WO2007058314A1 - Deep seawater, methods of intaking and using deep seawater and method of producing deep seawater product - Google Patents

Deep seawater, methods of intaking and using deep seawater and method of producing deep seawater product Download PDF

Info

Publication number
WO2007058314A1
WO2007058314A1 PCT/JP2006/322996 JP2006322996W WO2007058314A1 WO 2007058314 A1 WO2007058314 A1 WO 2007058314A1 JP 2006322996 W JP2006322996 W JP 2006322996W WO 2007058314 A1 WO2007058314 A1 WO 2007058314A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
deep
deep sea
deep seawater
seawater
Prior art date
Application number
PCT/JP2006/322996
Other languages
French (fr)
Japanese (ja)
Inventor
Eisei Nigeme
Yasuyuki Isono
Nobuko Yazawa
Original Assignee
Hotsuma Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hotsuma Co., Ltd. filed Critical Hotsuma Co., Ltd.
Publication of WO2007058314A1 publication Critical patent/WO2007058314A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • Deep sea water methods for taking and using deep sea water, and methods for producing deep sea water products
  • the present invention relates to various deep sea water and various applied products using deep sea water.
  • seawater with a depth of 200 m or less as deep ocean water.
  • this proposed pickle uses the existing water intake facility power and treats the pumped seawater as deep sea water and uses it for pickles. It has been utilized. That is, define true deep ocean water characteristics and take it
  • Patent Document 1 Japanese Patent No. 3263930 Disclosure of the invention
  • the characteristics of deep ocean water include low-temperature stability, cleanliness, eutrophication, ripening, and mineral characteristics.
  • the deep sea water of the present invention is obtained by specifying a place where the cleanliness or maturity becomes a maximum value and taking water at this place.
  • the deep sea water of the present invention is based on information on oxygen concentration, salinity, water temperature, and density.
  • the water is classified as ocean water classified as deep ocean water in oceanography.
  • the deep sea water of the present invention is deeper than the depth at which the oxygen concentration becomes a minimum value, and a place that is seawater classified as oceanographic deep water is identified and taken at this place. It is.
  • the deep sea water intake method of the present invention specifies a place where the cleanliness or maturity is a maximum value, and takes water at this place.
  • the deep sea water intake method of the present invention specifies a location that is deeper than the depth at which the oxygen concentration is at a minimum and is classified as oceanographic deep water, and takes water at this location. .
  • micro-order or nano-order bubbles are dissolved or mixed in raw deep sea water or water obtained by treating the raw water.
  • the method of using the deep sea water of the present invention is the same as the deep sea water product obtained by this deep sea water product manufacturing method, for cleaning or maintaining freshness of seafood, removing sand from shellfish, beverages or foodstuffs. Used for either raw materials or cosmetic ingredients.
  • the method for producing a deep sea water product of the present invention includes a step of adsorbing and collecting a mineral contained in deep sea water by a soft water device, and a water in which the mineral content is concentrated by regenerating the soft water device. At least.
  • a solution containing at least one of Na, K, and Ca can be used as the regenerated water. is there.
  • Na, K, and Ca can be selectively selected by one or more of precipitation, electrodialysis, and membrane filtration on the water obtained by the regeneration treatment. It is possible to carry out the process of removing the water and re-adjusting the mineral content.
  • the middle layer it is affected by the circulation of the North Pacific middle water, but mixing with the surface layer is expected to introduce human-derived substances.
  • Figure 1 shows the image of the vertical distribution of various indicators in the sea near Japan and the North Pacific Ocean.
  • Figure 1 shows temperature, salinity, nutrient content, dissolved oxygen content, cleanliness, and maturity as indicators.
  • the North Pacific Middle Water has a lower salinity than the upper and lower layers, so the surface water and its mixed region can be understood from the salinity, and the mixed region with the deep water can also be assumed by the increase in salinity.
  • the characteristics of the deep layer water below the mixed region of the middle layer water and the deep layer water are that it is clean and easy to mix and has the greatest age in the sea. . There, the amount of dissolved oxygen is minimized. From the top and bottom distributions, the dissolved oxygen content in the middle layer is large, so it shows a minimum value in the depth direction.
  • the conventional water depth of around 300m is a region where surface water mixing is intense, and it has not been published by each organization.However, when producing high-calorie value products by deep ocean water, where daily changes in characteristics are small, Quality control should have been difficult.
  • the water depth reaches 1, OOOm, and it has stable characteristics with no time fluctuation, and stable quality can be obtained even in utilization.
  • the most appropriate deep water intake location (plane, depth) is selected, and water is taken at this location. It is possible to obtain deep ocean water that is not mixed and has high cleanliness and maturity. And this clean And ripening properties synergize with other properties such as mineral properties.
  • the micro-order or nano-order bubbles are dissolved or mixed in the raw water of the deep sea water or the water treated with this raw water.
  • the characteristics of dissolved or mixed bubbles (gas) can be added to the characteristics of deep ocean water such as cleanliness and maturity.
  • the mineral content contained in the deep sea water is adsorbed and collected by the water softener, and the water softener is regenerated to obtain a mineral content. And at least a step of producing concentrated water, it is possible to obtain water with richer mineral content than raw deep-sea water, while having properties of deep-sea water such as cleanliness and maturity. .
  • FIG. 1 is a diagram showing the vertical distribution of various indicators of seawater.
  • FIG. 2 is a diagram showing an arrangement in a hydrogen dissolution test.
  • the temperature survey, salinity concentration survey, and dissolved oxygen content survey in the sea area can distinguish North Pacific middle water and original deep sea water, including their mixed areas. In this way, it is possible to select the water intake location (position, depth) based on the survey results, and take deep sea water with excellent cleanliness and aging characteristics.
  • the immiscible deep ocean water according to the present invention is particularly suitable for drinking water, fishery, food processing, medical treatment. • When using deep ocean water for health, etc., the benefits of deep ocean water can be maximized.
  • Micro-bubbles and nano-order bubbles are expected to increase the added value of deep ocean water by further expanding its utility rather than dissolving gas in deep ocean water.
  • the gas to be dissolved is preferably at least one of oxygen, ozone, nitrogen, and hydrogen.
  • oxygen when oxygen is dissolved as a gas, it can be considered to have an effect of supplementing oxygen, to replenish the body as drinking water, or to activate living organisms as water for animal husbandry. In particular, it is effective against organisms that consume oxygen in water.
  • ozone when ozone is dissolved as a gas, it can have a bactericidal action.
  • the reducibility when hydrogen is dissolved as a gas, the reducibility can be enhanced. As a result, an effect such as removal of active oxygen can be expected.
  • minerals adsorbed in the water softener are ions of Na, K, and Ca. It is replaced by mineral-rich water S-iony, resulting in mineral-rich water.
  • the water obtained by the regeneration treatment is selectively removed by one or more of precipitation, electrodialysis, and membrane filtration to remove the Na, K, Ca and reconstitute the mineral content.
  • the method of producing drinking water using deep ocean water is to use salt water, electrodialysis (ED) water, or bittern to demineralize using a reverse osmosis (RO) membrane and adjust mineral content.
  • ED electrodialysis
  • RO reverse osmosis
  • Seawater is particularly salty, so adding raw water to increase mineral content has a limitation because it increases saltiness.
  • problems such as impurities are included because it is not microfiltered (MF).
  • the method using bittern has a problem that it is difficult to make a stable component as drinking water because the component of bittern is often not stable.
  • the water softener has been used to remove minerals from hard water to obtain soft water.
  • the ion exchange resin that removes minerals When the ion exchange resin that removes minerals is full, it has been recycled with an aqueous Na solution and reused.
  • the wastewater in the regeneration process when seawater is put on a water softener is replaced with mineral component SNa + adsorbed on the ion exchange resin, resulting in mineral-rich water that is produced by mineral component S ion.
  • CaCl, KC1, etc. instead of NaCl aqueous solution as reclaimed treated water
  • component adjustment can be performed.
  • Concentrated liquids with different mineral components can be obtained by directly using mineral-rich water obtained by this regeneration process, or by selectively removing Na, etc. by electro-deposition (ED). it can. Furthermore, by blending these multiple mineral concentrates at an appropriate ratio, it is possible to produce drinking water with the desired mineral balance at a relatively low cost.
  • Hydrogen is a gas that is difficult to dissolve in water. On the other hand, its amount of dissolution hardly changes with temperature.
  • mineral water obtained by treating deep sea water and adjusting the concentration of minerals is excellent in cleanliness and is also suitable for animal husbandry.
  • it can be used for removing sand from shellfish, etc., so that sand can be actively discharged.
  • the cleanliness and mineral properties of deep ocean water obtained by the present invention, and the small amount of dissolved oxygen V, etc., can be expected to exert effects in these food processing fields.
  • atopy symptoms themselves have very complex factors and not all atopy symptoms are effective, more than half of the people have an improvement effect, but it is publicly effective. It has not yet been commercialized as a health food or medicine. Based on the fact that water has conventionally been taken in a mixed area of surface water and North Pacific middle water, improvement effects can be sufficiently expected by utilizing the cleanliness, mineral characteristics, etc. of deep ocean water obtained by the present invention. .
  • cosmetics for example, lotion and the like.
  • raw water was electrodialyzed to produce mineral water from which only mineral components were extracted.
  • the hardness of this mineral water was 6205.
  • Table 2 shows the ingredient table for drinking water
  • Table 3 shows the ingredient table for mineral water.
  • the number of respondents to the survey was 160, of which 106 were men (66%) and 46 were women (29%)
  • deep ocean water is said to be effective for atopic dermatitis.
  • the effect can be expected by using the deep sea water obtained by the invention.
  • the usage conditions were (1) refrigerated and used up in 2 weeks, and (2) sprayed once or twice directly on clean skin after taking a bath.
  • the questionnaire included the following questions. They also asked about sex, age, and allergy.
  • the second question is “Moist”, “Smooth”, “Smooth”, “Pleasant”, “Ugly” ”,“ Pain ”,“ sticky ”,“ bad feeling ”8 choice options Multiple answers allowed.
  • the third question is the answer to the question “When do you want to use it?”, “After bathing”, “When dry”, “When always”, “I don't want to use”, “Others” "5 options” The answer was given with multiple answers.
  • the answer to the second question is 7 for “moist”, 3 for “smooth”, 1 for “smooth”, 5 for “feeling good”, “satisfied” “Yes” was two people, and “Ugly”, “Painful”, and “Uncomfortable” were helpless.
  • the effect was investigated using the deep sea water according to the present invention for sand removal of clams.
  • Salt water 1 Salt (salt sodium salt) added to tap water to obtain a salinity equivalent to seawater (3% salinity)
  • Salt water 2 Concentrated deep water (raw water) taken at a depth of about 1000m off Tateyama and mixed with concentrated water (5%) and tap water for dilution, equivalent to seawater (3% salinity) Salinity
  • Table 4 shows the amount of salt water and the total weight and number of clams. After 1 hour, the clams were removed from the brine and the remaining brine was filtered through a coffee filter. The weight of the coffee filter was measured, and the weight of sand discharged by Asari was determined.
  • Table 4 shows the results of the test.
  • Table 5 summarizes the observed shellfish and filtration conditions.
  • the filtration speed of salt water 2 was more than twice that of salt water 1.
  • the water after filtration was similarly cloudy white.
  • the amount of hydrogen introduced was adjusted to be within the range of 0.5 to 0.7 LZ as measured by the air flow meter. Pressure of the pump 3 was set to 0. 7kgZcm 2. Water circulation and hydrogen introduction were continued for 1 minute.

Abstract

Deep seawater is defined as seawater deeper than 200 m below the surface (the compensation depth) where sun’s rays cannot reach. Because of having favorable characteristics such as high stability at low temperatures, high cleanness, eutrophic properties, maturity and high mineral content, studies have been made to intake and utilize deep seawater. To effectively utilize deep seawater, however, it is necessary to select, intake and use deep seawater suitable for the purpose of using while considering economic efficiency. Thus, the existing techniques including patents and technical terms should be revised based on new findings and studies and discussions should be made on the novel definition of deep seawater and novel effects and utilization methods of deep seawater. Depending on the vertical distributions of various factors, the location of deep seawater being excellent in cleanness and maturity is specified. At the same time, a method of producing drinking water by efficiently taking advantages of deep seawater, important points to be noticed in fishery, techniques for using deep seawater in food processing, methods of using deep seawater for medical and health purposes, etc. are indicated.

Description

海洋深層水、海洋深層水の取水方法及び利用方法、海洋深層水製品の 製造方法  Deep sea water, methods for taking and using deep sea water, and methods for producing deep sea water products
技術分野  Technical field
[0001] 本発明は、海洋深層水や海洋深層水を用いた各種の応用製品に関する。  [0001] The present invention relates to various deep sea water and various applied products using deep sea water.
特に、従来流通している海洋深層水とは特性の異なる海洋深層水と、その特性を 生力した付加価値の高い応用製品に関する。  In particular, it relates to deep ocean waters that have different characteristics from the existing deep ocean waters, and high value-added applied products that make use of these properties.
背景技術  Background art
[0002] 従来、海洋深層水は、太陽光が届力ない水深約 200m (補償深度)以下と定義され 、表層水や陸水に比べて、低温安定性、清浄性、富栄養性、熟成性、ミネラル附存 の特性が言われており、取水と利活用の研究が進められてきた。  [0002] Conventionally, deep ocean water is defined as a depth of about 200m (compensation depth) or less, where sunlight cannot reach, and it has low temperature stability, cleanliness, eutrophication, and ripening properties compared to surface water and land water. The characteristics of minerals are said, and research on water intake and utilization has been promoted.
しかし、海洋深層水を効果的に活用するためには、水深 200m以下の海水を一様 に海洋深層水と定義するのは適当ではない。  However, in order to effectively use deep ocean water, it is not appropriate to define seawater with a depth of 200 m or less as deep ocean water.
そして、利用目的にあった特性を持つ海水を、経済性を踏まえて選定、取水、活用 することが効果的である。  It is effective to select, draw in, and utilize seawater with characteristics that meet the purpose of use in light of economic efficiency.
[0003] 近年の研究により、北太平洋海域において、水深 200m力ら 600mは表層水と北 太平洋中層水の混合域であり、 600m力ら 1, 000mは北太平洋中層水ど深層水の 混合領域であることがわかって 、る。 [0003] According to recent research, in the North Pacific Ocean, the depth of 200m force and 600m is the mixing region of surface water and the North Pacific middle water, and 600m force and 1,000m is the mixing region of the North Pacific middle water and deep water. I know that there is.
従って、水深 1, 000m以浅の北太平洋中層水混合水域は、真の海洋深層水と呼 ベるものではない。  Therefore, the North Pacific Middle Water Mixtures with a depth of less than 1,000m are not truly true deep ocean waters.
[0004] また、海洋深層水を活用した製品として、海洋深層水を利用した漬物 (例えば、特 許文献 1を参照)が提案されている。  [0004] Further, as products using deep ocean water, pickles using deep ocean water (for example, see Patent Document 1) have been proposed.
し力しながら、この提案されている漬物は、既存の取水施設力 揚水した海水を海 洋深層水とみなし、それを漬物に活用したものであり、正しくは主に北太平洋中層水 を漬物に活用したものである。即ち、真の海洋深層水の特性を定義し、それを取水し However, this proposed pickle uses the existing water intake facility power and treats the pumped seawater as deep sea water and uses it for pickles. It has been utilized. That is, define true deep ocean water characteristics and take it
、漬物への適用を述べたものではない。 It does not describe the application to pickles.
[0005] [特許文献 1] 特許第 3263930号明細書 発明の開示 [0005] [Patent Document 1] Japanese Patent No. 3263930 Disclosure of the invention
[0006] 北太平洋中層水と真の海洋深層水とは、海水の特性が異なるため、北太平洋中層 水を対象にした技術を、そのまま真の海洋深層水に適用することは適切ではない。 従って、真の海洋深層水の効用と活用法を、改めて研究、議論する必要がある。  [0006] Since the characteristics of seawater differ between the North Pacific middle water and the true deep ocean water, it is not appropriate to apply the technology for the North Pacific middle water to the true deep ocean water as it is. Therefore, it is necessary to research and discuss the benefits and use of true deep sea water.
[0007] 海洋深層水の特性としては、前述したように、低温安定性、清浄性、富栄養性、熟 成性、ミネラル特性が挙げられていた。 [0007] As described above, the characteristics of deep ocean water include low-temperature stability, cleanliness, eutrophication, ripening, and mineral characteristics.
これらの特性のうち、北太平洋中層水混合域では、熟成性は定量性と効用が曖昧 であり、ミネラル特性は深層水の特性というよりも海水に共通するもの(陸水に対する 差)である。このことから、近年では、海洋深層水の特性として、低温安定性、清浄性 、富栄養性のみが言われることが多くなつた。  Among these characteristics, in the North Pacific middle water mixing zone, the maturity is ambiguous in terms of quantitativeness and utility, and the mineral characteristics are common to seawater rather than deep water characteristics (difference from land water). Therefore, in recent years, only low-temperature stability, cleanliness, and eutrophication have often been mentioned as the characteristics of deep ocean water.
[0008] しかし、飲料水、漁業における鮮度保持、畜養、食品加工、医療、健康等の分野に おいて、真の海洋深層水の効用や活用法を考えた場合、熟成性やミネラル特性は、 清浄性と相俟って相乗効果を発揮すると考えられる。 [0008] However, in the fields of drinking water, freshness preservation in fisheries, animal husbandry, food processing, medicine, health, etc., when considering the practical use and utilization of deep ocean water, Combined with cleanliness, it is considered to have a synergistic effect.
即ち、これらの効用を研究すると共に、取水に際しては、これらの特性が優れた箇 所 (平面、深度)を選定する必要がある。  In other words, it is necessary to study these effects and to select locations (plane and depth) where these properties are excellent when taking water.
このことから、海洋深層水の特性を最大限に持ち合わせる取水箇所の選定と、海洋 深層水の特性'効用を活用した付加価値の高い製品を実現することが求められる。  For this reason, it is necessary to select a water intake location that maximizes the characteristics of deep ocean water and to realize a high value-added product that utilizes the properties of the deep ocean water.
[0009] 本発明の海洋深層水は、清浄性又は熟成性が極大値になる箇所を特定して、この 箇所で取水されたものである。 [0009] The deep sea water of the present invention is obtained by specifying a place where the cleanliness or maturity becomes a maximum value and taking water at this place.
[0010] 本発明の海洋深層水は、酸素濃度、塩分濃度、水温、並びに密度の各情報により[0010] The deep sea water of the present invention is based on information on oxygen concentration, salinity, water temperature, and density.
、海洋学上の太平洋深層水に分類される海水である箇所を特定して、この箇所で取 水されたものである。 The water is classified as ocean water classified as deep ocean water in oceanography.
[0011] 本発明の海洋深層水は、酸素濃度が極小値になる深度以深にあり、海洋学上の深 層水に分類される海水である箇所を特定して、この箇所で取水されたものである。  [0011] The deep sea water of the present invention is deeper than the depth at which the oxygen concentration becomes a minimum value, and a place that is seawater classified as oceanographic deep water is identified and taken at this place. It is.
[0012] 本発明の海洋深層水の取水方法は、清浄性又は熟成性が極大値になる箇所を特 定して、この箇所で取水する。  [0012] The deep sea water intake method of the present invention specifies a place where the cleanliness or maturity is a maximum value, and takes water at this place.
[0013] 本発明の海洋深層水の取水方法は、酸素濃度、塩分濃度、水温、並びに密度の 各情報により、海洋学上の太平洋深層水に分類される海水である箇所を特定して、 この箇所で取水する。 [0013] In the deep sea water intake method of the present invention, by specifying each information of oxygen concentration, salinity concentration, water temperature, and density, a location that is seawater classified as oceanic Pacific deep water is specified, Water is taken at this point.
[0014] 本発明の海洋深層水の取水方法は、酸素濃度が極小値になる深度以深にあり、海 洋学上の深層水に分類される海水である箇所を特定して、この箇所で取水する。  [0014] The deep sea water intake method of the present invention specifies a location that is deeper than the depth at which the oxygen concentration is at a minimum and is classified as oceanographic deep water, and takes water at this location. .
[0015] 本発明の海洋深層水製品の製造方法は、海洋深層水の原水又は前記原水を処 理した水に、マイクロオーダー又はナノオーダーのバブルを、溶解又は混入させる。 また、上記本発明の海洋深層水製品の製造方法において、バブルに、酸素、ォゾ ン、窒素、水素の中の少なくとも一つ以上の気体を用いることが可能である。 [0015] In the method for producing a deep sea water product of the present invention, micro-order or nano-order bubbles are dissolved or mixed in raw deep sea water or water obtained by treating the raw water. In the method for producing a deep sea water product of the present invention, it is possible to use at least one gas of oxygen, ozone, nitrogen, and hydrogen in the bubble.
また、本発明の海洋深層水の利用方法は、この海洋深層水製品の製造方法により 得られた海洋深層水製品を、魚介類の洗浄又は鮮度保持、貝類の砂抜き、飲料又 は食料品の原材料、化粧品原料、のいずれかに利用する。  In addition, the method of using the deep sea water of the present invention is the same as the deep sea water product obtained by this deep sea water product manufacturing method, for cleaning or maintaining freshness of seafood, removing sand from shellfish, beverages or foodstuffs. Used for either raw materials or cosmetic ingredients.
[0016] 本発明の海洋深層水製品の製造方法は、海洋深層水に含まれるミネラル分を軟水 器により吸着捕集する工程と、この軟水器を再生処理して、ミネラル分が濃縮された 水を作製する工程とを少なくとも有する。 [0016] The method for producing a deep sea water product of the present invention includes a step of adsorbing and collecting a mineral contained in deep sea water by a soft water device, and a water in which the mineral content is concentrated by regenerating the soft water device. At least.
また、上記本発明の海洋深層水製品の製造方法において、軟水器を再生処理す る際に、再生処理水として、 Na, K, Caの少なくともいずれかを含有する溶液を使用 することが可能である。  In the method for producing a deep sea water product of the present invention, when the water softener is regenerated, a solution containing at least one of Na, K, and Ca can be used as the regenerated water. is there.
また、この海洋深層水製品の製造方法において、さらに、再生処理により得られた 水に対して、沈殿、電気透析、膜濾過のうちの一つ以上の方法により、 Na, K, Caを 選択的に除去してミネラル分の濃度を再調整する工程を行うことが可能である。  Further, in this method for producing deep sea water products, Na, K, and Ca can be selectively selected by one or more of precipitation, electrodialysis, and membrane filtration on the water obtained by the regeneration treatment. It is possible to carry out the process of removing the water and re-adjusting the mineral content.
[0017] ここで、海洋深層水を含む、海水の特性について、以下に説明する。 Here, characteristics of seawater including deep seawater will be described below.
[0018] (1)清浄性の鉛直特性 [0018] (1) Vertical characteristics of cleanliness
海水に溶存又は懸濁する物質の鉛直方向の分布は、その成因や海洋の層構成に より、表 1に示すように想定されている。表 1において、濃度が比較的高い場合を◎印 で示しており、〇印、△印、と行くに従い濃度が低くなり、 印ではほとんど含有され ていないことを示している。  The vertical distribution of substances dissolved or suspended in seawater is assumed as shown in Table 1, depending on its origin and the ocean's layer structure. In Table 1, the case where the concentration is relatively high is indicated by “印”, and the concentration decreases as the mark “◯” and “△” indicate that it is hardly contained.
[0019] [表 1] 濃度 [0019] [Table 1] concentration
種別 項目 特徴  Type Item Features
表層 中層 深 ffi  Surface layer Middle layer depth ffi
1 一般生物 バクテリア ·菌類他 ◎ 〇 Δ 表屠と S合が原因  1 General organisms Bacteria, fungi, etc.
2 汚染物霣 ウィルス■カビ他 △ ― 睦水起源 2 Contaminant 霣 Virus ■ Mold, etc.
3 汚染化学物 K PCB. DDT他 ◎ 表層の ll部的3 Contaminated chemicals K PCB. DDT, etc.
4 懸渴物貧 SS ◎ 〇 ― 大河川 4 Suspended poor SS ◎ 〇 ― Major river
(1 ) 生物起源 Δ Δ  (1) Biological origin Δ Δ
"粒状  "Granular
(2) 生物 ◎ Λ ― 絶対置は少ない  (2) Biology ◎ Λ ― Absolute position is few
5 有機物 (1) 易分解性 ◎ ― ― 絶対量は少ない  5 Organic matter (1) Easily degradable ◎ ― ― Absolute amount is small
2)溶存 (2) 弱分解性 ◎ Δ ―  2) Dissolved (2) Weakly degradable ◎ Δ ―
(3)雞分解性 Δ Λ Λ  (3) Degradability Δ Λ Λ
(1) 主要元素 ◎ © ◎ 表) S~深 JSまで均等に分布 (1) Major elements ◎ © ◎ Table) S to deep JS evenly distributed
6 ミネ、ラル■金厲 (2)
Figure imgf000006_0001
△ 〇 ◎ 低維度の表 Sで少ない
6 Minnet, Lal
Figure imgf000006_0001
△ ○ ◎ Low in low maintenance table S
(3) 希少ミネラル Δ Δ Δ 偏在することもあるが少ない (3) Rare minerals Δ Δ Δ
7 放射性物 g セシウム 1 37他 ◎ Δ ― 核実験、 事故 7 Radioactive material g Cesium 1 37 Other ◎ Δ ― Nuclear test, accident
清浄性の評価 汚染 混合 清浄  Evaluation of cleanliness Contamination Mixing Clean
[0020] 人間生活に起因するものは、川等から海に流入し、表層内で混合する。そのため、 表層では人的起源物質が多く含まれて 、る。 [0020] Things resulting from human life flow into the sea from rivers, etc., and mix in the surface layer. Therefore, the surface layer contains a lot of human origin substances.
中層では北太平洋中層水の循環にも影響されるが、表層との混合により人的起源 物質の混入が予測されて 、る。  In the middle layer, it is affected by the circulation of the North Pacific middle water, but mixing with the surface layer is expected to introduce human-derived substances.
一方、深層では、中層との混合は生じているが、比較的人的起源物質の混合は少 ない。  On the other hand, in the deep layer, mixing with the middle layer occurs, but there is relatively little mixing of human origin materials.
[0021] (2)海水中の諸指標の鉛直分布  [0021] (2) Vertical distribution of various indicators in seawater
近年、海洋中の温度、塩分濃度、溶存酸素量等の鉛直分布の概要が、明らかにさ れつつある。 日本近海北太平洋における諸指標の鉛直分布のイメージは、図 1に示 すようになっている。図 1では、指標として、温度、塩分濃度、栄養塩の量、溶存酸素 量、清浄性、熟成性を示している。  In recent years, an outline of the vertical distribution of temperature, salinity, dissolved oxygen, etc. in the ocean has been revealed. Figure 1 shows the image of the vertical distribution of various indicators in the sea near Japan and the North Pacific Ocean. Figure 1 shows temperature, salinity, nutrient content, dissolved oxygen content, cleanliness, and maturity as indicators.
[0022] 表 1や図 1に示した分布等から、清浄性又は熟成性が極大値となる箇所を特定し、 これにより、海洋深層水の最も適切な取水箇所 (平面、深度)を選定することができる [0023] また、これら表 1や図 1に示した分布等から、清浄性や熟成性が必要なときに、それ らが直接測定できないときでも、溶存酸素量 (酸素濃度)、塩分濃度、水温、密度等 により、海洋学上の太平洋深層水に分類される水を特定して、海洋深層水の最も適 切な取水箇所 (平面、深度)を選定することができる。 [0022] From the distribution shown in Table 1 and Figure 1, identify the location where the cleanliness or maturity is the maximum, and select the most appropriate intake location (plane, depth) for deep ocean water be able to [0023] From the distributions shown in Table 1 and Fig. 1, even when cleanliness and maturity are required, even when they cannot be measured directly, dissolved oxygen content (oxygen concentration), salinity, water temperature It is possible to identify water classified as oceanographic Pacific deep water by density, etc., and select the most appropriate water intake location (plane, depth).
即ち、北太平洋中層水は上下の層に比べて塩分濃度が低いため、表層水とその 混合領域が塩分濃度からわかり、深層水との混合領域も塩分濃度の上昇で想定でき る。  In other words, the North Pacific Middle Water has a lower salinity than the upper and lower layers, so the surface water and its mixed region can be understood from the salinity, and the mixed region with the deep water can also be assumed by the increase in salinity.
[0024] さらに、中層水と深層水との混合領域よりもさらに下層にある深層水の特性は、混ざ り気がなぐ清浄であることと、海中における年代が最大になっていることである。そこ では溶存酸素量が最小になっている。上下の分布からは中層の溶存酸素量は大き いため、深さ方向には極小値を示す。  [0024] Furthermore, the characteristics of the deep layer water below the mixed region of the middle layer water and the deep layer water are that it is clean and easy to mix and has the greatest age in the sea. . There, the amount of dissolved oxygen is minimized. From the top and bottom distributions, the dissolved oxygen content in the middle layer is large, so it shows a minimum value in the depth direction.
従って、溶存酸素量 (酸素濃度)が極小な深度以深の、海洋学上の太平洋深層水 に分類される水を特定して、海洋深層水の最も適切な取水箇所 (平面、深度)を選定 することができる。  Therefore, identify water that is classified as oceanographic deep ocean water with a depth of dissolved oxygen (oxygen concentration) deeper than the depth, and select the most appropriate intake location (plane, depth) for deep ocean water. be able to.
[0025] 上述した特性を有する深層水は、日本近海では水深 1, OOOm〜l, 500mに存在 する可能性が大きぐ地形等により 1, OOOm付近で現れる。  [0025] Deep water having the characteristics described above appears near 1, OOOm due to the topography that is likely to exist at depths of 1, OOOm to l, 500m in the waters near Japan.
[0026] 従来は、水深 300m〜600mで取水されており、図 1に示すように、清浄性、熟成性 等で不十分であった。 [0026] Conventionally, water has been taken at a depth of 300m to 600m, and as shown in Fig. 1, cleanliness, maturity, etc. were insufficient.
飲料水、漁業、食品加工、医療 ·健康等へ海洋深層水を利用する場合、本発明を 適用することにより、海洋深層水の効用を最大限に発揮することが可能となる。  When deep sea water is used for drinking water, fishery, food processing, medical / health, etc., it is possible to maximize the utility of deep sea water by applying the present invention.
また、従来の水深 300m前後は表層水の混合が激しい領域で、それぞれの機関で 公表はされていないが、特性の日々の変化が小さくなぐ海洋深層水による高付カロ 価値製品を製造する場合、品質管理が難しかったはずである。  In addition, the conventional water depth of around 300m is a region where surface water mixing is intense, and it has not been published by each organization.However, when producing high-calorie value products by deep ocean water, where daily changes in characteristics are small, Quality control should have been difficult.
水深 1, OOOmに至り、時間変動のない安定した特性となり、利活用においても安定 した品質を求めることができる。  The water depth reaches 1, OOOm, and it has stable characteristics with no time fluctuation, and stable quality can be obtained even in utilization.
[0027] 即ち、本発明の海洋深層水及び本発明の海洋深層水の取水方法によれば、海洋 深層水の最も適切な取水箇所 (平面、深度)を選定して、この箇所で取水するので、 混ざり気のない、清浄性や熟成性が高い海洋深層水が得られる。そして、この清浄 性、熟成性が、ミネラル特性など他の特性と相乗効果を発揮する。 [0027] That is, according to the deep sea water of the present invention and the deep sea water intake method of the present invention, the most appropriate deep water intake location (plane, depth) is selected, and water is taken at this location. It is possible to obtain deep ocean water that is not mixed and has high cleanliness and maturity. And this clean And ripening properties synergize with other properties such as mineral properties.
[0028] また、本発明の海洋深層水製品の製造方法によれば、海洋深層水の原水又はこの 原水を処理した水に、マイクロオーダー又はナノオーダーのバブルを、溶解又は混 入させること〖こより、清浄性や熟成性等の海洋深層水の特性に、溶解又は混入させ たバブル (気体)の特性をカ卩えることができる。  [0028] Further, according to the method for producing a deep sea water product of the present invention, the micro-order or nano-order bubbles are dissolved or mixed in the raw water of the deep sea water or the water treated with this raw water. In addition, the characteristics of dissolved or mixed bubbles (gas) can be added to the characteristics of deep ocean water such as cleanliness and maturity.
従って、さらに効用を広げて、海洋深層水の付加価値を高めることが可能になる。  Therefore, the utility can be further expanded and the added value of deep ocean water can be increased.
[0029] また、本発明の海洋深層水製品の製造方法によれば、海洋深層水に含まれるミネ ラル分を軟水器により吸着捕集する工程と、この軟水器を再生処理して、ミネラル分 が濃縮された水を作製する工程とを少なくとも有することにより、清浄性や熟成性等 の海洋深層水の特性を有すると共に、海洋深層水の原水よりもミネラル分が豊富な 水を得ることができる。  [0029] Further, according to the method for producing a deep sea water product of the present invention, the mineral content contained in the deep sea water is adsorbed and collected by the water softener, and the water softener is regenerated to obtain a mineral content. And at least a step of producing concentrated water, it is possible to obtain water with richer mineral content than raw deep-sea water, while having properties of deep-sea water such as cleanliness and maturity. .
従って、さらに効用を広げて、海洋深層水の付加価値を高めることが可能になる。 図面の簡単な説明  Therefore, the utility can be further expanded and the added value of deep ocean water can be increased. Brief Description of Drawings
[0030] [図 1]海水の諸指標の鉛直分布を示す図である。 [0030] FIG. 1 is a diagram showing the vertical distribution of various indicators of seawater.
[図 2]水素溶存試験における配置を示す図である。  FIG. 2 is a diagram showing an arrangement in a hydrogen dissolution test.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0031] 以下、本発明を実施するための実施形態について説明する。 [0031] Embodiments for carrying out the present invention will be described below.
[0032] (1)求められる特性を最大限に発揮する海洋深層水の選定と取水 [0032] (1) Selection and intake of deep ocean water that maximizes the required characteristics
先に述べたように、当該海域の温度調査、塩分濃度調査、溶存酸素量調査により、 北太平洋中層水と本来の海洋深層水をその混合域も含めて、見分けることができる。 これにより、調査結果に基づいて取水箇所 (位置、深度)を選定して、清浄性や熟成 性の特性の優れた海洋深層水を取水することができる。  As mentioned earlier, the temperature survey, salinity concentration survey, and dissolved oxygen content survey in the sea area can distinguish North Pacific middle water and original deep sea water, including their mixed areas. In this way, it is possible to select the water intake location (position, depth) based on the survey results, and take deep sea water with excellent cleanliness and aging characteristics.
また、従来の水深 300m〜600mよりも深い、水深 1000m程度以上の箇所から取 水するため、取水コストを低減することが望ましい。  In addition, it is desirable to reduce the water intake cost because water is taken from a location deeper than the conventional water depth of 300m to 600m and a depth of about 1000m or more.
なお、取水コストの低減方法については、特願 2005— 63040「海洋深層水の低コ スト取水技術」等に示した。  In addition, the method for reducing the water intake cost is described in Japanese Patent Application No. 2005-63040 “Low cost water intake technology for deep sea water”.
[0033] (2)混ざり気のない海洋深層水の活用 [0033] (2) Utilization of unconfined deep ocean water
本発明による混ざり気のない海洋深層水は、特に、飲料水、漁業、食品加工、医療 •健康等へ海洋深層水を利用する場合に、海洋深層水の効用を最大限に発揮でき る。 The immiscible deep ocean water according to the present invention is particularly suitable for drinking water, fishery, food processing, medical treatment. • When using deep ocean water for health, etc., the benefits of deep ocean water can be maximized.
[0034] (3)海洋深層水への気体の溶解  [0034] (3) Dissolution of gas in deep ocean water
マイクロオーダーのバブルやナノオーダーのバブルにより、気体を海洋深層水に溶 解させること〖こより、さらに効用を広げて、海洋深層水の付加価値を高められると考え られる。  Micro-bubbles and nano-order bubbles are expected to increase the added value of deep ocean water by further expanding its utility rather than dissolving gas in deep ocean water.
溶解させる気体としては、酸素、オゾン、窒素、水素の少なくとも 1つが好適である。 例えば、気体として酸素を溶かした場合は、酸素を補給する効果を持たせ、飲料水 として体内に補給したり、畜養用の水として生物を活性化させたりすることが、考えら れる。特に、水中で酸素を消費する生物に対して効果的である。  The gas to be dissolved is preferably at least one of oxygen, ozone, nitrogen, and hydrogen. For example, when oxygen is dissolved as a gas, it can be considered to have an effect of supplementing oxygen, to replenish the body as drinking water, or to activate living organisms as water for animal husbandry. In particular, it is effective against organisms that consume oxygen in water.
例えば、気体としてオゾンを溶力した場合は、殺菌作用を持たせることが可能にな る。  For example, when ozone is dissolved as a gas, it can have a bactericidal action.
例えば、気体として窒素を溶力した場合は、窒素の不活性性により、動植物の鮮度 保持の効果が期待できる。  For example, when nitrogen is melted as a gas, the effect of maintaining the freshness of animals and plants can be expected due to the inertness of nitrogen.
例えば、気体として水素を溶力した場合は、還元性を高めることができる。これによ り、活性酸素の除去等の効果が期待できる。  For example, when hydrogen is dissolved as a gas, the reducibility can be enhanced. As a result, an effect such as removal of active oxygen can be expected.
そして、これらの気体を海洋深層水に溶かした場合の作用効果は、本発明による真 の海洋深層水の原水 '脱塩水'ミネラル水等の、清浄性や熟成性等の特性との相乗 効果を発揮させることができる。そのため、他の淡水や海水等に同様に気体を溶かし た場合と比較して、顕著な効果が得られる。  The effects of these gases when dissolved in deep ocean water are synergistic with properties such as cleanliness and maturity, such as the raw water 'desalted water' mineral water of true deep ocean water according to the present invention. It can be demonstrated. Therefore, a remarkable effect can be obtained compared with the case where gas is similarly dissolved in other fresh water or seawater.
[0035] (4)海洋深層水のミネラル濃縮処理 [0035] (4) Mineral concentration treatment of deep ocean water
海洋深層水に含まれるミネラル分を軟水器により吸着捕集する工程と、軟水器を再 生処理して、ミネラル分が濃縮された水を作製することにより、さらに効用を広げて、 海洋深層水の付加価値を高められると考えられる。  The process of adsorbing and collecting minerals contained in deep ocean water with a water softener and regenerating the water softener to produce water that is enriched with minerals, further expanding the utility, deep sea water It is thought that the added value of can be increased.
そして、例えば、再生処理における再生処理水として、 Na, K, Caの少なくともいず れかを含有する溶液を使用することにより、軟水器内に吸着したミネラル分が Na, K , Caのイオンで置き換わり、ミネラル分力 Sイオンィ匕して出てきた、ミネラル豊富な水と なる。 さらに、例えば、再生処理により得られた水に対して、沈殿、電気透析、膜濾過のう ちの一つ以上の方法により、 Na, K, Caを選択的に除去してミネラル分の濃度を再 調整する工程を行うことにより、ミネラル成分の異なった濃縮液を得ることができる。 For example, by using a solution containing at least one of Na, K, and Ca as reclaimed water in the regeneration treatment, minerals adsorbed in the water softener are ions of Na, K, and Ca. It is replaced by mineral-rich water S-iony, resulting in mineral-rich water. Further, for example, the water obtained by the regeneration treatment is selectively removed by one or more of precipitation, electrodialysis, and membrane filtration to remove the Na, K, Ca and reconstitute the mineral content. By performing the adjusting step, concentrated liquids having different mineral components can be obtained.
[0036] 以下、本発明による混ざり気のない海洋深層水の各種製品の応用や利用可能性 等について説明する。 [0036] In the following, the application and availability of various products of unmixed deep ocean water according to the present invention will be described.
[0037] A.ミネラルウォーターの製造 [0037] A. Manufacture of mineral water
(1)従来の海洋深層水による飲料水製造技術  (1) Conventional drinking water production technology using deep sea water
従来、海洋深層水を用いた飲料水を製造する方法としては、逆浸透 (RO)膜を用 い脱塩し、ミネラル分を調整するために、原水、電気透析 (ED)水、或いはにがりを添 加する製造方法が採用されて!/ヽた。  Conventionally, the method of producing drinking water using deep ocean water is to use salt water, electrodialysis (ED) water, or bittern to demineralize using a reverse osmosis (RO) membrane and adjust mineral content. The manufacturing method to be added was adopted!
海水は特に塩分が卓越するため、ミネラル分を多くしたいと考えて原水を加えると、 塩分が強くなるので、限界がある。カロえて、原水を用いる場合は精密濾過(MF)して いないため、不純物も含まれることになる等、問題が残る。  Seawater is particularly salty, so adding raw water to increase mineral content has a limitation because it increases saltiness. When raw water is used, problems such as impurities are included because it is not microfiltered (MF).
電気透析 (ED)による方法では、 1価のイオンを選択的に除去することもでき、主に 2価イオンのミネラルが豊富な飲料水を製造できる。しかし、 1価のイオンが抜けること と、一般にコストが高いこと、等の問題がある。  In the electrodialysis (ED) method, monovalent ions can be selectively removed, and drinking water mainly rich in divalent ions can be produced. However, there are problems such as loss of monovalent ions and high cost in general.
また、にがりを用いる方法では、にがりの成分が安定しないことが多ぐ飲料水として 安定した成分を作りづらい等の問題があった。  Further, the method using bittern has a problem that it is difficult to make a stable component as drinking water because the component of bittern is often not stable.
[0038] (2)新し ヽ海洋深層水を活用した新し!/ヽ飲料水製造技術 [0038] (2) New ヽ New utilizing deep ocean water! / ヽ Drinking water production technology
1)原水の混合  1) Raw water mixing
まず、原水を混合する場合、新しい海洋深層水は特に清浄性に優れるものである 1S 念のために、 MF膜で濾過し、加熱殺菌等をすることが望ましい。  First, when mixing raw water, it is desirable to filter by MF membrane, heat sterilize, etc. in order to make sure that new deep ocean water is particularly clean.
[0039] 2)軟水器の活用 [0039] 2) Utilization of water softener
軟水器は、従来硬水からミネラルを除去し軟水を得るために用いられてきた。そして 、ミネラルを除去するイオン交換樹脂が一杯になったときは、 Na水溶液で再生処理し 、再利用されてきた。海水を軟水器にかけた場合の再生処理過程における排水は、 イオン交換樹脂に吸着したミネラル分力 SNa+で置き換わり、ミネラル分力 Sイオンィ匕して 出てきた、ミネラル豊富な水となる。 また、再生処理水として NaCl水溶液の代わりに、 CaCl、 KC1等を用いることにより The water softener has been used to remove minerals from hard water to obtain soft water. When the ion exchange resin that removes minerals is full, it has been recycled with an aqueous Na solution and reused. The wastewater in the regeneration process when seawater is put on a water softener is replaced with mineral component SNa + adsorbed on the ion exchange resin, resulting in mineral-rich water that is produced by mineral component S ion. In addition, by using CaCl, KC1, etc. instead of NaCl aqueous solution as reclaimed treated water
2  2
、更に成分調整が可能となる。  Further, component adjustment can be performed.
[0040] 3)配合 [0040] 3) Formulation
この再生処理で得られたミネラル豊富な水を直接用いる方法や、更にこれを電気透 析 (ED)により Na等を選択的に除去する方法等により、ミネラル成分の異なった濃縮 液を得ることができる。更に、これら複数のミネラル濃縮液を、適度の割合で配合する ことにより、比較的低コストで目的とするミネラルバランスの飲料水を製造することがで きる。  Concentrated liquids with different mineral components can be obtained by directly using mineral-rich water obtained by this regeneration process, or by selectively removing Na, etc. by electro-deposition (ED). it can. Furthermore, by blending these multiple mineral concentrates at an appropriate ratio, it is possible to produce drinking water with the desired mineral balance at a relatively low cost.
[0041] (3)還元性の付与  [0041] (3) Adding reducibility
1)従来の海洋深層水飲料  1) Conventional deep sea water drink
従来、ガスを溶カゝした飲料水では、二酸ィ匕炭素を溶カゝしたものが主流であった。 日本人の酸素好きを捉えて、酸素をとけ込ませた飲料水もある。  Conventionally, in drinking water in which a gas is dissolved, a solution in which carbon dioxide is dissolved is the mainstream. There is also a drinking water that captures Japanese oxygen lovers and sinks oxygen.
また、学会等で活性水素の効用が言われると、還元水や活性水素水等も販売され たりした。  In addition, when the use of active hydrogen was said by academic societies, etc., reduced water and active hydrogen water were also sold.
[0042] しかし、単なる水素の効用を認めて、適量の水素を混入させた飲料は、これまでに なかった。  [0042] However, there has never been a beverage in which an appropriate amount of hydrogen is mixed with the mere effect of hydrogen.
また、海洋深層水飲料は、それ自体酸化還元電位が低いこともあり、特に酸化還元 電位を下げる工程は取られてこなカゝつた。  In addition, deep sea water drinks themselves have a low redox potential, and the process of lowering the redox potential has been particularly difficult.
[0043] 2)マイクロ(ナノ)バブルによる水素の混合 [0043] 2) Hydrogen mixing by micro (nano) bubbles
水素は水に溶けにくい気体である力 一方ではその溶解量が温度により殆ど変化 しない等の特性を有する。  Hydrogen is a gas that is difficult to dissolve in water. On the other hand, its amount of dissolution hardly changes with temperature.
即ち、一旦注入'溶解した水素は、加熱殺菌等の製造工程における揮散が殆どな いため、低コストで還元水を製造することが可能になる。  That is, once injected and dissolved, there is almost no volatilization in the production process such as heat sterilization, and it is possible to produce reduced water at a low cost.
[0044] (4)酸素の溶存 [0044] (4) Dissolution of oxygen
飲料水に酸素を溶存させることにより、酸素を補給する効果を持たせて、前述したよ うに、体内に補給することが可能になる。  By dissolving oxygen in the drinking water, it has the effect of supplying oxygen and can be supplied into the body as described above.
[0045] B.畜養、鮮度保持等での活用 [0045] B. Utilization for animal husbandry, freshness preservation, etc.
混ざり気のな ヽ海洋深層水の清浄性と溶存酸素量が少な ヽことは、そのまま鮮度 保持等に有効であると考えられる。例えば、魚介類の鮮度保持や洗浄に使用するこ とが考えられる。 Unmixed 清浄 Cleanliness of deep ocean water and low dissolved oxygen ヽ It is considered to be effective for holding and the like. For example, it can be used for maintaining the freshness of seafood and washing.
一方、畜養の場合、溶存酸素量が少ないことから、長期間魚介類が生存することは 適当でない。即ち、海中の生物を活性ィ匕させるには、マイクロ(ナノ)バブルで酸素を 溶解させるとよい。この酸素を溶解させた海洋深層水を、例えば貝類の砂抜き等に 用いて、活発に砂を吐き出すようにすることが可能であると考えられる。  On the other hand, in the case of animal husbandry, it is not appropriate for fish and shellfish to survive for a long time because the amount of dissolved oxygen is small. In other words, in order to activate the organisms in the sea, it is better to dissolve oxygen with micro (nano) bubbles. It is considered that the deep sea water in which this oxygen is dissolved can be used for sand removal of shellfish, for example, so that sand can be actively discharged.
また、海洋深層水を処理して、ミネラル分の濃度を調整したミネラル水は、清浄性に 優れるため、これも畜養に好適である。例えば、貝類の砂抜き等に用いて、活発に砂 を吐き出すようにすることが可能であると考えられる。  In addition, mineral water obtained by treating deep sea water and adjusting the concentration of minerals is excellent in cleanliness and is also suitable for animal husbandry. For example, it can be used for removing sand from shellfish, etc., so that sand can be actively discharged.
[0046] C.食品加工分野  [0046] C. Food Processing Field
海洋深層水を用いた豆腐、パン、干物等が美味しいことは知られている。その原因 は、ミネラル特性、熟成性にあると考えられるが、これは、清浄性と相俟ってこそ、効 果が発揮されると考えられる。  It is known that tofu, bread, dried fish using deep ocean water are delicious. The cause is considered to be mineral characteristics and maturity, but this is considered to be effective only when combined with cleanliness.
本発明により得られる海洋深層水の清浄性、ミネラル特性、更に溶存酸素量が小さ V、こと等は、これら食品加工分野で効果を発揮することが期待できる。  The cleanliness and mineral properties of deep ocean water obtained by the present invention, and the small amount of dissolved oxygen V, etc., can be expected to exert effects in these food processing fields.
[0047] D.医療健康 [0047] D. Medical health
従来、アトピー性皮膚炎等に、海洋深層水の清浄性やミネラル特性が有効である、 と言われてきた。  Conventionally, it has been said that cleanliness and mineral properties of deep ocean water are effective for atopic dermatitis and the like.
しかし、アトピー症状自体が非常に複雑な要因を持つ上、全てのアトピー症状に効 果があるわけでもないことから、半数以上の人に改善効果が認められるにもかかわら ず、公然と効果を謳った健康食品や医薬品としての商品化にまでは至っていない。 従来は表層水と北太平洋中層水の混合域で取水していたことを踏まえると、本発明 により得られる海洋深層水の清浄性、ミネラル特性等を活用することにより、改善効果 が十分に期待できる。  However, since atopy symptoms themselves have very complex factors and not all atopy symptoms are effective, more than half of the people have an improvement effect, but it is publicly effective. It has not yet been commercialized as a health food or medicine. Based on the fact that water has conventionally been taken in a mixed area of surface water and North Pacific middle water, improvement effects can be sufficiently expected by utilizing the cleanliness, mineral characteristics, etc. of deep ocean water obtained by the present invention. .
また、化粧品(例えば、ローション等)の原料に使用することも考えられる。  Further, it may be used as a raw material for cosmetics (for example, lotion and the like).
[0048] ここで、本発明によって得られる海洋深層水を用いて実験を行 ヽ、海洋深層水の特 性や、上述した各種の応用製品への可能性等につ!、て調べた。 [0048] Here, an experiment was conducted using the deep sea water obtained by the present invention, and the characteristics of the deep sea water and the potential for various application products described above were examined.
[0049] <実験 1 >飲料水の試作及び試飲 館山沖水深 1000m程度で取水した海洋深層水 (原水)を使用して、この原水を RO 膜で淡水化処理した。この淡水化処理した水の硬度は、 0であった。 [0049] <Experiment 1> Trial production and tasting of drinking water Using deep ocean water (raw water) taken at a water depth of about 1000m off Tateyama, this raw water was desalinated with an RO membrane. The hardness of the desalinated water was 0.
一方、原水を電気透析処理して、ミネラル成分だけを抽出した、ミネラル水を作製し た。このミネラル水の硬度は、 6205であった。  On the other hand, raw water was electrodialyzed to produce mineral water from which only mineral components were extracted. The hardness of this mineral water was 6205.
そして、淡水化処理した水に、ミネラル水を添加して、さらに水素を lppm溶力し込 んで、飲料水の試料を作製した。作製した飲料水の硬度は、 60であった。  Then, mineral water was added to the desalinated water, and hydrogen was further added at lppm to prepare a sample of drinking water. The hardness of the produced drinking water was 60.
[0050] 作製した飲料水及びミネラル水の成分を調べた。 [0050] Components of the produced drinking water and mineral water were examined.
飲料水の成分表を表 2に示し、ミネラル水の成分表を表 3に示す。  Table 2 shows the ingredient table for drinking water, and Table 3 shows the ingredient table for mineral water.
[0051] [表 2] 水成分表 (100mlあたり) エネルギー 0 ε [0051] [Table 2] Water composition table (per 100ml) Energy 0 ε
たんぱく 0 s  Protein 0 s
脂質 0 S  Lipid 0 S
K水化物 0 S  K hydrate 0 S
ナトリウム 0.41 mg  Sodium 0.41 mg
マグネシウム 1.21 mg  Magnesium 1.21 mg
カルシウム 0.42 mg  Calcium 0.42 mg
カリウム 0.39 mg  Potassium 0.39 mg
硬度 60 mg/L  Hardness 60 mg / L
[0052] [表 3] [0052] [Table 3]
ミネラル水成分表 doogあたり) エネルギー 0 kcal Mineral water composition table per doog) Energy 0 kcal
*水化物 0 g  * Hydrate 0 g
タンパク K 0 g  Protein K 0 g
脂 K 0 S  Fat K 0 S
マグネシウム 1 226 mg  Magnesium 1 226 mg
カルシウム 423 mg  Calcium 423 mg
亜鉛 20.8 U S  Zinc 20.8 U S
モリブデン 8.9 e  Molybdenum 8.9 e
鉄 フ.9  Iron F.9
マンガン 2.0  Manganese 2.0
/くナジゥム 2.0  / Knajum 2.0
硬度 6205 mg/し  Hardness 6205 mg /
[0053] 次に、作製した飲料水の試料を、実際に試飲してもらい、アンケートを行った。 [0053] Next, a sample of the produced drinking water was actually sampled and a questionnaire was conducted.
アンケートは、「試飲されて、味はどうでしたか?」という質問に対して、「おいしい」、 In response to the question "How was the taste after being sampled?"
「やわらかい」、「かたい」、「おいしくない」の 4つの選択肢力 複数回答可で回答して もらった。また、性別と年齢についても記載してもらった。 Four options of “soft”, “hard” and “not good” We received multiple answers. In addition, gender and age were also described.
アンケートの回答者数は 160人で、うち男性が 106人(66%)、女性が 46人(29%) The number of respondents to the survey was 160, of which 106 were men (66%) and 46 were women (29%)
、無回答が 8人(5%)であった。年齢は、 20代が 52人(32%)、 30代が 41人、 40代 力 33人(32%)であった。 No answer was 8 (5%). Ages were 52 in the 20s (32%), 41 in the 30s, and 33 in the 40s (32%).
回答の内容は、「おいしい」が 96人(60%)、「やわら力い」が 65人 (41%)、「かた The answers included 96 (60%) for “delicious”, 65 (41%) for “soft”,
Vヽ」が 8人(5%)、「お!/ヽしくな!/ヽ」は 0人(0%)であった。 There were 8 people (5%) for V ヽ and 0 people (0%) for “O!
[0054] また、一部の回答者には、従来市販されている海洋深層水の飲料水と、本実験の 試料の飲料水とを、飲み比べてもらった。その結果、ほとんどの人が、味の違いに驚 いていた。 [0054] In addition, some respondents compared the drinking water of the commercially available deep sea water with the drinking water of the sample of this experiment. As a result, most people were surprised at the difference in taste.
なお、水の味がよくわかる常温で飲んだ場合には、本実験の試料の飲料水は、特 に「甘 、」(ぉ 、し 、) t 、う感想が多くあった。  In addition, when drinking at room temperature where the taste of water is well understood, the sample drinking water in this experiment had a lot of impressions, especially “sweet”.
[0055] <実験 2 >海洋深層水を使用したローションの試作 [0055] <Experiment 2> Trial production of lotion using deep ocean water
前述したように、海洋深層水はアトピー性皮膚炎に有効であると言われており、本 発明により得られる海洋深層水を使用することにより、効果が期待できる。 As mentioned earlier, deep ocean water is said to be effective for atopic dermatitis. The effect can be expected by using the deep sea water obtained by the invention.
そこで、海洋深層水を使用したローションを試作した。  Therefore, a lotion using deep ocean water was prototyped.
[0056] 実験 1と同様にして、原水からミネラル水と、飲料水 (硬度 60)とをそれぞれ作製し た。  [0056] In the same manner as in Experiment 1, mineral water and drinking water (hardness 60) were prepared from raw water.
これらを用いて、以下の配合と作製方法により、ローションを試作した。  Using these, a lotion was prototyped by the following formulation and production method.
配合(105ml当たり)  Formulation (per 105ml)
飲料水 (硬度 60) 90ml  Drinking water (hardness 60) 90ml
ミネラル水 10ml  10ml of mineral water
尿素 2g  Urea 2g
グリセリン 5ml  Glycerin 5ml
これら 4つの材料を全て混合して、ローションを作製し、これをスプレー式の容器に 入れた。なお、防腐剤等は一切添加せず、加熱殺菌処理等も行っていない。  All four ingredients were mixed to make a lotion and placed in a spray container. In addition, no preservatives are added and no heat sterilization treatment is performed.
[0057] 試作したローションを、実際に使ってもらい、アンケートに回答してもらった。 [0057] The prototype lotion was actually used and the questionnaire was answered.
使用条件は、(1)冷蔵保存し、 2週間で使い切る、(2)風呂上り後等の清潔な肌に 、直接 1〜2回スプレーする、という条件とした。  The usage conditions were (1) refrigerated and used up in 2 weeks, and (2) sprayed once or twice directly on clean skin after taking a bath.
[0058] アンケートは、下記の質問とした。また、性別と年齢、アレルギーの有無についても 回答してもらった。 [0058] The questionnaire included the following questions. They also asked about sex, age, and allergy.
第 1問は、「使ってみた感想は?」という質問に対して、「非常に良い」、「良い」、「普 通」、「悪い」の 4つの選択肢から回答してもらった。  The first question was answered to the question “What did you think?” From four choices: “very good”, “good”, “normal”, and “bad”.
第 2問は、「使ってみてどのような感じですか?」という質問に対して、「しっとりする」 、「すべすベする」、「さらつとしている」、「気持ちがいい」、「痒い」、「痛い」、「ベたベ たする」、「気持ちが悪い」の 8つの選択肢力 複数回答可で回答してもらった。  The second question is “Moist”, “Smooth”, “Smooth”, “Pleasant”, “Ugly” ”,“ Pain ”,“ sticky ”,“ bad feeling ”8 choice options Multiple answers allowed.
第 3問は、「どのようなときに使いたいと思いますか?」という質問に対して、「お風呂 あがり」、「乾燥したとき」、「いつでもつねに」、「使いたくない」、「その他」の 5つの選 択肢力 複数回答可で回答してもらった。  The third question is the answer to the question “When do you want to use it?”, “After bathing”, “When dry”, “When always”, “I don't want to use”, “Others” "5 options" The answer was given with multiple answers.
[0059] アンケートの回答者数は 11人で、うち男性が 1人(9%)、女性が 10人(91%)であ つた。年齢は、 30代と 40代が共に 4人(36%)、 10代は 2人(18%)、 50代は 1人(9 %)であった。アレルギーの有無は、無しが 7人(64%)、有りが 4人(36%)であった。 また、アレルギー有りの 4人のうち、 3人は、アトピー性皮膚炎の症状力 現在ある、も しくは、過去にあった。 [0059] The number of respondents to the questionnaire was 11, of which 1 was male (9%) and 10 were female (91%). Ages were both 30 (40%) in the 30s and 40s (36%), 2 in the 10s (18%), and 1 in the 50s (9%). The presence or absence of allergy was 7 (64%) without and 4 (36%) with. Also, of the 4 people with allergies, 3 were present or in the past as symptomatic for atopic dermatitis.
第 1問の回答の内容は、「良い」が 10人(91%)、「普通」が 1人(9%)であり、「非常 に良 、」及び「悪 、」は無かった。  The answers to question 1 were 10 (91%) for “good” and 1 (9%) for “normal”, and there was no “very good” or “bad”.
第 2問の回答の内容は、「しっとりする」が 7人、「すべすベする」が 3人、「さらつとし ている」が 1人、「気持ち力 Sいい」が 5人、「べたべたする」が 2人であり、「痒い」、「痛い 」、「気持ちが悪い」は無力つた。  The answer to the second question is 7 for “moist”, 3 for “smooth”, 1 for “smooth”, 5 for “feeling good”, “satisfied” “Yes” was two people, and “Ugly”, “Painful”, and “Uncomfortable” were helpless.
第 3問の回答の内容は、「お風呂あがり」が 10人、「乾燥したとき」が 7人、「その他」 力 人であり、「いつでもつねに」及び「使いたくない」はな力 た。  The answers to the third question were: “After bathing” 10 people, “When dry” 7 people, “Other” powerful people, “Whenever” and “I do not want to use”.
[0060] また、アンケートへの回答の他に、意見や感想も自由に回答してもらった。 [0060] In addition to answering the questionnaire, they were also able to freely answer their opinions and impressions.
使用感としては、手作り化粧水のように非常に保湿効果が高い、お風呂あがりの腕 や脚の肌にとてもいい感触だった、腕や脚に一度塗るとその後ずっとすベすべした 気持ちの良い状態が続いて力さっきがなく快適、等の具体的な感想が得られた。  As for the feeling of use, it was very moisturizing like handmade lotion, it felt very good on the skin of the arms and legs of the bath, and once applied to the arms and legs, it felt smooth all the time afterwards. A concrete impression was obtained that the condition continued and there was no need for force and comfort.
[0061] べたべたするのは、グリセリンの影響であると考えられる。 [0061] It is considered that the glycerin affects the stickiness.
従って、例えば、夏と冬とでグリセリン等の配合量を変えることが考えられる。  Therefore, for example, it is conceivable to change the blending amount of glycerin and the like between summer and winter.
使用感の回答から、保湿性の効果があると考えられる。  Based on the feeling of use, it is considered that there is a moisturizing effect.
[0062] <実験 3 >あさりの砂抜き試験 [0062] <Experiment 3> Sand removal test of clams
あさりの砂抜きに、本発明による海洋深層水を用いて、効果を調べた。  The effect was investigated using the deep sea water according to the present invention for sand removal of clams.
[0063] まず、以下の 2つの塩水を用意した。 [0063] First, the following two salt waters were prepared.
塩水 1:水道水に塩 (塩ィ匕ナトリウム)を加えて、海水 (塩分濃度 3%)と同等の塩分濃 度としたもの  Salt water 1: Salt (salt sodium salt) added to tap water to obtain a salinity equivalent to seawater (3% salinity)
塩水 2:館山沖水深 1000m程度で取水した海洋深層水 (原水)を濃縮処理した濃縮 水(5%)と、希釈用の水道水とを混合して、海水 (塩分濃度 3%)と同等の塩分濃度と したもの  Salt water 2: Concentrated deep water (raw water) taken at a depth of about 1000m off Tateyama and mixed with concentrated water (5%) and tap water for dilution, equivalent to seawater (3% salinity) Salinity
[0064] 次に、あさりを用意した。あさりは、市販の愛知県産 (消費期限 2006年 10月 12日) を使用した。 2006年 10月 11日に購入し、同日に試験を行った。  [0064] Next, a clam was prepared. Asari used commercially available Aichi prefecture products (expiration date: October 12, 2006). Purchased on October 11, 2006 and tested on the same day.
そして、あさりをそれぞれの塩水に入れて、 1時間置いた。また、その間の経過を観 察した。なお、塩水の量とあさりの総重量 ·個数は、表 4に示す通りである。 1時間後、あさりを塩水から出して、残った塩水をコーヒーフィルタで濾過した。 コーヒーフィルタの重量を測定し、あさりが吐出した砂の重さを求めた。 The clams were placed in their salt water and left for 1 hour. We also observed the progress in the meantime. Table 4 shows the amount of salt water and the total weight and number of clams. After 1 hour, the clams were removed from the brine and the remaining brine was filtered through a coffee filter. The weight of the coffee filter was measured, and the weight of sand discharged by Asari was determined.
[0065] 試験の結果を、表 4に示す。また、観察された貝の状態や、濾過の状況をまとめて、 表 5に示す。  [0065] Table 4 shows the results of the test. Table 5 summarizes the observed shellfish and filtration conditions.
[0066] [表 4] [0066] [Table 4]
Figure imgf000017_0001
Figure imgf000017_0001
[0067] [表 5] [0067] [Table 5]
水道水 鏖縮氷 +水道水 貝 Tap water crimped ice + tap water shellfish
の 動きが純い 活発に動く 状  The movement of pure is active
 State
砂 St過後の砂の重量: 41.2mg  Sand Weight after sand St: 41.2mg
な it過後の砂の重!:: 4.9mg  The weight of sand after it! :: 4.9mg
 Do
の a iiifl中の状況: 濾過は 2倍以上の  The situation during a iiifl: Filtration is more than twice
過中の状況: なかなか a過が進まない  The situation during the past: It is quite difficult to proceed.
スピードで進む  Advance at speed
濾 ¾過後の水の状態:白く »る  ¾Water condition after filtration: white
過 逋過後の水の状態:白 < る  Water condition after excess: white
[0068] 水道水 +塩 (塩水 1)よりも、濃縮水 +水道水 (塩水 2)に入れたあさりの方が、活発 に動き、砂も 8倍以上多く吐出した。 [0068] The clams in concentrated water + tap water (salt water 2) moved more vigorously than the tap water + salt (salt water 1), and more than 8 times more sand was discharged.
また、濾過スピードは、塩水 2が塩水 1の 2倍以上の速さであった。濾過後の水はい ずれも同様に白く濁っていた。  The filtration speed of salt water 2 was more than twice that of salt water 1. The water after filtration was similarly cloudy white.
[0069] この実験結果からも、本発明により得られる海洋深層水を用いれば、前述した養育 等にも有効であることが推測される。 [0069] Also from this experimental result, it is presumed that the use of the deep ocean water obtained by the present invention is effective for the above-described rearing and the like.
[0070] <実験 4 >水素の溶存試験 [0070] <Experiment 4> Hydrogen Dissolution Test
マイクロ(ナノ)バブルによる海洋深層水への水素の溶存試験を行った。 西華産業株式会社が販売している、酸素溶解装置 (CLER WATER+02)を使用して 、酸素の代わりに水素を溶存させた。 Dissolution test of hydrogen in deep ocean water using micro (nano) bubbles was conducted. Using an oxygen dissolving device (CLER WATER + 0 2 ) sold by Seika Sangyo Co., Ltd., hydrogen was dissolved instead of oxygen.
ED (電気透析)ミネラル水として、海洋深層水原水を逆浸透 (RO)処理した水を、 2 0リットル入りの容器で 13本用意した。  Thirteen waters prepared by reverse osmosis (RO) treatment of raw deep sea water as ED (electrodialysis) mineral water were prepared in 20 liter containers.
[0071] そして、図 2に示すように、酸素溶解装置の水槽 1に淡水化処理した水 20リットルを 入れ、 EDミネラル水 2とポンプ 3を配置して、管内に EDミネラル水 2と H (水素)とを [0071] Then, as shown in FIG. 2, 20 liters of desalinated water is placed in the water tank 1 of the oxygen dissolving apparatus, ED mineral water 2 and pump 3 are arranged, and ED mineral water 2 and H ( Hydrogen)
2  2
順次導入して、ポンプ 3により水槽 1内に送り、ナノバブルを発生させて、水素をミネラ ル水に溶存させた。水槽 1からまたミネラル水 2の導入口及び水素の導入口を経てポ ンプ 3〖こ戻るように水を循環させた。  Introduced one after another and sent into water tank 1 by pump 3 to generate nanobubbles and dissolve hydrogen in mineral water. Water was circulated from tank 1 through the inlet of mineral water 2 and the inlet of hydrogen so that the pump returned 3 mm.
水素の導入量は、空気流量計の読み取り値で 0. 5〜0. 7LZ分の範囲内となるよ うに調整した。ポンプ 3の圧力は、 0. 7kgZcm2とした。 水の循環及び水素の導入は、 1分間連続させた。 The amount of hydrogen introduced was adjusted to be within the range of 0.5 to 0.7 LZ as measured by the air flow meter. Pressure of the pump 3 was set to 0. 7kgZcm 2. Water circulation and hydrogen introduction were continued for 1 minute.
なお、この溶存試験は、 20リットルを 1バッチとして、バッチ処理を行った。 1バッチ の 1分間の水の循環を行った後、水槽 1の水を全て取り出して、次の 20リットルの淡 水化処理水と入れ替えて次のバッチ処理を行った。  In this dissolution test, batch processing was performed with 20 liters as one batch. After one batch of water was circulated for 1 minute, all the water in tank 1 was removed and replaced with the next 20 liters of desalinated water for the next batch.
[0072] 試験前のミネラル水と、試験後に得られた水について、それぞれ水素濃度計で水 素の濃度 (ORP測定値)を測定した。 [0072] For mineral water before the test and water obtained after the test, the hydrogen concentration (ORP measurement value) was measured with a hydrogen concentration meter.
その結果、試験前のミネラル水では llOmVZcm2であったの力 試験後は— 795 mV/ cmとなった。 As a result, llOmVZcm 2 in the mineral water before the test was 795 mV / cm after the force test.
即ち、わずか 1分間の循環で、充分な量の水素が導入されていることがわかる。 また、循環停止後、速やかに水の白濁が消えるが、水素濃度測定値は飽和溶解度 以上(約 lOmgZL)を示して!/、たので、マイクロバブル状で溶解して!/ヽな 、水素の存 在が考えられる。  That is, it can be seen that a sufficient amount of hydrogen has been introduced in only one minute of circulation. In addition, the white turbidity of water disappears immediately after the circulation is stopped, but the measured value of hydrogen concentration shows more than saturation solubility (about lOmgZL)! /, So it dissolves in the form of microbubbles! Existence is considered.
[0073] なお、水素 0. 5LZ水 20Lとすると、水素ボンべ 1本(7m3)で 280tの水素水を製造 することが可能である。 [0073] Assuming that hydrogen is 0.5LZ water and 20L, it is possible to produce 280t of hydrogen water with one hydrogen cylinder (7m 3 ).
[0074] 本発明は、上述の実施の形態に限定されるものではなぐ本発明の要旨を逸脱し な!、範囲でその他様々な構成が取り得る。  [0074] The present invention is not limited to the above-described embodiment, and does not depart from the gist of the present invention! Various other configurations can be taken within the scope.
引用符号の説明  Explanation of quotation marks
[0075] 1 · · · 水槽、 2· · · EDミネラノレ水、 3 · · · ポンプ [0075] 1 · · · Aquarium, 2 · · · ED Mineranore water, 3 · · · Pump

Claims

請求の範囲 The scope of the claims
[I] 清浄性又は熟成性が極大値になる箇所を特定して、前記箇所で取水されたことを特 徴とする海洋深層水。  [I] Deep sea water characterized by the fact that the place where the cleanliness or maturity is maximized is identified and water is taken at the place.
[2] 酸素濃度、塩分濃度、水温、並びに密度の各情報により、海洋学上の太平洋深層水 に分類される海水である箇所を特定して、前記箇所で取水されたことを特徴とする海 洋深層水。  [2] Based on the oxygen concentration, salinity concentration, water temperature, and density information, the location of seawater classified as oceanographic Pacific deep water was identified, and water was taken at the location. Deep sea water.
[3] 酸素濃度が極小値になる深度以深にあり、海洋学上の深層水に分類される海水で ある箇所を特定して、前記箇所で取水されたことを特徴とする海洋深層水。  [3] Deep seawater characterized by having identified a location that is deeper than the depth at which the oxygen concentration is at a minimum and is classified as oceanographic deep water, and water was taken at the location.
[4] 清浄性又は熟成性が極大値になる箇所を特定して、前記箇所で取水することを特徴 とする海洋深層水の取水方法。 [4] A method for taking deep ocean water, characterized in that a place where the cleanliness or maturity is maximized is identified and water is taken at the place.
[5] 酸素濃度、塩分濃度、水温、並びに密度の各情報により、海洋学上の太平洋深層水 に分類される海水である箇所を特定して、前記箇所で取水することを特徴とする海洋 深層水の取水方法。 [5] A deep ocean layer characterized by identifying a portion of seawater classified as oceanographic deep ocean water based on oxygen concentration, salinity concentration, water temperature, and density information, and taking water at the location. Water intake method.
[6] 酸素濃度が極小値になる深度以深にあり、海洋学上の深層水に分類される海水で ある箇所を特定して、前記箇所で取水することを特徴とする海洋深層水の取水方法  [6] A deep sea water intake method characterized by identifying a location that is deeper than the depth at which the oxygen concentration is at a minimum and is classified as oceanographic deep water, and taking water at the location
[7] 海洋深層水の原水又は前記原水を処理した水に、マイクロオーダー又はナノオーダ 一のバブルを、溶解又は混入させることを特徴とする海洋深層水製品の製造方法。 [7] A method for producing a deep ocean water product, comprising dissolving or mixing micro-order or nano-order bubbles in raw ocean water or water obtained by treating the raw water.
[8] 前記バブルに、酸素、オゾン、窒素、水素の中の少なくとも一つ以上の気体を用いる ことを特徴とする請求項 7に記載の海洋深層水製品の製造方法。 8. The method for producing a deep sea water product according to claim 7, wherein at least one gas selected from oxygen, ozone, nitrogen, and hydrogen is used for the bubble.
[9] 請求項 8に記載された製造方法により得られた海洋深層水製品を、魚介類の洗浄又 は鮮度保持に利用することを特徴とする海洋深層水の利用方法。 [9] A method for using deep sea water, characterized in that the deep sea water product obtained by the production method according to claim 8 is used for washing or maintaining freshness of seafood.
[10] 請求項 8に記載された製造方法により得られた海洋深層水製品を、貝類の砂抜きに 利用することを特徴とする海洋深層水の利用方法。 [10] A method for using deep sea water, wherein the deep sea water product obtained by the production method according to claim 8 is used for sand removal of shellfish.
[II] 請求項 8に記載された製造方法により得られた海洋深層水製品を、飲料又は食料品 の原材料として利用することを特徴とする海洋深層水の利用方法。  [II] A method of using deep sea water, characterized in that the deep sea water product obtained by the production method according to claim 8 is used as a raw material for beverages or foods.
[12] 請求項 8に記載された製造方法により得られた海洋深層水製品を、化粧品原料に利 用することを特徴とする海洋深層水の利用方法。 [12] A method for using deep sea water, characterized in that the deep sea water product obtained by the production method according to claim 8 is used as a cosmetic raw material.
[13] 海洋深層水に含まれるミネラル分を軟水器により吸着捕集する工程と、前記軟水器 を再生処理して、ミネラル分が濃縮された水を作製する工程とを少なくとも有すること を特徴とする海洋深層水製品の製造方法。 [13] It is characterized by having at least a step of adsorbing and collecting minerals contained in deep ocean water by a water softener and a step of regenerating the water softener to produce water enriched with minerals. To manufacture deep seawater products.
[14] 前記軟水器を再生処理する際に、再生処理水として、 Na, K, Caの少なくともいず れかを含有する溶液を使用することを特徴とする請求項 13に記載の海洋深層水製 品の製造方法。 [14] The deep sea water according to [13], wherein when the water softener is regenerated, a solution containing at least one of Na, K, and Ca is used as regenerated water. Product manufacturing method.
[15] 前記再生処理により得られた水に対して、沈殿、電気透析、膜濾過のうちの一つ以 上の方法により、 Na, K, Caを選択的に除去してミネラル分の濃度を再調整するェ 程を行うことを特徴とする請求項 14に記載の海洋深層水製品の製造方法。  [15] The water obtained by the regeneration treatment is selectively removed by one or more of precipitation, electrodialysis, and membrane filtration to reduce the concentration of minerals. 15. The method for producing a deep sea water product according to claim 14, wherein the process of readjustment is performed.
PCT/JP2006/322996 2005-11-18 2006-11-17 Deep seawater, methods of intaking and using deep seawater and method of producing deep seawater product WO2007058314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005364008A JP2009066461A (en) 2005-11-18 2005-11-18 Intake and use of new unmixed deep sea water
JP2005-364008 2005-11-18

Publications (1)

Publication Number Publication Date
WO2007058314A1 true WO2007058314A1 (en) 2007-05-24

Family

ID=38048696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322996 WO2007058314A1 (en) 2005-11-18 2006-11-17 Deep seawater, methods of intaking and using deep seawater and method of producing deep seawater product

Country Status (2)

Country Link
JP (1) JP2009066461A (en)
WO (1) WO2007058314A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072615A1 (en) * 2006-12-15 2008-06-19 Nakazato, Mamiko Functional water and process for producing the same
JP2009292783A (en) * 2008-06-06 2009-12-17 Dainichiseika Color & Chem Mfg Co Ltd Wound treating composition, method for producing wound treating composition and skin external preparation
CN113003840A (en) * 2021-03-08 2021-06-22 北京公众健康饮用水研究所 Integrated water and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6555880B2 (en) * 2014-12-11 2019-08-07 株式会社メニコン Method for producing microbubble-containing sterilization liquid, microbubble-containing sterilization liquid obtained by the production method, and microbubble-containing sterilization liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059893A (en) * 2000-08-21 2002-02-26 Keinii:Kk Marine pool using marine deep water and its peripheral facility
JP2004121962A (en) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble
JP2004223317A (en) * 2003-01-20 2004-08-12 Hoshizaki Electric Co Ltd Method for preparing water for agricultural work

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002059893A (en) * 2000-08-21 2002-02-26 Keinii:Kk Marine pool using marine deep water and its peripheral facility
JP2004121962A (en) * 2002-10-01 2004-04-22 National Institute Of Advanced Industrial & Technology Method and apparatus for using nanometer-bubble
JP2004223317A (en) * 2003-01-20 2004-08-12 Hoshizaki Electric Co Ltd Method for preparing water for agricultural work

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIM K.-R. ET AL.: "A sudden bottom-water formation during the severe winter 2000-2001: The case of the East/Japan Sea", GEOPHYSICAL RESEARCH LETTERS, vol. 29, no. 8, 2002, pages 75-1 - 75-4, XP003013301 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072615A1 (en) * 2006-12-15 2008-06-19 Nakazato, Mamiko Functional water and process for producing the same
JP2009292783A (en) * 2008-06-06 2009-12-17 Dainichiseika Color & Chem Mfg Co Ltd Wound treating composition, method for producing wound treating composition and skin external preparation
CN113003840A (en) * 2021-03-08 2021-06-22 北京公众健康饮用水研究所 Integrated water and preparation method thereof

Also Published As

Publication number Publication date
JP2009066461A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
AU2019201646B2 (en) Nanobubble-containing liquid solutions
JP2002292371A (en) Fresh water obtained from deep sea water, concentrated deep sea water, mineral concentrate, concentrated salt water, bittern, and specifyed salt
WO2007058314A1 (en) Deep seawater, methods of intaking and using deep seawater and method of producing deep seawater product
Kumari et al. Study of physico-chemical characteristics of water and soil in relations to fish production in Motia Lake Reservoir
JPH05219921A (en) Soft drink utilizing marine deep water and its production
CN1107654C (en) Mineral water and production thereof
KR20200006831A (en) Deep-sea, deep-sea watering system for chinese cabbage pickling
CN101268997A (en) Complexing form wash and bath liquid of natural mineral matter and micro-element, and preparation method
KR20080079116A (en) A method for making an alcoholic liquor distiluted with water micro-nano-bubble-processed
KR20110082101A (en) A method for preparing salted vegetables with a deep sea oxygen water
JP2002191331A (en) Method for producing soft drinking water utilizing deep sea water
KR101206187B1 (en) Method for manufacuring loess active water with micro-nanobubble oxygen active water characteristics and alcoholic liquors using far infrared ray characteristics
WO2006008997A9 (en) Process for producing reduced water with use of natural ore
JP2002364914A (en) Bath system utilizing ocean deep water
US20120248019A1 (en) Apparatus for enhancing the biophysical effects of water
JP2005052130A (en) Method for producing mineral water by using deep sea water as raw material
JP4891485B2 (en) Modified tap water and method for improving tap water
KR101559632B1 (en) half dried squid with red clay water having minerals
JP7463687B2 (en) Charcoal-containing composition
KR101559631B1 (en) Method of dried squid with red clay water having minerals
JP2001136942A (en) Beverage containing deep water
JP2005074325A (en) Drinking water and its production method
KR101559633B1 (en) Roasted squid with red clay water having minerals
JP2005118740A (en) Manufacturing method of magnetically active deep water
WO2009021277A1 (en) Combined processes to revitalise water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06832874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP