WO2007052795A1 - Storage device - Google Patents

Storage device Download PDF

Info

Publication number
WO2007052795A1
WO2007052795A1 PCT/JP2006/322113 JP2006322113W WO2007052795A1 WO 2007052795 A1 WO2007052795 A1 WO 2007052795A1 JP 2006322113 W JP2006322113 W JP 2006322113W WO 2007052795 A1 WO2007052795 A1 WO 2007052795A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
supramolecular
supramolecular material
layer
storage device
Prior art date
Application number
PCT/JP2006/322113
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Funaki
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Publication of WO2007052795A1 publication Critical patent/WO2007052795A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/04Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam
    • G11C13/041Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using optical elements ; using other beam accessed elements, e.g. electron or ion beam using photochromic storage elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/202Integrated devices comprising a common active layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/17Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-absorption elements not provided for in groups G02F1/015 - G02F1/169
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium

Definitions

  • the present invention relates to the technical field of storage devices such as memory and electronic paper.
  • Electronic paper is a reflective type that displays the screen by reflecting light such as fluorescent light or sunlight that does not need to be touched by the backlight like a liquid crystal display, so the brighter the contrast ratio is, the clearer it is.
  • the advantage is that the characters are clearly visible.
  • information display technologies applicable to electronic paper using technologies such as particle rotation, electrophoresis, thermal rewritable and liquid crystal.
  • a molecular system is a colorant that contains an electrochromic switchable molecule (for example, a polymer), and the switchable molecule is optically distinguishable from at least two.
  • an electrochromic switchable molecule for example, a polymer
  • the switchable molecule is optically distinguishable from at least two.
  • a technique is disclosed that can be selectively switched between different states.
  • the optically distinguishable state is (1) a change from a molecular stretched state to a folded state, (2) rotation of a molecular substituent, and (3) charge injection. This is realized by the change in molecular structure caused by.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-98555
  • the optically distinguishable state by this colorant is technically inferior in stability because it depends on the change from the stretched state of the molecule to the folded state and the rotation of the substituents of the molecule. Has a problem.
  • optical discriminability is poor because the color difference is so large. That is, there is a technical problem that the user cannot properly visually recognize characters and the like displayed on the electronic paper.
  • the present invention has been made in view of, for example, the above-described conventional problems, and an object of the present invention is to provide a storage device having, for example, more suitable optical discrimination.
  • the memory device of the present invention includes a first electrode layer, a second electrode layer disposed to face the first electrode layer, and a supramolecule having a changed light absorption coefficient.
  • a supramolecular layer including a material and disposed between the first electrode layer and the second electrode layer.
  • FIG. 1 is a cross-sectional view and a perspective view conceptually showing a basic structure of an electronic paper according to an embodiment.
  • FIG. 2 is a chemical formula showing one specific example of supramolecules contained in the supramolecular material layer of electronic paper.
  • FIG. 4 is a graph conceptually showing two different light absorption coefficients corresponding to two different states of a heterodiotropic receptor.
  • FIG. 5 is a plan view conceptually showing a display mode on electronic paper.
  • FIG. 6 is a chemical formula showing another specific example of supramolecules contained in the supramolecular material layer.
  • FIG. 7 is a chemical formula showing another specific example of supramolecules contained in the supramolecular material layer.
  • FIG. 8 is a chemical formula showing another specific example of supramolecules contained in the supramolecular material layer.
  • FIG. 9 This is a mathematical formula that conceptually shows how the supramolecules shown in FIG. 8 trap molecules.
  • FIG. 10 is a flow chart schematically showing the flow of the electronic paper manufacturing method according to the present example.
  • FIG. 11 is a schematic diagram conceptually showing a bonding mode between a gold electrode layer and a supramolecular layer.
  • FIG. 12 is a schematic diagram conceptually showing a bonding mode between an ITO electrode layer and a supramolecular layer.
  • FIG. 13 is a cross-sectional view conceptually showing the basic structure of electronic paper according to a modification.
  • FIG. 14 conceptually shows the basic structure of a molecular memory as a modification of the storage device of the present invention. It is a schematic diagram.
  • An embodiment of the memory device of the present invention includes a first electrode layer, a second electrode layer disposed to face the first electrode layer, and a supramolecular material having a light absorption coefficient that changes. And a supramolecular layer disposed between the first electrode layer and the second electrode layer.
  • the supramolecular layer is formed so as to be sandwiched between the first electrode layer and the second electrode layer.
  • the supramolecular layer contains supramolecular materials whose light absorption coefficient changes.
  • the supramolecular material is intended to indicate a complex molecular assembly that is linked and organized by loose bonding interactions between molecules and that exceeds individual molecules.
  • the wavelength of light absorbed by the supramolecular material changes.
  • the light absorption coefficient of a part of the supramolecular material changes to absorb green light
  • the light absorption coefficient of another part of the supramolecular material changes to change red light.
  • a part of the supramolecular material turns purple (ie, recognized by the user as purple)
  • another part of the supramolecular material turns light blue (ie, recognized by the user as purple).
  • Supramolecular materials absorb If the wavelength of the light further changes, the supramolecular material will change to another color.
  • the storage device according to the present embodiment can be used as a memory display such as electronic paper.
  • the storage device according to the present embodiment can be used as a memory by associating the color change with bid '0' or bid '1'.
  • the change in the light absorption coefficient of the supramolecular material is not achieved by realizing an optically distinguishable state by using a change from the stretched state of the molecule to a folded state or rotation of the substituent of the molecule. Is used to realize an optically distinguishable state. Therefore, since the light absorption coefficient is different in each state, it has an advantage of excellent discrimination (for example, a contrast ratio between the background and a display object such as characters is relatively large).
  • the supramolecular material has the light absorption coefficient changed by movement of at least one of ions and molecules inside the supramolecular material.
  • the structure inside the supramolecular material is changed by moving at least one of ions and molecules inside the supramolecular material, and as a result, the light absorption coefficient can be suitably changed. It becomes possible.
  • the supramolecular material has the light absorption by moving at least one of ions and molecules between the supramolecular material and the outside. The coefficient changes.
  • the structure inside the supramolecular material is changed, and as a result, the light absorption coefficient is changed. It becomes possible to make it.
  • it can be optically discriminated by the movement of ions and molecules (or differences in trapped positions, etc.) instead of changing from the stretched state of the molecule to the folded state or rotating the substituent of the molecule. Therefore, it has the advantage of excellent stability.
  • the supramolecular material includes the ions according to the electric field applied between the first electrode and the second electrode. And at least one of the molecules moves. That is, the light absorption coefficient of the supramolecular material changes according to the electric field applied between the first electrode and the second electrode.
  • At least one of ions and molecules can be relatively easily compared with the inside of the supramolecular material or the outside of the supramolecular material according to the magnitude, direction, timing, and the like of the electric field. Can be moved to. Therefore, the light absorption coefficient of the supramolecular material can be changed relatively easily, and a predetermined character or the like can be displayed suitably and relatively easily.
  • an electric field applying means for applying an electric field having a desired magnitude and direction at a desired timing is further provided between the first electrode layer and the second electrode layer. Is preferred.
  • the storage device further includes a supply layer that supplies at least one of the ions and the molecules to the supramolecular material.
  • the supramolecular material includes an envelope for enclosing (trapping) at least one of the ions and molecules. It has a contact structure.
  • the supramolecular material has an inclusion structure, at least one of ions and molecules can be relatively easily or suitable between the inside and the outside. Move to It becomes possible to make it. That is, the supramolecular material has ion recognition or molecular recognition characteristics. For this reason, the memory
  • the supramolecular material includes cyclodextrin.
  • the supramolecular material includes a heterodiotropic receptor.
  • At least one of the first electrode layer and the second electrode layer includes gold, and the first electrode layer and the second electrode layer At least one of the above and the supramolecular layer are bonded by a gold thiol bond (that is, bonded by a ligand method).
  • At least one of the first electrode layer and the second electrode layer can be suitably bonded to the supramolecular layer (ie, supramolecular material).
  • the bonding between at least one of the first electrode layer and the second electrode layer and the supramolecular layer can be made stronger by the gold thiol bond, and a stable memory device can be manufactured. it can.
  • the thickness of at least one of the first electrode layer and the second electrode layer is reduced. If it is made thinner, the rear side of the user can see through. For this reason, it is more suitable when the storage device is used as electronic paper or the like.
  • At least one of the first electrode layer and the second electrode layer contains ITO (Indium Tin Oxide), and the first electrode layer and the second electrode layer
  • ITO Indium Tin Oxide
  • at least one of the second electrode layers and the supramolecular layer are joined via a metal complex containing phosphonic acid therebetween (ie, joined by the anchor complex method).
  • At least one of the first electrode layer and the second electrode layer and the supramolecular layer (ie, supramolecular material) can be suitably bonded. More specifically, at least one of the first electrode layer and the second electrode layer is formed by interposing a phosphonic acid and a rubidium metal complex between at least one of the first electrode layer and the second electrode layer and the supramolecular layer. And supramolecular layer. That is, due to the presence of phosphoric acid or the like, the bonding between at least one of the first electrode layer and the second electrode layer and the supermolecule layer can be made stronger, and a stable memory device can be manufactured. Togashi.
  • the rear side thereof can be seen through by the user. For this reason, it is more suitable when the storage device is used as electronic paper or the like.
  • the first electrode layer has a plurality of first signal lines extending in one direction
  • the second electrode layer is the one It has a plurality of second signal lines extending in a different direction (or orthogonal) to the other direction.
  • intersections of the first signal line and the second signal line can be distributed in a matrix.
  • the light absorption coefficient of the supramolecular material located at this intersection changes.
  • the light absorption coefficient of the supramolecular material can be changed in the same manner as a normal display by regarding the position of the intersection as a pixel, and as a result, as electronic paper (memory display) and molecular memory. Can be used.
  • the intersection of the first signal line and the second signal line is the size of a single molecule of the supramolecular material. They have approximately the same size.
  • the intersection of the signal lines can be made substantially the same as the molecular size of the supramolecular material itself, so that the light absorption coefficient of the supramolecular material can be changed to a high definition within a narrower range. You can make it. That is, if the storage device according to the present embodiment is used as electronic paper, the number of pixels can be relatively increased, so that the resolution can be increased. Further, if the storage device according to this embodiment is used as a memory such as a RAM, the storage capacity can be relatively increased.
  • the embodiment of the memory device of the present invention includes the first electrode layer, the second electrode layer, and the supramolecular layer. Therefore, it realizes a state that can be optically discriminated more suitably It becomes possible to do.
  • FIG. 1 is a cross-sectional view and a perspective view conceptually showing the basic structure of the electronic paper 100 according to the present embodiment
  • FIG. 2 is a supramolecular material included in the supramolecular material layer 114 of the electronic paper 100. It is a chemical formula showing one specific example.
  • an electronic paper 100 includes a plastic film layer 110, a gold electrode layer 112, a supramolecular material layer 114, a gold electrode layer 116, and a plastic film.
  • a layer 118 and a display driving unit 120 are provided.
  • the plastic film layers 110 and 118 are thin film substrates for protecting the entire electronic paper 100.
  • other materials may be used as long as the entire electronic paper 100 can be protected even if it is not a plastic film, or it may not be a film.
  • the plastic film substrate 110 located near and on the side of the user may be transparent.
  • the plastic film layer 118 located on the side far from the user is transparent (for example, white or the like) in view of improving visibility. More specifically, it is preferable that the plastic film layer 118 exhibits a predetermined color so that the contrast ratio between characters and the like displayed on the electronic paper 100 and the background is increased.
  • both the plastic film layers 110 and 118 may be transparent. In this case, the user can visually recognize a predetermined character or the like from both sides of the electronic paper 100.
  • the gold electrode layers 112 and 116 include gold (Au), and are configured to be able to apply an electric field to the supramolecular material included in the supramolecular material layer 114.
  • Au gold
  • Especially supramolecular material layer for users In order to make various characters displayed in 114 visible, at least the thickness of the gold electrode layer near the user is set behind the gold electrode layer (or the back side or the side far from the user). Needs to be thin enough to see through. For example, as shown in FIG. 1, when the user views the electronic paper 100 from the side of the plastic film layer 110, the thickness of the gold electrode layer 112 on the side closer to the user needs to be very thin. . At this time, for example, the thickness of the gold electrode layer 112 may be about 50 nm.
  • a transparent electrode such as an ITO (Indium Tin Oxide) electrode layer or an IZO (Indium Zinc Oxide) electrode layer may be used.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • the electrode layer may be configured using other materials. .
  • the gold electrode layers 112 and 116 are configured such that their intersections are distributed in a matrix. That is, the gold electrode layer 112 is composed of a plurality of electrode lines (so-called data lines) arranged along a certain direction, and the other gold electrode layer 116 is orthogonal to the one direction. A plurality of electrode lines (i.e., scan lines) are arranged along the direction. Such intersection points correspond to pixels of a liquid crystal display or a plasma display. That is, by appropriately controlling the electric field applied to the intersection, the color of the supramolecular material layer 114 at the intersection can be changed by the user, and as a result, a predetermined character or the like can be displayed. it can. Further, if the density of the intersections is increased (if the distance between the electrode lines is narrowed), it becomes possible to display characters with higher definition. The operation principle of the electronic paper 100 will be described in detail later.
  • the supramolecular material layer 114 includes various supramolecular materials to be described later! For example, it includes a heterotrophic receptor, which is a specific example of a supramolecular material as shown in FIG.
  • the heterotrophic receptor is disposed between the electrode wire related to the gold electrode layer 112 and the electrode wire related to the gold electrode layer 116 so as to be joined to these electrode wires.
  • the heterodiotropic receptor has a structural part shown in the upper side of the chemical formula in FIG. 2 (that is, a cyclic structural part composed of S—N—S—N) and a lower side in the chemical formula in FIG. Structure
  • a predetermined ion can be trapped (captured) in each of the structure portions (that is, the cyclic structure portion constituted by O—N—O—O—N).
  • no ions can be trapped in either structure part. Due to the difference in these states, the light absorption coefficient of the heterodiotropic receptor changes, and the wavelength of the light absorbed by the heterodiotropic receptor appropriately changes. These changes in state are determined by the magnitude of the electric field applied to the heterodiotropic receptor (ie, at the intersection where the heterodiotropic receptor is located).
  • the square blank of the heterotrophic receptor in FIG. 2 can contain any group (for example, any group such as an alkyl group or a propyl group). Even if an arbitrary group is included, the heterodiotropic receptor traps ions as long as it includes the structural portion shown above the chemical formula in FIG. 2 and the structural portion shown below the chemical formula in FIG. It is possible to display a predetermined character or the like as will be described later.
  • the supramolecular material layer 114 preferably has a thickness of at least 500 to 1000 A or more (more preferably about 5000 A or more).
  • the supramolecular material layer 114 may be configured by stacking, for example, about 40 supramolecular materials.
  • the display drive circuit 120 appropriately controls the electric field applied to the supramolecular material layer 114. That is, the application timing, magnitude or direction of the electric field applied to the supramolecular material layer 114 is appropriately controlled.
  • the configuration of the display driving circuit 120 is the same as that of a display driving circuit in a liquid crystal display, a plasma display, or existing electronic paper, and thus detailed description thereof is omitted here.
  • FIG. 3 is a chemical formula that conceptually shows two different states of the heteroditrophic receptor
  • Fig. 4 conceptually shows two different light absorption coefficients corresponding to the two different states of the heterodiotropic receptor.
  • FIG. 5 is a plan view conceptually showing a display mode on the electronic paper 100.
  • the heterodiotropic receptor has ions 115 (eg, , Copper ions) can be trapped (captured).
  • the heterodiotropic receptor traps ions 115a in the structure shown on the upper side as shown in the chemical formula on the left side of FIG. 3, or on the lower side as shown in the chemical formula on the right side of FIG.
  • the ions 115a can be trapped in the structure portion shown.
  • the heterodiotropic receptor has a structural portion shown in at least one of the upper side and the lower side of the chemical formula shown in FIG. 3, and therefore can trap the ions 115a therein.
  • the ions 115a may not be trapped therein.
  • the ions 115a may be configured so as to be included in the inside of the heterotrophic receptor in advance, or may be configured to be supplied from the outside as described later.
  • the position where such ions 115 are trapped changes depending on the magnitude and direction of the electric field applied to the heterodiotropic receptor. In other words, the position where the ions 115 are trapped can be changed by electrical switching. More specifically, the ion density in the heterodiotropic receptor is changed by the electric field applied between the gold electrode layers 112 and 116, so that the ions 115 move inside the heterotropic receptor. As a result, the position where the ions 115 are trapped is appropriately changed to the upper structure portion or the lower structure portion of the chemical formula of the heterodiotropic receptor shown in FIG.
  • the trapping position of the ion 115a (or by trapping or not trapping the ion 115a), the light absorption coefficient of the heterotrophic receptor itself is changed. It becomes possible. More specifically, the wavelength of light absorbed by the heterodiotropic receptor can be changed by changing the position where the ions 115a are trapped.
  • the heterodiotropic receptor (or the supramolecular material contained in the supramolecular material layer 114) is visually recognized by the user as purple (dark blue).
  • the heterodiotropic receptor (or the supramolecular material contained in the supramolecular material layer 114) becomes light blue (light blue).
  • the wavelength of light absorbed by the supramolecular material contained in the supramolecular material layer 114 is changed by appropriately controlling the position where the electric field is applied or the magnitude and direction of the applied electric field. be able to. Therefore, the color visually recognized by the user can be appropriately changed according to the position on the supramolecular material layer 114.
  • the supramolecular material included in the supramolecular material layer 114 absorbs not only two types of light of the wavelength of 600 nm and the wavelength of 800 nm as described above, but also absorbs light of various other wavelengths. It is also possible to configure. Therefore, not only two-color display but also three-color or more color display can be performed as shown on the right side of FIG. For this reason, it becomes possible for the user to visually recognize characters and the like (for example, various display objects such as characters, figures, symbols, and numbers) having a larger contrast ratio than the background.
  • the electronic paper 100 does not require a backlight or the like unlike a liquid crystal display, the electronic paper 100 also has an advantage of saving energy and contributing to the environment. In addition, since it is sufficient to apply an electric field at least when switching the screen (when rewriting the screen), it is energy-saving and is an afterthought from the environmental point of view that there is no need to constantly apply an electric field.
  • the force described using the heterodiotropic receptor as a specific example of the supramolecular material included in the supramolecular material layer 114 is not limited to this.
  • FIGS. 6 to 8 are chemical formulas showing other specific examples of the supramolecular material included in the supramolecular material layer 114, respectively, and
  • FIG. 9 shows the molecular structure trapped by the supramolecular material shown in FIG. This is a mathematical formula conceptually showing an aspect.
  • a tricyclic macrocyclic compound as shown in FIGS. 6 (a) and 6 (b) is another specific example of the supramolecular material contained in the supramolecular material layer 114.
  • FIG. 6 (a) this tricyclic macrocycle compound has a structural portion shown above the chemical formula in FIG. 6 (a) (ie, a cyclic structural portion composed of S—N—S—N). Can trap the ions 115a.
  • FIG. 6 (b) ions are present in the structural part shown in the lower side of the chemical formula in FIG. 6 (b) (ie, the cyclic structural part composed of 0-N—S—N). 115a can be trapped.
  • the ions 115a may not be trapped therein.
  • FIGS. 7 (a) and 7 (b) another tricyclic macrocyclic compound as shown in FIGS. 7 (a) and 7 (b).
  • the other tricyclic macrocycle compounds are composed of structural parts shown in the lower part of the chemical formula in Fig. 7 (a) (ie, N—O—O—N—
  • the ions 115a can be trapped in the O—O cyclic structure).
  • FIG. 7 (b) it is possible not to trap the ions 115a therein.
  • Such a change in state changes the light absorption coefficient of another tricyclic macrocycle compound, and as described above, it becomes possible to display predetermined characters and the like.
  • FIGS. 8 (a) and 8 (b) another specific example of the supramolecular material contained in the cyclodextrin force supramolecular material layer 114 as shown in FIGS. 8 (a) and 8 (b) is mentioned.
  • Material layer Other specific examples of supramolecules included in 114 are listed.
  • ⁇ -cyclodextrin in which 8 D-glucose is aggregated or cyclodextrin in which a large number of D-dulcose is aggregated are other specific examples of the supramolecules contained in the supramolecular material layer 114. It is mentioned.
  • this cyclodextrin can trap a predetermined molecule 115b in a part of its structural portion (that is, a portion corresponding to one D-glucose). This also changes the light absorption coefficient of cyclodextrin as in the above-described trapping of various supramolecular ions 115a, and can display predetermined characters and the like as described above.
  • supramolecular materials having a structure capable of trapping at least one of ions 115a and molecules 115b therein (for example, inclusion complex) And the like can be used as the supramolecular material used for the supramolecular material layer 114 of the electronic paper 100 according to this embodiment.
  • the strength of supramolecular material that has a part of the structure of crown ether, cryptand calixarene, etc. Can be used as the supramolecular material used for the supramolecular material layer 114 of the electronic paper 100 according to this example.
  • the strength of supramolecular material that has a part of the structure of crown ether, cryptand calixarene, etc. Can be used as the supramolecular material used for the supramolecular material layer 114 of the electronic paper 100 according to this example.
  • FIG. 10 is a flowchart schematically showing the flow of the manufacturing method of the electronic paper 100 according to the present embodiment
  • FIG. 11 is a mode of joining the gold electrode layer 112 and the supramolecular material layer 114
  • FIG. 12 is a schematic diagram conceptually showing an aspect of joining the 1-to-0 electrode layer 113 and the supramolecular material layer 114.
  • an organic molecule having an anchor modification group (or a modified functional group or an organic functional group) is bonded onto the gold electrode layer 112 (or the ITO electrode layer 113).
  • the gold electrode layer 112 (that is, the gold electrode) may be immersed in an organic solution containing the anchor modifying group to bond the organic molecule having the anchor modifying group, or on the gold electrode layer 112. It has an anchor modification group using the spin coating method. Organic molecules may be joined.
  • a supramolecular material is bonded to the organic molecule having the anchor modification group bonded in step S101 (step S102).
  • the supramolecular material may be joined by immersing the gold electrode layer 112 bonded with organic molecules in a solution containing the supramolecular material, or on the gold electrode layer 112 bonded with organic molecules.
  • the supramolecular material may be bonded using a spin coating method.
  • the supramolecular material selectively bonds to the organic molecule having the anchor modifying group. That is, in this embodiment, the supramolecular material layer 114 is formed by bonding supramolecules using a self-organization technique.
  • an organic molecule having an anchor modification group (or a modified functional group! / An organic functional group) is joined to the supramolecular material (step S 103).
  • the same method as 101 is used.
  • the opposing gold electrode layer 116 is bonded (step S104). This is also the same as the bonding of the gold electrode layer 112 and the supramolecular material layer 114 in step S102 described above.
  • the plastic film layers 110 and 118 are further joined. Thereby, the electronic paper 100 according to the present embodiment is manufactured.
  • step S 101 the bonding of organic molecules having an anchor modification group or the like in step S 101 will be described in more detail with reference to FIG. 11 and FIG.
  • thiol is bonded to the gold electrode layer 112 as an anchor modification group.
  • This thiol has a property of selectively adsorbing to gold.
  • the gold electrode layer 112 and the supramolecular material layer 114 can be suitably bonded with the thiol interposed therebetween.
  • the surface of the gold electrode layer 112 is modified with a ligand (here, thiol, which is an anchor modifying group), and the ligand is used to perform integration by surface complexation.
  • the following ligand method is adopted. The same applies to the bonding of the gold electrode layer 116 and the supramolecular material layer 114 on the opposite side.
  • the gold electrode layers 112 and 116 and the supramolecular material layer 114 may be joined using various other materials as anchor modification groups. Not too long.
  • phosphine is used as an anchor modifying group.
  • a rubidium metal complex having a phonic acid (H 3 PO 4) group in the side chain is used.
  • phosphoric acid H 3 PO 4
  • Phosphonic acid groups are selective to ITO electrodes
  • the ITO electrode layer 113 and the supramolecular material layer 114 can be suitably joined by joining the supramolecular material layer 114 subsequent to this rubidium metal complex or further via a phosphonic acid group. Is possible.
  • an anchor complex method in which a surface modification group (here, a phosphonic acid group) is added to the side chain of the complex to modify the surface is employed.
  • the present invention is not limited to the rubidium metal complex having a phosphonic acid group in the side chain, and the ITO electrode layer 113 and the supramolecular material layer 114 may be joined using various other materials as anchor modification groups.
  • the ITO electrode layer 113 and the supramolecular material layer 114 may be joined using various other materials as anchor modification groups.
  • it ’s ugly! /.
  • FIG. 13 is a cross-sectional view conceptually showing the basic configuration of the electronic paper 101 according to the modified example
  • FIG. 14 is a conceptual diagram showing the basic configuration of the molecular memory 102 as a modified example of the storage device of the present invention.
  • an electronic paper 101 according to a modification is similar to the electronic paper 100 described above, and includes a plastic film layer 110, a gold electrode layer 112, a supramolecular material layer 114, and a gold film.
  • An electrode layer 116, a plastic film layer 118, and a display driving unit 120 are provided.
  • the electronic paper 101 particularly includes a liquid electrolyte layer (gel electrolyte) 121, an ion storage layer 122, a supramolecular material layer 114, and a gold electrode layer 116. Have in between.
  • a liquid electrolyte layer gel electrolyte
  • the liquid electrolyte layer 121 contains, for example, lithium (Li-triflate in polymer) diffused in the polymer, and supplies lithium ions supplied from the ion storage layer 122 to the supramolecular material layer 114. It is configured to be possible.
  • the ion storage layer 122 is made of, for example, lithium cerate (Li CeO 2), titanium oxide (TiO 2), or the like.
  • the ions 115a trapped inside the supramolecular material included in the supramolecular material layer 114 are from outside the supramolecular material layer 114 (that is, , From the ion storage layer 122). Therefore, the supramolecular material contained in the supramolecular material layer 114 has the advantage that it is not necessary to previously have ions 115a for trapping therein.
  • the supramolecular material layer 114 can be formed without the use of the supramolecular material having ions 115a in advance, the range of selection of the supramolecular material contained in the supramolecular material layer 114 When it spreads, it has an advantage!
  • the storage device of the present invention is an electronic paper.
  • the molecular memory 102 may be used instead of the electronic paper.
  • the supramolecular material layer 114 there are two different states on the supramolecular material layer 114, a black portion and a white portion. Configure to exist. Of course, it is needless to say that other colors may be used instead of black and white. In short, two colors that are physically, chemically or optically distinguishable are sufficient. For example, if the black part is recorded with a bid “0” and the white part is recorded with a bid “1”, the supramolecular material layer 114 has “0” and “1”. In this way, the memory device of the present invention is used as the molecular memory 102.
  • the recording density is relatively increased as compared with the existing memory. It becomes possible to make it.
  • the storage device of the present invention is not limited to electronic paper and molecular memory, but can be applied to other various devices and various elements.
  • the storage device according to the present invention can be used for, for example, electronic paper, molecular memory, and the like. Further, it can be used for various devices or elements for consumer or business use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Memories (AREA)

Abstract

Disclosed is a storage device (100) comprising a first electrode layer (112), a second electrode layer (116) arranged opposite to the first electrode layer, and a supramolecular layer (114) which is arranged between the first electrode and the second electrode and contains a supramolecular material whose light absorption coefficient varies.

Description

明 細 書  Specification
記憶装置  Storage device
技術分野  Technical field
[0001] 本発明は、例えばメモリや電子ペーパー等の記憶装置の技術分野に関する。  The present invention relates to the technical field of storage devices such as memory and electronic paper.
背景技術  Background art
[0002] 近年、電気信号により所望の情報を表示させる表示媒体として、様々な電子べ一 パーが開発されている。電子ペーパーは、液晶ディスプレイのようにバックライトを背 面力 当てる必要がなぐ蛍光灯や太陽光などの光を反射させて画面を表示する反 射型のため、コントラスト比が変わることなぐ明るいほど明確ではっきりと文字が見え るという利点がある。電子ペーパーに適用可能な情報表示技術としては、粒子の回 転、電気泳動、サーマルリライタブル及び液晶などの技術を用いたものが多数知られ ている。  In recent years, various electronic papers have been developed as display media for displaying desired information using electrical signals. Electronic paper is a reflective type that displays the screen by reflecting light such as fluorescent light or sunlight that does not need to be touched by the backlight like a liquid crystal display, so the brighter the contrast ratio is, the clearer it is. The advantage is that the characters are clearly visible. There are many known information display technologies applicable to electronic paper using technologies such as particle rotation, electrophoresis, thermal rewritable and liquid crystal.
[0003] 他方で、特許文献 1には、分子システムがエレクト口クロミックな切り替え可能分子( 例えば、高分子)を含んだ着色剤であって、切り替え可能分子が少なくとも 2つの光 学的に識別可能な状態の間で選択的に切り替え可能な技術が開示されている。この 特許文献 1によれば、光学的に識別可能な状態とは、(1)分子の伸び状態から折り たたみの状態への変化、(2)分子の置換基の回転、並びに(3)電荷注入による分子 構造の変化により実現されている。  [0003] On the other hand, in Patent Document 1, a molecular system is a colorant that contains an electrochromic switchable molecule (for example, a polymer), and the switchable molecule is optically distinguishable from at least two. A technique is disclosed that can be selectively switched between different states. According to Patent Document 1, the optically distinguishable state is (1) a change from a molecular stretched state to a folded state, (2) rotation of a molecular substituent, and (3) charge injection. This is realized by the change in molecular structure caused by.
[0004] 特許文献 1 :特開 2003— 98555号公報  [0004] Patent Document 1: Japanese Unexamined Patent Publication No. 2003-98555
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ここで、このような着色剤を用いて電子ペーパーを製造することが考えられる。しか しながら、この着色剤による光学的に識別可能な状態は、分子の伸び状態から折り たたみ状態への変化や分子の置換基の回転等に依存しているため安定性に乏しい という技術的な問題点を有している。また、色の違いもそれ程大きくなぐ光学的識別 性に乏しいという技術的な問題点を有している。即ち、電子ペーパー上に表示される 文字等をユーザが好適に視認することができな 、と 、う技術的な問題点を有して 、る [0006] 本発明は、例えば上述した従来の問題点に鑑みなされたものであり、例えばより好 適な光学的識別性を有する記憶装置を提供することを課題とする。 [0005] Here, it is conceivable to produce electronic paper using such a colorant. However, the optically distinguishable state by this colorant is technically inferior in stability because it depends on the change from the stretched state of the molecule to the folded state and the rotation of the substituents of the molecule. Has a problem. In addition, there is a technical problem that optical discriminability is poor because the color difference is so large. That is, there is a technical problem that the user cannot properly visually recognize characters and the like displayed on the electronic paper. [0006] The present invention has been made in view of, for example, the above-described conventional problems, and an object of the present invention is to provide a storage device having, for example, more suitable optical discrimination.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決するために、本発明の記憶装置は、第 1電極層と、前記第 1電極 層に対向して配置される第 2電極層と、光吸収係数が変化する超分子材料を含み、 且つ前記第 1電極層及び前記第 2電極層の間に配置される超分子層とを備える。  [0007] In order to solve the above-described problem, the memory device of the present invention includes a first electrode layer, a second electrode layer disposed to face the first electrode layer, and a supramolecule having a changed light absorption coefficient. A supramolecular layer including a material and disposed between the first electrode layer and the second electrode layer.
[0008] 本発明の作用及び他の利得は次に説明する実施形態力 明らかにされよう。  [0008] The operation and other advantages of the present invention will be made clear by the embodiment described below.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本実施例に係る電子ペーパーの基本構成を概念的に示す断面図及び斜視図 である。  FIG. 1 is a cross-sectional view and a perspective view conceptually showing a basic structure of an electronic paper according to an embodiment.
[図 2]電子ペーパーの超分子材料層に含まれる超分子の一の具体例を示す化学式 である。  FIG. 2 is a chemical formula showing one specific example of supramolecules contained in the supramolecular material layer of electronic paper.
[図 3]ヘテロジトロピックレセプターの異なる 2つの状態を概念的に示すィ匕学式である  [Figure 3] This is a mathematical formula that conceptually shows two different states of heterodiotropic receptors.
[図 4]ヘテロジトロピックレセプターの異なる 2つの状態に応じた 2つの異なる光吸収 係数を概念的に示すグラフである。 FIG. 4 is a graph conceptually showing two different light absorption coefficients corresponding to two different states of a heterodiotropic receptor.
[図 5]電子ペーパー上の表示態様を概念的に示す平面図である。  FIG. 5 is a plan view conceptually showing a display mode on electronic paper.
[図 6]超分子材料層に含まれる超分子の他の具体例を示す化学式である。  FIG. 6 is a chemical formula showing another specific example of supramolecules contained in the supramolecular material layer.
[図 7]超分子材料層に含まれる超分子の他の具体例を示す化学式である。  FIG. 7 is a chemical formula showing another specific example of supramolecules contained in the supramolecular material layer.
[図 8]超分子材料層に含まれる超分子の他の具体例を示す化学式である。  FIG. 8 is a chemical formula showing another specific example of supramolecules contained in the supramolecular material layer.
[図 9]図 8に示す超分子が分子をトラップする態様を概念的に示すィ匕学式である。  [FIG. 9] This is a mathematical formula that conceptually shows how the supramolecules shown in FIG. 8 trap molecules.
[図 10]本実施例に係る電子ペーパーの製造方法の流れを概略的に示すフローチヤ ートである。  FIG. 10 is a flow chart schematically showing the flow of the electronic paper manufacturing method according to the present example.
[図 11]金電極層と超分子層との接合の態様を概念的に示す模式図である。  FIG. 11 is a schematic diagram conceptually showing a bonding mode between a gold electrode layer and a supramolecular layer.
[図 12]ITO電極層と超分子層との接合の態様を概念的に示す模式図である。  FIG. 12 is a schematic diagram conceptually showing a bonding mode between an ITO electrode layer and a supramolecular layer.
[図 13]変形例に係る電子ペーパーの基本構成を概念的に示す断面図である。  FIG. 13 is a cross-sectional view conceptually showing the basic structure of electronic paper according to a modification.
[図 14]本発明の記憶装置に係る変形例としての分子メモリの基本構成を概念的に示 す模式図である。 FIG. 14 conceptually shows the basic structure of a molecular memory as a modification of the storage device of the present invention. It is a schematic diagram.
符号の説明  Explanation of symbols
[0010] 100 電子ペーパー  [0010] 100 electronic paper
102 分子メモリ  102 Molecular memory
112 金電極層  112 Gold electrode layer
113 ITO電極層  113 ITO electrode layer
114 超分子材料層  114 supramolecular material layer
115a イオン  115a ion
115b 分子  115b molecule
116 金電極層  116 Gold electrode layer
120 表示駆動部  120 Display driver
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、発明を実施するための最良の形態としての本発明の実施形態に係る記憶装 置について順に説明する。 Hereinafter, a storage device according to an embodiment of the present invention as the best mode for carrying out the invention will be described in order.
[0012] 本発明の記憶装置に係る実施形態は、第 1電極層と、前記第 1電極層に対向して 配置される第 2電極層と、光吸収係数が変化する超分子材料を含み、且つ前記第 1 電極層及び前記第 2電極層の間に配置される超分子層とを備える。  [0012] An embodiment of the memory device of the present invention includes a first electrode layer, a second electrode layer disposed to face the first electrode layer, and a supramolecular material having a light absorption coefficient that changes. And a supramolecular layer disposed between the first electrode layer and the second electrode layer.
[0013] 本発明の記憶装置に係る実施形態によれば、第 1電極層と第 2電極層とに挟まれる ように超分子層が形成されている。超分子層には、光吸収係数が変化する超分子材 料が含まれている。尚、超分子材料とは、分子間の緩やかな結合相互作用によって 結び付けられまた組織化され、個々の分子を超えた複雑な分子集合体を示す趣旨 である。  [0013] According to the embodiment of the memory device of the present invention, the supramolecular layer is formed so as to be sandwiched between the first electrode layer and the second electrode layer. The supramolecular layer contains supramolecular materials whose light absorption coefficient changes. The supramolecular material is intended to indicate a complex molecular assembly that is linked and organized by loose bonding interactions between molecules and that exceeds individual molecules.
[0014] 超分子層に含まれる超分子材料の光吸収係数が変化すれば、当該超分子材料が 吸収する光の波長が変化する。例えば、超分子材料の一部の光吸収係数が変化し て、緑色の光を吸収するようになり、他方で超分子材料の他の一部の光吸収係数が 変化して、赤色の光を吸収するようになったとする。この場合、超分子材料の一部が 紫色に変化し (即ち、ユーザには紫色として認識され)、また超分子材料の他の一部 が水色に変化する(即ち、ユーザには紫色として認識される)。超分子材料が吸収す る光の波長が更に変化すれば、超分子材料が更に他の色に変化する。そして、この 色の変化を用いて各種文字や図形等をユーザに視認できるように表示することがで きる。即ち、例えば電子ペーパー等のメモリディスプレイとして、本実施形態に係る記 憶装置を利用することができる。或いは、色の変化がユーザに視認できなくとも、色の 変化をビッド '0"やビッド '1"と対応付けることで、メモリとしても本実施形態に係る記 憶装置を利用することができる [0014] When the light absorption coefficient of the supramolecular material contained in the supramolecular layer changes, the wavelength of light absorbed by the supramolecular material changes. For example, the light absorption coefficient of a part of the supramolecular material changes to absorb green light, while the light absorption coefficient of another part of the supramolecular material changes to change red light. Suppose that it comes to absorb. In this case, a part of the supramolecular material turns purple (ie, recognized by the user as purple), and another part of the supramolecular material turns light blue (ie, recognized by the user as purple). ) Supramolecular materials absorb If the wavelength of the light further changes, the supramolecular material will change to another color. Then, using this color change, various characters, figures, etc. can be displayed so as to be visible to the user. That is, the storage device according to the present embodiment can be used as a memory display such as electronic paper. Alternatively, even if the color change is not visible to the user, the storage device according to the present embodiment can be used as a memory by associating the color change with bid '0' or bid '1'.
本実施形態では特に、分子の伸び状態から折りたたみの状態への変化や分子の 置換基の回転等を用いて光学的に識別可能な状態を実現するのではなぐ超分子 材料の光吸収係数の変化を用いて光学的に識別可能な状態を実現している。従つ て、夫々の状態において光吸収係数が異なるため、識別性に優れている(例えば、 背景と文字等の表示対象物とのコントラスト比が相対的に大きい)という利点を有して いる。  In this embodiment, in particular, the change in the light absorption coefficient of the supramolecular material is not achieved by realizing an optically distinguishable state by using a change from the stretched state of the molecule to a folded state or rotation of the substituent of the molecule. Is used to realize an optically distinguishable state. Therefore, since the light absorption coefficient is different in each state, it has an advantage of excellent discrimination (for example, a contrast ratio between the background and a display object such as characters is relatively large).
[0015] 以上の結果、本発明の記憶装置に係る実施形態によれば、より好適に光学的に識 別可能な状態を実現することが可能となる。  As a result of the above, according to the embodiment of the storage device of the present invention, it is possible to realize a state in which optical identification can be performed more suitably.
[0016] 本発明の記憶装置に係る実施形態の一の態様は、前記超分子材料は、イオン及 び分子の少なくとも一方が当該超分子材料の内部を移動することで前記光吸収係数 が変化する。 [0016] One aspect of the embodiment of the memory device of the present invention is that the supramolecular material has the light absorption coefficient changed by movement of at least one of ions and molecules inside the supramolecular material. .
[0017] この態様によれば、イオン及び分子の少なくとも一方を超分子材料の内部において 移動させることで、超分子材料内部の構造が変化し、その結果、光吸収係数を好適 に変化させることが可能となる。カロえて、分子の伸び状態力 折りたたみの状態への 変化や分子の置換基の回転等に代えて、イオンや分子の移動 (或いは、捕捉される 位置の相違等)により光学的に識別可能な状態を実現しているため、安定性に優れ て 、ると 、う利点を有して 、る。  [0017] According to this aspect, the structure inside the supramolecular material is changed by moving at least one of ions and molecules inside the supramolecular material, and as a result, the light absorption coefficient can be suitably changed. It becomes possible. The state of being able to be optically discriminated by the movement of ions or molecules (or the difference in trapped positions, etc.) instead of changing the state of the molecule to the state of folding or rotating the substituent of the molecule. Therefore, it has the advantage of being excellent in stability.
[0018] 本発明の記憶装置に係る実施形態の他の態様は、前記超分子材料は、イオン及 び分子の少なくとも一方が当該超分子材料の外部との間を移動することで前記光吸 収係数が変化する。  [0018] In another aspect of the embodiment of the memory device of the present invention, the supramolecular material has the light absorption by moving at least one of ions and molecules between the supramolecular material and the outside. The coefficient changes.
[0019] この態様によれば、イオン及び分子の少なくとも一方を超分子材料の外部との間で 移動させることで、超分子材料内部の構造が変化し、その結果光吸収係数を変化さ せることが可能となる。加えて、分子の伸び状態から折りたたみの状態への変化や分 子の置換基の回転等に代えて、イオンや分子の移動 (或いは、捕捉される位置の相 違等)により光学的に識別可能な状態を実現しているため、安定性に優れているとい う利点を有している。 [0019] According to this aspect, by moving at least one of ions and molecules between the outside of the supramolecular material, the structure inside the supramolecular material is changed, and as a result, the light absorption coefficient is changed. It becomes possible to make it. In addition, it can be optically discriminated by the movement of ions and molecules (or differences in trapped positions, etc.) instead of changing from the stretched state of the molecule to the folded state or rotating the substituent of the molecule. Therefore, it has the advantage of excellent stability.
[0020] 上述の如くイオン及び分子の少なくとも一方が移動する記憶装置の態様では、前 記超分子材料は、前記第 1電極及び前記第 2電極の間に印加される電界に応じて前 記イオン及び前記分子の少なくとも一方が移動する。即ち、前記超分子材料は、前 記第 1電極及び前記第 2電極の間に印加される電界に応じて前記光吸収係数が変 化する。  [0020] In the aspect of the memory device in which at least one of ions and molecules moves as described above, the supramolecular material includes the ions according to the electric field applied between the first electrode and the second electrode. And at least one of the molecules moves. That is, the light absorption coefficient of the supramolecular material changes according to the electric field applied between the first electrode and the second electrode.
[0021] このように構成すれば、電界の大きさや方向やタイミング等に応じて、イオン及び分 子の少なくとも一方を、超分子材料の内部で或いは超分子材料の外部との間で比較 的容易に移動させることができる。従って、比較的容易に超分子材料の光吸収係数 を変化させることができ、所定の文字等を好適に且つ比較的容易に表示させることが できる。  [0021] With such a configuration, at least one of ions and molecules can be relatively easily compared with the inside of the supramolecular material or the outside of the supramolecular material according to the magnitude, direction, timing, and the like of the electric field. Can be moved to. Therefore, the light absorption coefficient of the supramolecular material can be changed relatively easily, and a predetermined character or the like can be displayed suitably and relatively easily.
[0022] 尚、この態様では、第 1電極層と第 2電極層との間に、所望の大きさ及び方向の電 界を所望のタイミングで印加するための電界印加手段を更に備えていることが好まし い。  [0022] In this aspect, an electric field applying means for applying an electric field having a desired magnitude and direction at a desired timing is further provided between the first electrode layer and the second electrode layer. Is preferred.
[0023] 上述の如くイオン及び分子の少なくとも一方が移動する記憶装置の態様では、前 記イオン及び前記分子の少なくとも一方を前記超分子材料に供給する供給層を更に 備える。  [0023] In the aspect of the storage device in which at least one of ions and molecules moves as described above, the storage device further includes a supply layer that supplies at least one of the ions and the molecules to the supramolecular material.
[0024] このように構成すれば、イオン及び分子の少なくとも一方を超分子材料の内部に予 め包含している必要がなくなり、本実施形態において利用可能な超分子材料の選択 の幅が広がる。  [0024] With this configuration, it is not necessary to previously include at least one of ions and molecules in the supramolecular material, and the range of selection of supramolecular materials that can be used in this embodiment is expanded.
[0025] 上述の如くイオン及び分子の少なくとも一方が移動する記憶装置の態様では、前 記超分子材料は、前記イオン及び前記分子の少なくとも一方を内部に包接する(トラ ップする)ための包接構造を有して 、る。  [0025] In the aspect of the storage device in which at least one of ions and molecules moves as described above, the supramolecular material includes an envelope for enclosing (trapping) at least one of the ions and molecules. It has a contact structure.
[0026] このように構成すれば、超分子材料が包接構造を有して 、るため、イオン及び分子 の少なくとも一方をその内部で或!、は外部との間で比較的容易に或いは好適に移動 させることが可能となる。即ち、超分子材料はイオン認識或いは分子認識の特性を有 している。このため、本実施形態に係る記憶装置を好適に製造することができ、上述 した各種利益を享受することが可能となる。 [0026] With this configuration, since the supramolecular material has an inclusion structure, at least one of ions and molecules can be relatively easily or suitable between the inside and the outside. Move to It becomes possible to make it. That is, the supramolecular material has ion recognition or molecular recognition characteristics. For this reason, the memory | storage device concerning this embodiment can be manufactured suitably and it will become possible to enjoy the various profits mentioned above.
[0027] 本発明の記憶装置に係る実施形態の他の態様は、前記超分子材料は、シクロデキ ストリンを含む。或いは、本発明の記憶装置に係る実施形態の他の態様は、前記超 分子材料は、ヘテロジトロピックレセプターを含む。  [0027] In another aspect of the embodiment of the memory device of the present invention, the supramolecular material includes cyclodextrin. Alternatively, in another aspect of the embodiment of the memory device of the present invention, the supramolecular material includes a heterodiotropic receptor.
[0028] この態様によれば、これらの超分子材料を用いて、本実施形態に係る記憶装置を 好適に製造することがで、その結果上述した各種利益を享受することができる。  [0028] According to this aspect, it is possible to suitably manufacture the memory device according to the present embodiment using these supramolecular materials, and as a result, it is possible to receive the various benefits described above.
[0029] 本発明の記憶装置に係る実施形態の他の態様は、前記第 1電極層及び前記第 2 電極層の少なくとも一方は金を含んでおり、前記第 1電極層及び前記第 2電極層の 少なくとも一方と前記超分子層とは、金チオール結合により接合されている (即ち、配 位子法により接合されて 、る)。  In another aspect of the embodiment of the memory device of the present invention, at least one of the first electrode layer and the second electrode layer includes gold, and the first electrode layer and the second electrode layer At least one of the above and the supramolecular layer are bonded by a gold thiol bond (that is, bonded by a ligand method).
[0030] この態様によれば、第 1電極層及び第 2電極層の少なくとも一方と超分子層(即ち、 超分子材料)とを好適に接合することができる。即ち、金チオール結合により、第 1電 極層及び第 2電極層の少なくとも一方と超分子層との間の接合をより強固なものとす ることができ、安定した記憶装置を製造することができる。  [0030] According to this aspect, at least one of the first electrode layer and the second electrode layer can be suitably bonded to the supramolecular layer (ie, supramolecular material). In other words, the bonding between at least one of the first electrode layer and the second electrode layer and the supramolecular layer can be made stronger by the gold thiol bond, and a stable memory device can be manufactured. it can.
[0031] また、第 1電極層及び第 2電極層の少なくとも一方は金を含んでいるため(即ち、金 電極であるため)、第 1電極層及び第 2電極層の少なくとも一方の厚さを薄くすれば、 ユーザにはその後ろ側が透けて視認される。このため、記憶装置を電子ペーパー等 として用いる際により好適である。  [0031] Further, since at least one of the first electrode layer and the second electrode layer contains gold (that is, because it is a gold electrode), the thickness of at least one of the first electrode layer and the second electrode layer is reduced. If it is made thinner, the rear side of the user can see through. For this reason, it is more suitable when the storage device is used as electronic paper or the like.
[0032] 本発明の記憶装置に係る実施形態の他の態様は、前記第 1電極層及び前記第 2 電極層の少なくとも一方は ITO (Indium Tin Oxide)を含んでおり、前記第 1電極層及 び前記第 2電極層の少なくとも一方と前記超分子層とは、間にホスホン酸を含む金属 錯体を介在させて接合されて ヽる (即ち、アンカー錯体法により接合されて 、る)。  In another aspect of the embodiment of the memory device of the present invention, at least one of the first electrode layer and the second electrode layer contains ITO (Indium Tin Oxide), and the first electrode layer and the second electrode layer In addition, at least one of the second electrode layers and the supramolecular layer are joined via a metal complex containing phosphonic acid therebetween (ie, joined by the anchor complex method).
[0033] この態様によれば、第 1電極層及び第 2電極層の少なくとも一方と超分子層(即ち、 超分子材料)とを好適に接合することができる。より具体的には、第 1電極層及び第 2 電極層の少なくとも一方と超分子層との間に、ホスホン酸及びルビジウム金属錯体を 介在させて、第 1電極層及び第 2電極層の少なくとも一方と超分子層とを接合してい る。即ち、リン酸等の存在により、第 1電極層及び第 2電極層の少なくとも一方と超分 子層との間の接合をより強固なものとすることができ、安定した記憶装置を製造するこ とがでさる。 [0033] According to this aspect, at least one of the first electrode layer and the second electrode layer and the supramolecular layer (ie, supramolecular material) can be suitably bonded. More specifically, at least one of the first electrode layer and the second electrode layer is formed by interposing a phosphonic acid and a rubidium metal complex between at least one of the first electrode layer and the second electrode layer and the supramolecular layer. And supramolecular layer The That is, due to the presence of phosphoric acid or the like, the bonding between at least one of the first electrode layer and the second electrode layer and the supermolecule layer can be made stronger, and a stable memory device can be manufactured. Togashi.
[0034] また、第 1電極層及び第 2電極層の少なくとも一方は ITOを含んでいるため(即ち、 I TO電極であるため)、ユーザにはその後ろ側が透けて視認される。このため、記憶装 置を電子ペーパー等として用いる際により好適である。  [0034] Further, since at least one of the first electrode layer and the second electrode layer contains ITO (that is, it is an ITO electrode), the rear side thereof can be seen through by the user. For this reason, it is more suitable when the storage device is used as electronic paper or the like.
[0035] 本発明の記憶装置に係る実施形態の他の態様は、前記第 1電極層は一の方向に 伸張する複数の第 1信号線を有しており、前記第 2電極層は前記一の方向とは異な る(或いは、直交する)他の方向に伸張する複数の第 2信号線を有して 、る。  In another aspect of the embodiment of the memory device of the present invention, the first electrode layer has a plurality of first signal lines extending in one direction, and the second electrode layer is the one It has a plurality of second signal lines extending in a different direction (or orthogonal) to the other direction.
[0036] この態様によれば、第 1信号線と第 2信号線との交点がマトリックス状に分布し得る。  [0036] According to this aspect, the intersections of the first signal line and the second signal line can be distributed in a matrix.
そして例えばこの交点に電界が印加されることで、この交点に位置する超分子材料 の光吸収係数が変化する。このため、交点の位置を画素とみなすことで、通常のディ スプレイと同様の態様で、超分子材料の光吸収係数を変化させることができ、その結 果電子ペーパー (メモリディスプレイ)や分子メモリとして利用することができる。  For example, when an electric field is applied to this intersection, the light absorption coefficient of the supramolecular material located at this intersection changes. For this reason, the light absorption coefficient of the supramolecular material can be changed in the same manner as a normal display by regarding the position of the intersection as a pixel, and as a result, as electronic paper (memory display) and molecular memory. Can be used.
[0037] また、既存の液晶ディスプレイやプラズマディスプレイにおける表示駆動手法を利 用することもできると 、う利点を有して 、る。  [0037] It is also possible to use a display driving method in an existing liquid crystal display or plasma display.
[0038] 上述の如く第 1信号線及び第 2信号線を備える記憶装置の態様では、前記第 1信 号線と前記第 2信号線との交点は、前記超分子材料の単一分子の大きさと略同一の 大きさを有する。  [0038] In the aspect of the storage device including the first signal line and the second signal line as described above, the intersection of the first signal line and the second signal line is the size of a single molecule of the supramolecular material. They have approximately the same size.
[0039] このように構成すれば、信号線の交点を超分子材料自体の分子の大きさと略同一 にすることができるため、超分子材料の光吸収係数をより狭い範囲で高精細度に変 ィ匕させることができる。即ち、本実施形態に係る記憶装置を電子ペーパーとして用い るのであれば、画素数を相対的に増加させることができるため、解像度を増加させる ことができる。また、本実施形態に係る記憶装置を、 RAM等のメモリとして用いるの であれば、記憶容量を相対的に増加させることが可能となる。  [0039] With this configuration, the intersection of the signal lines can be made substantially the same as the molecular size of the supramolecular material itself, so that the light absorption coefficient of the supramolecular material can be changed to a high definition within a narrower range. You can make it. That is, if the storage device according to the present embodiment is used as electronic paper, the number of pixels can be relatively increased, so that the resolution can be increased. Further, if the storage device according to this embodiment is used as a memory such as a RAM, the storage capacity can be relatively increased.
[0040] 本発明の作用及び他の利得は次に説明する実施例から更に明らかにされよう。 [0040] The operation and other advantages of the present invention will become more apparent from the embodiments described below.
[0041] 以上説明したように、本発明の記憶装置に係る実施形態は、第 1電極層と第 2電極 層と超分子層とを備えている。従って、より好適に光学的に識別可能な状態を実現 することが可能となる。 [0041] As described above, the embodiment of the memory device of the present invention includes the first electrode layer, the second electrode layer, and the supramolecular layer. Therefore, it realizes a state that can be optically discriminated more suitably It becomes possible to do.
実施例  Example
[0042] 以下、図面を参照しながら、本発明の記憶装置に係る実施例について説明を進め る。  Hereinafter, embodiments of the storage device according to the present invention will be described with reference to the drawings.
[0043] (基本構成)  [0043] (Basic configuration)
初めに図 1及び図 2を参照しながら、本発明の記憶装置に係る実施例としての電子 ペーパー (メモリーディスプレイ)について説明する。ここに、図 1は、本実施例に係る 電子ペーパー 100の基本構成を概念的に示す断面図及び斜視図であり、図 2は、 電子ペーパー 100の超分子材料層 114に含まれる超分子材料の一の具体例を示す 化学式である。  First, an electronic paper (memory display) as an embodiment according to the storage device of the present invention will be described with reference to FIG. 1 and FIG. FIG. 1 is a cross-sectional view and a perspective view conceptually showing the basic structure of the electronic paper 100 according to the present embodiment, and FIG. 2 is a supramolecular material included in the supramolecular material layer 114 of the electronic paper 100. It is a chemical formula showing one specific example.
[0044] 図 1 (a)に示すように、本実施例に係る電子ペーパー 100は、プラスチックフィルム 層 110と、金電極層 112と超分子材料層 114と、金電極層 116と、プラスチックフィル ム層 118と、表示駆動部 120を備えている。  [0044] As shown in FIG. 1 (a), an electronic paper 100 according to this example includes a plastic film layer 110, a gold electrode layer 112, a supramolecular material layer 114, a gold electrode layer 116, and a plastic film. A layer 118 and a display driving unit 120 are provided.
[0045] プラスチックフィルム層 110及び 118は、電子ペーパー 100全体を保護するための 薄いフィルム基板である。もちろんプラスチックフィルムでなくとも、電子ペーパー 100 全体を保護することができれば、他の材料カゝら構成されていてもよいし、またフィルム 状でなくともよい。  [0045] The plastic film layers 110 and 118 are thin film substrates for protecting the entire electronic paper 100. Of course, other materials may be used as long as the entire electronic paper 100 can be protected even if it is not a plastic film, or it may not be a film.
[0046] そして、図 1に示すように、例えばユーザがプラスチックフィルム層 110の側より電子 ペーパー 100を視認する場合には、ユーザに近 、側に位置するプラスチックフィルム 基板 110が透明であることが好ましい。またこの場合、視認性の向上という点力もする と、ユーザから遠 、側に位置するプラスチックフィルム層 118が透明でな ヽ(例えば、 白色等である)ことが好ましい。より具体的には、電子ペーパー 100に表示される文 字等と背景とのコントラスト比が大きくなるように、プラスチックフィルム層 118が所定の 色を呈していることが好ましい。但し、プラスチックフィルム層 110及び 118の双方が 透明であってもよぐこの場合ユーザは、電子ペーパー 100の両側から所定の文字 等を視認することができる。  Then, as shown in FIG. 1, for example, when the user views the electronic paper 100 from the plastic film layer 110 side, the plastic film substrate 110 located near and on the side of the user may be transparent. preferable. Further, in this case, it is preferable that the plastic film layer 118 located on the side far from the user is transparent (for example, white or the like) in view of improving visibility. More specifically, it is preferable that the plastic film layer 118 exhibits a predetermined color so that the contrast ratio between characters and the like displayed on the electronic paper 100 and the background is increased. However, both the plastic film layers 110 and 118 may be transparent. In this case, the user can visually recognize a predetermined character or the like from both sides of the electronic paper 100.
[0047] 金電極層 112及び 116は、金 (Au)を含んでおり、超分子材料層 114に含まれる超 分子材料に電界を印加可能に構成されている。特に、ユーザに対して超分子材料層 114にお 、て表示される各種文字等を視認させるため、少なくともユーザに近 、側の 金電極層の厚さを、金電極層の後ろ側(或いは、奥側又はユーザから見て遠い側) が透けて視認できる程度に薄くする必要がある。例えば図 1に示すように、ユーザが プラスチックフィルム層 110の側より電子ペーパー 100を視認する場合には、少なくと もユーザに近い側の金電極層 112の厚さを非常に薄くする必要がある。このとき、例 えば、金電極層 112の厚さを 50nm程度にしてもよい。 The gold electrode layers 112 and 116 include gold (Au), and are configured to be able to apply an electric field to the supramolecular material included in the supramolecular material layer 114. Especially supramolecular material layer for users In order to make various characters displayed in 114 visible, at least the thickness of the gold electrode layer near the user is set behind the gold electrode layer (or the back side or the side far from the user). Needs to be thin enough to see through. For example, as shown in FIG. 1, when the user views the electronic paper 100 from the side of the plastic film layer 110, the thickness of the gold electrode layer 112 on the side closer to the user needs to be very thin. . At this time, for example, the thickness of the gold electrode layer 112 may be about 50 nm.
[0048] また、金電極層に限らずに、例えば ITO (Indium Tin Oxide)電極層や IZO (Indium Zinc Oxide)電極層等のように透明な電極を用いるように構成してもよい。この場合、 これらの電極層は元々その後ろ側が透けて視認できるため、金電極層 112及び 116 のように薄くする必要はない。また、超分子材料層 114に電界を印加でき、且つ少な くともユーザに近 、側の電極層の後ろ側が透けて視認できれば、その他の材料を用 Vヽて電極層を構成してもよ 、。  [0048] In addition to the gold electrode layer, a transparent electrode such as an ITO (Indium Tin Oxide) electrode layer or an IZO (Indium Zinc Oxide) electrode layer may be used. In this case, since these electrode layers are originally visible through the rear side, it is not necessary to make the electrode layers as thin as the gold electrode layers 112 and 116. Further, if an electric field can be applied to the supramolecular material layer 114 and at least close to the user and the back side of the electrode layer on the side can be seen through, the electrode layer may be configured using other materials. .
[0049] また、図 1 (b)に示すように、金電極層 112及び 116は、マトリクス状にその交点が 分布するように構成されている。即ち、金電極層 112が、ある一の方向に沿って配列 されている複数の電極線 (いわゆる、データ線)から構成されており、他方金電極層 1 16は、この一の方向に直交する方向に沿って配列されて 、る複数の電極線 ( 、わゆ る、走査線)から構成されている。そして、係る交点が、液晶ディスプレイやプラズマ ディスプレイの画素に相当する。即ち、係る交点に印加される電界を適宜制御するこ とで、係る交点における超分子材料層 114のユーザに視認される色を変化させること ができ、結果として所定の文字等を表示することができる。また、係る交点の密度を増 加させれば (電極線の間隔を狭くすれば)、より高精細度な文字等を表示することが 可能となる。尚、電子ペーパー 100の動作原理については後に詳述する。  In addition, as shown in FIG. 1 (b), the gold electrode layers 112 and 116 are configured such that their intersections are distributed in a matrix. That is, the gold electrode layer 112 is composed of a plurality of electrode lines (so-called data lines) arranged along a certain direction, and the other gold electrode layer 116 is orthogonal to the one direction. A plurality of electrode lines (i.e., scan lines) are arranged along the direction. Such intersection points correspond to pixels of a liquid crystal display or a plasma display. That is, by appropriately controlling the electric field applied to the intersection, the color of the supramolecular material layer 114 at the intersection can be changed by the user, and as a result, a predetermined character or the like can be displayed. it can. Further, if the density of the intersections is increased (if the distance between the electrode lines is narrowed), it becomes possible to display characters with higher definition. The operation principle of the electronic paper 100 will be described in detail later.
[0050] 超分子材料層 114は、後述する各種超分子材料を含んで!/、る。例えば、図 2に示 すような超分子材料の一具体例であるへテロジトロピックレセプターを含んで 、る。こ のへテロジトロピックレセプターは、金電極層 112に係る電極線と金電極層 116に係 る電極線との間に、これらの電極線と接合するように配置されて 、る。  [0050] The supramolecular material layer 114 includes various supramolecular materials to be described later! For example, it includes a heterotrophic receptor, which is a specific example of a supramolecular material as shown in FIG. The heterotrophic receptor is disposed between the electrode wire related to the gold electrode layer 112 and the electrode wire related to the gold electrode layer 116 so as to be joined to these electrode wires.
[0051] そして、ヘテロジトロピックレセプターは、図 2の化学式の上側に示す構造部分 (即 ち、 S— N— S— Nにより構成される環状構造部分)と、図 2の化学式の下側に示す構 造部分 (即ち、 O— N— O— O— Nにより構成される環状構造部分)との夫々におい て、所定のイオンをトラップする (捕捉する)ことができる。或いは、双方の構造部分の いずれにもイオンをトラップしないこともできる。これらの状態の違いによって、ヘテロ ジトロピックレセプターの光吸収係数が変化し、該ヘテロジトロピックレセプターが吸 収する光の波長が適宜変化する。これらの状態の変化は、該ヘテロジトロピックレセ プターに (即ち、該ヘテロジトロピックレセプターが位置する交点に)印加される電界 の大きさによって定まる。 [0051] Then, the heterodiotropic receptor has a structural part shown in the upper side of the chemical formula in FIG. 2 (that is, a cyclic structural part composed of S—N—S—N) and a lower side in the chemical formula in FIG. Structure A predetermined ion can be trapped (captured) in each of the structure portions (that is, the cyclic structure portion constituted by O—N—O—O—N). Alternatively, no ions can be trapped in either structure part. Due to the difference in these states, the light absorption coefficient of the heterodiotropic receptor changes, and the wavelength of the light absorbed by the heterodiotropic receptor appropriately changes. These changes in state are determined by the magnitude of the electric field applied to the heterodiotropic receptor (ie, at the intersection where the heterodiotropic receptor is located).
[0052] 尚、図 2のへテロジトロピックレセプターの四角の空白には、任意の基(例えば、ァ ルキル基やプロピル基などの任意の基)を含ませることができる。任意の基を含ませ たとしても、図 2の化学式の上側に示す構造部分と、図 2の化学式の下側に示す構 造部分とを含んでいる限りは、ヘテロジトロピックレセプターはイオンをトラップすること ができ、後述するように所定の文字等を表示させることが可能となる。  [0052] It should be noted that the square blank of the heterotrophic receptor in FIG. 2 can contain any group (for example, any group such as an alkyl group or a propyl group). Even if an arbitrary group is included, the heterodiotropic receptor traps ions as long as it includes the structural portion shown above the chemical formula in FIG. 2 and the structural portion shown below the chemical formula in FIG. It is possible to display a predetermined character or the like as will be described later.
[0053] また、超分子材料層 114は、少なくとも 500ないしは 1000A以上の(より好ましくは 、概ね 5000 A程度以上の)厚さを有していることが好ましい。この場合、例えば、超 分子材料が例えば 40個程度積層することで超分子材料層 114が構成されて ヽても よい。  [0053] The supramolecular material layer 114 preferably has a thickness of at least 500 to 1000 A or more (more preferably about 5000 A or more). In this case, for example, the supramolecular material layer 114 may be configured by stacking, for example, about 40 supramolecular materials.
[0054] 再び図 1において、表示駆動回路 120は、超分子材料層 114に印加される電界を 適宜制御する。即ち、超分子材料層 114に印加される電界の印加タイミングや大きさ 或いは方向等を適宜制御する。尚、表示駆動回路 120の構成は、液晶ディスプレイ やプラズマディスプレイ或いは既存の電子ペーパー等における表示駆動回路と同様 の構成を採用して 、るため、ここでの詳細な説明は省略する。  In FIG. 1 again, the display drive circuit 120 appropriately controls the electric field applied to the supramolecular material layer 114. That is, the application timing, magnitude or direction of the electric field applied to the supramolecular material layer 114 is appropriately controlled. The configuration of the display driving circuit 120 is the same as that of a display driving circuit in a liquid crystal display, a plasma display, or existing electronic paper, and thus detailed description thereof is omitted here.
[0055] (動作原理)  [0055] (Principle of operation)
続いて、図 3から図 5を参照して、本実施例に係る電子ペーパー 100の動作原理に ついて説明する。ここに、図 3は、ヘテロジトロピックレセプターの異なる 2つの状態を 概念的に示す化学式であり、図 4は、ヘテロジトロピックレセプターの異なる 2つの状 態に応じた 2つの異なる光吸収係数を概念的に示すグラフであり、図 5は、電子ぺー パー 100上の表示態様を概念的に示す平面図である。  Subsequently, the operation principle of the electronic paper 100 according to the present embodiment will be described with reference to FIGS. Here, Fig. 3 is a chemical formula that conceptually shows two different states of the heteroditrophic receptor, and Fig. 4 conceptually shows two different light absorption coefficients corresponding to the two different states of the heterodiotropic receptor. FIG. 5 is a plan view conceptually showing a display mode on the electronic paper 100.
[0056] 図 3に示すように、ヘテロジトロピックレセプターは、その内部でイオン 115 (例えば 、銅イオン)をトラップする(捕捉する)ことができる。特に、ヘテロジトロピックレセプタ 一は、図 3の左側の化学式に示すように、その上側に示す構造部分でイオン 115aを トラップしたり、或いは図 3の右側の化学式に示すように、その下側に示す構造部分 でイオン 115aをトラップしたりすることができる。言い換えれば、ヘテロジトロピックレ セプターは、図 3に示す化学式の上側及び下側の少なくとも一方に示す構造部分を 有しているがゆえに、その内部でイオン 115aをトラップすることができる。或いは、図 示しないが、その内部にイオン 115aをトラップしないこともできる。係るイオン 115aは 、予めへテロジトロピックレセプターの内部に含ませるように構成してもよいし、或いは 後述するように外部から供給するように構成してもよ 、。係るイオン 115をトラップする 位置は、ヘテロジトロピックレセプターに印加される電界の大きさや方向等によって変 化する。即ち、電気スイッチングにより、イオン 115をトラップする位置を変化させるこ とが可能となる。より詳細には、ヘテロジトロピックレセプター内における電子密度が、 金電極層 112及び 116の間に印加される電界により変化することで、イオン 115がへ テロジトロピックレセプターの内部を移動する。その結果、イオン 115をトラップする位 置が、図 3に示すヘテロジトロピックレセプターの化学式の上側の構造部分や下側の 構造部分に適宜変化する。 [0056] As shown in FIG. 3, the heterodiotropic receptor has ions 115 (eg, , Copper ions) can be trapped (captured). In particular, the heterodiotropic receptor traps ions 115a in the structure shown on the upper side as shown in the chemical formula on the left side of FIG. 3, or on the lower side as shown in the chemical formula on the right side of FIG. The ions 115a can be trapped in the structure portion shown. In other words, the heterodiotropic receptor has a structural portion shown in at least one of the upper side and the lower side of the chemical formula shown in FIG. 3, and therefore can trap the ions 115a therein. Alternatively, although not shown, the ions 115a may not be trapped therein. The ions 115a may be configured so as to be included in the inside of the heterotrophic receptor in advance, or may be configured to be supplied from the outside as described later. The position where such ions 115 are trapped changes depending on the magnitude and direction of the electric field applied to the heterodiotropic receptor. In other words, the position where the ions 115 are trapped can be changed by electrical switching. More specifically, the ion density in the heterodiotropic receptor is changed by the electric field applied between the gold electrode layers 112 and 116, so that the ions 115 move inside the heterotropic receptor. As a result, the position where the ions 115 are trapped is appropriately changed to the upper structure portion or the lower structure portion of the chemical formula of the heterodiotropic receptor shown in FIG.
[0057] このようにイオン 115aをトラップする位置を変化させることで(或いは、イオン 115a をトラップしたり、又はしないようにすることで)、当該へテロジトロピックレセプター自体 の光吸収係数を変化させることが可能となる。より具体的には、イオン 115aをトラップ する位置を変化させることで、ヘテロジトロピックレセプターが吸収する光の波長を変 ィ匕させることができる。 [0057] By changing the trapping position of the ion 115a (or by trapping or not trapping the ion 115a), the light absorption coefficient of the heterotrophic receptor itself is changed. It becomes possible. More specifically, the wavelength of light absorbed by the heterodiotropic receptor can be changed by changing the position where the ions 115a are trapped.
[0058] 例えば、イオン 115aをトラップする位置に応じて、図 4の細いグラフで示すように 60 Onm程度の波長の光を吸収しやすくなつたり、或いは図 4の太 、グラフで示すように 800nm程度の波長の光を吸収しやすくなつたりする。 600nm程度の波長の光(即ち 、緑色の光)を吸収すると、ヘテロジトロピックレセプター(或いは、超分子材料層 114 に含まれる超分子材料)は、紫色 (ダークブルー)としてユーザに視認される。また、 8 OOnm程度の波長の光(即ち、主として赤色の光)を吸収すると、ヘテロジトロピックレ セプター(或いは、超分子材料層 114に含まれる超分子材料)は、水色 (ライトブルー )としてユーザに視認される。もちろん、印加される電界の大きさや方向等を適宜制御 することで、或いは他の超分子材料を含む超分子材料層 114を用いることで、その 他の色としてユーザに視認されるように構成することも可能である。より具体的には、 例えば 400nm程度の波長の光 (即ち、青色の光)を吸収しやすくなれば、ヘテロジト 口ピックレセプター(或いは、超分子材料層 114に含まれる超分子材料)は、黄色とし てユーザに視認される。 [0058] For example, depending on the position where the ions 115a are trapped, light having a wavelength of about 60 Onm is easily absorbed as shown in the thin graph of FIG. 4, or 800 nm as shown in the thick graph of FIG. It can easily absorb light of a certain wavelength. When light having a wavelength of about 600 nm (that is, green light) is absorbed, the heterodiotropic receptor (or the supramolecular material contained in the supramolecular material layer 114) is visually recognized by the user as purple (dark blue). In addition, when absorbing light having a wavelength of about 8 OOnm (ie, mainly red light), the heterodiotropic receptor (or the supramolecular material contained in the supramolecular material layer 114) becomes light blue (light blue). ) Is visually recognized by the user. Of course, by appropriately controlling the magnitude and direction of the applied electric field, or by using the supramolecular material layer 114 containing other supramolecular materials, it is configured so that the user can visually recognize the other colors. It is also possible. More specifically, for example, if it becomes easy to absorb light having a wavelength of about 400 nm (that is, blue light), the heterotopic pick receptor (or the supramolecular material contained in the supramolecular material layer 114) is yellow. And visually recognized by the user.
[0059] このように、電界を印加する位置或いは印加される電界の大きさや方向等を適宜制 御すれば、超分子材料層 114に含まれる超分子材料が吸収する光の波長を変化さ せることができる。このため、超分子材料層 114上の位置に応じてユーザに視認され る色を適宜変化させることができる。  [0059] As described above, the wavelength of light absorbed by the supramolecular material contained in the supramolecular material layer 114 is changed by appropriately controlling the position where the electric field is applied or the magnitude and direction of the applied electric field. be able to. Therefore, the color visually recognized by the user can be appropriately changed according to the position on the supramolecular material layer 114.
[0060] 例えば、超分子材料層 114のうち文字を表示すべき部分に相当する部分に対して 選択的に所定の電界を印加すれば、図 5の左側に示すように、電子ペーパー 100上 に所望の文字 (例えば「こんにちは」と「Hello」と「Bonjour」等の文字)を表示するこ とが可能となる。また、超分子材料層 114に含まれる超分子材料は、上述の如く 600 nmの波長と 800nmの波長との 2種類の光を吸収するのみならず、その他の各種波 長の光を吸収するように構成することも可能である。このため、 2色表示のみならず、 図 5の右側に示すように、 3色以上のカラー表示を行なうことも可能となる。このため、 ユーザにとっては、背景と比較してよりコントラスト比が大きな文字等 (例えば、文字や 図形や記号や数字等の各種表示対象物)を視認することが可能となる。  [0060] For example, if a predetermined electric field is selectively applied to a portion of the supramolecular material layer 114 corresponding to a portion where characters are to be displayed, as shown on the left side of FIG. desired character (for example, "Hello" and "Hello" character of "Bonjour", etc.) and the child display becomes possible. In addition, the supramolecular material included in the supramolecular material layer 114 absorbs not only two types of light of the wavelength of 600 nm and the wavelength of 800 nm as described above, but also absorbs light of various other wavelengths. It is also possible to configure. Therefore, not only two-color display but also three-color or more color display can be performed as shown on the right side of FIG. For this reason, it becomes possible for the user to visually recognize characters and the like (for example, various display objects such as characters, figures, symbols, and numbers) having a larger contrast ratio than the background.
[0061] カロえて、電子ペーパー 100は、液晶ディスプレイのようにバックライト等が不要であ るため、省エネルギーであり環境面にも貢献しているという利点をも有している。また 、少なくとも画面を切り替える際に (画面を書き換える際に)電界を印加すればよいた め、常に電界を印加し続ける必要がないという点でも省エネルギーであり環境面に後 見している。  [0061] Since the electronic paper 100 does not require a backlight or the like unlike a liquid crystal display, the electronic paper 100 also has an advantage of saving energy and contributing to the environment. In addition, since it is sufficient to apply an electric field at least when switching the screen (when rewriting the screen), it is energy-saving and is an afterthought from the environmental point of view that there is no need to constantly apply an electric field.
[0062] 加えて、分子の伸び状態から折りたたみ状態への変化や分子の置換基の回転等 の変化を利用することなぐ超分子材料中におけるイオン及び分子の少なくとも一方 力 Sトラップされている位置 (或いは、トラップされているか否力 の変化により色を変え ている。このため、このような状態の違いに応じて吸収される光の波長を明確に変化 させることができ、その結果、光学的識別性に優れた電子ペーパーを提供することが できる。 [0062] In addition, at least one force of ions and molecules in the supramolecular material without utilizing the change from the stretched state to the folded state of the molecule or the rotation of the substituent of the molecule, etc. S trapped position ( Alternatively, the color is changed by changing the power of trapped or not, so the wavelength of the absorbed light is clearly changed according to the difference in the state. As a result, it is possible to provide electronic paper with excellent optical discrimination.
[0063] 尚、上述の実施例では、超分子材料層 114に含まれる超分子材料の一具体例とし て、ヘテロジトロピックレセプターを用いて説明した力 もちろんこれに限られることは ない。以下、超分子材料層 114に含まれる超分子材料の他の具体例を、図 6から図 8を参照しながら説明する。ここに、図 6から図 8は夫々、超分子材料層 114に含まれ る超分子材料の他の具体例を示す化学式であり、図 9は、図 8に示す超分子材料が 分子をトラップする態様を概念的に示すィ匕学式である。  In the above-described embodiment, the force described using the heterodiotropic receptor as a specific example of the supramolecular material included in the supramolecular material layer 114 is not limited to this. Hereinafter, another specific example of the supramolecular material included in the supramolecular material layer 114 will be described with reference to FIGS. Here, FIGS. 6 to 8 are chemical formulas showing other specific examples of the supramolecular material included in the supramolecular material layer 114, respectively, and FIG. 9 shows the molecular structure trapped by the supramolecular material shown in FIG. This is a mathematical formula conceptually showing an aspect.
[0064] 図 6 (a)及び図 6 (b)に示すような三環式大環状ィ匕合物が、超分子材料層 114に含 まれる超分子材料の他の具体例として挙げられる。この三環式大環状化合物は、図 6 (a)に示すように、図 6 (a)の化学式の上側に示す構造部分 (即ち、 S— N— S— N により構成される環状構造部分)においてイオン 115aをトラップすることができる。更 に、図 6 (b)に示すように、図 6 (b)の化学式の下側に示す構造部分 (即ち、 0-N- S—Nにより構成される環状構造部分)にお 、てイオン 115aをトラップすることができ る。もちろん、図示しないが、その内部にイオン 115aをトラップしないこともできる。こ のような状態の変化によって、三環式大環状化合物の光吸収係数が変化し、上述し たように所定の文字等を表示することが可能となる。  A tricyclic macrocyclic compound as shown in FIGS. 6 (a) and 6 (b) is another specific example of the supramolecular material contained in the supramolecular material layer 114. FIG. As shown in FIG. 6 (a), this tricyclic macrocycle compound has a structural portion shown above the chemical formula in FIG. 6 (a) (ie, a cyclic structural portion composed of S—N—S—N). Can trap the ions 115a. Furthermore, as shown in FIG. 6 (b), ions are present in the structural part shown in the lower side of the chemical formula in FIG. 6 (b) (ie, the cyclic structural part composed of 0-N—S—N). 115a can be trapped. Of course, although not shown, the ions 115a may not be trapped therein. By such a change in state, the light absorption coefficient of the tricyclic macrocycle compound changes, and it becomes possible to display predetermined characters and the like as described above.
[0065] 或 、は、図 7 (a)及び図 7 (b)に示すような他の三環式大環状化合物が、超分子材 料層 114に含まれる超分子材料の他の具体例として挙げられる。この他の三環式大 環状ィ匕合物は、図 7 (a)に示すように、図 7 (a)の化学式の下側に示す構造部分 (即 ち、 N— O— O— N— O— Oにより構成される環状構造部分)においてイオン 115aを トラップすることができる。更に、図 7 (b)に示すように、その内部にイオン 115aをトラッ プしないこともできる。このような状態の変化によって、他の三環式大環状化合物の 光吸収係数が変化し、上述したように所定の文字等を表示することが可能となる。  Alternatively, another specific example of the supramolecular material contained in the supramolecular material layer 114 is another tricyclic macrocyclic compound as shown in FIGS. 7 (a) and 7 (b). Can be mentioned. As shown in Fig. 7 (a), the other tricyclic macrocycle compounds are composed of structural parts shown in the lower part of the chemical formula in Fig. 7 (a) (ie, N—O—O—N— The ions 115a can be trapped in the O—O cyclic structure). Further, as shown in FIG. 7 (b), it is possible not to trap the ions 115a therein. Such a change in state changes the light absorption coefficient of another tricyclic macrocycle compound, and as described above, it becomes possible to display predetermined characters and the like.
[0066] 或いは、図 8 (a)及び図 8 (b)に示すようなシクロデキストリン力 超分子材料層 114 に含まれる超分子材料の他の具体例として挙げられる。例えば、図 8 (a)に示すよう な D—グルコースが 6個集合した a—シクロデキストリン及び図 8 (b)に示すような D— グルコースが 7個集合した —シクロデキストリンの少なくとも一方力 超分子材料層 114に含まれる超分子の他の具体例として挙げられる。これ以外にも、例えば D グ ルコースが 8個集合した γ—シクロデキストリン或 、は D -ダルコースが更に多数集 合したシクロデキストリンも、超分子材料層 114に含まれる超分子の他の具体例とし て挙げられる。 Alternatively, another specific example of the supramolecular material contained in the cyclodextrin force supramolecular material layer 114 as shown in FIGS. 8 (a) and 8 (b) is mentioned. For example, a-cyclodextrin in which 6 D-glucoses are assembled as shown in Fig. 8 (a) and 7 D-glucose are assembled in Fig. 8 (b). Material layer Other specific examples of supramolecules included in 114 are listed. In addition to this, for example, γ-cyclodextrin in which 8 D-glucose is aggregated or cyclodextrin in which a large number of D-dulcose is aggregated are other specific examples of the supramolecules contained in the supramolecular material layer 114. It is mentioned.
[0067] このシクロデキストリンは、図 9に示すように、その一部の構造部分 (即ち、 1つの D グルコースに相当する部分)にお 、て所定の分子 115bをトラップすることができる 。これによつても、上述した各種超分子のイオン 115aのトラップと同様に、シクロデキ ストリンの光吸収係数が変化し、上述したように所定の文字等を表示することが可能と なる。  [0067] As shown in Fig. 9, this cyclodextrin can trap a predetermined molecule 115b in a part of its structural portion (that is, a portion corresponding to one D-glucose). This also changes the light absorption coefficient of cyclodextrin as in the above-described trapping of various supramolecular ions 115a, and can display predetermined characters and the like as described above.
[0068] もちろんこれらの超分子材料の具体例に限らず、イオン 115a及び分子 115bの少 なくとも一方をその内部にトラップさせることができる構造を有する超分子材料 (例え ば、包接ィ匕合物やホスト'ゲスト錯体等)であれば、本実施例に係る電子ペーパー 10 0の超分子材料層 114に用いられる超分子材料として利用することは可能である。例 えば、クラウンエーテルやクリプタンドゃカリックスアレン等が有する構造をその一部 に備える超分子材料力 本実施例に係る電子ペーパー 100の超分子材料層 114に 用いられる超分子材料として利用することが可能な更に他の具体例として挙げられる  [0068] Of course, not only specific examples of these supramolecular materials, but also supramolecular materials having a structure capable of trapping at least one of ions 115a and molecules 115b therein (for example, inclusion complex) And the like can be used as the supramolecular material used for the supramolecular material layer 114 of the electronic paper 100 according to this embodiment. For example, the strength of supramolecular material that has a part of the structure of crown ether, cryptand calixarene, etc. Can be used as the supramolecular material used for the supramolecular material layer 114 of the electronic paper 100 according to this example. As yet another specific example
[0069] (製造方法) [0069] (Production method)
続いて、図 10から図 12を参照して、本実施例に係る電子ペーパー 100の製造方 法について説明する。ここに、図 10は、本実施例に係る電子ペーパー 100の製造方 法の流れを概略的に示すフローチャートであり、図 11は、金電極層 112と超分子材 料層 114との接合の態様を概念的に示す模式図であり、図 12は、 1丁0電極層113と 超分子材料層 114との接合の態様を概念的に示す模式図である。  Next, a method for manufacturing the electronic paper 100 according to the present embodiment will be described with reference to FIGS. FIG. 10 is a flowchart schematically showing the flow of the manufacturing method of the electronic paper 100 according to the present embodiment, and FIG. 11 is a mode of joining the gold electrode layer 112 and the supramolecular material layer 114. FIG. 12 is a schematic diagram conceptually showing an aspect of joining the 1-to-0 electrode layer 113 and the supramolecular material layer 114.
[0070] 図 10に示すように、先ず金電極層 112 (或いは ITO電極層 113)上にアンカ一修 飾基 (或いは、修飾官能基な!ヽしは有機官能基)を有する有機分子を接合する (ステ ップ S101)。これは例えば、アンカー修飾基を含む有機溶液中に金電極層 112 (即 ち、金電極)を浸すことでアンカー修飾基を有する有機分子接合してもよいし、或い は金電極層 112上にお!、てスピンコーティング法を用いてアンカー修飾基を有する 有機分子を接合してもよい。 As shown in FIG. 10, first, an organic molecule having an anchor modification group (or a modified functional group or an organic functional group) is bonded onto the gold electrode layer 112 (or the ITO electrode layer 113). (Step S101). For example, the gold electrode layer 112 (that is, the gold electrode) may be immersed in an organic solution containing the anchor modifying group to bond the organic molecule having the anchor modifying group, or on the gold electrode layer 112. It has an anchor modification group using the spin coating method. Organic molecules may be joined.
[0071] 続いて、ステップ S101において接合されたアンカー修飾基を有する有機分子に対 して超分子材料を接合する (ステップ S102)。ここでも、超分子材料を含む溶液中に 有機分子が接合された金電極層 112を浸すことで超分子材料を接合してもよ ヽし、 或いは有機分子が接合された金電極層 112上にぉ 、てスピンコーティング法を用い て超分子材料を接合してもよい。いずれの場合であっても、超分子材料は、アンカー 修飾基を有する有機分子に対して選択的に接合していく。即ち、本実施例において は、自己組織化の手法を用いて超分子を接合することで超分子材料層 114を形成し ている。  [0071] Subsequently, a supramolecular material is bonded to the organic molecule having the anchor modification group bonded in step S101 (step S102). Again, the supramolecular material may be joined by immersing the gold electrode layer 112 bonded with organic molecules in a solution containing the supramolecular material, or on the gold electrode layer 112 bonded with organic molecules. In addition, the supramolecular material may be bonded using a spin coating method. In any case, the supramolecular material selectively bonds to the organic molecule having the anchor modifying group. That is, in this embodiment, the supramolecular material layer 114 is formed by bonding supramolecules using a self-organization technique.
[0072] 続 ヽて、超分子材料にアンカー修飾基 (或 、は、修飾官能基な!/ヽしは有機官能基) を有する有機分子を接合する (ステップ S 103)これは上述のステップ S 101と同様の 手法により行なわれる。続いて、対向する金電極層 116を接合する (ステップ S 104) 。これも上述するステップ S 102における金電極層 112と超分子材料層 114との接合 と同様である。また、プラスチックフィルム層 110及び 118が更に接合される。これに より、本実施例に係る電子ペーパー 100が製造される。  [0072] Subsequently, an organic molecule having an anchor modification group (or a modified functional group! / An organic functional group) is joined to the supramolecular material (step S 103). The same method as 101 is used. Subsequently, the opposing gold electrode layer 116 is bonded (step S104). This is also the same as the bonding of the gold electrode layer 112 and the supramolecular material layer 114 in step S102 described above. Also, the plastic film layers 110 and 118 are further joined. Thereby, the electronic paper 100 according to the present embodiment is manufactured.
[0073] ここで、ステップ S 101におけるアンカー修飾基等を有する有機分子の接合につい て、図 11及び図 12を参照してより詳細に説明する。  Here, the bonding of organic molecules having an anchor modification group or the like in step S 101 will be described in more detail with reference to FIG. 11 and FIG.
[0074] 図 11 (a)に示すように、金電極層 112に対しては、アンカー修飾基としてチオール を接合する。このチオールは、金に対して選択的に吸着する性質を有している。この ため、図 11 (b)に示すように、このチオールを介在させて金電極層 112と超分子材 料層 114とを好適に接合することができる。まとめると、この態様では、金電極層 112 の表面に配位子 (ここでは、アンカー修飾基であるチオール)を修飾し、その配位子 を利用して表面での錯形成により集積ィ匕していく配位子法が採用されている。尚、反 対側の金電極層 116と超分子材料層 114との接合に関しても同様である。  As shown in FIG. 11 (a), thiol is bonded to the gold electrode layer 112 as an anchor modification group. This thiol has a property of selectively adsorbing to gold. For this reason, as shown in FIG. 11 (b), the gold electrode layer 112 and the supramolecular material layer 114 can be suitably bonded with the thiol interposed therebetween. In summary, in this embodiment, the surface of the gold electrode layer 112 is modified with a ligand (here, thiol, which is an anchor modifying group), and the ligand is used to perform integration by surface complexation. The following ligand method is adopted. The same applies to the bonding of the gold electrode layer 116 and the supramolecular material layer 114 on the opposite side.
[0075] もちろんチオールに限らずとも、他の各種材料をアンカー修飾基として用いて金電 極層 112及び 116と超分子材料層 114とを接合するように構成してもよ ヽことは 、う までもない。  [0075] Of course, not limited to thiols, the gold electrode layers 112 and 116 and the supramolecular material layer 114 may be joined using various other materials as anchor modification groups. Not too long.
[0076] また、図 12に示すように、 ITO電極層 113に対しては、アンカー修飾基として、ホス ホン酸 (H PO )基を側鎖に有するルビジウム金属錯体を用いる。尚、ホスホン酸基In addition, as shown in FIG. 12, for the ITO electrode layer 113, phosphine is used as an anchor modifying group. A rubidium metal complex having a phonic acid (H 3 PO 4) group in the side chain is used. The phosphonic acid group
2 3 twenty three
に代えてリン酸 (H PO )を用いてもよい。ホスホン酸基は、 ITO電極に対して選択的  Instead of this, phosphoric acid (H 3 PO 4) may be used. Phosphonic acid groups are selective to ITO electrodes
3 4  3 4
に吸着する性質を有している。このため、このルビジウム金属錯体に続いて、或いは 更にホスホン酸基を介在させて超分子材料層 114が接合されることで、 ITO電極層 1 13と超分子材料層 114とを好適に接合することが可能となる。まとめると、この態様で は、錯体の側鎖に表面修飾基 (ここでは、ホスホン酸基)を持たせて表面修飾するァ ンカー錯体法が採用されて 、る。  It has the property of adsorbing to the surface. Therefore, the ITO electrode layer 113 and the supramolecular material layer 114 can be suitably joined by joining the supramolecular material layer 114 subsequent to this rubidium metal complex or further via a phosphonic acid group. Is possible. In summary, in this embodiment, an anchor complex method in which a surface modification group (here, a phosphonic acid group) is added to the side chain of the complex to modify the surface is employed.
[0077] もちろんホスホン酸基を側鎖に有するルビジウム金属錯体に限らずとも、他の各種 材料をアンカー修飾基として用いて ITO電極層 113と超分子材料層 114とを接合す るように構成してもよ 、ことは 、うまでもな!/、。  [0077] Of course, the present invention is not limited to the rubidium metal complex having a phosphonic acid group in the side chain, and the ITO electrode layer 113 and the supramolecular material layer 114 may be joined using various other materials as anchor modification groups. Anyway, it ’s ugly! /.
[0078] (変形例)  [0078] (Modification)
続いて図 13及び図 14を参照して、本発明の記憶装置に係る変形例について説明 する。ここに、図 13は、変形例に係る電子ペーパー 101の基本構成を概念的に示す 断面図であり、図 14は、本発明の記憶装置に係る変形例としての分子メモリ 102の 基本構成を概念的に示す模式図である。  Subsequently, with reference to FIG. 13 and FIG. 14, a modified example according to the storage device of the present invention will be described. FIG. 13 is a cross-sectional view conceptually showing the basic configuration of the electronic paper 101 according to the modified example, and FIG. 14 is a conceptual diagram showing the basic configuration of the molecular memory 102 as a modified example of the storage device of the present invention. FIG.
[0079] 図 13に示すように、変形例に係る電子ペーパー 101は、上述した電子ペーパー 1 00と同様〖こ、プラスチックフィルム層 110と、金電極層 112と、超分子材料層 114と、 金電極層 116と、プラスチックフィルム層 118と、表示駆動部 120とを備えている。  As shown in FIG. 13, an electronic paper 101 according to a modification is similar to the electronic paper 100 described above, and includes a plastic film layer 110, a gold electrode layer 112, a supramolecular material layer 114, and a gold film. An electrode layer 116, a plastic film layer 118, and a display driving unit 120 are provided.
[0080] 第 1変形例に係る電子ペーパー 101は特に、液状電界質層 (gel electrolyte) 121と 、イオン貯蔵層(ion storage layer) 122とを、超分子材料層 114と金電極層 116との 間に備えている。  [0080] The electronic paper 101 according to the first modification particularly includes a liquid electrolyte layer (gel electrolyte) 121, an ion storage layer 122, a supramolecular material layer 114, and a gold electrode layer 116. Have in between.
[0081] 液状電界質層 121は、例えばポリマー中に拡散しているリチウム(Li-triflate in poly mer)を含んでおり、イオン貯蔵層 122から供給されるリチウムイオンを超分子材料層 114へ供給可能に構成されて ヽる。  [0081] The liquid electrolyte layer 121 contains, for example, lithium (Li-triflate in polymer) diffused in the polymer, and supplies lithium ions supplied from the ion storage layer 122 to the supramolecular material layer 114. It is configured to be possible.
[0082] イオン貯蔵層 122は、例えばセリウム酸リチウム (Li CeO )や酸化チタン (TiO )等  [0082] The ion storage layer 122 is made of, for example, lithium cerate (Li CeO 2), titanium oxide (TiO 2), or the like.
2 2 を含んでおり、その内部にリチウムイオンを含んでいる。そして、金電極層 112及び 1 16に印加される電界に応じて、このリチウムイオンを液状電界質層 121へ供給可能 に構成されている。 [0083] このような構成を有する変形例に係る電子ペーパー 101においては、超分子材料 層 114に含まれる超分子材料の内部でトラップされるイオン 115aは、超分子材料層 114の外部から (即ち、イオン貯蔵層 122から)供給される。従って、超分子材料層 1 14に含まれる超分子材料は、トラップするためのイオン 115aを予めその内部に有し ている必要はないという利点を有している。カロえて、予めその内部にイオン 115aを有 して 、る超分子材料を用いなくとも超分子材料層 114を形成することができるため、 超分子材料層 114に含まれる超分子材料の選択の幅が広がると ヽぅ利点を有して!/ヽ る。 2 2 is contained, and lithium ions are contained inside. The lithium ions can be supplied to the liquid electrolyte layer 121 in accordance with the electric field applied to the gold electrode layers 112 and 116. In the electronic paper 101 according to the modified example having such a configuration, the ions 115a trapped inside the supramolecular material included in the supramolecular material layer 114 are from outside the supramolecular material layer 114 (that is, , From the ion storage layer 122). Therefore, the supramolecular material contained in the supramolecular material layer 114 has the advantage that it is not necessary to previously have ions 115a for trapping therein. Since the supramolecular material layer 114 can be formed without the use of the supramolecular material having ions 115a in advance, the range of selection of the supramolecular material contained in the supramolecular material layer 114 When it spreads, it has an advantage!
[0084] 尚、上述した実施例や第 1変形例においては、本発明の記憶装置を電子ペーパー  In the above-described embodiment and the first modification, the storage device of the present invention is an electronic paper.
(即ち、メモリディスプレイ)に適用した場合について説明を進めてきた。しかしながら 、図 14に示すように、電子ペーパーに代えて分子メモリ 102として用いてもよい。  The case where the present invention is applied to a memory display has been described. However, as shown in FIG. 14, the molecular memory 102 may be used instead of the electronic paper.
[0085] より具体的には、超分子材料層 114に含まれる超分子の光吸収係数の変化に合わ せて、超分子材料層 114上に黒色部分と白色部分との 2種類の異なる状態が存在す るように構成する。もちろん、黒色及び白色でなくとも、他の色であってもよいことは言 うまでもない。要は、物理的に、化学的に或いは光学的に識別可能な 2つの色であ れば足りる。そして、例えば黒色部分にはビッド '0"が記録されており、他方白色部分 にはビッド '1"が記録されているとすれば、超分子材料層 114には、 "0"ど' 1"のデー タ列が記録される。このように本発明の記憶装置を分子メモリ 102として利用すること ちでさる。  [0085] More specifically, in accordance with the change in the light absorption coefficient of the supramolecules contained in the supramolecular material layer 114, there are two different states on the supramolecular material layer 114, a black portion and a white portion. Configure to exist. Of course, it is needless to say that other colors may be used instead of black and white. In short, two colors that are physically, chemically or optically distinguishable are sufficient. For example, if the black part is recorded with a bid “0” and the white part is recorded with a bid “1”, the supramolecular material layer 114 has “0” and “1”. In this way, the memory device of the present invention is used as the molecular memory 102.
[0086] 特に、超分子材料層 114の超分子材料の分子の大きさに応じた範囲における光吸 収係数を変化させることができるため、既存のメモリと比較して記録密度を相対的に 増加させることが可能となる。  [0086] In particular, since the light absorption coefficient in the range corresponding to the molecular size of the supramolecular material in the supramolecular material layer 114 can be changed, the recording density is relatively increased as compared with the existing memory. It becomes possible to make it.
[0087] 尚、電子ペーパーや分子メモリに限定されず、その他の各種機器や各種素子等に 対して、本発明の記憶装置を適用してもょ 、ことは 、うまでもな!/、。  [0087] It should be noted that the storage device of the present invention is not limited to electronic paper and molecular memory, but can be applied to other various devices and various elements.
[0088] 本発明は、上述した実施例に限られるものではなぐ請求の範囲及び明細書全体 力 読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、その ような変更を伴なう記憶装置もまた本発明の技術的範囲に含まれるものである。  [0088] The present invention is not limited to the above-described embodiments, but can be appropriately modified within the scope of the claims and the entire specification without departing from the gist or idea of the invention which can be read. A storage device is also included in the technical scope of the present invention.
産業上の利用可能性 本発明に係る記憶装置は、例えば、電子ペーパーや分子メモリ等に利用可能であ る。また、例えば民生用或いは業務用の各種機器又は各種素子等にも利用可能で ある。 Industrial applicability The storage device according to the present invention can be used for, for example, electronic paper, molecular memory, and the like. Further, it can be used for various devices or elements for consumer or business use.

Claims

請求の範囲 The scope of the claims
[1] 第 1電極層と、  [1] a first electrode layer;
前記第 1電極層に対向して配置される第 2電極層と、  A second electrode layer disposed opposite to the first electrode layer;
光吸収係数が変化する超分子材料を含み、且つ前記第 1電極層及び前記第 2電 極層の間に配置される超分子層と  A supramolecular layer including a supramolecular material having a light absorption coefficient change, and disposed between the first electrode layer and the second electrode layer;
を備えることを特徴とする記憶装置。  A storage device comprising:
[2] 前記超分子材料は、イオン及び分子の少なくとも一方が当該超分子材料の内部を 移動することで前記光吸収係数が変化することを特徴とする請求の範囲第 1項に記 載の記憶装置。 [2] The memory according to claim 1, wherein the light absorption coefficient of the supramolecular material changes when at least one of ions and molecules moves inside the supramolecular material. apparatus.
[3] 前記超分子材料は、イオン及び分子の少なくとも一方が当該超分子材料の外部と の間を移動することで前記光吸収係数が変化することを特徴とする請求の範囲第 1 項に記載の記憶装置。  [3] The optical absorption coefficient of the supramolecular material according to claim 1, wherein at least one of ions and molecules moves between the supramolecular material and the outside of the supramolecular material. Storage device.
[4] 前記超分子材料は、前記第 1電極及び前記第 2電極の間に印加される電界に応じ て前記イオン及び前記分子の少なくとも一方が移動することを特徴とする請求の範囲 第 2項に記載の記憶装置。  [4] The supramolecular material is characterized in that at least one of the ions and the molecules moves in accordance with an electric field applied between the first electrode and the second electrode. The storage device described in 1.
[5] 前記イオン及び前記分子の少なくとも一方を前記超分子材料に供給する供給層を 更に備えることを特徴とする請求の範囲第 2項に記載の記憶装置。 5. The storage device according to claim 2, further comprising a supply layer that supplies at least one of the ions and the molecules to the supramolecular material.
[6] 前記超分子材料は、前記イオン及び前記分子の少なくとも一方を内部に包接する ための包接構造を有していることを特徴とする請求の範囲第 2項に記載の記憶装置 6. The storage device according to claim 2, wherein the supramolecular material has an inclusion structure for enclosing at least one of the ions and the molecules therein.
[7] 前記超分子材料は、シクロデキストリンを含むことを特徴とする請求の範囲第 1項に 記載の記憶装置。 7. The storage device according to claim 1, wherein the supramolecular material includes cyclodextrin.
[8] 前記超分子材料は、ヘテロジトロピックレセプターを含むことを特徴とする請求の範 囲第 1項に記載の記憶装置。  [8] The storage device according to claim 1, wherein the supramolecular material includes a heterodiotropic receptor.
[9] 前記第 1電極層及び前記第 2電極層の少なくとも一方は金を含んでおり、 [9] At least one of the first electrode layer and the second electrode layer includes gold,
前記第 1電極層及び前記第 2電極層の少なくとも一方と前記超分子層とは、金チォ ール結合により接合されていることを特徴とする請求の範囲第 1項に記載の記憶装 置。 2. The memory device according to claim 1, wherein at least one of the first electrode layer and the second electrode layer and the supramolecular layer are bonded by gold-cholesteric bonding.
[10] 前記第 1電極層及び前記第 2電極層の少なくとも一方は ITO (Indium Tin Oxide)を 含んでおり、 [10] At least one of the first electrode layer and the second electrode layer contains ITO (Indium Tin Oxide),
前記第 1電極層及び前記第 2電極層の少なくとも一方と前記超分子層とは、間にホ スホン酸を含む金属錯体を介在させて接合されていることを特徴とする請求の範囲 第 1項に記載の記憶装置。  The at least one of the first electrode layer and the second electrode layer and the supramolecular layer are bonded together with a metal complex containing phosphonic acid interposed therebetween. The storage device described in 1.
[11] 前記第 1電極層は一の方向に伸張する複数の第 1信号線を有しており、前記第 2 電極層は前記一の方向とは異なる他の方向に伸張する複数の第 2信号線を有して いることを特徴とする請求の範囲第 1項に記載の記憶装置。 [11] The first electrode layer has a plurality of first signal lines extending in one direction, and the second electrode layer has a plurality of second signals extending in another direction different from the one direction. 2. The storage device according to claim 1, further comprising a signal line.
[12] 前記第 1電極と前記第 2電極との交点は、前記超分子材料の単一分子の大きさと 概ね同一の大きさを有することを特徴とする請求の範囲第 11項に記載の記憶装置。 12. The memory according to claim 11, wherein the intersection of the first electrode and the second electrode has a size that is substantially the same as the size of a single molecule of the supramolecular material. apparatus.
PCT/JP2006/322113 2005-11-07 2006-11-06 Storage device WO2007052795A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005321914 2005-11-07
JP2005-321914 2005-11-07

Publications (1)

Publication Number Publication Date
WO2007052795A1 true WO2007052795A1 (en) 2007-05-10

Family

ID=38005946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322113 WO2007052795A1 (en) 2005-11-07 2006-11-06 Storage device

Country Status (1)

Country Link
WO (1) WO2007052795A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196375A (en) * 2000-12-27 2002-07-12 Sharp Corp Display/light control element, controlling method thereof and producing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002196375A (en) * 2000-12-27 2002-07-12 Sharp Corp Display/light control element, controlling method thereof and producing method thereof

Similar Documents

Publication Publication Date Title
US7787169B2 (en) Electro-optic displays, and methods for driving same
US7397595B2 (en) Electrochromic device
US7301687B2 (en) Electrochemical device
CN104049432B (en) Electrochromic display device and display device
Oh et al. User-customized, multicolor, transparent electrochemical displays based on oxidatively tuned electrochromic ion gels
US7002723B2 (en) Display device
CN108292068A (en) Electric light barrier layer for gases
CN115840319A (en) Multi-color electrochromic structure and application thereof
TWI795334B (en) Method for producing a display and method of integrating electrophoretic displays
JP2006030820A (en) Display device and display method
WO2007004286A1 (en) Liquid crystal display element
JP2008180999A (en) Electrochromic element, and electrochromic device equipped with the same
JP5481839B2 (en) Electrochromic compound, electrochromic composition carrying the same, and display device having these
JP5269620B2 (en) Display element, multilayer display element, and manufacturing method of display element
WO2007052795A1 (en) Storage device
JP4175598B2 (en) Display / dimming element, control method thereof, and manufacturing method thereof
JP5054958B2 (en) Display device
WO2008007563A1 (en) Electrochromic display device
JP5445338B2 (en) Method for manufacturing electrochromic display element
US20230221611A1 (en) Multi-Layer Polymorphic Dashboard
JP2014021398A (en) Electrochromic display device and driving method of the same
JP2007279573A (en) Electrochromic element and electrochromic device using the same
US20220334448A1 (en) Electrophoretic display with low profile edge seal
JPS59219775A (en) Electrochromic display
JP2004333753A (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP