JP2007149746A - Transparent oxide semiconductor junction - Google Patents

Transparent oxide semiconductor junction Download PDF

Info

Publication number
JP2007149746A
JP2007149746A JP2005338639A JP2005338639A JP2007149746A JP 2007149746 A JP2007149746 A JP 2007149746A JP 2005338639 A JP2005338639 A JP 2005338639A JP 2005338639 A JP2005338639 A JP 2005338639A JP 2007149746 A JP2007149746 A JP 2007149746A
Authority
JP
Japan
Prior art keywords
cucro
substrate
thin film
zno
semiconductor junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005338639A
Other languages
Japanese (ja)
Inventor
Naoto Kikuchi
直人 菊地
Kazuhiko Sotooka
和彦 外岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005338639A priority Critical patent/JP2007149746A/en
Priority to PCT/JP2006/322867 priority patent/WO2007060877A1/en
Publication of JP2007149746A publication Critical patent/JP2007149746A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02472Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor junction having a p-type transparent oxide with high transmissivity to visible light formed as a film on a glass substrate or a plastic substrate with relative low heat resistance. <P>SOLUTION: In the semiconductor junction, a film of CuCrO<SB>2</SB>is formed as a p-type transparent thin oxide film at the temperature lower than 400°C on a glass substrate or a plastic substrate. The junction uses Cu(Cr, M)O<SB>2</SB>with one or more kinds of M including Mg, Ca, Be, Sr, Ba, Zn, Cd, Fe and Ni, which are bivalent cations, substituting for part of Cr of the CuCrO<SB>2</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、比較的耐熱性の低い窓ガラスやプラスチックなど安価な基板上に、可視光に対する透過性が高いp型の透明酸化物を成膜した半導体接合に関する。   The present invention relates to a semiconductor junction in which a p-type transparent oxide having a high transmittance to visible light is formed on an inexpensive substrate such as a window glass or plastic having relatively low heat resistance.

化合物半導体のp-n半導体接合は、電子回路において整流回路として用いられるダイオードや増幅回路として用いられるトランジスタとして広く用いられている。またp-n接合界面に適当な波長の光が当たると界面において光起電力が誘起されることから太陽光発電として利用されたり、さらにはp-n半導体接合面に適当な電圧を印加すると光が発生することから発光ダイオードなどにも広く応用されている。   A p-n semiconductor junction of a compound semiconductor is widely used as a diode used as a rectifier circuit in an electronic circuit or a transistor used as an amplifier circuit. In addition, when light of an appropriate wavelength hits the pn junction interface, a photovoltaic power is induced at the interface, so it can be used as photovoltaic power generation, or light can be generated when an appropriate voltage is applied to the pn semiconductor junction surface. Is widely applied to light emitting diodes.

こうした半導体接合に広く用いられているシリコン(Si)は、ホウ素(B)または砒素(As)やリン(P)によってSiの一部が元素置換されることにより、それぞれp型またはn型の伝導性制御が可能であることから、種々の目的の電子素子として広く利用されている。しかし、Siのバンドギャップは1.1eVであるため、可視光領域に強い吸収があり、非常に薄くしても可視光に対する高い透過性は得られない。   Silicon (Si), which is widely used for such semiconductor junctions, has p-type or n-type conduction by elemental substitution of part of Si by boron (B), arsenic (As), or phosphorus (P), respectively. Therefore, it is widely used as an electronic device for various purposes. However, since the band gap of Si is 1.1 eV, there is strong absorption in the visible light region, and even if it is very thin, high transparency to visible light cannot be obtained.

窒化ガリウム(GaN)は、青色発光ダイオードとして応用されている透明なワイドバンドギャップ(3.3eV)半導体である。化学気相蒸着法(CVD)や分子ビームエピタキシー法(MBE)で作製されたGaN結晶はn型であり、そのキャリア濃度は1019−1020cm-1と高いものであるが、p型不純物である亜鉛(Zn)やマグネシウム(Mg)を添加しても抵抗値が高くなるがp型にはならない。 Gallium nitride (GaN) is a transparent wide band gap (3.3 eV) semiconductor applied as a blue light emitting diode. GaN crystals prepared by chemical vapor deposition (CVD) or molecular beam epitaxy (MBE) are n-type, and their carrier concentration is as high as 10 19 -10 20 cm -1 , but p-type impurities Even if zinc (Zn) or magnesium (Mg) is added, the resistance value increases, but it does not become p-type.

1983年にMBE法で窒化アルミニウム(AlN)を下地にバッファー層として利用することによってGaN結晶の結晶性が向上することが発見され(非特許文献1)、1989年に高結晶性GaNにMgを添加し低速電子線照射することによって初めてp型が得られることが報告された(非特許文献2)。また、バッファー層としてのAlNに代わってGaNを700℃程度の低温で薄く成長させた後に1000℃程度でGaNを再度成長させる二段階成長法によっても高結晶性のGaNが得られることが報告され、その方法で作製されたMg添加GaNを窒素中で熱処理することによってもp型が得られることが報告された(非特許文献3)。しかしいずれの場合も、高価な単結晶基板上に高温で成長した高結晶性GaNにおいて初めてp型を得ることができるものであって、耐熱性の低いガラス基板またはプラスチック基板上に透明なp-n半導体接合を形成することは不可能である。   In 1983, it was discovered that the crystallinity of GaN crystals improved by using MBE as a buffer layer with aluminum nitride (AlN) as the base (Non-patent Document 1), and in 1989 Mg was added to highly crystalline GaN. It has been reported that p-type can be obtained for the first time by adding low-energy electron beam irradiation (Non-patent Document 2). It has also been reported that highly crystalline GaN can be obtained by a two-step growth method in which GaN is grown thinly at a low temperature of about 700 ° C instead of AlN as a buffer layer, and then GaN is grown again at about 1000 ° C. It has been reported that p-type can also be obtained by heat-treating Mg-doped GaN produced by this method in nitrogen (Non-patent Document 3). However, in either case, p-type can be obtained for the first time in high crystalline GaN grown at high temperature on an expensive single crystal substrate, and a transparent pn semiconductor on a glass substrate or plastic substrate with low heat resistance It is impossible to form a bond.

酸化インジウム(In2O3)、スズ(Sn)を元素置換したIn2O3、酸化亜鉛(ZnO)、Alまたはガリウム(Ga)を元素置換したZnO、酸化スズ(SnO2)、アンチモン(Sb)やフッ素(F)を元素置換したSnO2などは可視光領域における高い光透過性と高い電気伝導性を示す材料として知られている。とくにIn2O3、Snを元素置換したIn2O3は、非晶質でも高い電気伝導性を維持することが知られている。しかし、いずれもn型の電気伝導性を示し、p型は示さない。 Indium oxide (In 2 O 3), tin (Sn) elemental substituted In 2 O 3, zinc oxide (ZnO), Al, or gallium (Ga) elemental substituted ZnO, tin oxide (SnO 2), antimony (Sb ) And fluorine (F) element-substituted SnO 2 are known as materials exhibiting high light transmittance and high electrical conductivity in the visible light region. Particularly In 2 O 3, Sn elemental substituted In 2 O 3 is known to maintain high electrical conductivity in amorphous. However, all show n-type conductivity, and do not show p-type.

アルミン酸銅(CuAlO2)はデラフォサイト型構造を有する材料であり、可視光で高い透過性(バンドギャップは3.1eV以上)とp型の電気伝導性を示し、その抵抗率は1Ωcm程度と報告されている(特許文献1)。しかし作製に必要な温度が700℃と高く、耐熱性の低いガラス基板またはプラスチック基板上に成膜することは、基板の耐熱性に問題があり不可能である。 Copper aluminate (CuAlO 2 ) is a material with a delafossite-type structure, which exhibits high visible light transmission (band gap of 3.1 eV or more) and p-type conductivity, and its resistivity is about 1 Ωcm. It has been reported (Patent Document 1). However, it is impossible to form a film on a glass substrate or plastic substrate having a high temperature required for production of 700 ° C. and low heat resistance because of the problem of heat resistance of the substrate.

ロジウム酸亜鉛(ZnRh2O4)はスピネル型構造を有する材料であり、p型の電気伝導性を示すことが知られている(非特許文献4)。また、スパッタリングにより基板を加熱することなく成膜されたZnRh2O4薄膜は非晶質であり、かつp型の電気伝導性を示すこと、およびn型の電気伝導性を持つ非晶質のインジウムガリウム亜鉛酸化物(InGaZnO4)と組み合わせてp-n接合ダイオードが作製できることが報告されている(非特許文献5)。しかし、ZnRh2O4はバンドギャップが2.1eVと小さいため、可視光領域における光透過性は高くない。 Zinc rhodate (ZnRh 2 O 4 ) is a material having a spinel structure, and is known to exhibit p-type electrical conductivity (Non-patent Document 4). In addition, ZnRh 2 O 4 thin film formed without heating the substrate by sputtering is amorphous and exhibits p-type conductivity, and amorphous with n-type conductivity. It has been reported that a pn junction diode can be fabricated by combining with indium gallium zinc oxide (InGaZnO 4 ) (Non-patent Document 5). However, since ZnRh 2 O 4 has a small band gap of 2.1 eV, the light transmittance in the visible light region is not high.

一方、クロム酸銅(CuCrO2)はCuAlO2と同じくデラフォサイト型構造を有する材料であり、1050℃で作製された焼結体試料では、p型の電気伝導性を示すが、その抵抗率は105Ωcmと非常に高く、抵抗率低下のためにCrに対しCaの元素置換が必要とされている(非特許文献6)。またCuCrO2は薄膜化も試みられており、400℃以上の成膜で、直接許容遷移を仮定した場合のバンドギャップは3.1eVと可視光で高い透過性を示し、その抵抗率は1Ωcmであると報告されている(非特許文献7)。 On the other hand, copper chromate (CuCrO 2 ) is a material having a delafossite type structure like CuAlO 2, and the sintered body sample produced at 1050 ° C shows p-type conductivity, but its resistivity Is as high as 10 5 Ωcm, and elemental substitution of Ca for Cr is required to reduce resistivity (Non-patent Document 6). In addition, CuCrO 2 has also been attempted to reduce the film thickness. The band gap is 3.1 eV, showing a high transmittance with visible light, assuming a permissible transition directly, and its resistivity is 1 Ωcm. (Non-Patent Document 7).

CuCrO2薄膜においてCrの一部をMgにより置換すると、薄膜の抵抗率を低下させるとともに結晶化温度を下げる効果があると報告されている。MgをCrに対して5 at.%元素置換したCuCr0.95Mg0.05O2では、基板温度400℃において成膜した薄膜において多結晶体が得られ、その抵抗率は0.01Ωcmを示すと報告されている(非特許文献7)。しかし、p型の電気伝導性をもつCuCrO2または一部元素置換したCuCrO2薄膜を400℃未満で作製したとの報告はない。 It has been reported that replacing a part of Cr with Mg in a CuCrO 2 thin film has the effect of lowering the resistivity of the thin film and lowering the crystallization temperature. CuCr 0.95 Mg 0.05 O 2 with Mg at 5% elemental substitution for Cr yields a polycrystal in a thin film deposited at a substrate temperature of 400 ° C., and its resistivity is reported to be 0.01 Ωcm. (Non-Patent Document 7). However, it reported that the CuCrO 2 thin film CuCrO 2 or some element substitution with p-type conductivity to produce less than 400 ° C. is not.

特開平11-278834号公報JP 11-278834 A S. Yoshida、Appl. Phys. Lett. vol.42、p.427(1983))S. Yoshida, Appl. Phys. Lett. Vol.42, p.427 (1983)) H. Amano、Jpn. J. Appl. Phys. vol.28、p.L2112 (1989))H. Amano, Jpn. J. Appl. Phys. Vol.28, p.L2112 (1989)) S. Nakamura、Jpn. J. Appl. Phys. vol.30、p.L1998 (1991))S. Nakamura, Jpn. J. Appl. Phys. Vol.30, p.L1998 (1991)) I. S. Shaplygin、J. Inorg. Chem.,vol.31、p.1649(1986))I. S. Shaplygin, J. Inorg. Chem., Vol. 31, p.1649 (1986)) S. Narushima、Adv. Mater.,vol.15、p.1409(2003))S. Narushima, Adv. Mater., Vol.15, p.1409 (2003)) F.A.Benko、Mat. Res. Bull.,vol.21、p.753(1986))F.A.Benko, Mat. Res. Bull., Vol.21, p.753 (1986)) R.Nagarajan、J. Appl. Phys.,vol.89、p.8022(2001))R. Nagarajan, J. Appl. Phys., Vol.89, p.8022 (2001))

要約すると、n型の電気伝導性と可視光領域で高い光透過性を持ち、かつプラスチック上に薄膜形成可能な材料はすでに知られている。一方、p型の電気伝導性を有する材料に関しては、ZnRhO4は基板加熱することなく非晶質薄膜を得ることができることから、プラスチック基板上へのp-n半導体接合作製は可能であるが、バンドギャップが2.1eVと小さいため、可視光領域の光透過性は低い。一方、デラフォサイト型構造を有する透明酸化物半導体はバンドギャップが広いため、高い可視光透過性を有することが期待できるが、十分結晶化できない場合は低い抵抗率が得られなかった。このため、窓ガラスなどに使用されるソーダガラスやホウケイ酸ガラスまたはプラスチックなど熱に弱い基板上へ高い光透過性を持つp-n半導体接合を作製することはできなかった。 In summary, materials having n-type electrical conductivity and high light transmittance in the visible light region and capable of forming a thin film on plastic are already known. On the other hand, for materials with p-type conductivity, ZnRhO 4 can obtain an amorphous thin film without heating the substrate, so it is possible to produce a pn semiconductor junction on a plastic substrate, but the band gap Is as small as 2.1 eV, the light transmittance in the visible light region is low. On the other hand, since the transparent oxide semiconductor having a delafossite structure has a wide band gap, it can be expected to have high visible light transmittance. However, when the crystal cannot be sufficiently crystallized, a low resistivity was not obtained. For this reason, it has not been possible to produce a pn semiconductor junction having high light transmittance on a heat-sensitive substrate such as soda glass, borosilicate glass, or plastic used for window glass.

本発明の目的は、上記の問題点に鑑み、比較的耐熱性の低いガラス基板上やプラスチック基板上に、可視光に対する透過性が高いp型の透明酸化物を成膜した半導体接合を提供することにある。   In view of the above problems, an object of the present invention is to provide a semiconductor junction in which a p-type transparent oxide having a high transmittance to visible light is formed on a glass substrate or a plastic substrate having a relatively low heat resistance. There is.

上記の課題を解決するために、次のような手段を採用した。
第1の手段は、ガラス基板またはプラスチック基板上にp型の透明酸化物薄膜としてCuCrO2を400℃未満で成膜したことを特徴とする半導体接合である。
第2の手段は、第1の手段において、上記CuCrO2のCrの一部を二価の陽イオンであるM=Mg、Ca、Be、Sr、Ba、Zn、Cd、Fe、Niのいずれか一種類以上と元素置換した Cu(Cr,M)O2を用いたことを特徴とする半導体接合である。
第3の手段は、第1の手段または第2の手段において、上記ガラス基板は、SiO2を主成分とし、ナトリウム(Na)を含むソーダガラス、ホウ素(B)を含むホウケイ酸ガラス、またはアルミニウム(Al)を含むアルミノケイ酸ガラスのいずれか1種類以上のガラスを含む基板であることを特徴とする半導体接合である。
第4の手段は、第1の手段または第2の手段において、上記プラスチック基板は、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネ−ト(PC)、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ポリエーテルサルホン(PESF)、メタクリル樹脂(PMMA)、ポリイミド(PI)、またはポリアミド(PA)のいずれか1つからなる基板あることを特徴とする半導体接合である。
In order to solve the above problems, the following means were adopted.
The first means is a semiconductor junction characterized in that CuCrO 2 is formed as a p-type transparent oxide thin film at a temperature lower than 400 ° C. on a glass substrate or a plastic substrate.
A second means is the first means, wherein a part of Cr of the CuCrO 2 is a divalent cation of M = Mg, Ca, Be, Sr, Ba, Zn, Cd, Fe, or Ni. It is a semiconductor junction characterized by using Cu (Cr, M) O 2 substituted with one or more elements.
A third means is the first means or the second means, wherein the glass substrate contains SiO 2 as a main component, soda glass containing sodium (Na), borosilicate glass containing boron (B), or aluminum. A semiconductor junction comprising a substrate containing at least one kind of aluminosilicate glass containing (Al).
A fourth means is the first means or the second means, wherein the plastic substrate is made of polyethylene (PE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), polystyrene (PS), A semiconductor junction comprising a substrate made of any one of polyethersulfone (PESF), methacrylic resin (PMMA), polyimide (PI), or polyamide (PA).

本発明によれば、半導体接合を比較的耐熱性の低い窓ガラスやプラスチックなど安価な基板上に大面積に形成することができ、可視光に対する透過性も高いので、透明なダイオード、トランジスタ、太陽電池などの半導体接合素子を低コストで実現することができる。   According to the present invention, a semiconductor junction can be formed in a large area on an inexpensive substrate such as a window glass or plastic having relatively low heat resistance, and has high transparency to visible light. Therefore, a transparent diode, transistor, solar A semiconductor junction element such as a battery can be realized at low cost.

はじめに、本発明の半導体接合が形成される透明基板および該透明基板に半導体接合を形成する方法の種類について説明する。   First, the transparent substrate on which the semiconductor junction of the present invention is formed and the types of methods for forming the semiconductor junction on the transparent substrate will be described.

n型またはp型の透明酸化物薄膜が形成される透明基板は、室温において可視光透過率が高いものであることが望ましい。波長400−800nmの可視光領域における透過率は50%以上が好ましく、80%以上がより好ましい。透明基板としては、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネ−ト(PC)、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ポリエーテルサルホン(PESF)、メタクリル樹脂(PMMA)、ポリイミド(PI)、またはポリアミド(PA)からなるプラスチック基板、Naを含むソーダライムガラス、Bを含むホウケイ酸ガラスなどのガラス基板、Alを含む無アルカリアルミノケイ酸ガラスなどが挙げられるが、薄膜形成プロセスに耐える熱的、化学的性質を有する必要がある。   The transparent substrate on which the n-type or p-type transparent oxide thin film is formed preferably has a high visible light transmittance at room temperature. The transmittance in the visible light region having a wavelength of 400 to 800 nm is preferably 50% or more, and more preferably 80% or more. Transparent substrates include polyethylene (PE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), polystyrene (PS), polyethersulfone (PESF), methacrylic resin (PMMA), polyimide (PI ), Or a plastic substrate made of polyamide (PA), soda-lime glass containing Na, borosilicate glass containing B, non-alkaline aluminosilicate glass containing Al, etc. Must have chemical and chemical properties.

また、n型またはp型の透明酸化物薄膜を透明基板上に形成する方法としては、例えば、スパッタリング法、PLD法、CVD法、真空蒸着法などがある。スパッタリング法は大面積成膜に適し、量産性の高い方法である。またプラズマシースにおける電位勾配により加速されたイオン粒子の基板への衝突により基板表面でのスパッタ粒子の表面拡散が促進されるので、比較的低温でも高い結晶性が得られる特徴があるため、本発明の半導体接合の製造に適している。PLD法は透明酸化物半導体薄膜を単結晶基板上へエピタキシャル成長させて結晶性の高い薄膜を作製するのに適した方法であるが、成膜面積が20mm程度と小さく、量産性には現状では課題が残っている。CVD法は透明酸化物半導体薄膜を大面積に均一に作製するのに優れているが、低温で作製する場合に原料ガス中に含まれる有機物などの不純物が膜中に取り込まれやすい。真空蒸着法は簡便に透明酸化物半導体薄膜を作製できる方法であるが、複数の元素からなる多成分系薄膜の場合、組成の制御が難しいという問題がある。また、スパッタリング法などと比べて基板に到達する成膜される粒子のエネルギーが低いため、結晶性の良い透明酸化物半導体薄膜を得るには成膜時の基板温度を高くする必要がある。いずれの方法もそれぞれ特徴があるので、好ましい特徴に着眼して成膜法を選択すればよい。   Examples of a method for forming an n-type or p-type transparent oxide thin film on a transparent substrate include a sputtering method, a PLD method, a CVD method, and a vacuum deposition method. The sputtering method is suitable for large-area film formation and is a mass-productive method. Further, since the surface diffusion of sputtered particles on the substrate surface is promoted by the collision of the ion particles accelerated by the potential gradient in the plasma sheath with the substrate surface, the present invention has a feature that high crystallinity can be obtained even at a relatively low temperature. Suitable for the manufacture of semiconductor junctions. The PLD method is suitable for producing a thin film with high crystallinity by epitaxially growing a transparent oxide semiconductor thin film on a single crystal substrate. However, the film formation area is as small as about 20 mm, and mass production is currently a problem. Remains. Although the CVD method is excellent for uniformly producing a transparent oxide semiconductor thin film over a large area, impurities such as organic substances contained in a source gas are easily taken into the film when produced at a low temperature. The vacuum evaporation method is a method that can easily produce a transparent oxide semiconductor thin film. However, in the case of a multi-component thin film composed of a plurality of elements, there is a problem that the composition is difficult to control. In addition, since the energy of particles to be deposited reaching the substrate is lower than that of sputtering or the like, it is necessary to increase the substrate temperature during deposition in order to obtain a transparent oxide semiconductor thin film with good crystallinity. Each method has its own characteristics, and the film forming method may be selected by focusing on the preferable characteristics.

なお、プラスチックなどを透明基板として使用する場合には、用いるプラスチックによっては耐熱性の問題から結晶性を十分に高くすることができず、その結果、特性を劣化させる場合がある。このような場合には、透明酸化物半導体薄膜のバンドギャップ付近のエネルギーをもつ光、例えば、KrFやXeClエキシマーレーザーなどを、成膜中または成膜後に照射することによって結晶性を進めてやることが好ましい。   When plastic or the like is used as a transparent substrate, depending on the plastic used, the crystallinity cannot be sufficiently increased due to heat resistance, and as a result, the characteristics may be deteriorated. In such a case, crystallinity can be advanced by irradiating light with energy near the band gap of the transparent oxide semiconductor thin film, for example, KrF or XeCl excimer laser during or after film formation. Is preferred.

実施例1
本発明の半導体接合に係るp-n接合ダイオードについて図1ないし図3を用いて説明する。
図1は、SiO2を主成分とし、ナトリウム(Na)を含むソーダガラス、ホウ素(B)を含むホウケイ酸ガラス、またはアルミニウム(Al)を含むアルミノケイ酸ガラスのいずれか1種類以上のガラスを含むガラス基板上に、電極としてのITO、n型半導体を構成するZnO、およびp型半導体を構成するCuCrO2からなる薄膜が形成されたp-n接合ダイオードの構成を示す図である。なお、上記n型半導体を構成するZnOに代えて、In2O3、Snを元素置換したIn2O3、Al、GaまたはInを元素置換したZnO、SnO2、SbやFを元素置換したSnO2を用いることもできる。
Example 1
A pn junction diode according to the semiconductor junction of the present invention will be described with reference to FIGS.
1, the SiO 2 as the main component, include sodium (Na) soda glass containing boron (B) borosilicate glass containing, or aluminum any one or more glass aluminosilicate glass containing (Al) on a glass substrate, a diagram illustrating ITO, ZnO constituting the n-type semiconductor, and a thin film made of CuCrO 2 constituting the p-type semiconductor is formed a structure of a pn junction diode as an electrode. In place of ZnO constituting the n-type semiconductor, In 2 O 3 , Sn substituted with In 2 O 3 , Al, Ga, or In was substituted with ZnO, SnO 2 , Sb, and F. SnO 2 can also be used.

このp-n接合ダイオードは以下のようにして作製した。まず、純度99.9%をZnO、CuCrO2、およびSnを10wt.%添加したIn2O3(以後ITOとよぶ)粉末を直径4インチ、厚み5mmに成型・焼成した焼結体をターゲットとして用意した。これらの焼結体ターゲットをスパッタリング用チャンバー内の13.56MHzの高周波電源に接続したカソードに設置した。ガラス基板はソーダガラスを用い、ターゲットの対向70mmの位置に設置した。基板加熱はソーダガラス基板の背面に位置するAlN均熱板背後からランプヒーターを用いて行った。放電ガスとしてアルゴンを真空チャンバー内に導入し、その圧力は0.5Paとした。高周波電源の電力は100Wとした。すべてのターゲットに関して放電開始後、ターゲットとガラス基板間に位置するシャッターを閉じたまま5分間プレスパッタリングを行い、その後、成膜を行った。 This pn junction diode was manufactured as follows. First, a sintered body was prepared with a 99.9% purity of ZnO, CuCrO 2 , and 10 wt.% Of In 2 O 3 (hereinafter referred to as ITO) powder, which was molded and fired to a diameter of 4 inches and a thickness of 5 mm. . These sintered compact targets were placed on a cathode connected to a 13.56 MHz high frequency power source in a sputtering chamber. The glass substrate was made of soda glass and placed at a position 70 mm opposite the target. Substrate heating was performed using a lamp heater from behind the AlN soaking plate located on the back of the soda glass substrate. Argon was introduced into the vacuum chamber as the discharge gas, and the pressure was 0.5 Pa. The power of the high frequency power source was 100W. After starting discharge for all targets, pre-sputtering was performed for 5 minutes with the shutter positioned between the target and the glass substrate closed, and then film formation was performed.

ガラス基板上にITO薄膜200nm、ZnO薄膜200nm、CuCrO2薄膜50nmを真空チャンバー中でガラス基板を加熱することなく連続成膜した。上記三種類の薄膜の成膜後、外気にさらすことなく真空チャンバー内でランプヒーターを用いて200℃に加熱し、その温度で6時間保持した後、室温まで冷却後大気中に取り出し、p-n接合ダイオードを得た。 An ITO thin film of 200 nm, a ZnO thin film of 200 nm, and a CuCrO 2 thin film of 50 nm were continuously formed on a glass substrate without heating the glass substrate in a vacuum chamber. After film formation of the above three types, heat to 200 ° C using a lamp heater in a vacuum chamber without exposure to the outside air, hold at that temperature for 6 hours, cool to room temperature, take out into the atmosphere, and pn junction A diode was obtained.

図2は同一の条件で作製した3枚の図1に示すp-n接合ダイオードについて、ITO−CuCrO2薄膜間における電流電圧特性を示す図である。
同図に示すように、電圧のかけられる方向により流れる電流の大きさに大きな違いが見られる整流特性が確認できることから、CuCrO2−ZnO間でp-n半導体接合が形成されダイオードとして動作していることがわかる。
なお、図1には示されていないが、CuCrO2−ZnOの界面に薄い絶縁層を挿入したp-i-n型構造を形成しても、界面における抵抗は増大するがダイオードとして同様に整流特性を得ることができる。
FIG. 2 is a diagram showing current-voltage characteristics between ITO-CuCrO 2 thin films for three pn junction diodes shown in FIG. 1 fabricated under the same conditions.
As shown in the figure, rectification characteristics can be confirmed in which there is a large difference in the magnitude of the current that flows depending on the direction in which the voltage is applied, so a pn semiconductor junction is formed between CuCrO 2 and ZnO and it is operating as a diode I understand.
Although not shown in FIG. 1, even if a pin type structure in which a thin insulating layer is inserted at the CuCrO 2 -ZnO interface is formed, the resistance at the interface increases, but the same rectification characteristics can be obtained as a diode. Can do.

図3は、作製された1枚の図1に示すp-n接合ダイオードの光透過特性を示す図である。
同図に示すように、このp-n接合ダイオードは、可視光領域である400-780nmにおいて平均光透過率が80%以上であることから、高い透明性をもった薄膜が形成されていることがわかる。
FIG. 3 is a diagram showing the light transmission characteristics of one manufactured pn junction diode shown in FIG.
As shown in the figure, this pn junction diode has an average light transmittance of 80% or more in the visible light region of 400-780 nm, and thus it can be seen that a highly transparent thin film is formed. .

実施例2
本発明の半導体接合に係る他のp-n接合ダイオードについて図4および図5を用いて説明する。
Example 2
Another pn junction diode according to the semiconductor junction of the present invention will be described with reference to FIGS. 4 and 5. FIG.

図4は、ポリイミド基板上に、電極としてのITO、p型半導体を構成するMgを4at.%添加したCuCrO2、およびn型半導体を構成するZnOからなる薄膜が形成されたp-n接合ダイオードの構成を示す図である。なお、上記p型半導体を構成するMgを4at.%添加したCuCrO2に代えて、上記CuCrO2のCrの一部を二価の陽イオンであるM=Ca、Be、Sr、Ba、Zn、Cd、Fe、Niのいずれか一種類以上と元素置換した Cu(Cr,M)O2を用いることもできる。また、上記n型半導体を構成するZnOに代えて、In2O3、Snを元素置換したIn2O3、Al、GaまたはInを元素置換したZnO、SnO2、SbやFを元素置換したSnO2を用いることもできる。 Fig. 4 shows the structure of a pn junction diode in which a thin film made of ITO as an electrode, CuCrO 2 containing 4at.% Mg constituting p-type semiconductor, and ZnO constituting n-type semiconductor is formed on a polyimide substrate. FIG. Instead of CuCrO 2 added with 4 at.% Of Mg constituting the p-type semiconductor, a part of Cr of the CuCrO 2 is a divalent cation M = Ca, Be, Sr, Ba, Zn, It is also possible to use Cu (Cr, M) O 2 in which one or more of Cd, Fe, and Ni are substituted. Also, instead of ZnO constituting the n-type semiconductor, In 2 O 3 , Sn substituted with In 2 O 3 , Al, Ga, or In was substituted with ZnO, SnO 2 , Sb, and F. SnO 2 can also be used.

このp-n接合ダイオードは以下のようにして作製した。実施例1と同じスパッタリング装置を用いて、フレキシブル基板である透明ポリイミドフィルム(株式会社IST製、厚み75ミクロン)上に、ITO薄膜200nm、Mgを4at.%添加したCuCrO2薄膜50nm、 ZnO薄膜200nmを真空チャンバー中で基板を加熱することなく連続成膜した。その後、同じく真空チャンバー内でランプヒーターを用いて200℃に加熱し、その温度で1時間保持した後、室温まで冷却後大気中に取り出し、p-n接合ダイオードを得た。 This pn junction diode was manufactured as follows. Using the same sputtering apparatus as in Example 1, on a transparent polyimide film (manufactured by IST, 75 μm thick) as a flexible substrate, an ITO thin film 200 nm, CuCrO 2 thin film 50 nm added with 4 at.% Mg, ZnO thin film 200 nm Was continuously formed in a vacuum chamber without heating the substrate. Thereafter, the sample was heated to 200 ° C. using a lamp heater in the same vacuum chamber, kept at that temperature for 1 hour, cooled to room temperature, and taken out into the atmosphere to obtain a pn junction diode.

図5は同一の条件で作製した3枚の図4に示すp-n接合ダイオードについて、ITO−Mg4at.%添加CuCrO2薄膜間における電流電圧特性を示す図である。
同図に示すように、実施例1と同様に、Mg4at.%添加CuCrO2とZnO 間にp-n半導体接合が形成され、整流特性が確認された。しかし、成膜後の加熱時間が短いため、CuCrO2とZnOの界面付近に構造欠陥等が残留し、逆方向の電流を十分阻止できない試料も見られた。なお、2時間以上のアニールでは多層構造薄膜に熱応力によるクラックが生じ、電極間で短絡が生じたため整流特性は測定できなかった。
FIG. 5 is a diagram showing current-voltage characteristics between ITO-Mg4 at.% Added CuCrO 2 thin films for three pn junction diodes shown in FIG. 4 manufactured under the same conditions.
As shown in the figure, as in Example 1, a pn semiconductor junction was formed between Mg4 at.% -Added CuCrO 2 and ZnO, and rectification characteristics were confirmed. However, because the heating time after film formation was short, structural defects remained in the vicinity of the interface between CuCrO 2 and ZnO, and there were some samples that could not sufficiently block the reverse current. In the annealing for 2 hours or more, the multilayer structure thin film was cracked due to thermal stress, and a short circuit occurred between the electrodes, so the rectification characteristics could not be measured.

実施例3
本発明の半導体接合に係る他のp-n接合ダイオードについて図6および図7を用いて説明する。
Example 3
Another pn junction diode according to the semiconductor junction of the present invention will be described with reference to FIGS.

図6は、SiO2を主成分とし、ナトリウム(Na)を含むソーダガラス、ホウ素(B)を含むホウケイ酸ガラス、またはアルミニウム(Al)を含むアルミノケイ酸ガラスのいずれか1種類以上のガラスを含むガラス基板上に、電極としてのITO、p型半導体を構成するMgを4at.%添加したCuCrO2、およびn型半導体を構成するZnOからなる薄膜が形成されたp-n接合ダイオードの構成を示す図である。なお、上記p型半導体を構成するMgを4at.%添加したCuCrO2に代えて、上記CuCrO2のCrの一部を二価の陽イオンであるM=Ca、Be、Sr、Ba、Zn、Cd、Fe、Niのいずれか一種類以上と元素置換した Cu(Cr,M)O2を用いることもできる。また、上記n型半導体を構成するZnOに代えて、In2O3、Snを元素置換したIn2O3、Al、GaまたはInを元素置換したZnO、SnO2、SbやFを元素置換したSnO2を用いることもできる。 FIG. 6 includes at least one kind of glass consisting mainly of SiO 2 , soda glass containing sodium (Na), borosilicate glass containing boron (B), or aluminosilicate glass containing aluminum (Al). The figure shows the configuration of a pn junction diode in which a thin film made of ITO as an electrode, CuCrO 2 added with 4 at.% Mg constituting a p-type semiconductor and ZnO constituting an n-type semiconductor is formed on a glass substrate. is there. Instead of CuCrO 2 added with 4 at.% Of Mg constituting the p-type semiconductor, a part of Cr of the CuCrO 2 is a divalent cation M = Ca, Be, Sr, Ba, Zn, It is also possible to use Cu (Cr, M) O 2 in which one or more of Cd, Fe, and Ni are substituted. Also, instead of ZnO constituting the n-type semiconductor, In 2 O 3 , Sn substituted with In 2 O 3 , Al, Ga, or In was substituted with ZnO, SnO 2 , Sb, and F. SnO 2 can also be used.

このp-n接合ダイオードは以下のようにして作製した。実施例1と同じスパッタリング装置を用いて、ガラス基板上にITO薄膜200nm、Mgを4at.%添加したCuCrO2薄膜50nm、ZnO薄膜200nmを真空チャンバー中で作製した。作製にあたり、ITO薄膜はあらかじめガラス基板を200℃まで加熱した後、その温度を保持をしながら200nmの膜厚になるまで所定の時間成膜した。その後、室温まで基板冷却を行った。次にMgを4at.%添加したCuCrO2薄膜50nmとZnO薄膜200nmを順に同様な加熱冷却を行いながら成膜した。最表面のZnO薄膜を成膜後、室温まで基板冷却された多層薄膜を真空チャンバーから取り出し、p-n接合ダイオードを得た。 This pn junction diode was manufactured as follows. Using the same sputtering apparatus as in Example 1, an ITO thin film of 200 nm, a CuCrO 2 thin film of 50 nm added with 4 at.% Mg, and a ZnO thin film of 200 nm were fabricated on a glass substrate in a vacuum chamber. In the production, the ITO thin film was formed in advance for a predetermined time until the glass substrate was heated to 200 ° C. and then the temperature was maintained to reach a film thickness of 200 nm. Thereafter, the substrate was cooled to room temperature. Next, a CuCrO 2 thin film of 50 nm and a ZnO thin film of 200 nm added with 4 at. After forming the outermost ZnO thin film, the multilayer thin film cooled to room temperature was taken out of the vacuum chamber to obtain a pn junction diode.

図7は同一の条件で作製した3枚の図6に示すp-n接合ダイオードについて、ITO−ZnO間における電流電圧特性を示す図である。
同図に示すように、実施例1と同様に、Mg4at.%添加CuCrO2とZnO 間にp-n半導体接合が形成され、整流特性が確認された。このことから、実施例1または実施例2のような室温成膜後に一括熱処理を行う場合と同様、各薄膜成膜時に個別に基板を加熱してもよいことがわかった。
FIG. 7 is a diagram showing current-voltage characteristics between ITO and ZnO for three pn junction diodes shown in FIG. 6 manufactured under the same conditions.
As shown in the figure, as in Example 1, a pn semiconductor junction was formed between Mg4 at.% -Added CuCrO 2 and ZnO, and rectification characteristics were confirmed. From this, it was found that the substrate may be individually heated at the time of forming each thin film, as in the case of performing the batch heat treatment after room temperature film formation as in Example 1 or Example 2.

実施例4
本発明の半導体接合に係るn-p-n型トランジスタ(またはp-n-p型トランジスタ)について図8乃至図10を用いて説明する。
Example 4
An npn transistor (or pnp transistor) according to the semiconductor junction of the present invention will be described with reference to FIGS.

図8は、SiO2を主成分とし、ナトリウム(Na)を含むソーダガラス、ホウ素(B)を含むホウケイ酸ガラス、またはアルミニウム(Al)を含むアルミノケイ酸ガラスのいずれか1種類以上のガラスを含むガラス基板上に、電極としてのITO、n型半導体を構成するZnO、p型半導体を構成するCuCrO2、n型半導体を構成するZnOからなる薄膜が形成されたn-p-nトランジスタの構成を示す図である。なお、上記p型半導体としてCuCrO2に代えて、二価の陽イオンであるM=Mg、Ca、Be、Sr、Ba、Zn、Cd、Fe、Niで元素置換した Cu(Cr,M)O2を用いることもできる。また、n型半導体を構成するZnOに代えて、In2O3、Snを元素置換したIn2O3、Al、GaまたはInを元素置換したZnO、SnO2、SbやFを元素置換したSnO2などを用いることもできる。また、p型半導体であるCuCrO2とn型半導体であるZnOとの組み合わせる順序を変えることによって、p-n-p型トランジスタを作製することも可能である。 FIG. 8 includes at least one kind of glass, which is mainly composed of SiO 2 , soda glass containing sodium (Na), borosilicate glass containing boron (B), or aluminosilicate glass containing aluminum (Al). on a glass substrate, is a diagram illustrating ITO, ZnO constituting the n-type semiconductor, the structure of the npn transistor in which a thin film composed of ZnO is formed constituting the CuCrO 2, n-type semiconductor forming the p-type semiconductor as an electrode . In addition, instead of CuCrO 2 as the p-type semiconductor, Cu (Cr, M) O element-substituted with divalent cations M = Mg, Ca, Be, Sr, Ba, Zn, Cd, Fe, Ni 2 can also be used. Also, instead of ZnO constituting n-type semiconductor, In 2 O 3 , Sn 2 element substituted by In 2 O 3 , Al, Ga or In element substituted ZnO, SnO 2 , Sb and F element substituted SnO 2 etc. can also be used. Further, a pnp transistor can be manufactured by changing the combination order of CuCrO 2 which is a p-type semiconductor and ZnO which is an n-type semiconductor.

このトランジスタ構造となりうるn-p-n半導体接合は以下のようにして作製した。実施例1と同じスパッタリング装置を用いて、ガラス基板上にITO薄膜200nm、ZnO薄膜、200nm 、CuCrO2薄膜150nm、ZnO薄膜200nmを真空チャンバー中で基板加熱することなく連続成膜した。4層薄膜を成膜後、外気にさらすことなく真空チャンバー内でランプヒーターを用いて200℃に加熱し、その温度で6時間保持した後、室温まで冷却後大気中に取り出し、トランジスタ構造となりうるn-p-n構造を得た。 An npn semiconductor junction that can have this transistor structure was fabricated as follows. Using the same sputtering apparatus as in Example 1, an ITO thin film of 200 nm, a ZnO thin film, 200 nm, a CuCrO 2 thin film of 150 nm, and a ZnO thin film of 200 nm were continuously formed on a glass substrate without heating the substrate. After forming a 4-layer thin film, it is heated to 200 ° C using a lamp heater in a vacuum chamber without being exposed to the outside air, held at that temperature for 6 hours, cooled to room temperature, and then taken out into the atmosphere, so that it can be a transistor structure An npn structure was obtained.

図9(a)は上記n-p-n構造(トランジスタ)のCuCrO2−ZnO間の測定図、図9(b)は図9(a)に示す測定図によって測定した2枚の電流電圧特性を示す図であり、同一条件で成膜した2枚の試料について測定したものである。図9(b)で示すように、CuCrO2−ZnO間でp-n半導体接合が形成されダイオードとして動作していることがわかる。 9A is a measurement diagram between CuCrO 2 and ZnO of the above npn structure (transistor), and FIG. 9B is a diagram showing current-voltage characteristics of two sheets measured by the measurement diagram shown in FIG. 9A. Yes, it was measured for two samples deposited under the same conditions. As shown in FIG. 9 (b), it can be seen that a pn semiconductor junction is formed between CuCrO 2 and ZnO to operate as a diode.

一方、図10(a)は上記n-p-n構造(トランジスタ)の他のCuCrO2−ZnO間の測定図、図10(b)は図10(a)に示す測定図によって測定した2枚の電流電圧特性を示す図であり、同一条件で成膜した2枚の試料について測定したものである。図10(b)に示すように、図9(b)の電流電圧特性よりも、電極間の抵抗が高く特性は劣るがCuCrO2−ZnO間でp-n半導体接合が形成されダイオードとして動作していることがわかる。CuCrO2薄膜の厚みを最適化することより原理上トランジスタとして動作させることができる。 On the other hand, Fig. 10 (a) is a measurement diagram of other CuCrO 2 -ZnO between the npn structure (transistor), and Fig. 10 (b) is a current-voltage characteristic of two sheets measured by the measurement diagram shown in Fig. 10 (a). It is a figure which shows this, and it measured about two samples formed into a film on the same conditions. As shown in FIG. 10 (b), the resistance between the electrodes is higher than the current-voltage characteristics of FIG. 9 (b), but the characteristics are inferior, but a pn semiconductor junction is formed between CuCrO 2 and ZnO and it operates as a diode. I understand that. In principle, it can be operated as a transistor by optimizing the thickness of the CuCrO 2 thin film.

実施例5
本発明の半導体接合に係る太陽電池について図11を用いて説明する。
図11は、SiO2を主成分とし、ナトリウム(Na)を含むソーダガラス、ホウ素(B)を含むホウケイ酸ガラス、またはアルミニウム(Al)を含むアルミノケイ酸ガラスのいずれか1種類以上のガラスを含むガラス基板上に、電極としてのITO、p型半導体を構成するCuCrO2、n型半導体を構成するZnO、電極としてのITOからなる薄膜が形成された太陽電池の構成を示す図である。なお、上記p型半導体を構成するCuCrO2に代えて、二価の陽イオンであるM=Mg、Ca、Be、Sr、Ba、Zn、Cd、Fe、Niで元素置換した Cu(Cr,M)O2を用いることもできる。また、n型半導体を構成するZnOに代えて、In2O3、Snを元素置換したIn2O3、Al、GaまたはInを元素置換したZnO、SnO2、SbやFを元素置換したSnO2などを用いることもできる。
Example 5
A solar cell according to the semiconductor junction of the present invention will be described with reference to FIG.
FIG. 11 includes at least one kind of glass, which is mainly composed of SiO 2 , soda glass containing sodium (Na), borosilicate glass containing boron (B), or aluminosilicate glass containing aluminum (Al). on a glass substrate, a diagram illustrating ITO, ZnO constituting the CuCrO 2, n-type semiconductor forming the p-type semiconductor, the configuration of the solar cell including a thin film made of ITO as an electrode as an electrode. In place of CuCrO 2 constituting the p-type semiconductor, Cu (Cr, M, elemental substitution with divalent cations M = Mg, Ca, Be, Sr, Ba, Zn, Cd, Fe, Ni is used. ) O 2 can also be used. Also, instead of ZnO constituting n-type semiconductor, In 2 O 3 , Sn 2 element substituted by In 2 O 3 , Al, Ga or In element substituted ZnO, SnO 2 , Sb and F element substituted SnO 2 etc. can also be used.

同図に示すように、この太陽電池は、p型半導体としてCuCrO2、n型半導体としてZnOを用いた。光が基板であるガラス基板あるいはITO薄膜面から照射されると、CuCrO2−ZnO間の界面で光励起された正孔と電子がそれぞれCuCrO2とZnOに流れだす。そこに電極ITOを取り付けることによって光起電力を得ることができる。CuCrO2とZnOはいずれも可視光領域で透明であり、窓ガラスなどに一般的に利用されているナトリウム(Na)やホウ素(B)を含むガラス基板にも成膜できることから、透明な窓ガラス型太陽電池として応用することができる。 As shown in the figure, this solar cell uses CuCrO 2 as a p-type semiconductor and ZnO as an n-type semiconductor. When light is irradiated from the glass substrate or ITO thin film surface is a substrate, CuCrO holes and electrons photoexcited at the interface between 2 -ZnO begins to flow through the CuCrO 2 and ZnO, respectively. Photovoltaic power can be obtained by attaching the electrode ITO there. Since both CuCrO 2 and ZnO are transparent in the visible light region and can be formed on glass substrates containing sodium (Na) and boron (B), which are commonly used for window glass, etc., transparent window glass It can be applied as a solar cell.

SiO2を主成分とし、ナトリウム(Na)を含むソーダガラス、ホウ素(B)を含むホウケイ酸ガラス、またはアルミニウム(Al)を含むアルミノケイ酸ガラスのいずれか1種類以上のガラスを含むガラス基板上に、電極としてのITO、n型半導体を構成するZnO、およびp型半導体を構成するCuCrO2からなる薄膜が形成されたp-n接合ダイオードの構成を示す図である。On a glass substrate containing SiO 2 as a main component and containing at least one kind of soda glass containing sodium (Na), borosilicate glass containing boron (B), or aluminosilicate glass containing aluminum (Al). FIG. 2 is a diagram showing a configuration of a pn junction diode in which a thin film made of ITO as an electrode, ZnO constituting an n-type semiconductor, and CuCrO 2 constituting a p-type semiconductor is formed. 同一の条件で作製した3枚の図1に示すp-n接合ダイオードについて、ITO−CuCrO2薄膜間における電流電圧特性を示す図である。FIG. 2 is a diagram showing current-voltage characteristics between ITO-CuCrO 2 thin films for three pn junction diodes shown in FIG. 1 manufactured under the same conditions. 作製された1枚の図1に示すp-n接合ダイオードの光透過特性を示す図である。It is a figure which shows the light transmission characteristic of one produced pn junction diode shown in FIG. ポリイミド基板上に、電極としてのITO、p型半導体を構成するMgを4at.%添加したCuCrO2、およびn型半導体を構成するZnOからなる薄膜が形成されたp-n接合ダイオードの構成を示す図である。It is a diagram showing the configuration of a pn junction diode in which a thin film made of ITO as an electrode, CuCrO 2 added with 4 at.% Mg constituting a p-type semiconductor, and ZnO constituting an n-type semiconductor is formed on a polyimide substrate. is there. 同一の条件で作製した3枚の図4に示すp-n接合ダイオードについて、ITO−Mg4at.%添加CuCrO2薄膜間における電流電圧特性を示す図である。FIG. 5 is a diagram showing current-voltage characteristics between ITO-Mg4 at.% Added CuCrO 2 thin films for three pn junction diodes shown in FIG. 4 manufactured under the same conditions. SiO2を主成分とし、ナトリウム(Na)を含むソーダガラス、ホウ素(B)を含むホウケイ酸ガラス、またはアルミニウム(Al)を含むアルミノケイ酸ガラスのいずれか1種類以上のガラスを含むガラス基板上に、電極としてのITO、p型半導体を構成するMgを4at.%添加したCuCrO2、およびn型半導体を構成するZnOからなる薄膜が形成されたp-n接合ダイオードの構成を示す図である。On a glass substrate containing SiO 2 as a main component and containing at least one kind of soda glass containing sodium (Na), borosilicate glass containing boron (B), or aluminosilicate glass containing aluminum (Al). FIG. 3 is a diagram showing a configuration of a pn junction diode in which a thin film made of ITO as an electrode, CuCrO 2 added with 4 at.% Mg constituting a p-type semiconductor, and ZnO constituting an n-type semiconductor is formed. 同一の条件で作製した3枚の図6に示すp-n接合ダイオードについて、ITO−ZnO間における電流電圧特性を示す図である。FIG. 7 is a diagram showing current-voltage characteristics between ITO and ZnO for three pn junction diodes shown in FIG. 6 manufactured under the same conditions. SiO2を主成分とし、ナトリウム(Na)を含むソーダガラス、ホウ素(B)を含むホウケイ酸ガラス、またはアルミニウム(Al)を含むアルミノケイ酸ガラスのいずれか1種類以上のガラスを含むガラス基板上に、電極としてのITO、n型半導体を構成するZnO、p型半導体を構成するCuCrO2、n型半導体を構成するZnOからなる薄膜が形成されたn-p-nトランジスタの構成を示す図である。On a glass substrate containing SiO 2 as a main component and containing at least one kind of soda glass containing sodium (Na), borosilicate glass containing boron (B), or aluminosilicate glass containing aluminum (Al). FIG. 2 is a diagram showing a configuration of an npn transistor in which a thin film made of ITO as an electrode, ZnO constituting an n-type semiconductor, CuCrO 2 constituting a p-type semiconductor, and ZnO constituting an n-type semiconductor is formed. 図8に示すn-p-nトランジスタ構造のCuCrO2−ZnO間の測定図および上記測定図で測定した2枚の電流電圧特性を示す図である。FIG. 9 is a measurement diagram between CuCrO 2 and ZnO having the npn transistor structure shown in FIG. 8 and two current-voltage characteristics measured in the measurement diagram. 図8に示すn-p-nトランジスタ構造の他のCuCrO2−ZnO間の測定図および上記測定図で測定した2枚の電流電圧特性を示す図である。It is a diagram showing a measurement view and two current-voltage characteristics measured by the measurement view between the other CuCrO 2 -ZnO of npn transistor structure shown in FIG. ガラス基板上に、電極としてのITO、p型半導体を構成するCuCrO2、n型半導体を構成するZnO、電極としてのITOからなる薄膜が形成された太陽電池の構成を示す図である。On a glass substrate, a diagram illustrating ITO, ZnO constituting the CuCrO 2, n-type semiconductor forming the p-type semiconductor, the configuration of the solar cell including a thin film made of ITO as an electrode as an electrode.

Claims (4)

ガラス基板またはプラスチック基板上にp型の透明酸化物薄膜としてCuCrO2を400℃未満で成膜したことを特徴とする半導体接合。 A semiconductor junction characterized by depositing CuCrO 2 as a p-type transparent oxide thin film on a glass substrate or plastic substrate at a temperature of less than 400 ° C. 上記CuCrO2のCrの一部を二価の陽イオンであるM=Mg、Ca、Be、Sr、Ba、Zn、Cd、Fe、Niのいずれか一種類以上と元素置換した Cu(Cr,M)O2を用いたことを特徴とする請求項1に記載の半導体接合。 Cu (Cr, M) in which a part of Cr in CuCrO 2 is elementally substituted with one or more of divalent cations M = Mg, Ca, Be, Sr, Ba, Zn, Cd, Fe, Ni 2. The semiconductor junction according to claim 1, wherein O 2 is used. 上記ガラス基板は、SiO2を主成分とし、ナトリウム(Na)を含むソーダガラス、ホウ素(B)を含むホウケイ酸ガラス、またはアルミニウム(Al)を含むアルミノケイ酸ガラスのいずれか1種類以上のガラスを含む基板であることを特徴とする請求項1または請求項2に記載の半導体接合。 The glass substrate is made of at least one kind of glass, which is mainly composed of SiO 2 , soda glass containing sodium (Na), borosilicate glass containing boron (B), or aluminosilicate glass containing aluminum (Al). The semiconductor junction according to claim 1, wherein the semiconductor junction is a substrate including the semiconductor junction. 上記プラスチック基板は、ポリエチレン(PE)、ポリプロピレン(PP)、ポリカーボネ−ト(PC)、ポリエチレンテレフタレート(PET)、ポリスチレン(PS)、ポリエーテルサルホン(PESF)、メタクリル樹脂(PMMA)、ポリイミド(PI)、またはポリアミド(PA)のいずれか1つからなる基板あることを特徴とする請求項1または請求項2に記載の半導体接合。
The above plastic substrates are polyethylene (PE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), polystyrene (PS), polyethersulfone (PESF), methacrylic resin (PMMA), polyimide (PI 3) or a polyamide (PA) substrate, and the semiconductor junction according to claim 1.
JP2005338639A 2005-11-24 2005-11-24 Transparent oxide semiconductor junction Pending JP2007149746A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005338639A JP2007149746A (en) 2005-11-24 2005-11-24 Transparent oxide semiconductor junction
PCT/JP2006/322867 WO2007060877A1 (en) 2005-11-24 2006-11-16 Transparent oxide semiconductor junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005338639A JP2007149746A (en) 2005-11-24 2005-11-24 Transparent oxide semiconductor junction

Publications (1)

Publication Number Publication Date
JP2007149746A true JP2007149746A (en) 2007-06-14

Family

ID=38067108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005338639A Pending JP2007149746A (en) 2005-11-24 2005-11-24 Transparent oxide semiconductor junction

Country Status (2)

Country Link
JP (1) JP2007149746A (en)
WO (1) WO2007060877A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016036156A1 (en) * 2014-09-05 2016-03-10 서울대학교산학협력단 Diode
CN106807391A (en) * 2017-02-28 2017-06-09 河北工业大学 A kind of CuCrO2The preparation method of powder
JP2017126607A (en) * 2016-01-12 2017-07-20 株式会社リコー Oxide semiconductor
JP2017535023A (en) * 2014-09-11 2017-11-24 エルジー・ケム・リミテッド Conductive pattern forming composition, conductive pattern forming method using the same, and resin structure having conductive pattern
WO2018060240A1 (en) * 2016-09-27 2018-04-05 Luxembourg Institute Of Science And Technology (List) Uv detector comprising a rectifying p-n junction
WO2018060237A1 (en) * 2016-09-27 2018-04-05 Luxembourg Institute Of Science And Technology (List) Transparent p-n junction providing a rectifying contact

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183984A (en) * 2003-12-17 2005-07-07 Hewlett-Packard Development Co Lp Transistor device
JP2005210008A (en) * 2004-01-26 2005-08-04 Bridgestone Corp Solar battery
JP2006013098A (en) * 2004-06-25 2006-01-12 Bridgestone Corp Manufacturing method of solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005183984A (en) * 2003-12-17 2005-07-07 Hewlett-Packard Development Co Lp Transistor device
JP2005210008A (en) * 2004-01-26 2005-08-04 Bridgestone Corp Solar battery
JP2006013098A (en) * 2004-06-25 2006-01-12 Bridgestone Corp Manufacturing method of solar cell

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016036156A1 (en) * 2014-09-05 2016-03-10 서울대학교산학협력단 Diode
JP2017535023A (en) * 2014-09-11 2017-11-24 エルジー・ケム・リミテッド Conductive pattern forming composition, conductive pattern forming method using the same, and resin structure having conductive pattern
JP2017126607A (en) * 2016-01-12 2017-07-20 株式会社リコー Oxide semiconductor
WO2018060240A1 (en) * 2016-09-27 2018-04-05 Luxembourg Institute Of Science And Technology (List) Uv detector comprising a rectifying p-n junction
WO2018060237A1 (en) * 2016-09-27 2018-04-05 Luxembourg Institute Of Science And Technology (List) Transparent p-n junction providing a rectifying contact
CN106807391A (en) * 2017-02-28 2017-06-09 河北工业大学 A kind of CuCrO2The preparation method of powder

Also Published As

Publication number Publication date
WO2007060877A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
US7323356B2 (en) LnCuO(S,Se,Te)monocrystalline thin film, its manufacturing method, and optical device or electronic device using the monocrystalline thin film
US8278656B2 (en) Substrate for the epitaxial growth of gallium nitride
JP2007281438A (en) Light-emitting element, and manufacturing method of light-emitting element
JP2007149746A (en) Transparent oxide semiconductor junction
WO2013122084A1 (en) Oxide semiconductor and semiconductor junction element including same
KR20150051181A (en) PREPARATION METHOD OF CZTSSe-BASED THIN FILM SOLAR CELL AND CZTSSe-BASED THIN FILM SOLAR CELL PREPARED BY THE METHOD
US8097885B2 (en) Compound semiconductor film, light emitting film, and manufacturing method thereof
Chiu et al. Fabrication of ZnO and CuCrO2: Mg thin films by pulsed laser deposition with in situ laser annealing and its application to oxide diodes
KR101458629B1 (en) MANUFACTURE METHOD FOR ZnO-CONTAINING COMPOUND SEMICONDUCTOR LAYER
JP2007258468A (en) Visible-light transmitting semiconductor element, and manufacturing method thereof
JP3969959B2 (en) Transparent oxide multilayer film and method for producing transparent oxide pn junction diode
KR20140074441A (en) Flexible thin film type Solar Cell and Method for manufacturing the same
AU2011202985A1 (en) Transparent electrically conductive layer and method for forming same
JP6017243B2 (en) ZnO-based semiconductor device and method for manufacturing ZnO-based semiconductor device
JP2012136759A (en) Ito film, method of manufacturing the ito film, semiconductor light-emitting element, and method of manufacturing the light-emitting element
KR101638379B1 (en) CIGS solar cell with preferred orientation and method of manufacturing the same
Itagaki Novel fabrication method for oxide semiconductors via atomic-additive mediated crystallization
KR101552968B1 (en) Fabrication Method of CIGS Thin Films and its application to Thin Film Solar Cells
JP5912968B2 (en) Manufacturing method of p-type ZnO-based semiconductor film and manufacturing method of ZnO-based semiconductor element
JP2008255444A (en) SUBSTRATES WITH ZnCuSe THIN FILM, AND ITS MANUFACTURING METHOD
JP4069198B2 (en) Method for producing heteroepitaxial thin film of α-SiC and thin film produced by the same method
JP5612521B2 (en) ZnO-based semiconductor film manufacturing method and ZnO-based semiconductor light emitting device manufacturing method
JP2014027134A (en) p-TYPE ZnO-BASED SEMICONDUCTOR SINGLE CRYSTAL LAYER, AND ZnO-BASED SEMICONDUCTOR ELEMENT
JP6092648B2 (en) P-type ZnO-based semiconductor single crystal layer and ZnO-based semiconductor element
KR20140082870A (en) Method for manufacturing cigs photoreceptive layer using reflection of laser beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313