WO2007057314A1 - Method for modifying the surface of solid materials by means of an infrared lamp - Google Patents

Method for modifying the surface of solid materials by means of an infrared lamp Download PDF

Info

Publication number
WO2007057314A1
WO2007057314A1 PCT/EP2006/068106 EP2006068106W WO2007057314A1 WO 2007057314 A1 WO2007057314 A1 WO 2007057314A1 EP 2006068106 W EP2006068106 W EP 2006068106W WO 2007057314 A1 WO2007057314 A1 WO 2007057314A1
Authority
WO
WIPO (PCT)
Prior art keywords
radical
heating
radicals
particulate solids
surface modification
Prior art date
Application number
PCT/EP2006/068106
Other languages
German (de)
French (fr)
Inventor
Paul Fuchs
Werner Emberger
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Publication of WO2007057314A1 publication Critical patent/WO2007057314A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/128Infra-red light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/42Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed subjected to electric current or to radiations this sub-group includes the fluidised bed subjected to electric or magnetic fields
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00433Controlling the temperature using electromagnetic heating
    • B01J2208/0046Infrared radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00823Mixing elements
    • B01J2208/00858Moving elements
    • B01J2208/00867Moving elements inside the bed, e.g. rotary mixer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00139Controlling the temperature using electromagnetic heating
    • B01J2219/00146Infrared radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/089Liquid-solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • C01P2006/82Compositional purity water content

Definitions

  • the invention relates to a process for heating particulate solids during surface modification.
  • the reactor wall is significantly warmer than the internal particles to be heated, which in turn are heated by heat conduction from the reactor surface.
  • decomposition reactions of the surface modification reagents can occur, which can lead to quality losses of the target product.
  • the temperature control by the heated reactor wall is very sluggish, which complicates the short-term adjustment of the reaction temperature.
  • the object of the invention is to improve the prior art and in particular particulate solids during the surface modification in a reactor tube, consisting of quartz or Duran, with a built-in stirrer to an internal temperature of about 50 to 350 0 C to bring wherein the wall temperature of the reactor should not be warmer than the particles to be heated so as not to overheat the product.
  • the invention relates to a method for heating particulate solids during the surface modification, characterized in that the particulate solid is heated by means of an infrared lamp.
  • the particulate solids are particulate inorganic solids, preferably precipitated or pyrogenic metal oxides such as silicas, titanium dioxides, aluminas, zirconium dioxides, iron oxides and others, and their mixed oxides, particularly preferred is fumed silica.
  • metal oxides such as silicas, titanium dioxides, aluminas, zirconium dioxides, iron oxides and others, and their mixed oxides, particularly preferred is fumed silica.
  • the particulate solids are heated during surface modification.
  • the surface modification is a treatment of particulate solids with surface modification reagents, such as alcohols, carboxylic acids and their derivatives, titanates and organosilicon compounds, being preferred
  • Organosilicon compounds are preferably organosilane of the formula I.
  • RA has the above meaning, wherein the number of these units in an organosiloxane is at least 2, and I and II alone or in any mixtures in an amount of 0.003 mmol / g to 1.5 mmol / g per used silica surface of 100 m 2 / g, preferably in an amount of 0.03 mmol / g to 0.9 mmol / g per silica surface used of 100 m 2 / g and particularly preferably in an amount of 0.03 mmol / g to 0.3 mmol / g per silica surface used of 100 m 2 / g, is silylated.
  • RA alkyl radicals such as the methyl radical, the ethyl radical, propyl radicals such as the iso- or n-propyl radical, butyl radicals such as the t- or n-butyl radical, pentyl radicals such as neo, the iso- or n-pentyl radicals, hexyl radicals such as n-
  • R - * - are the methyl radical, the octyl radical and the vinyl radical, particularly preferred is the methyl radical.
  • R 1 examples include alkyl radicals such as the methyl radical, the ethyl radical, propyl radicals such as the isopropyl or n-propyl radical, butyl radicals such as the t- or n-butyl radical, pentyl radicals such as neo, iso- or n-pentyl radicals, hexyl radicals such as the n-hexyl radical, heptyl radicals such as the n-heptyl radical, octyl radicals such as the 2-ethylhexyl or the n-octyl radical, decyl radicals such as the n-decyl radical, dodecyl radicals such as the n-dodecyl radical.
  • Preferred examples of R 1 are the methyl and ethyl radicals.
  • organosilanes are methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, Methyltriacethoxysilan, Dimethyldiacethoxysilan, Trimethylacethoxysilan, octylmethyldichlorosilane, octyl trichlorosilane, octadecylmethyldichlorosilane, octadecyltrichlorsilane, vinyltrichlorosilane,
  • methyltrichlorosilane dimethyldichlorosilane and Trimethylchlorosilane or hexamethyldisilazane.
  • organosiloxanes are linear or cyclic dialkylsiloxanes having an average number of dialkylsiloxy units greater than 3.
  • the dialkylsiloxanes are preferably dimethylsiloxanes.
  • Particular preference is given to linear polydimethylsiloxanes having the following end groups: trimethylsiloxy, dimethylhydroxysiloxy, dimethylchlorosiloxy, methyldichlorosiloxy, dimethylmethoxysiloxy, methyldimethoxysiloxy, dimethylethoxysiloxy, methyldiethoxysiloxy, dimethylacethoxysiloxy, methyldiacethoxysiloxy, dimethylhydroxysiloxy, where the end groups may be identical or different.
  • Particularly preferred among the polydimethylsiloxanes mentioned are those having a viscosity at 25 ° C. of from 2 to 100 mPas and having the end groups trimethylsiloxy or dimethylhydroxysiloxy.
  • organosiloxanes are liquid or soluble silicone resins, in particular those which contain methyl groups as the alkyl group.
  • R 1 is preferably methyl.
  • organosiloxanes having a viscosity of greater than 1000 mPas preference is given to those which are present in a technically usable solvent, such as, preferably, alcohols, such as methanol, ethanol, isopropanol, ethers, such as diethyl ether, tetrahydrofuran, siloxanes, such as hexamethyldisiloxane, alkanes, such as cyclohexane or n- Octane, aromatics such as toluene or xylene, with a concentration above 10% and a mixture viscosity less than 1000 mPas can be solved at shelf temperature.
  • Preferred organosiloxanes are those which can be dissolved in a technically usable solvent (as defined above) with a concentration greater than 10% by weight and a mixture viscosity of less than 1000 mPas at the temperature of use.
  • surface modification of particulate solids is performed to impart special surface properties, such as hydrophilicity or hydrophobicity, to improve adhesion between the particulate solid and polymer matrix, to enhance the rheological properties of particulate matter
  • the particulate solids are preferably agitated, that is, stirred, agitated, or fluidized in a gas stream. Preference is given to mechanical fluidization by stirring.
  • the particulate solid is separated from the infrared lamp by a glass wall, and the infrared lamp may also preferably radiate into a glass cylinder containing the particulate solid, but may be any vessel through which infrared rays pass without being overly absorbed, quartz or Duranglas are therefore preferred.
  • the wavelengths of the radiant heaters are designed so that a minimum of energy in the reactor wall is converted into heat.
  • infrared radiators are used with a Schuetzltemperatur of 1000 to 3000 0 C, preferably with a Schuetzltemperatur of 1500 to 3000 0 C and particularly preferably with a Schuchtltemperatur of 2000 to 2500 0 C.
  • the infrared radiator operates in a radiation range in which not more than 30%, preferably not more than 20% and particularly preferably not more than 15% of the radiant power within the glass is converted into heat.
  • glasses which are not more than 30%, preferably not more than 20% and particularly preferably not more than 15% of the radiation power in the preferred wavelength range of the infrared radiator, i. the temperature range of the infrared radiator, to convert it into heat within the glass.
  • Durangläser and quartz glasses are preferably used.
  • the electric power of the infrared heating elements can only be controlled to a limited extent by voltage regulation down, since not only the heating power, but also the wavelength of the infrared heating elements would be larger when lowering the voltage, which in turn would result in a higher energy input into the reactor wall. In a larger control range so individual infrared radiator elements must be switched off or.
  • Another object is a particle-warming device having an infrared radiator separated from the particles by glass.
  • the infrared radiator and the glass have the properties described above.
  • FIG. 1 A first figure.
  • FIG. 1 shows the particle heating device according to the invention as a sectional view.
  • the infrared radiator (1) in front of the glass wall (2), which separates the particles (3) from the infrared radiator (1).

Abstract

Disclosed is a method for heating particulate solid materials during surface modification. Said method is characterized in that the particulate solid material is heated using an infrared lamp. The inventive method is used for modifying SiO<SUB>2</SUB> with organosilicon compounds.

Description

VERFAHREN ZUR OBERFLACHENMODIFIZIERUNG VON FESTSTOFFEN MITTELS EINER INFRAROTLAMPE METHOD FOR THE SURFACE MODIFICATION OF SOLIDS BY AN INFRARED LAMP
Die Erfindung betrifft ein Verfahren zur Erwärmung von partikulären Feststoffen während der Oberflächenmodifizierung.The invention relates to a process for heating particulate solids during surface modification.
Derzeit wird die Beheizung von Reaktoren zurCurrently, the heating of reactors for
Oberflächenmodifizierung von partikulären Feststoffen mittels außerhalb des Reaktors anliegenden Heizelementen (Heizwendel, Heizschalen, Heizmäntel) realisiert.Surface modification of particulate solids realized by outside of the reactor adjacent heating elements (heating coil, heating shells, heating jackets).
Nachteil dieses Verfahrens ist die geringe Temperatur der Heizelemente von < 10000C. Bei dieser niedrigen Temperatur wird in der Reaktorwand, die üblicherweise aus Stahl oder Stahllegierungen bestehen, ein großer Teil derDisadvantage of this method is the low temperature of the heating elements of <1000 0 C. At this low temperature is in the reactor wall, which usually consist of steel or steel alloys, a large part of
Strahlungsenergie in Wärme umgesetzt. Dadurch ist die Reaktorwand bedeutend wärmer als die zu erwärmenden innen liegenden Partikel, die wiederum durch Wärmeleitung von der Reaktoroberfläche aufgeheizt werden. An den heißen Reaktorwandflächen können Zersetzungsreaktionen der Oberflächenmodifizierungsreagenzien ablaufen, die zu Qualitätsverlusten des Zielproduktes führen können. Zudem ist die Temperaturregelung durch die aufgeheizte Reaktorwand sehr träge, was die kurzfristige Anpassung der Reaktionstemperatur erschwert.Radiation energy converted into heat. As a result, the reactor wall is significantly warmer than the internal particles to be heated, which in turn are heated by heat conduction from the reactor surface. On the hot reactor wall surfaces decomposition reactions of the surface modification reagents can occur, which can lead to quality losses of the target product. In addition, the temperature control by the heated reactor wall is very sluggish, which complicates the short-term adjustment of the reaction temperature.
Aufgabe der Erfindung ist es, den Stand der Technik zu verbessern und insbesondere partikuläre Feststoffen während der Oberflächenmodifizierung in einem Reaktorrohr, bestehend aus Quarz bzw. Duran, mit einem eingebauten Rührer auf eine Innen- Temperatur von ca.50 bis 3500C zu bringen, wobei die Wandtemperatur des Reaktors nicht wärmer als die zu erwärmenden Partikel werden sollte, um das Produkt nicht zu überhitzen. Gegenstand der Erfindung ist ein Verfahren zur Erwärmung von partikulären Feststoffen während der Oberflächenmodifizierung, dadurch gekennzeichnet, dass der partikuläre Feststoff mittels einer Infrarotlampe erwärmt wird.The object of the invention is to improve the prior art and in particular particulate solids during the surface modification in a reactor tube, consisting of quartz or Duran, with a built-in stirrer to an internal temperature of about 50 to 350 0 C to bring wherein the wall temperature of the reactor should not be warmer than the particles to be heated so as not to overheat the product. The invention relates to a method for heating particulate solids during the surface modification, characterized in that the particulate solid is heated by means of an infrared lamp.
Bei den partikulären Feststoffen handelt es sich um partikuläre anorganische Feststoffe, vorzugsweise um gefällte oder pyrogene Metalloxide wie Siliciumdioxide, Titandioxide, Aluminiumoxide, Zirkoniumdioxide, Eisenoxide und andere, und deren Mischoxide, besonders bevorzugt ist pyrogenes Siliciumdioxid.The particulate solids are particulate inorganic solids, preferably precipitated or pyrogenic metal oxides such as silicas, titanium dioxides, aluminas, zirconium dioxides, iron oxides and others, and their mixed oxides, particularly preferred is fumed silica.
Die partikulären Feststoffe werden während der Oberflächenmodifizierung erwärmt .The particulate solids are heated during surface modification.
Bei der Oberflächenmodifizierung handelt es sich um ein Behandeln von partikulären Feststoffen mit Oberflächenmodifizierungsreagenzien, wie Alkoholen, Carbonsäuren und deren Derivaten, Titanaten und Organosiliciumverbindungen, bevorzugt sindThe surface modification is a treatment of particulate solids with surface modification reagents, such as alcohols, carboxylic acids and their derivatives, titanates and organosilicon compounds, being preferred
Organosiliciumverbindungen . Bei den Organosiliciumverbindungen handelt es sich vorzugsweise um Organosilan der Formel IOrganosilicon compounds. The organosilicon compounds are preferably organosilane of the formula I.
RinSiX4-H (I) Ri n SiX 4 - H (I)
wobei n = 1, 2 oder 3 bedeutet oder Mischungen aus diesen Organosilanen, wobei RA ein ungesättigter, einfach oder mehrfach ungesättigter, einwertiger, gegebenenfalls halogenierter, Kohlenwasserstoffrest mit 1 bis 24 C-Atomen ist und dabei gleich oder verschieden sein kann und X = Halogen,where n = 1, 2 or 3 or mixtures of these organosilanes, wherein RA is an unsaturated, mono- or polyunsaturated, monovalent, optionally halogenated, hydrocarbon radical having 1 to 24 carbon atoms and may be identical or different and X = halogen .
Stickstoffrest, OR2, OCOR2, O(CH2)XOR2 , wobei R2 Wasserstoff oder ein einwertiger Kohlenwasserstoffrest mit 1 bis 12 C- Atomen bedeutet und x = l, 2, 3 bedeutet oder um Organosiloxan aufgebaut aus Einheiten der FormelNitrogen radical, OR 2 , OCOR 2 , O (CH 2 ) X OR 2 , where R 2 is hydrogen or a monovalent hydrocarbon radical having 1 to 12 carbon atoms and x = 1, 2, 3, or organosiloxane composed of units of the formula
(R13Si0i/2), und/oder(R 1 3Si0i / 2), and / or
Figure imgf000005_0001
(RlsiO3/2)
Figure imgf000005_0001
(RlsiO 3/2)
wobei RA die obige Bedeutung hat, wobei die Anzahl von diesen Einheiten in einem Organosiloxan mindestens 2 ist, und I und II allein oder in beliebigen Gemischen in einer Menge von 0.003 mMol/g bis 1.5 mMol/g pro eingesetzter Kieselsäure-Oberfläche von 100 m2/g, bevorzugt in einer Menge von 0.03 mMol/g bis 0.9 mMol/g pro eingesetzter Kieselsäure-Oberfläche von 100 m2/g und besonders bevorzugt in einer Menge von 0.03 mMol/g bis 0.3 mMol/g pro eingesetzter Kieselsäure-Oberfläche von 100 m2/g, silyliert wird.wherein RA has the above meaning, wherein the number of these units in an organosiloxane is at least 2, and I and II alone or in any mixtures in an amount of 0.003 mmol / g to 1.5 mmol / g per used silica surface of 100 m 2 / g, preferably in an amount of 0.03 mmol / g to 0.9 mmol / g per silica surface used of 100 m 2 / g and particularly preferably in an amount of 0.03 mmol / g to 0.3 mmol / g per silica surface used of 100 m 2 / g, is silylated.
Beispiele für RA sind Alkylreste wie der Methylrest, der Ethylrest, Propylreste wie der iso- oder der n-Propylrest, Butylreste wie der t- oder n-Butylrest, Pentylreste wie der neo, die iso- oder der n-Pentylreste, Hexylreste wie der n-Examples of RA are alkyl radicals such as the methyl radical, the ethyl radical, propyl radicals such as the iso- or n-propyl radical, butyl radicals such as the t- or n-butyl radical, pentyl radicals such as neo, the iso- or n-pentyl radicals, hexyl radicals such as n-
Hexylrest, Heptylreste wie der n-Heptylrest, Octylreste wie der 2-Ethyl-hexyl- oder der n-Octylrest, Decylreste wie der n- Decylrest, Dodecylreste wie der n-Dodecylrest, Hexadecylreste wie der n-Hexadecylrest, Octadecylreste wie der n- Octadecylrest, Alkenylreste wie der Vinyl-, der 2-Allyl- oder der 5-Hexenylrest, Arylreste wie der Phenyl- der Biphenyl oder Naphthenylrest, Alkylarylreste wie Benzyl-, Ethylphenyl- Toluyl- oder die Xylylreste, halogenierte Alkylreste wie der 3- Chlorpropyl-, der 3, 3, 3-Trifluorpropyl oder der Perfluorhexylethylrest, halogenierte Arylreste wie der Chlorphenyl oder Chlorbenzylrest .Hexyl radical, heptyl radicals such as the n-heptyl radical, octyl radicals such as the 2-ethylhexyl or the n-octyl radical, decyl radicals such as the n-decyl radical, dodecyl radicals such as the n-dodecyl radical, hexadecyl radicals such as the n-hexadecyl radical, octadecyl radicals such as the n- Octadecyl radical, alkenyl radicals such as the vinyl radical, the 2-allyl radical or the 5-hexenyl radical, aryl radicals such as phenyl, the biphenyl or naphthenyl radical, alkylaryl radicals such as benzyl, ethylphenyl, toluyl or xylyl radicals, halogenated alkyl radicals such as the 3-chloropropyl radical , the 3, 3, 3-trifluoropropyl or the perfluorohexylethyl radical, halogenated aryl radicals such as the chlorophenyl or chlorobenzyl radical.
Bevorzugte Beispiel für R-*- sind der Methylrest, der Octylrest und der Vinylrest, besonders bevorzugt ist der Methylrest.Preferred examples of R - * - are the methyl radical, the octyl radical and the vinyl radical, particularly preferred is the methyl radical.
Beispiele für R^ sind Alkylreste wie der Methylrest, der Ethylrest, Propylreste wie der iso- oder der n-Propylrest, Butylreste wie der t- oder n-Butylrest, Pentylreste wie der neo, die iso- oder der n-Pentylreste, Hexylreste wie der n- Hexylrest, Heptylreste wie der n-Heptylrest, Octylreste wie der 2-Ethyl-hexyl- oder der n-Octylrest, Decylreste wie der n- Decylrest, Dodecylreste wie der n-Dodecylrest . Bevorzugte Beispiele für R^ sind der Methyl- und Ethylrest.Examples of R 1 are alkyl radicals such as the methyl radical, the ethyl radical, propyl radicals such as the isopropyl or n-propyl radical, butyl radicals such as the t- or n-butyl radical, pentyl radicals such as neo, iso- or n-pentyl radicals, hexyl radicals such as the n-hexyl radical, heptyl radicals such as the n-heptyl radical, octyl radicals such as the 2-ethylhexyl or the n-octyl radical, decyl radicals such as the n-decyl radical, dodecyl radicals such as the n-dodecyl radical. Preferred examples of R 1 are the methyl and ethyl radicals.
Beispiele für Organosilane sind Methyltrichlorsilan, Dimethyldichlorsilan, Trimethylchlorsilan, Methyltrimethoxysilan, Dimethyldimethoxysilan, Trimethylmethoxysilan, Methyltriethoxysilan, Dimethyldiethoxysilan, Trimethylethoxysilan, Methyltriacethoxysilan, Dimethyldiacethoxysilan, Trimethylacethoxysilan, Octylmethyldichlorsilan, Octyltrichlorsilan, Octadecylmethyldichlorsilan, Octadecyltrichlorsilan, Vinyltrichlorsilan,Examples of organosilanes are methyltrichlorosilane, dimethyldichlorosilane, trimethylchlorosilane, methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, trimethylethoxysilane, Methyltriacethoxysilan, Dimethyldiacethoxysilan, Trimethylacethoxysilan, octylmethyldichlorosilane, octyl trichlorosilane, octadecylmethyldichlorosilane, octadecyltrichlorsilane, vinyltrichlorosilane,
Vinlymethyldichlorsilan, Vinyldimethylchlorsilan, Vinyltrimethoxysilan, Vinlymethyldimethoxysilan, Vinyldimethylmethoxysilan, Vinyltriethoxysilan, Vinlymethyldiethoxysilan, Vinyldimethylethoxysilan, Hexamethyldisilazan, Divinyltetramethyldisilazan, Bis (3, 3- trifluorpropyl) tetramethyldisilazan, Octamethylcyclotetrasilazan, Trimethylsilanol .Vinylmethyldichlorosilane, vinyldimethylchlorosilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyldimethylethoxysilane, hexamethyldisilazane, divinyltetramethyldisilazane, bis (3, 3-trifluoropropyl) tetramethyldisilazane, octamethylcyclotetrasilazane, trimethylsilanol.
Es können auch beliebige Gemische aus Organosilanen eingesetzt werden.It is also possible to use any desired mixtures of organosilanes.
Gemische aus Methyl-Chlorsilanen einerseits oder Alkoxysilanen und gegebenenfalls Disilazanen andererseits sind bevorzugt.Mixtures of methylchlorosilanes on the one hand or alkoxysilanes and optionally disilazanes on the other hand are preferred.
Bevorzugt ist Methyltrichlorsilan, Dimethyldichlorsilan und Trimethylchlorsilan oder Hexamethyldisilazan .Preference is given to methyltrichlorosilane, dimethyldichlorosilane and Trimethylchlorosilane or hexamethyldisilazane.
Beispiele für Organosiloxane sind lineare oder cyclische Dialkylsiloxane mit einer mittleren Anzahl an Dialkylsiloxyeinheiten von größer als 3. Die Dialkylsiloxane sind bevorzugt Dimethylsiloxane . Besonders bevorzugt sind lineare Polydimethylsiloxane mit folgenden Endgruppen: Trimethylsiloxy, Dimethylhydroxysiloxy, Dimethylchlorsiloxy, Methyldichlorsiloxy, Dimethylmethoxysiloxy, Methyldimethoxysiloxy, Dimethylethoxysiloxy, Methyldiethoxysiloxy, Dimethylacethoxysiloxy, Methyldiacethoxysiloxy, Dimethylhydroxysiloxy, wobei die Endgruppen gleich oder unterschiedlich sein können. Besonders bevorzugt sind unter den genannten Polydimethylsiloxanen solche mit einer Viskosität bei 25 0C von 2 bis 100 mPas und mit den Endgruppen Trimethylsiloxy oder Dimethylhydroxysiloxy.Examples of organosiloxanes are linear or cyclic dialkylsiloxanes having an average number of dialkylsiloxy units greater than 3. The dialkylsiloxanes are preferably dimethylsiloxanes. Particular preference is given to linear polydimethylsiloxanes having the following end groups: trimethylsiloxy, dimethylhydroxysiloxy, dimethylchlorosiloxy, methyldichlorosiloxy, dimethylmethoxysiloxy, methyldimethoxysiloxy, dimethylethoxysiloxy, methyldiethoxysiloxy, dimethylacethoxysiloxy, methyldiacethoxysiloxy, dimethylhydroxysiloxy, where the end groups may be identical or different. Particularly preferred among the polydimethylsiloxanes mentioned are those having a viscosity at 25 ° C. of from 2 to 100 mPas and having the end groups trimethylsiloxy or dimethylhydroxysiloxy.
Weitere Beispiele für Organosiloxane sind flüssige oder lösliche Siliconharze, im besonderen solche, die als Alkylgruppe Methylgruppen enthalten.Further examples of organosiloxanes are liquid or soluble silicone resins, in particular those which contain methyl groups as the alkyl group.
Besonders bevorzugt sind solche, die R^3SiO]_/2 und SiO4/2Particularly preferred that R ^ 3 SiO] _ / 2 and SiO4 / 2
Einheiten enthalten oder solche, die R^-Siθ3/2 und gegebenenfalls R^2Siθ2/2 Einheiten enthalten. Hierbei ist R1 bevorzugt Methyl.Contain units or those containing R ^ -Siθ3 / 2 and optionally R ^ 2Siθ2 / 2 units. Here, R 1 is preferably methyl.
Bei Organosiloxanen mit einer Viskosität mit größer als 1000 mPas sind solche bevorzugt, die sich in einem technisch handhabbaren Lösungsmittel, wie vorzugsweise Alkohole wie Methanol, Ethanol, iso-Propanol, Ether wie Diethylether, Tetrahydrofuran, Siloxane wie Hexamethyldisiloxan, Alkane wie Cyclohexan oder n-Octan, Aromaten wie Toluol oder Xylol, mit einer Konzentration über 10% und einer Mischungsviskosität kleiner als 1000 mPas bei Belegungstemperatur lösen lassen. Unter bei Belegungstemperatur festen Organosiloxanen sind solche bevorzugt, die sich in einem technisch handhabbaren Lösungsmittel (wie oben definiert) mit einer Konzentration größer als 10 Gew.% und einer Mischungsviskosität kleiner als 1000 mPas bei Belegungstemperatur lösen lassen.In the case of organosiloxanes having a viscosity of greater than 1000 mPas, preference is given to those which are present in a technically usable solvent, such as, preferably, alcohols, such as methanol, ethanol, isopropanol, ethers, such as diethyl ether, tetrahydrofuran, siloxanes, such as hexamethyldisiloxane, alkanes, such as cyclohexane or n- Octane, aromatics such as toluene or xylene, with a concentration above 10% and a mixture viscosity less than 1000 mPas can be solved at shelf temperature. Preferred organosiloxanes are those which can be dissolved in a technically usable solvent (as defined above) with a concentration greater than 10% by weight and a mixture viscosity of less than 1000 mPas at the temperature of use.
Eine Oberflächenmodifizierung von partikulären Feststoffen wird durchgeführt, um ihnen spezielle Oberflächeneigenschaften wie Hydrophilie oder Hydrophobie zu verleihen, um die Adhäsion zwischen partikulärem Feststoff und Polymermatrix zu verbessern, um die rheologischen Eigenschaften von partikulärenSurface modification of particulate solids is performed to impart special surface properties, such as hydrophilicity or hydrophobicity, to improve adhesion between the particulate solid and polymer matrix, to enhance the rheological properties of particulate matter
Dispersionen zu beeinflussen, um dieTo influence the dispersions
Oberflächenladungseigenschaften von partikulären Feststoffen zu steuern, um die Kompatibilität zwischen partikulärem Feststoff und Polymermatrix zu verbessern und aus vielfältigen anderenTo control surface charge properties of particulate solids to improve the compatibility between particulate solid and polymer matrix and from a variety of others
Gründen .Establish .
Während der Oberflächenmodifizierung werden die partikulären Feststoffe vorzugsweise bewegt, also gerührt, gerüttelt oder in einem Gasstrom fluidisiert. Bevorzugt ist mechanische Fluidisierung durch Rühren.During surface modification, the particulate solids are preferably agitated, that is, stirred, agitated, or fluidized in a gas stream. Preference is given to mechanical fluidization by stirring.
Während des Erwärmens ist der partikuläre Feststoff durch eine Glaswand von der Infrarotlampe getrennt, dabei kann die Infrarotlampe auch bevorzugt in einen Glaszylinder hereinstrahlen, in dem sich der partikuläre Feststoff befindet, es kann sich aber um jedes beliebige Gefäß handeln, durch dessen Wand Infrarotstrahlen hindurch gehen, ohne allzu stark absorbiert zu werden, bevorzugt sind daher Quarz- oder Duranglas .During heating, the particulate solid is separated from the infrared lamp by a glass wall, and the infrared lamp may also preferably radiate into a glass cylinder containing the particulate solid, but may be any vessel through which infrared rays pass without being overly absorbed, quartz or Duranglas are therefore preferred.
Die Wellenlängen der Heizstrahler werden so ausgelegt, dass ein Minimum an Energie in der Reaktorwand in Wärme umgesetzt wird. Als Heizelemente werden Infrarotstrahler mit einer Heizwendeltemperatur von 1000 bis 30000C, bevorzugt mit einer Heizwendeltemperatur von 1500 bis 30000C und besonders bevorzugt mit einer Heizwendeltemperatur von 2000 bis 25000C verwendet.The wavelengths of the radiant heaters are designed so that a minimum of energy in the reactor wall is converted into heat. As heating elements infrared radiators are used with a Heizwendeltemperatur of 1000 to 3000 0 C, preferably with a Heizwendeltemperatur of 1500 to 3000 0 C and particularly preferably with a Heizwendeltemperatur of 2000 to 2500 0 C.
Vorzugsweise arbeitet der Infrarotstrahler in einem Strahlungsbereich, in dem nicht mehr als 30%, bevorzugt nicht mehr als 20% und besonders bevorzugt nicht mehr als 15% der Strahlungsleistung innerhalb des Glases in Wärme umgewandelt wird.Preferably, the infrared radiator operates in a radiation range in which not more than 30%, preferably not more than 20% and particularly preferably not more than 15% of the radiant power within the glass is converted into heat.
Für das Reaktionsgefäß werden Gläser eingesetzt, die nicht mehr als 30%, bevorzugt nicht mehr als 20% und besonders bevorzugt nicht mehr als 15% der Strahlungsleistung in dem bevorzugten Wellenlängenbereich des Infrarotstrahlers, d.h. dem Temperaturbereich des Infrarotstrahlers, innerhalb des Glases in Wärme umwandeln.For the reaction vessel, glasses are used which are not more than 30%, preferably not more than 20% and particularly preferably not more than 15% of the radiation power in the preferred wavelength range of the infrared radiator, i. the temperature range of the infrared radiator, to convert it into heat within the glass.
Bevorzugt werden Durangläser und Quarzgläser eingesetzt.Durangläser and quartz glasses are preferably used.
Regelung des Energieeintrages :Regulation of energy input:
Die elektrische Leistung der Infrarotheizelemente kann nur in einem geringen Umfang durch Spannungsregelung nach unten geregelt werden, da beim Absenken der Spannung nicht nur die Heizleistung, sondern auch die Wellenlänge der Infrarotheizelemente größer würde, was wiederum einen höheren Energieeintrag in die Reaktorwand zur Folge hätte. Bei einem größeren Regelbereich müssen also einzelne Infrarotstrahlerelemente zu bzw. abgeschaltet werden. Ein weiterer Gegenstand ist eine Partikelerwarmungsvorrichtung, die einen Infrarotstrahler aufweist, der von den Partikeln durch Glas getrennt ist.The electric power of the infrared heating elements can only be controlled to a limited extent by voltage regulation down, since not only the heating power, but also the wavelength of the infrared heating elements would be larger when lowering the voltage, which in turn would result in a higher energy input into the reactor wall. In a larger control range so individual infrared radiator elements must be switched off or. Another object is a particle-warming device having an infrared radiator separated from the particles by glass.
Der Infrarotstrahler und das Glas weisen die oben beschriebenen Eigenschaften auf.The infrared radiator and the glass have the properties described above.
Figur 1FIG. 1
Figur 1 zeigt die erfindungsgemaße Partikelerwarmungsvorrichtung als Schnittansicht.FIG. 1 shows the particle heating device according to the invention as a sectional view.
Dabei steht der Infrarotstrahler (1) vor der Glaswand (2), die die Partikel (3) von dem Infrarotstrahler (1) trennt.In this case, the infrared radiator (1) in front of the glass wall (2), which separates the particles (3) from the infrared radiator (1).
Beispiel 1example 1
In einer kontinuierlichen Apparatur, bestehend aus einem Belegungsbehalter mit mechanischer Fluidisierung und Verdusungseinrichtung und einem Reaktionsbehalter aus Duranglas mit mechanischer Fluidisierung und außerhalb angebrachten stabformigen Infrarotstrahlern der Firma Heraeus mit einer Strahlungsleistung von 1400 W, werden bei einer Temperatur von 20°C unter Inertgas N2 zu einem Massestrom von 1000 g/h an hydrophiler KIESELSAURE, mit einer Feuchte kleiner 1% und einem HCl Gehalt kleiner 100 ppm und mit einer spezifischen Oberflache von 200 m2/g (gemessen nach der BET Methode nach DIN66131 und 66132) (erhaltlich unter dem Namen WACKER HDK N20 bei Wacker Chemie GmbH, München, D) 440 g/h eines Methacryloxypropyltrimethoxysilans (erhaltlich unter dem Namen WACKER Geniosil GF31 bei Wacker Chemie GmbH, München, D) in flussiger, feinstverteilter Form durch Verdusen über eine Einstoffduse (Druck 10 bar) zugefugt. Die so beladene Kieselsaure wird in den Reaktionsbehalter gefordert und bei einer Verweilzeit von 90 min. bei einer Temperatur von 1200C zur Reaktion gebracht.In a continuous apparatus, consisting of a Belegungsbehalter with mechanical fluidization and Verdusungseinrichtung and a reaction vessel made of Duranglas with mechanical fluidization and externally mounted rod-shaped infrared radiators from Heraeus with a radiation power of 1400 W, at a temperature of 20 ° C under inert gas N2 to a Mass flow of 1000 g / h of hydrophilic KIESELSAURE, with a moisture content of less than 1% and an HCl content less than 100 ppm and with a specific surface area of 200 m 2 / g (measured by the BET method according to DIN66131 and 66132) (available under the name WACKER HDK N20 at Wacker Chemie GmbH, Munich, D) 440 g / h of a methacryloxypropyltrimethoxysilane (available under the name WACKER Geniosil GF31 from Wacker Chemie GmbH, Munich, D) in liquid, finely divided form by evaporation over a single-substance nozzle (pressure 10 bar) inflicted. The so loaded silicic acid is required in the reaction vessel and at a residence time of 90 min. reacted at a temperature of 120 0 C.
Die analytischen Daten der Kieselsaure sind in Tabelle 1 zusammengefasst .The analytical data of the silica are summarized in Table 1.
Beispiel 2Example 2
In einer kontinuierlichen Apparatur, bestehend aus einem Belegungsbehalter mit mechanischer Fluidisierung und Verdusungseinrichtung und einem Reaktionsbehalter aus Duranglas mit mechanischer Fluidisierung und außerhalb angebrachten stabformigen Infrarotstrahlern der Firma Heraeus mit einer Strahlungsleistung von 1400 W, werden bei einer Temperatur von 200C unter Inertgas N2 zu einem Massestrom von 1000 g/h an hydrophiler KIESELSAURE, mit einer Feuchte kleiner 1% und einem HCl Gehalt kleiner 100 ppm und mit einer spezifischen Oberflache von 150 m2/g (gemessen nach der BET Methode nach DIN66131 und 66132) (erhaltlich unter dem Namen WACKER HDK V15 bei Wacker Chemie GmbH, München, D) 330 g/h eines Methacryloxypropyltrimethoxysilans (erhaltlich unter dem Namen WACKER Geniosil GF31 bei Wacker Chemie GmbH, München, D) in flussiger, feinstverteilter Form durch Verdusen über eine Einstoffduse (Druck 10 bar) zugefugt. Die so beladene Kieselsaure wird in den Reaktionsbehalter gefordert und bei einer Verweilzeit von 90 min. bei einer Temperatur von 1200C zur Reaktion gebracht.In a continuous apparatus, consisting of a Belegungsbehalter with mechanical fluidization and Verdusungseinrichtung and a reaction vessel made of Duranglas with mechanical fluidization and externally mounted rod-shaped infrared radiators from Heraeus with a radiation power of 1400 W, at a temperature of 20 0 C under inert gas N 2 to a mass flow of 1000 g / h of hydrophilic KIESELSAURE, with a moisture content of less than 1% and an HCl content of less than 100 ppm and with a specific surface area of 150 m 2 / g (measured by the BET method according to DIN66131 and 66132) (available under the WACKER HDK V15 at Wacker Chemie GmbH, Munich, D) 330 g / h of a methacryloxypropyltrimethoxysilane (available under the name WACKER Geniosil GF31 from Wacker Chemie GmbH, Munich, D) in liquid, finely divided form by evaporation over a single-substance nozzle (pressure 10 bar ) added. The thus loaded silicic acid is required in the reaction vessel and at a residence time of 90 min. reacted at a temperature of 120 0 C.
Beispiel 3Example 3
In einer kontinuierlichen Apparatur, bestehend aus einem Belegungsbehalter mit mechanischer Fluidisierung und Verdusungseinrichtung und einem Reaktionsbehalter aus Duranglas mit mechanischer Fluidisierung und außerhalb angebrachten stabformigen Infrarotstrahlern der Firma Heraeus mit einer Strahlungsleistung von 1400 W, werden bei einer Temperatur von 200C unter Inertgas N2 zu einem Massestrom von 1000 g/h an hydrophiler KIESELSAURE, mit einer Feuchte kleiner 1% und einem HCl Gehalt kleiner 100 ppm und mit einer spezifischen Oberflache von 300 m2/g (gemessen nach der BET Methode nach DIN66131 und 66132) (erhaltlich unter dem Namen WACKER HDK T30 bei Wacker Chemie GmbH, München, D) 660 g/h eines Methacryloxypropyltrimethoxysilans (erhaltlich unter dem Namen WACKER Geniosil GF31 bei Wacker Chemie GmbH, München, D) in flussiger, feinstverteilter Form durch Verdusen über eine Einstoffduse (Druck 10 bar) zugefugt. Die so beladene Kieselsaure wird in den Reaktionsbehalter gefordert und bei einer Verweilzeit von 45 min. bei einer Temperatur von 1200C zur Reaktion gebracht.In a continuous apparatus, consisting of a Belegungsbehalter with mechanical fluidization and Verdusungseinrichtung and a reaction vessel made of Duranglas with mechanical fluidization and externally mounted rod-shaped infrared radiators Heraeus with a radiation power of 1400 W, are in a Temperature of 20 0 C under inert gas N 2 to a mass flow of 1000 g / h of hydrophilic KIESELSAURE, with a moisture content of less than 1% and an HCl content of less than 100 ppm and with a specific surface area of 300 m 2 / g (measured by the BET Method according to DIN66131 and 66132) (obtainable under the name WACKER HDK T30 from Wacker Chemie GmbH, Munich, D) 660 g / h of a methacryloxypropyltrimethoxysilane (obtainable under the name WACKER Geniosil GF31 from Wacker Chemie GmbH, Munich, D) in liquid, extremely finely divided Form by Verdusen over a Einstoffduse (pressure 10 bar) added. The so loaded silicic acid is required in the reaction vessel and at a residence time of 45 min. reacted at a temperature of 120 0 C.
Tabelle 1 Analysedaten der Kieselsäuren der Beispiele 1 bis 3TABLE 1 Analytical data of the silicas of Examples 1 to 3
Beispiel %C Stampfdichte g/l BET m2/gExample% C tamped density g / l BET m2 / g
1 11, 0 73 981 11, 0 73 98
2 8,4 96 752 8,4 96 75
3 16, 1 78 1563 16, 1 78 156
Beschreibung der AnalysenmethodenDescription of the analysis methods
1. Kohlenstoffgehalt (%C)1. Carbon content (% C)
Elementaranalyse auf Kohlenstoff; Verbrennen der Probe bei über 10000C im 02-Strom, Detektion und Quantifizierung des entstehenden CO2 mit IR; Gerat LECO 244 2. Stampfdichte: Gemäß DIN EN ISO 787-11 3. BET: Gemäß DIN EN ISO 9277 / DIN 66131 Elemental analysis on carbon; Burning the sample at over 1000 0 C in the 0 2 stream, detection and quantification of the resulting CO 2 with IR; Device LECO 244 2. Tamping density: According to DIN EN ISO 787-11 3. BET: According to DIN EN ISO 9277 / DIN 66131

Claims

Patentansprüche claims
1. Verfahren zur Erwärmung von partikulären Feststoffen während der Oberflächenmodifizierung, dadurch gekennzeichnet, dass der partikuläre Feststoff mittels einer Infrarotlampe erwärmt wird.1. A process for heating particulate solids during surface modification, characterized in that the particulate solid is heated by means of an infrared lamp.
2. Verfahren zur Erwärmung von partikulären Feststoffen nach Anspruch 1, dadurch gekennzeichnet, dass die Infrarotlampe vom Feststoff durch Glas getrennt ist.2. A process for heating particulate solids according to claim 1, characterized in that the infrared lamp is separated from the solid by glass.
3. Verfahren zur Erwärmung von partikulären Feststoffen nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass nicht mehr als 30 % der Strahlungsleistung innerhalb des Glases in Wärme umgewandelt wird.3. A process for heating particulate solids according to claim 1 or 2, characterized in that not more than 30% of the radiant power is converted into heat within the glass.
4. Verfahren zur Erwärmung von partikulären Feststoffen nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich bei den Feststoffen um Metalloxide handelt.4. A process for heating particulate solids according to one or more of claims 1 to 3, characterized in that it is the metal oxides in the solids.
5. Verfahren zur Erwärmung von partikulären Feststoffen nach Anspruch 4, dadurch gekennzeichnet, dass es sich bei dem Metalloxid um Kieselsäure handelt.5. A process for heating particulate solids as claimed in claim 4, characterized in that the metal oxide is silicic acid.
6. Verfahren zur Erwärmung von partikulären Feststoffen nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, das zur Oberflächenmodifizierung Organosiliciumverbindungen verwendet werden.6. A process for heating particulate solids according to one or more of claims 1 to 5, characterized in that are used for surface modification of organosilicon compounds.
7. Verfahren zur Erwärmung von partikulären Feststoffen nach Anspruch 6, dadurch gekennzeichnet, dass bei der Oberflächenmodifizierung der Feststoff bewegt wird. 7. A process for heating particulate solids according to claim 6, characterized in that during the surface modification of the solid is moved.
8. Partikelerwärmungsvorrichtung, dadurch gekennzeichnet, dass sie einen Infrarotstrahler (1) aufweist, der von den Partikeln (3) durch Glas (2) getrennt ist.8. particle heating device, characterized in that it comprises an infrared radiator (1) which is separated from the particles (3) by glass (2).
9. Partikelerwärmungsvorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Infrarotstrahler (1) in einem Strahlungsbereich arbeitet, dass nicht mehr als 15 % der Strahlungsleistung innerhalb des Glases (2) in Wärme umgewandelt wird. 9. A particle heating device according to claim 8, characterized in that the infrared radiator (1) operates in a radiation range that not more than 15% of the radiant power within the glass (2) is converted into heat.
PCT/EP2006/068106 2005-11-15 2006-11-06 Method for modifying the surface of solid materials by means of an infrared lamp WO2007057314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510054409 DE102005054409A1 (en) 2005-11-15 2005-11-15 Process for heating particulate solids during surface modification
DE102005054409.6 2005-11-15

Publications (1)

Publication Number Publication Date
WO2007057314A1 true WO2007057314A1 (en) 2007-05-24

Family

ID=37865675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/068106 WO2007057314A1 (en) 2005-11-15 2006-11-06 Method for modifying the surface of solid materials by means of an infrared lamp

Country Status (2)

Country Link
DE (1) DE102005054409A1 (en)
WO (1) WO2007057314A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900425A1 (en) * 2006-09-12 2008-03-19 Wacker Chemie AG Method and apparatus for the contamination-free heating of gases

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752061A (en) * 1985-08-07 1988-06-21 Samuel Strapping Systems Limited Infrared heating of fluidized bed furnace
WO1997037184A1 (en) * 1996-04-02 1997-10-09 Urban Stricker Device for heat-treating bulk materials in feed screws and bulk material drying method
US6528604B1 (en) * 1995-10-03 2003-03-04 Dsm N.V. Reactive silica particles, process for manufacturing the same, use of the same
WO2004069403A1 (en) * 2002-11-12 2004-08-19 Kang-Ho Ahn Apparatus for manufacturing particles using corona discharge and method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752061A (en) * 1985-08-07 1988-06-21 Samuel Strapping Systems Limited Infrared heating of fluidized bed furnace
US6528604B1 (en) * 1995-10-03 2003-03-04 Dsm N.V. Reactive silica particles, process for manufacturing the same, use of the same
WO1997037184A1 (en) * 1996-04-02 1997-10-09 Urban Stricker Device for heat-treating bulk materials in feed screws and bulk material drying method
WO2004069403A1 (en) * 2002-11-12 2004-08-19 Kang-Ho Ahn Apparatus for manufacturing particles using corona discharge and method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1900425A1 (en) * 2006-09-12 2008-03-19 Wacker Chemie AG Method and apparatus for the contamination-free heating of gases
US8975563B2 (en) 2006-09-12 2015-03-10 Wacker Chemie Ag Method and apparatus for the contamination-free heating of gases

Also Published As

Publication number Publication date
DE102005054409A1 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
EP1302444B1 (en) Silica with low content of silanol groups
EP1433749B1 (en) Wettable silylated metal oxides
EP2279226B1 (en) Surface modified silicon dioxide particles
US4015031A (en) Process for hydrophobizing silicas and silicates with organosilanes
JP5644789B2 (en) Powder composition
WO2009015971A1 (en) Surface-modified, pyrogenically prepared silicas
JP5289679B2 (en) Organosilane modified polysiloxane and its use for surface modification
WO2009015969A1 (en) Surface-modified, pyrogenically prepared silicas
EP1834215A1 (en) Metal oxides comprising a permanent positive surface charge over a wide ph range
DE3707226A1 (en) METHOD FOR PRODUCING HIGHLY DISPERSAL METAL OXIDE WITH AMMONIUM-FUNCTIONAL ORGANOPOLYSILOXANE MODIFIED SURFACE AS A POSITIVELY CONTROLLING CHARGING AGENT FOR TONER
DE102007044302A1 (en) Process for dispersing finely divided inorganic powders in liquid media using reactive siloxanes
WO2008077814A2 (en) Organofunctional silicone resin layers on metal oxides
EP2167588A1 (en) Highly disperse metal oxides having a high positive surface charge
US7901502B2 (en) Dispersion which contains at least 2 types of particles
KR20100051639A (en) Surface-modified, pyrogenically produced silicic acid
JP2003165718A (en) Non-porous spherical silica and method for producing the same
WO2007057314A1 (en) Method for modifying the surface of solid materials by means of an infrared lamp
JP3552843B2 (en) Method for producing silicone-coated powder
EP4043398B1 (en) Silica with reduced tribo-charge for toner applications
Gellermann et al. Agglomerate-free silica-tin oxide particles
WO2008145533A1 (en) Method for producing insulating coatings
CN117337269A (en) Vapor phase alumina powder with reduced moisture content
CN116888073A (en) Fumed silica powder with reduced silanol group density
KR20170055834A (en) Method for preparing organic dispersion of colloidal silica based on phase separation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06829935

Country of ref document: EP

Kind code of ref document: A1