ層からの結晶欠陥の 上層への伝播を抑えるための手段として、 アンドープ G a N層およ び/またはドーパント含有 n型半導体層の膜厚を増加させることも 可能であるが、 厚膜化により、 ゥエーハ自体の反りを誘発するので あまり得策ではない。 本発明においては、 前記の範囲内においてそ れぞれの層の膜厚を設定することが好ましい。  The thicknesses of the undoped GaN layer and the dopant-containing n-type semiconductor layer are preferably 1 to 4 m, but are not necessarily limited to this range. As a means to suppress the propagation of crystal defects from the substrate and buffer layer to the upper layer, it is possible to increase the film thickness of the undoped GaN layer and / or the dopant-containing n-type semiconductor layer. Filming induces warpage of the wafer itself, which is not a good idea. In the present invention, it is preferable to set the film thickness of each layer within the above range.
(発光層)  (Light emitting layer)
発光層としても各種組成および構造のものが公知であり、 本願発 明においてもこれら公知のものを含めて、 如何なる組成および構造 のものも用いることができる。 As the light emitting layer, those having various compositions and structures are known, and in the present invention, any composition and structure including these known ones are known. Can also be used.
例えば多重量子井戸構造の発光層はバリア層となる n型 G a N層 と井戸層となる G a l n N層を交互に積層させながら形成する。 キ ャリアガスは N2または H2を選択使用する。 NH3と T E G aある いは T M G aはこのキャリアガスとともに供給する。 For example, a light emitting layer having a multiple quantum well structure is formed by alternately laminating n-type G a N layers as barrier layers and G aln N layers as well layers. For carrier gas, select N 2 or H 2 for use. NH 3 and TEG a or TMG a are supplied together with this carrier gas.
G a I n N層の成長ではさらに TM I を供給する。 つまり成長時 間を制御しながら、 断続的に I nを供給するプロセスを取る。 G a I n N層の成長ではキャリアガス中に H2が介在することで I n濃 度の制御が難しくなるので、 この層ではキャリアガスとして H2を 使う ことは得策ではない。 バリア層 (n型 G a N層) と井戸層 (G a I n N層) の膜厚は発光出力が最も高くなる条件を選択する。 最 適膜厚が決定されたうえで、 I I I族の原料供給量と成長時間を適 宜選ぶ。 バリア層へのドーパント量も発光素子の駆動電圧の高低を 左右する条件となるが、 その濃度は p型半導体層の成長条件に対応 して選択する。 ド一パントとしては S i あるいは G eのどちらでも よい。 TM I is further supplied for the growth of the GaInN layer. In other words, it takes a process of supplying In intermittently while controlling the growth time. Since the control of I n concentration is difficult by H 2 is interposed in the carrier gas in the growth of G a I n N layer, it is not advisable to use of H 2 as a carrier gas at this layer. The film thickness of the barrier layer (n-type G a N layer) and well layer (G a I n N layer) is selected so that the light emission output is the highest. Once the optimal film thickness has been determined, select the Group III material supply and growth time appropriately. The amount of dopant in the barrier layer also depends on the driving voltage of the light emitting element, and the concentration is selected according to the growth conditions of the p-type semiconductor layer. Either S i or G e can be used as the target.
成長温度は 7 0 0 °Cから 1 0 0 0 °Cの間が好ましいが、 必ずしも この範囲に限定されない。 しかし、 井戸層の成長おいては高い温度 では I nが成長膜中に取り込まれにく くなり、 実質的に井戸層を形 成することは困難である。 そのため、 成長温度はあまり高くならな い範囲内で選択する。 本発明では発光層の成長温度として 7 0 0 °C から 1 0 0 0 °Cの範囲としているが、 バリア層と井戸層の成長温度 を変えても支障はない。 成長圧力は成長速度とのバランスを取りな がら設定する。 本発明では、 成長圧力は 2 0 k P a ( 2 0 0 mb a r ) から 6 0 k P a ( 6 0 0 m b a r ) の間が好ましいが、 必ずし もこの範囲に限定されるものではない。  The growth temperature is preferably between 700 ° C. and 100 ° C., but is not necessarily limited to this range. However, in the growth of the well layer, at a high temperature, it becomes difficult for In to be taken into the growth film, and it is difficult to form the well layer substantially. Therefore, the growth temperature should be selected within a range that does not increase too much. In the present invention, the growth temperature of the light emitting layer is set in the range of 700 ° C. to 100 ° C., but there is no problem even if the growth temperature of the barrier layer and the well layer is changed. The growth pressure is set in balance with the growth rate. In the present invention, the growth pressure is preferably between 20 kPa (20 00 mb a r) and 60 k Pa (60 m mb a), but is not necessarily limited to this range.
井戸層とバリア層の数であるが、 どちらも 3層から 7層が適切で あるが、 必ずしもこの範囲に限定されない。 発光層は最後にバリア 層を成長させて終了となる (最終バリア層) 。 このバリア層は井戸 層からのキャリアのオーバ一フローを防ぐとともに、 つづく P型半 導体層の成長において、 最終井戸層からの I nの脱離を防ぐ役割を 果たす。 It is the number of well layers and barrier layers. Although not necessarily limited to this range. The light-emitting layer is finished by finally growing the barrier layer (final barrier layer). This barrier layer prevents the carrier from overflowing from the well layer, and also prevents the elimination of In from the final well layer in the subsequent growth of the P-type semiconductor layer.
( P型半導体層)  (P-type semiconductor layer)
P型半導体層も各種組成および構造のものが公知であり、 本願発 明においてもこれら公知のものを含めて、 如何なる組成および構造 のものも用いることができる。 P型半導体層は、 m m、 その上に正 極が形成される P型コンタク ト層とバンドギヤップエネルギーが発 光層よりも大きい P型クラッ ド層から形成される。 P型コンタク 層は P型クラッ ド層を兼ねることもでき  The P-type semiconductor layer is also known in various compositions and structures, and in the present invention, those having any composition and structure can be used including those known. The P-type semiconductor layer is formed of mm, a P-type contact layer on which a positive electrode is formed, and a P-type cladding layer having a bandgap energy larger than that of the light emitting layer. P-type contact layer can also serve as P-type cladding layer
本発明において、 成長速度が 8〜 2 0 n mノ分に制御される P型 半導体層は、 その上に正極が形成される P型コンタク 卜層である In the present invention, the P-type semiconductor layer whose growth rate is controlled to 8 to 20 nm is a P-type contact layer on which a positive electrode is formed.
P型クラッ ド層の成長速度は必ずしもこの範囲にある必要はない 成長速度が制御された P型コン夕ク 卜層の M g ド —パン卜の濃度 は特に制限されないが、 良好な結晶性の確保のためには、 M g ド一 パン卜の濃度が 0 . 9 X 1 0 2 0〜 2 X 1 0 2 °原子 Z c m3であるこ とが好ましい。 P型コン夕ク ト層中には、 M g ドーパントと共に水 素原子が 1 X 1 0 1 8〜 1 X 1 0 2 1原子/ c m 3程度の濃度で存在し ていてもよい。 The growth rate of the P-type cladding layer does not necessarily need to be within this range. The concentration of the Mg-and-pan cake in the P-type composite layer with a controlled growth rate is not particularly limited, but it has good crystallinity. in order to ensure the concentration of M g de one pan I 0. 9 X 1 0 2 0 ~ 2 X 1 0 2 ° atoms Z cm 3 Dearuko and are preferred. The P-type configuration Yuku coat layer in water atom may be present in a concentration of about 1 X 1 0 1 8 ~ 1 X 1 0 2 1 atom / cm 3 with M g dopant.
P型半導体層の成長において、 まず発光層の最終バリア層の上に 直接接して P型クラッ ド層を 、 その上に成長速度が 8〜 2 0 n m / 分に制御された P型コン夕ク ト層を積層させる。 p型クラッ ド層に は G a Nまたは G a A 1 Nを用いることが好ましい。 また、 ρ型ク ラッ ド層は組成または格子定数の異なる層を交互に積層させてもよ く、 層の厚みと ドーパントである M gの濃度を変化させてもよい。 本発明に係る成長速度が 8〜 2 0 n m/分に制御された p型コン タク ト層には G a A 1 Nを用いることが好ましい。 その成長は次の ように行う。 TMG a、 TMA 1 およびドーパントである C p2M gを、 キャリアガス (水素または窒素、 ないしは両者の混合ガス) および NH3ガスと共に上記の p型クラッ ド層上に送り こむ。 In the growth of the P-type semiconductor layer, first, the P-type cladding layer, which is directly in contact with the final barrier layer of the light-emitting layer, is controlled on the growth rate of 8 to 20 nm / min. Layer. It is preferable to use G a N or G a A 1 N for the p-type cladding layer. In addition, the ρ-type cladding layer may be formed by alternately stacking layers having different compositions or lattice constants, and the thickness of the layer and the concentration of Mg as a dopant may be changed. It is preferable to use Ga A 1 N for the p-type contact layer whose growth rate is controlled to 8 to 20 nm / min according to the present invention. The growth is carried out as follows. TMG a, TMA 1 and dopant C p 2 Mg are fed onto the above p-type cladding layer together with a carrier gas (hydrogen or nitrogen, or a mixture of both) and NH 3 gas.
この時の成長温度は 9 8 0 〜 1 1 0 0 °cの範囲が望ましい = 9 8 The growth temperature at this time is preferably in the range of 980 to 1100 ° C = 9 8
0 °cより低い温度であると 、 結晶性の低いェピタキシャル層が形成 されてしまい、 結晶欠陥起因により駆動電圧の上昇を招く。 また 1When the temperature is lower than 0 ° C., an epitaxial layer having low crystallinity is formed, and the drive voltage is increased due to crystal defects. Also 1
1 0 0でより高い温度では 、 下層に位置する発光層のうち、 井戸層 が P型半導体層成長過程に いて高温度の環境下に置かれてしまいAt a higher temperature at 100, the well layer is placed in a high temperature environment during the growth process of the P-type semiconductor layer among the lower light emitting layers.
、 熱ダメージを受けてしまう可能性がある。 この場合は、 発光素子 にした時点での強度低下、 または耐性試験下での強度劣化をもたら す危険がある。 There is a possibility of receiving heat damage. In this case, there is a risk of causing a decrease in strength at the time of making the light emitting device or a deterioration in strength under a resistance test.
成長圧力については、 特に制限はないが、 好ましくは 5 0 k P a ( 5 0 0 m b a r ) 以下がよい。 この理由としては、 この圧力以下 で成長を行うと、 p型半導体層中の面内方向の A 1 濃度を均一にす ることができ、 必要に応じて G a A 1 Nの A 1組成を変化させた p 型半導体層を成長させる場合に、 制御が容易であるからである。 こ の圧力より高い条件では、 供給した TMA 1 と NH3の反応が顕著 なり、 成長途中にある基板に到達する前に TM A 1 が消費されてし まい、 目的とする A 1組成を得ることが困難になる。 ドーパントと して送り こんだ M gについても同様なことが言える。 すなわち、 5 0 k P a ( 5 0 0 m b a r ) 以下の成長条件であると、 p型半導体 層中の 2次元方向 (成長基板の面内方向) の M g濃度分布が均一 ( 成長基板の面内均一性) になる。 The growth pressure is not particularly limited, but preferably 50 k Pa (50 mbar) or less. The reason for this is that if grown below this pressure, the in-plane A 1 concentration in the p-type semiconductor layer can be made uniform, and if necessary, the A 1 composition of Ga A 1 N can be increased. This is because control is easy when growing the changed p-type semiconductor layer. Under conditions higher than this pressure, the reaction between the supplied TMA 1 and NH 3 becomes prominent, and TM A 1 is consumed before reaching the substrate in the middle of growth, and the desired A 1 composition is obtained. Becomes difficult. The same can be said for Mg sent as a dopant. That is, when the growth condition is 50 k Pa (50 0 mbar) or less, the Mg concentration distribution in the two-dimensional direction (in-plane direction of the growth substrate) in the p-type semiconductor layer is uniform (the growth substrate surface). Internal uniformity).
使用するキャリアガス流量によって G a A 1 Nコンタク ト層中の 面内方向の A 1 組成、 M g濃度の分布が変化することも知られてい る。 しかし、 キャリアガス条件よりも、 成長圧力の条件によってコ ンタク ト層中の A 1 組成、 M gの面内均一性が大きく左右されるこ とが見出された。 従って 5 0 k P a ( 5 0 0 m b a r ) 以下で 1 0 k P a ( l O O mb a r ) 以上の成長圧力とすることが適切である p型半導体層の成長速度は主に G a原料である TMG aの供給量 に依存する。 単位時間あたりの TM G a供給量を多くすれば、 それ だけ短時間に目的の膜厚を得ることができる。 ドーパント原料も同 じく供給量を多くすればよい。 しかし、 成長速度を速く した p型半 導体層は結晶欠陥が導入されやすく、 ドーパン卜が必要濃度含まれ ていても、 結晶欠陥に起因してドナー準位が増加し、 結果的に駆動 電圧 Vf が下がらなくなってしまう。 逆に成長速度を抑え過ぎると 、 目的膜厚を達するまでの成長時間が長くなり、 成長期間中におい ての発光層への熱ダメージを大きく してしまう恐れがある。 本発明 者は、 単位時間あたりの TMG aの供給量を検討し、 p型半導体の 成長速度をある範囲に限定し、 かつそれに合わせたドーパントの供 給量条件を変えることを行なった。 そして、 駆動電圧 Vf が低くな ることおよび発光層へ熱ダメージがないことを満足する p型コン夕 ク ト層の成長条件としては、 その成長速度が 8〜 2 0 nmZ分であ ることが好ましいことがわかった。 It is also known that the distribution of A 1 composition and Mg concentration in the in-plane direction of the Ga A 1 N contact layer changes depending on the carrier gas flow rate used. The However, it was found that the in-plane uniformity of the A 1 composition and Mg in the contact layer was greatly influenced by the growth pressure condition rather than the carrier gas condition. Therefore, it is appropriate to set the growth pressure below 50 k Pa (50 00 mbar) and above 10 k Pa (lOOmbar) .The growth rate of the p-type semiconductor layer is mainly from the Ga source. Depends on the amount of TMG a supplied. If the TMGa supply amount per unit time is increased, the desired film thickness can be obtained in such a short time. The supply amount of the dopant raw material may be increased as well. However, the p-type semiconductor layer with a high growth rate is likely to introduce crystal defects, and even if the required concentration of doppins is included, donor levels increase due to crystal defects, resulting in a driving voltage V f will not go down. On the other hand, if the growth rate is too low, the growth time until the target film thickness is reached becomes longer, and there is a risk of increasing thermal damage to the light emitting layer during the growth period. The inventor examined the supply amount of TMGa per unit time, limited the growth rate of the p-type semiconductor to a certain range, and changed the dopant supply amount condition in accordance with the growth rate. The growth condition of the p-type contact layer that satisfies the low drive voltage V f and the absence of thermal damage to the light emitting layer is that the growth rate is 8 to 20 nmZ. Was found to be preferable.
なお、 成長速度の決定は、 ゥエー八断面の電子顕微鏡 (T EM) 観察により P型コンタク ト層の膜厚を計測し、 成長時間で割り返し て求める。 したがって、 いくつか条件を変えた観察用サンプルを作 成して、 成長速度と単位時間あたりの TMG aの供給量との関係を 事前に調査しておく ことで必要とする成長条件をあらかじめ決定す ることができる。  The growth rate is determined by measuring the thickness of the P-type contact layer by electron microscope (TEM) observation of the UA-8 cross section and dividing it by the growth time. Therefore, the necessary growth conditions are determined in advance by preparing samples for observation with different conditions and investigating the relationship between the growth rate and the supply amount of TMGa per unit time in advance. Can.
P型コンタク ト層の成長のあと、 基板加熱を停止するとともに N 2ガスを送りこみ、 反応空間内をパージするとともに、 ゥエーハを 冷却し、 成長装置外にとりだせるまでに冷却する。 なお、 本方法で はこの時点において P型半導体層が目的とする P型となっているこ とを確認した。 従って、 このあとにおいて活性化のための熱処理は 必耍ではない。 After the growth of the P-type contact layer, the substrate heating is stopped and N Infeed 2 gas, as well as purge the reaction space, cooled Ueha, cooled until taken out to the outside of the growth apparatus. In this method, the P-type semiconductor layer was confirmed to be the target P-type at this point. Therefore, heat treatment for activation after this is not indispensable.
次に、 n型コンタク ト層および p型コンタク ト層上に設けられる 負極および正極について説明する。  Next, the negative electrode and the positive electrode provided on the n-type contact layer and the p-type contact layer will be described.
(負極)  (Negative electrode)
負極としても各種組成および構造のものが公知であり、 本願発明 においてもこれら公知のものを含めて、 如何なる組成および構造の ものも用いることができる。 その製造方法も各種の製法が公知であ り、 それら公知の方法を用いることができる。  As the negative electrode, those having various compositions and structures are known, and those of any composition and structure including these known ones can be used in the present invention. Various production methods are known as the production method, and these known methods can be used.
n型コンタク ト層上への負極形成面の作製には公知のフォ トリソ グラフィー技術および一般的なエッチング技術が利用可能である。 これらの技術により、 ゥェ一八の最上層から n型コンタク ト層の位 置にまで掘り込みができ、 負極形成予定の領域の n型コンタク ト層 を露出させることができる。 負極材料としては、 n型コンタク ト層 に接するコンタク トメタルとして A l 、 T i 、 N i 、 A uのほか、 C r 、 W、 Vなどの金属材料が利用可能である。 n型コンタク ト層 への密着性を向上させるために、 コンタク トメタルを上記金属から 複数選択した多層構造としてもよい。 なお、 最表面は A uであると ボンディ ング性が良好となる。  A known photolithography technique and a general etching technique can be used for producing the negative electrode forming surface on the n-type contact layer. With these technologies, it is possible to dig from the uppermost layer of We 18 to the position of the n-type contact layer, and to expose the n-type contact layer in the region where the negative electrode is to be formed. As the negative electrode material, metal materials such as Cr, W, and V as well as Al, Ti, Ni, and Au can be used as the contact metal in contact with the n-type contact layer. In order to improve adhesion to the n-type contact layer, a multilayer structure in which a plurality of contact metals are selected from the above metals may be used. When the outermost surface is Au, the bonding property is good.
(正極)  (Positive electrode)
P型コンタク ト層上に設けられる正極も、 各種組成および構造の 光透過性または反射性正極が知られており、 本願発明においてもこ れら公知のものを含めて、 如何なる組成および構造のものも用いる ことができる。 その製造方法も各種の製法が公知であり、 それら公 知の方法を用いることができる。 As the positive electrode provided on the P-type contact layer, light-transmitting or reflective positive electrodes having various compositions and structures are known, and the present invention also has any composition and structure including those known. Can be used. Various manufacturing methods are well known, and those public Knowledge methods can be used.
本発明では、 光透過性の I TOを正極材料に用いた場合に、 駆動 電圧の低下効果が大きいので好ましい。 I T Oの組成としては 5 0 %≤ I n < 1 0 0 %および 0 %く S n≤ 5 0 %とするのが好ましい 。 この範囲内において低い膜抵抗と高い光透過率を満足することが 可能である。 I nが 9 0 %、 S nが 1 0 %であることが特に好まし い。 I T〇には不純物として I I族、 I I I族、 I V族または V族 の元素を含んでいてもよい。 また、 I TOの代わりに S n O、 Z n Oまたは I n〇などを用いることもできる。  In the present invention, when light-transmitting ITO is used as the positive electrode material, it is preferable because the effect of reducing the driving voltage is great. It is preferable that the composition of I T O is 50% ≦ I n <100% and 0% and S n ≦ 50%. Within this range, low film resistance and high light transmittance can be satisfied. It is particularly preferable that I n is 90% and S n is 10%. ITO may contain elements of Group I, Group I, Group I, Group I or Group V as impurities. In addition, SnO, ZnO, or InO can be used instead of ITO.
I T O膜の膜厚は 5 0〜 5 0 0 n mが望ましい。 5 0 nm以下で あれば、 I T O膜自体の膜抵抗が高くなり、 駆動電圧が高くなる。 また逆に 5 0 O nmより厚いと上面への発光の取り出し効率が低く なり、 発光出力が高くならない。  The thickness of the I T O film is desirably 50 to 500 nm. If it is 50 nm or less, the film resistance of the ITO film itself increases and the drive voltage increases. Conversely, if it is thicker than 50 O nm, the extraction efficiency of light emission to the upper surface is lowered, and the light emission output does not increase.
I T O膜の成膜方法については、 公知の真空蒸着法やスパッ夕法 を用いることができる。 真空蒸着には加熱方法に抵抗加熱方式ゃ電 子線過熱方式などがあるが、 金属以外の材料の蒸着には、 電子線加 熱方式が適している。 また、 原料となる化合物を液状とし、 これを 表面に塗布した後然るべき処理により酸化物膜とする方法も用いる ことができる。  As a method for forming the ITO film, a known vacuum deposition method or sputtering method can be used. There are resistance heating methods and electron beam heating methods for vacuum deposition, but electron beam heating methods are suitable for the deposition of materials other than metals. In addition, a method can be used in which the compound as a raw material is made liquid and applied to the surface to form an oxide film by appropriate treatment.
蒸着法では条件により I T O 膜の結晶性が影響を受けるが、 条 件を適切に選択すればその限りではない。 なお室温にて I T O膜を 作成した場合は、 透明化のための熱処理が必要となる。  In the vapor deposition method, the crystallinity of the I T O film is affected by conditions, but this is not the case if the conditions are properly selected. If an ITO film is prepared at room temperature, heat treatment for transparency is required.
スパッ夕法による製膜では、 プラズマの高エネルギーの環境下に 置かれるため、 p型コンタク ト層表面がプラズマによるダメージを 受けやすく、 従って接触抵抗が高くなる傾向にあるが、 製膜条件を 工夫することで p型コンタク ト層表面への影響を少なくすることが できる。 通常、 光透過性または反射性正極を形成した後、 その一部表面に ボンディ ングパッ ド部を構成するボンディ ングパッ ド層を作製する 。 ボンディ ングパッ ド層と併せて正極を構成することになる。 ボン デイ ングパッ ド層の材料として、 各種の構造のものが知られており 、 本発明においても、 これら周知のものを特に制限されることなく 用いることが可能である。 負極材料に用いた A 1 、 T i 、 N i 、 A uのほか、 C r 、 W、 Vも何ら制限なく使用できる。 しかしながら 、 用いた光透過性または反射性正極との密着性の良い材料を用いる ことが望ましい。 厚さはボンディ ング時の応力に対して光透過性ま たは反射性正極へダメージを与えないよう十分厚くする必要がある 。 また最表層はボンディ ングポールとの密着性の良い材料、 例えば A uとすることが望ましい。 In the sputtering method, the surface of the p-type contact layer is easily damaged by the plasma because it is placed in a high-energy plasma environment, so the contact resistance tends to increase. By doing so, the influence on the surface of the p-type contact layer can be reduced. Usually, after forming a light transmissive or reflective positive electrode, a bonding pad layer constituting a bonding pad portion is formed on a part of the surface. Together with the bonding pad layer, a positive electrode is formed. As the material for the bonding pad layer, materials having various structures are known, and these well-known materials can be used in the present invention without any particular limitation. In addition to A 1, T i, N i and A u used for the negative electrode material, Cr, W and V can be used without any limitation. However, it is desirable to use a material having good adhesion to the light transmissive or reflective positive electrode used. The thickness must be sufficiently thick so as not to damage the light-transmitting or reflective positive electrode against the stress during bonding. The outermost layer is preferably made of a material having good adhesion to the bonding pole, such as Au.
本発明の I I I族窒化物半導体発光素子は、 例えば当業界周知の 手段により透明カバーを設けてランプにすることができる。 また、 本発明の窒化ガリゥム系化合物半導体発光素子と蛍光体を有する力 バーを組み合わせて白色のランプを作製することもできる。  The I I I group nitride semiconductor light-emitting device of the present invention can be formed into a lamp by providing a transparent cover by means well known in the art, for example. In addition, a white lamp can be manufactured by combining the gallium nitride compound semiconductor light emitting device of the present invention and a force bar having a phosphor.
また、 本発明の I I I族窒化物半導体発光素子から作製したラン プは駆動電圧が低く、 発光出力が高いので、 この技術によって作製 したランプを組み込んだ携帯電話、 ディスプレイ、 パネル類などの 電子機器や、 その電子機器を組み込んだ自動車、 コンピュータ、 ゲ ーム機、 などの機械装置類は、 低電力での駆動が可能となり、 高い 特性を実現することが可能である。 特に、 携帯電話、 ゲーム機、 玩 具、 自動車部品などの、 パッテリ駆動させる機器類において、 省電 力の効果を発揮する。 実施例  In addition, a lamp manufactured from the Group III nitride semiconductor light-emitting device of the present invention has a low driving voltage and a high light-emitting output. Therefore, electronic devices such as mobile phones, displays, and panels incorporating lamps manufactured by this technology Mechanical devices such as automobiles, computers, and game machines that incorporate the electronic devices can be driven with low power and can achieve high characteristics. In particular, it can save power in battery-powered devices such as mobile phones, game machines, toys, and automobile parts. Example
以下に実施例および比較例により本発明を詳細に説明するが、 本 発明はこれらの実施例のみに限定されるわけではない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. The invention is not limited to these examples.
(実施例 1 )  (Example 1)
反応炉のサセプター上にサファイア基板をセッ 卜し、 炉内圧力を Set the sapphire substrate on the reactor susceptor and set the pressure inside the reactor.
2 0 k P a ( 2 0 0 m b a r ) 、 基板温度を 1 1 0 0 °Cに制御して 、 TMA 1 と NH3を H2キャリアガスともに基板上に送り こみ、 A 1 Nバッファ層を形成した。 この成長時間は 1 0分とした。 20 k Pa (2 0 mbar), substrate temperature is controlled to 1 100 ° C, TMA 1 and NH 3 are sent onto the substrate together with H 2 carrier gas, and A 1 N buffer layer is formed did. The growth time was 10 minutes.
その後、 圧力を 4 0 k P a ( 4 0 0 m b a r ) 、 温度を 1 0 3 0 °Cとして TMG aと NH3を供給して A 1 Nバッファ層上にアンド —プ G a Nからなる下地層を 3時間成長した。 次いで、 圧力と温度 を維持しながら、 n型ドーパントとしてテトラメチルゲルマニウム を供給し、 n型 G a N層を 1時間成長した。 テトラメチルゲルマ二 ゥムの供給量は、 n型 G a N層のキャリア濃度が 4. 0 X 1 018 c m— 3になるように調整した。 これによつて n型コンタク ト層を形成 した。 Then, TMG a and NH 3 were supplied at a pressure of 40 k Pa (4 0 0 mbar), a temperature of 10 0 30 ° C, and an ampere G a N was formed on the A 1 N buffer layer. The formation was grown for 3 hours. Next, while maintaining pressure and temperature, tetramethyl germanium was supplied as an n-type dopant, and an n-type GaN layer was grown for 1 hour. The supply amount of tetramethylgermanium was adjusted so that the carrier concentration of the n-type GaN layer was 4.0 × 10 18 cm− 3 . As a result, an n-type contact layer was formed.
この後、 圧力は 4 0 k P a ( 4 0 0 m b a r ) 、 温度を 7 5 0 °C としてキャリアガスを H2から N2に切り替え、 T E G aと N H 3、 ドーパントとして S i H4を供給しながらバリア層を 7分間成長し 、 このあとさらに TM I nを供給して井戸層を 5分間成長させた。 このバリア層と井戸層の成長を交互に 5回繰り返して、 最後に最終 のバリア層を成長して、 発光層とした。 ド一パントの S i H4の量 はバリァ層および井戸層中の S i 濃度が 2. 0 X 1 017原子/ c m 3になるように調整した。 After this, the pressure is 40 kPa (400 mbar), the temperature is 7500 ° C, the carrier gas is switched from H 2 to N 2 , TEG a and NH 3 , and Si H 4 as the dopant are supplied While growing the barrier layer for 7 minutes, the well layer was further grown for 5 minutes by supplying TMIn. This growth of the barrier layer and well layer was repeated five times alternately, and finally the final barrier layer was grown to form a light emitting layer. The amount of Si H 4 in the dopant was adjusted so that the Si concentration in the barrier layer and well layer was 2.0 X 10 17 atoms / cm 3 .
この後、 圧力を 2 0 k P a ( 2 0 0 m b a r ) 、 温度を 1 0 0 0 °Cとしてキャリアガスを再び H2に切り替え、 TMG aと TMA 1 を供給して、 ドーパントとして C p 2M gを送り こんで G ao.95A 10. Q 5 Nからなる p型クラッ ド層を 3分間成長した。 After this, the pressure is 20 k Pa (2 00 mbar), the temperature is 10 00 ° C., the carrier gas is switched to H 2 again, TMG a and TMA 1 are supplied, and C p 2 is used as a dopant. A p-type cladding layer made of G ao. 95 A 10. Q 5 N was grown for 3 minutes by feeding Mg.
この後圧力と温度を維持しながら、 G a Q.98 A 1 D . Q 2 Nからなる p型コンタク ト層の成長を行なった。 その条件として成長速度が 8 n m 分となるように T M G a供給量を固定した。 成長時間は 1 5 分とした。 p型コンタク ト層中の M g濃度は 1 X 1 02 Q原子 Z c m 3になるように、 C p 2M gの供給量を調整した。 After this, while maintaining the pressure and temperature, it consists of G a Q. 98 A 1 D. Q 2 N A p-type contact layer was grown. As the condition, the TMG a supply amount was fixed so that the growth rate was 8 nm. The growth time was 15 minutes. The supply amount of C p 2 Mg was adjusted so that the Mg concentration in the p-type contact layer would be 1 X 10 2 Q atom Z cm 3 .
このあと、 誘導コイルへの電力投入をやめて、 加熱を停止しキヤ リアガスを N2に切り替えて、 炉内をパージするとともに得られた I I I族窒化物半導体積層物を炉外に取り出せる温度にまで冷却し た。 Thereafter, stop power supply to the induction coil, cooling the heating was stopped Canon Riagasu switch to N 2, until a group III nitride semiconductor multilayer structure obtained with purging the furnace to a temperature that can be extracted from the furnace did.
炉外に取り出した I I I族窒化物半導体積層物の n型コンタク ト 層の一部をフォ トリソグラフと ドライエッチングにより露出させ、 その上に C r と T i の金属層からなる負極を作製した。 また p型コ ン夕ク ト層上には蒸着法により厚さ 3 5 0 nmの I T〇膜 ( I n : S n = 9 : 1 ) を作製し、 その上に T i 、 A u、 A 1 および A uを この順序で積層したボンディ ングパッ ド層を作製し、 正極とした。 その後、 基板裏面研磨とスクライブをした後、 各発光素子に分割し た。  A part of the n-type contact layer of the I II I nitride semiconductor laminate taken out of the furnace was exposed by photolithography and dry etching, and a negative electrode composed of a Cr and Ti metal layer was formed thereon. On the p-type contact layer, an IT ○ film (In: Sn = 9: 1) with a thickness of 3500 nm was fabricated by vapor deposition, and Ti, Au, A A bonding pad layer in which 1 and Au were laminated in this order was fabricated and used as the positive electrode. Thereafter, the substrate back surface was polished and scribed, and then divided into light emitting elements.
得られた発光素子に 2 0 mAの電流を流して発光させるとともに 、 駆動電圧 Vf と発光出力を測定したところ 3. 2 Vと 9 mWであ つた。 また、 電流一電圧特性曲線の測定結果を図 3 に示した。 この 図から上記 ( 1 ) 式を用いて求めた n値は 1. 8であった。 なお、 これらの結果を他の実施例および比較例と纏めて下記の表 1 に示し た。 The obtained light emitting device was caused to emit light by passing a current of 20 mA, and the drive voltage V f and the light emission output were measured and found to be 3.2 V and 9 mW. Figure 3 shows the measurement results of the current-voltage characteristic curve. From this figure, the n value obtained using the above equation (1) was 1.8. These results are summarized in Table 1 below together with other examples and comparative examples.
(実施例 2 )  (Example 2)
P型コンタク ト層の成長条件を、 成長速度を 2 0 nmZ分、 成長 時間を 6分としたことを除いて、 実施例 1 と同様に I I I族窒化物 半導体発光素子を作製した。  A group I I I nitride semiconductor light emitting device was fabricated in the same manner as in Example 1 except that the growth conditions of the P-type contact layer were set to 20 nmZ for the growth rate and 6 minutes for the growth time.
得られた発光素子を実施例 1 と同様に評価したところ、 駆動電圧 は 3. 2 V、 発光出力は 9 mWであった。 また、 電流一電圧特性曲 線の測定結果を図 4に示した。 この図から上記 ( 1 ) 式を用いて求 めた n値は 2. 0であった。 When the obtained light emitting device was evaluated in the same manner as in Example 1, the driving voltage was Was 3.2 V and the light output was 9 mW. Figure 4 shows the measurement results of the current-voltage characteristic curve. From this figure, the n value obtained using the above equation (1) was 2.0.
(比較例 1 )  (Comparative Example 1)
p型コンタク ト層の成長条件を、 成長速度を 7 nmZ分、 成長時 間を 1 7. 2分としたことを除いて、 実施例 1 と同様に I I I族窒 化物半導体発光素子を作製した。  A II-I group nitride semiconductor light-emitting device was fabricated in the same manner as in Example 1 except that the growth conditions of the p-type contact layer were set to 7 nmZ for the growth rate and 17.2 minutes for the growth time.
得られた発光素子を実施例 1 と同様に評価したところ、 駆動電圧 は 3. 3 V、 発光出力は 8 mWであった。 また、 電流一電圧特性曲 線の測定結果を図 5に示した。 この図から上記 ( 1 ) 式を用いて求 めた n値は 2. 6であった。  The obtained light emitting device was evaluated in the same manner as in Example 1. As a result, the driving voltage was 3.3 V and the light emission output was 8 mW. Figure 5 shows the measurement results of the current-voltage characteristic curve. From this figure, the n value obtained using the above equation (1) was 2.6.
(比較例 2 )  (Comparative Example 2)
P型コンタク ト層の成長条件を、 成長速度を 2 1 n mZ分、 成長 時間を 5. 7分としたことを除いて、 実施例 1 と同様に I I I族窒 化物半導体発光素子を作製した。  A II-I group nitride semiconductor light-emitting device was fabricated in the same manner as in Example 1 except that the growth conditions of the P-type contact layer were set to 21 nm mZ and the growth time was 5.7 min.
得られた発光素子を実施例 1 と同様に評価したところ、 駆動電圧 は 3. 4 V、 発光出力は 8 mWであった。 また、 電流一電圧特性曲 線の測定結果を図 6に示した。 この図から上記 ( 1 ) 式を用いて求 めた n値は 3. 1であった。 表 1  When the obtained light emitting device was evaluated in the same manner as in Example 1, the drive voltage was 3.4 V and the light emission output was 8 mW. Figure 6 shows the measurement results of the current-voltage characteristic curve. From this figure, the n value obtained using the above equation (1) was 3.1. table 1
Figure imgf000020_0001
産業上の利用可能性 本発明の I I I族窒化物半導体発光素子は、 良好な発光出力を有 し、 駆動電圧が低下するので、 その産業上の利用価値は非常に大き い。
Figure imgf000020_0001
Industrial applicability The Group III nitride semiconductor light-emitting device of the present invention has a good light output and a low driving voltage, and thus has a very high industrial utility value.

Claims

FCT/JP2007/058001 O 2007/123262 PCT/JP2007/059001 請 求 の 範 囲 FCT / JP2007 / 058001 O 2007/123262 PCT / JP2007 / 059001 Request scope
1. 基板上に I I I族窒化物半導体からなる、 η型半導体層、 発 光層および Ρ型半導体層をこの順序で成長させた後、 該 η型半導体 層および Ρ型半導体層に負極および正極をそれぞれ形成することか らなる I I I族窒化物半導体発光素子の製造方法において、 該 ρ型 半導体層の成長速度が 8〜 2 O n m/分であることを特徴とする I 1. After a η-type semiconductor layer, a light emitting layer, and a saddle-type semiconductor layer made of a group III nitride semiconductor are grown in this order on a substrate, a negative electrode and a positive electrode are formed on the η-type semiconductor layer and the saddle-type semiconductor layer. In the method for producing a group III nitride semiconductor light-emitting device comprising forming each, the growth rate of the ρ-type semiconductor layer is 8 to 2 O nm / min.
I I族窒化物半導体発光素子の製造方法。  I Group I nitride semiconductor light emitting device manufacturing method.
2. p型半導体層を成長させる際の成長装置内圧力が 1 0〜 5 0 k P aである請求項 1 に記載の製造方法。  2. The manufacturing method according to claim 1, wherein the pressure in the growth apparatus when growing the p-type semiconductor layer is 10 to 50 kPa.
3. 請求項 1 に記載の製造方法によって製造された I I I族窒化 物半導体発光素子。  3. A group I I I nitride semiconductor light-emitting device manufactured by the manufacturing method according to claim 1.
4. 基板上に I I I族窒化物半導体からなる、 n型半導体層、 発 光層および p型半導体層がこの順序で積層され、 正極および負極が それぞれ p型半導体層および n型半導体層に接して設けられた発光 素子において、 下記式 ( 1 ) で表される発光素子の電流-電圧曲線  4. An n-type semiconductor layer, a light emitting layer, and a p-type semiconductor layer made of a group III nitride semiconductor are stacked in this order on the substrate, and the positive electrode and the negative electrode are in contact with the p-type semiconductor layer and the n-type semiconductor layer, respectively. In the provided light emitting device, the current-voltage curve of the light emitting device represented by the following formula (1)
の n値が 2以下であることを特徴とする I I I族窒化物半導体発光 素子。 N value of 2 or less is a group I I I nitride semiconductor light emitting device.
I = I 0 (E X P ( q V/n - k T) - l ) ( 1 ) I = I 0 (EXP (q V / n-k T)-l) (1)
5. 請求項 3または 4に記載の I I I族窒化物半導体発光素子か らなるランプ。  5. A lamp comprising the I I I group nitride semiconductor light-emitting device according to claim 3 or 4.
6. 請求項 5に記載のランプが組み込まれている電子機器。  6. An electronic device in which the lamp according to claim 5 is incorporated.
7. 請求項 6に記載の電子機器が組み込まれている機械装置。  7. A mechanical device in which the electronic device according to claim 6 is incorporated.
PCT/JP2007/059001 2006-04-19 2007-04-19 Method for manufacturing group iii nitride semiconductor light emitting element WO2007123262A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006115791A JP2007288052A (en) 2006-04-19 2006-04-19 Method of manufacturing group-iii nitride semiconductor light-emitting element
JP2006-115791 2006-04-19

Publications (1)

Publication Number Publication Date
WO2007123262A1 true WO2007123262A1 (en) 2007-11-01

Family

ID=38625153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/059001 WO2007123262A1 (en) 2006-04-19 2007-04-19 Method for manufacturing group iii nitride semiconductor light emitting element

Country Status (3)

Country Link
JP (1) JP2007288052A (en)
TW (1) TW200812111A (en)
WO (1) WO2007123262A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5042781B2 (en) 2007-11-06 2012-10-03 株式会社ミツトヨ Frequency stabilized laser device and laser frequency stabilizing method
JP2011009502A (en) * 2009-06-26 2011-01-13 Showa Denko Kk Light emitting element and method of manufacturing the same, lamp, electronic apparatus, and mechanical apparatus
WO2012140844A1 (en) * 2011-04-12 2012-10-18 パナソニック株式会社 Gallium nitride compound semiconductor light emitting element and method for manufacturing same
JP7149486B2 (en) 2020-04-21 2022-10-07 日亜化学工業株式会社 Method for manufacturing light-emitting element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135576A (en) * 1996-02-23 1998-05-22 Fujitsu Ltd Semiconductor light-emitting element, optical semiconductor element, light-emitting diode, and display
JP2000040858A (en) * 1998-05-18 2000-02-08 Fujitsu Ltd Optical semiconductor device, manufacture thereof and semiconductor wafer
JP2003023179A (en) * 2001-07-06 2003-01-24 Ricoh Co Ltd p-TYPE III NITRIDE SEMICONDUCTOR, ITS MANUFACTURING METHOD, SEMICONDUCTOR DEVICE, AND ITS MANUFACTURING METHOD
JP2003309074A (en) * 2002-04-18 2003-10-31 Showa Denko Kk Method for manufacturing gallium aluminum nitride layer, iii nitride semiconductor light emitting element and method for manufacturing the same
JP2004214337A (en) * 2002-12-27 2004-07-29 Nichia Chem Ind Ltd Nitride semiconductor light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10135576A (en) * 1996-02-23 1998-05-22 Fujitsu Ltd Semiconductor light-emitting element, optical semiconductor element, light-emitting diode, and display
JP2000040858A (en) * 1998-05-18 2000-02-08 Fujitsu Ltd Optical semiconductor device, manufacture thereof and semiconductor wafer
JP2003023179A (en) * 2001-07-06 2003-01-24 Ricoh Co Ltd p-TYPE III NITRIDE SEMICONDUCTOR, ITS MANUFACTURING METHOD, SEMICONDUCTOR DEVICE, AND ITS MANUFACTURING METHOD
JP2003309074A (en) * 2002-04-18 2003-10-31 Showa Denko Kk Method for manufacturing gallium aluminum nitride layer, iii nitride semiconductor light emitting element and method for manufacturing the same
JP2004214337A (en) * 2002-12-27 2004-07-29 Nichia Chem Ind Ltd Nitride semiconductor light emitting device

Also Published As

Publication number Publication date
TW200812111A (en) 2008-03-01
JP2007288052A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
TWI413279B (en) Group iii nitride semiconductor light emitting device, process for producing the same, and lamp
TWI377703B (en) Production method of group iii nitride semiconductor light-emitting device
KR101067122B1 (en) Method of manufacturing group III nitride semiconductor, method of manufacturing group III nitride semiconductor light emitting device and group III nitride semiconductor light emitting device, and lamp
KR100894878B1 (en) Method for fabrication of group ? nitride semiconductor
US9040319B2 (en) Group-III nitride compound semiconductor light-emitting device, method of manufacturing group-III nitride compound semiconductor light-emitting device, and lamp
TW200840096A (en) Method of producing group-III nitride semiconductor layer, group-III nitride semiconductor light-emitting device and lamp thereof
JPH02275682A (en) Compound semiconductor material and semiconductor element using same and manufacture thereof
KR20080098550A (en) Iii nitride compound semiconductor laminated structure
TW201145584A (en) Process for production of nitride semiconductor element, nitride semiconductor light-emitting element, and light-emitting device
TW200834670A (en) Process for producing III group nitride compound semiconductor, III group nitride compound semiconductor light emitting element, and lamp
WO2008075559A1 (en) Method for manufacturing group iii nitride semiconductor light-emitting device, group iii nitride semiconductor light-emitting device, and lamp
WO2008041586A1 (en) Method for manufacturing group iii nitride compound semiconductor light-emitting device, group iii nitride compound semiconductor light-emitting device, and lamp
WO2008108488A1 (en) Method for manufacturing gallium nitride compound semiconductor light-emitting device
TW201133557A (en) Method for manufacturing aluminum-containing nitride intermediate layer, method for manufacturing nitride layer, and method for manufacturing nitride semiconductor element
CN107195736A (en) A kind of gallium nitride based LED epitaxial slice and its growing method
WO2005104251A1 (en) N-type group i i i nitride semiconductor layered structure
JP2008034444A (en) Group iii nitride semiconductor light emitting device, method of manufacturing same, and lamp
WO2004086521A1 (en) Light-emitting device and method for manufacturing light-emitting device
JP2007109713A (en) Group iii nitride semiconductor light emitting element
JP2007329312A (en) Method of manufacturing laminated layer structure of group iii nitride semiconductor
WO2007123262A1 (en) Method for manufacturing group iii nitride semiconductor light emitting element
US8383439B2 (en) Apparatus for manufacturing group-III nitride semiconductor layer, method of manufacturing group-III nitride semiconductor layer, group-III nitride semiconductor light-emitting device, method of manufacturing group-III nitride semiconductor light-emitting device, and lamp
JP4781028B2 (en) Group III nitride semiconductor laminate and method for manufacturing group III nitride semiconductor light emitting device
EP1869717B1 (en) Production method of group iii nitride semioconductor element
JP2007103955A (en) Nitride semiconductor and method for growing nitride semiconductor crystal layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07742436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07742436

Country of ref document: EP

Kind code of ref document: A1