WO2007052511A1 - Remote monitoring system - Google Patents

Remote monitoring system Download PDF

Info

Publication number
WO2007052511A1
WO2007052511A1 PCT/JP2006/321251 JP2006321251W WO2007052511A1 WO 2007052511 A1 WO2007052511 A1 WO 2007052511A1 JP 2006321251 W JP2006321251 W JP 2006321251W WO 2007052511 A1 WO2007052511 A1 WO 2007052511A1
Authority
WO
WIPO (PCT)
Prior art keywords
property
unit
signal
earthquake
wave
Prior art date
Application number
PCT/JP2006/321251
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Hatano
Toshiyuki Kotani
Takao Suzuki
Original Assignee
Toshiba Elevator Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Elevator Kabushiki Kaisha filed Critical Toshiba Elevator Kabushiki Kaisha
Priority to CN2006800406540A priority Critical patent/CN101300185B/en
Publication of WO2007052511A1 publication Critical patent/WO2007052511A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/021Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system
    • B66B5/022Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system where the abnormal operating condition is caused by a natural event, e.g. earthquake

Definitions

  • the present invention relates to a remote monitoring system that monitors a property in a remote place with a monitoring center capability.
  • the P wave 101 is called a longitudinal wave or a dense wave, and is a small shock wave that first reaches the building 104 from the epicenter 102 due to ground collapse or the like through the rock 103.
  • the S wave 105 is called a transverse wave and is a large shaking wave that travels through the rock mass 103 after the P wave arrives.
  • the P wave has a slightly different force depending on the density and rigidity of the ground (a kind of stiffness).
  • the speed of the P wave is said to be about 6 km per second, and the S wave is about 3.5 km per second. That is, the P wave travels nearly twice as fast as the S wave.
  • a conventional elevator control device switches to a control operation mode due to an earthquake, and operates each elevator in the control operation mode. After detecting the P wave, the elevator controller stops the operation of each elevator unit when the S wave is detected by the S wave seismic sensor within a predetermined time.
  • the elevator control device detects the P wave and the S wave
  • the elevator control device transmits the P wave detection signal and the S wave detection signal to the monitoring device of the remote monitoring center through the communication line. Disclosure of the invention
  • a monitoring center has a large number of monitored objects over a wide area under a maintenance contract.
  • an object of the present invention is to provide a remote monitoring system that can secure a communication line as much as possible and maintain monitoring performance even when an earthquake occurs.
  • an earthquake sensor that detects the first and second signals propagating with a time difference when an earthquake occurs, and the elevator when the first signal is detected by the earthquake sensor,
  • a control operation start signal generating unit that sends a switching signal for starting the control operation mode to the operation control unit, and when the second signal is detected by the earthquake sensor, the elevator stop instruction signal is transmitted to the operation control unit.
  • a monitoring target including a stop instruction signal generation unit to be transmitted to the control unit, and an earthquake detection signal transmission unit that transmits a detection signal of the earthquake sensor via a communication line when the second signal is detected.
  • a remote monitoring system comprising: an earthquake detection control unit for a property; and a monitoring device connected to the communication line and receiving a detection signal of the earthquake sensor transmitted from the earthquake detection control unit.
  • FIG. 1 is a diagram showing an overall configuration of a remote monitoring system according to the present invention.
  • FIG. 2 is a block diagram functionally showing the earthquake detection control unit shown in FIG.
  • FIG. 3 is a block diagram showing an example of the monitoring device shown in FIG. 1.
  • FIG. 4 is a diagram showing an example of the data arrangement of the monitored property information table 26a stored in the center database shown in FIG.
  • FIG. 5 is a block diagram functionally showing the monitoring processing control unit shown in FIG.
  • FIG. 6 is a flowchart for explaining an operation procedure of the earthquake detection control unit.
  • FIG. 7 is a diagram showing an example of a message for reporting the operation control unit force at the time of the earthquake to the car and each floor.
  • FIG. 8 is a flowchart for explaining the operation procedure of the monitoring apparatus.
  • FIG. 9 is a block diagram functionally showing a monitoring process control unit of a monitoring apparatus according to another embodiment of the remote monitoring system of the present invention.
  • FIG. 10 is a flowchart for explaining the operation of the monitoring device according to another embodiment of the present invention.
  • FIG. 11 is a conceptual diagram illustrating an example of propagation of P waves and S waves when an earthquake occurs.
  • FIG. 1 is a block diagram showing an embodiment of a remote monitoring system according to the present invention.
  • the remote monitoring system a large number of monitored objects 1,... Scattered over a wide area and a monitoring device 2 in a monitoring center installed in a remote area are connected by a communication line 3.
  • the property to be monitored 1 means an elevator facility that performs regular or emergency maintenance management under a maintenance contract.
  • Each monitored property 1, ... has an elevator control device 4 installed.
  • the elevator control device 4 includes an operation control unit 11 that controls the operation of each elevator (not shown) toward the target floor in response to a hall call and a car call, and a seismic detection control that detects the occurrence of an earthquake. Part 12.
  • the operation control unit 11 controls a power converter (not shown) according to the speed command, and drives and controls the hoisting machine 13 using AC power of variable voltage and frequency that can also obtain the power converter power. To do.
  • a main rope (not shown) is wound around the hoisting machine 13, and a cage is suspended at one end of the main rope, and a balance! / Is suspended at the other end of the main rope.
  • the operation control unit 11 also includes a message data setting unit 14 when an earthquake occurs.
  • the message data setting unit 14 stores message data for providing predetermined information to the elevator user.
  • a P-wave earthquake sensor 15 and an S-wave earthquake sensor 16 are connected to the earthquake detection control unit 12. These seismic sensors 15 and 16 are located at appropriate locations in the monitored property 1 (for example, the bottom of the pit in the hoistway, the machine room above the hoistway, the walls of the hoistway, and other appropriate locations in the building where the elevator is installed) ).
  • the P-wave earthquake sensor 15 detects the first P wave (longitudinal wave) that also reaches the source force of the ground due to ground collapse, etc., and sends the detection signal to the earthquake detection control unit 12.
  • the S-wave seismic sensor 16 detects an S-wave (transverse wave) accompanied by a large shaking transmitted through the rock after the arrival of the P-wave, and sends the detection signal to the earthquake detection control unit 12.
  • the earthquake detection control unit 12 Based on the detection signals of the respective earthquake sensors 15 and 16, the earthquake detection control unit 12 sends an operation change instruction signal to the operation control unit 11 and sends only an S wave detection signal to the monitoring device 2. Send (described later).
  • the monitoring device 2 When the monitoring device 2 receives the S wave detection signal transmitted from the earthquake detection control unit 12, ... of each monitored object 1, ..., the elevator stops for each monitored object 1 by S wave detection. It has the function of memorizing and displaying that it is in the middle.
  • FIG. 2 is a functional block diagram showing the internal configuration of the earthquake detection control unit 12.
  • the earthquake detection control unit 12 is provided with a CPU that executes predetermined control in accordance with predetermined program data. Functionally, the P wave level setting unit 121, the control operation start signal generation unit 122, the S wave level setting unit 123, the elevator stop instruction signal generation unit 124, the earthquake detection signal transmission unit 125, and the property identification data setting unit 126 Have.
  • the P wave level setting unit 121 is set with a predetermined level for detecting a P wave (for example, a predetermined signal level expected to be generated between M3 and less than M5). .
  • the control operation instruction signal generation unit 122 compares the signal level sent from the P-wave earthquake sensor 15 with the setting level of the P-wave level setting unit 121, and when the sensor signal level exceeds the setting level. , P wave detection is detected, and a signal for starting the control operation mode is sent to the operation control unit 11.
  • control operation mode means that after each elevator is operated to the nearest floor, the doors are opened and the passengers are lowered, the doors are closed and the doors are closed for a predetermined time (for example, until S wave detection). This is an operation mode.
  • the S wave level setting unit 123 is set with a predetermined level for detecting the S wave (for example, a predetermined signal level between the mag-mode M3 and less than M5).
  • the elevator stop instruction signal generator 124 compares the signal level sent from the S-wave seismic sensor 16 with the set level of the S-wave level setting unit 123, and when the sensor signal level exceeds the set level, The s-wave detection is determined and an elevator stop instruction signal is sent to the operation control unit 11 and an S-wave detection signal is sent to the earthquake detection signal transmission unit 125.
  • the earthquake detection signal transmission unit 125 When the earthquake detection signal transmission unit 125 receives the S wave detection signal, the earthquake detection signal transmission unit 125 attaches the property identification data set in the property identification data setting unit 126 to the S wave detection signal and transmits the property identification data to the monitoring device 2.
  • FIG. 3 is a diagram illustrating a configuration example of the monitoring device 2.
  • the monitoring device 2 has a program memory 21 for storing program data defining the processing procedure.
  • a monitoring control processing unit 22 an input unit 23, a nother memory 24, a display unit 25, and a center database 26.
  • the monitoring control processing unit 22 Upon receiving the S-wave detection signal with the property identification data from each earthquake detection control unit 12, the monitoring control processing unit 22 stores and displays the property current information in the monitored property information table 26a shown in FIG. To do.
  • the monitored property information table 26a is represented in a tabular format. For each monitored region (for example, Tokyo, Kanagawa, Chiba, Saitama, etc.), the target property identification data, property name (building) Item name), property address, property current information, marking data, etc., and record the current property information issued from each monitored property 1,....
  • the input unit 23 inputs various data and control commands.
  • the nota memory 24 for example, an inspection signal, emergency power sent along with the property identification data, Various data such as call signals are temporarily stored.
  • the display unit 25 displays information obtained by excluding, for example, marking data from the property information stored in the monitored property information table 26a shown in FIG.
  • the monitoring control processing unit 22 includes a CPU. Functionally, as shown in FIG. 5, the property information receiving / writing unit 221, the marking processing unit 222, and the property information display unit 223 are provided.
  • the property information receiving / writing unit 221 Upon receiving the S-wave detection signal with the property identification data from each earthquake detection control unit 12, the property information receiving / writing unit 221 receives the monitored property name from the monitored property information table 26a stored in the center database 26. The property corresponding to the property name Write elevator stop data in the information area.
  • the marking processing unit 222 performs processing for marking each type of property current information.
  • the types of property current information include, for example, elevator stop, emergency call due to force closing, inspection work, fire, etc.
  • the property information display unit 223 displays the monitored property information excluding marking data on the display unit 25.
  • FIG. 6 is a flowchart for explaining an operation procedure of the earthquake detection control unit 12 of the elevator control device 4 in each monitored object 1,.
  • the earthquake detection control unit 12 constantly takes in the outputs of the P-wave earthquake sensor 15 and the S-wave earthquake sensor 16 and monitors the occurrence of an earthquake.
  • the earthquake detection control unit 12 takes in the P wave signal sent from the P wave earthquake sensor 15 (step S1), and compares this signal level with the setting level of the P wave level setting unit 121. Then, it is determined whether or not the force detected the P wave due to the occurrence of the earthquake (step S2). If the received signal level has not reached the set level, the process returns to step S1 and the same process is repeated.
  • the earthquake detection control unit 12 determines that a P wave has been detected, and outputs a signal for starting the control operation mode to the operation control unit 11. Send out (step S3).
  • the processes in steps S1 to S3 correspond to the control operation start signal generator 122 shown in FIG.
  • the operation control unit 11 When the operation control unit 11 receives the control operation mode start signal from the earthquake detection control unit 12, the operation control unit 11 switches to the control operation mode and performs operation control.
  • the control operation mode is a mode in which, after driving the car to the nearest floor, the door is opened, the passenger is lowered, the door is closed, and the vehicle is paused. Therefore, the operation control unit 11 reads out the message data from the message data setting unit 14 while operating each elevator toward the nearest floor, and issues it to the car.
  • the earthquake detection control unit 12 takes in the signal sent from the S wave earthquake sensor 16 (step S4), and sets the signal level and the set level of the S wave level setting unit 123. Are compared to determine whether the force detected the S wave due to the occurrence of an earthquake (step S5).
  • step S6 the process returns to step S1, and the same process is repeated.
  • step S6 the process returns to step S1, and the same process is repeated.
  • the earthquake detection control unit 12 takes out the property identification data “for example, 10001” from the property identification data setting unit 126, adds it to the S wave detection signal, and transmits it to the monitoring device 2 ( Step S 7).
  • the earthquake detection control unit 12 does not transmit the P wave detection effect to the monitoring device 2 when the P wave is detected, and does not transmit the S wave detection to the monitoring device 2 when it is determined that the S wave is detected.
  • Send wave detection signal As a result, the number of times the communication line 3 is used can be almost halved, and at the monitoring device 2 side, it can be recognized that at least the elevator is stopped.
  • the processing in step S7 corresponds to the earthquake detection signal transmission unit 125 shown in FIG.
  • the operation control unit 11 When the operation control unit 11 receives an elevator stop signal from the earthquake detection control unit 12, the operation control unit 11 stops the operation of each elevator and reads out message data from the message data setting unit 14, Report to each floor platform.
  • the monitoring device 2 in the monitoring center executes the following processing.
  • the monitoring processing control unit 22 of the monitoring device 2 takes in the S-wave detection signal with the property identification data transmitted from each monitored property 1,..., Stores it in the buffer memory 24 sequentially, and performs predetermined processing. Execute.
  • FIG. 8 is a flowchart for explaining the operation procedure of the monitoring process control unit 22 of the monitoring device 2.
  • the monitoring processing control unit 22 After performing initialization processing according to the program data in the program memory 21 (Step S11), the monitoring processing control unit 22 performs property information from each monitored property 1, ... (S wave detection signal with property identification data) ) Is received or not (step S12). If it is received! /, N! /, It will be in reception standby status.
  • the monitoring processing control unit 22 uses the property identification data (for example, 10001) of the property information to display the property to be monitored in the property information table 26a to be monitored shown in FIG. Referring to the identification data, specify the property name “XXA Building”. Then, “Property current information type 01” is written in the property current information area corresponding to the subject name while the elevator is stopped based on the S wave detection signal (step S13). The processes in steps S12 and S13 correspond to the property information reception / writing unit 221 shown in FIG.
  • the property identification data for example, 10001
  • the identification data specify the property name “XXA Building”.
  • “Property current information type 01” is written in the property current information area corresponding to the subject name while the elevator is stopped based on the S wave detection signal (step S13).
  • the processes in steps S12 and S13 correspond to the property information reception / writing unit 221 shown in FIG.
  • the monitoring process control unit 22 determines whether or not to perform the marking process after writing the property current information (step S14). If it is determined that the marking process is to be performed, the marking process is performed on the property information to be monitored corresponding to the corresponding property name based on the marking data in the marking data area (step S15).
  • the marking process is a process for making it possible to recognize at a glance what state each of the monitored objects 1,. For example, it makes it possible to recognize whether the elevator is currently stopped or the emergency call is due to the car being trapped. On the other hand, when no marking is given, it is possible to grasp that the vehicle is in a normal operating state without corresponding to the cause to be set in advance.
  • the processes in steps S14 and S15 correspond to the marking processing unit 222 shown in FIG.
  • the monitoring process control unit 22 After performing the marking process, the monitoring process control unit 22 performs monitoring target property information shown in FIG. Of the property information in Table 26a, the monitored property information excluding the marking data is sequentially read and displayed on the display unit 25 (step S16). The processing in step S16 corresponds to the property information display unit 223 shown in FIG. Then, after displaying the property to be monitored, the monitoring processing control unit 22 determines whether or not it is a power to continuously display (Step S17). If the display is to be continued, return to step S12 and repeat the same process.
  • this embodiment has the following effects.
  • both the P wave detection signal and the S wave detection signal detected by each of the seismic sensors 15 and 16 were transmitted to the monitoring device 2.
  • the above detection signals are sent to the communication line 3 all at once from the monitored objects 1,... Scattered over a wide area, the communication line 3 connected to the monitoring device 2 is in a punctured state.
  • the remote monitoring system when the P wave is detected, only the activation signal for the control operation mode is sent to the operation control unit 11 and is not transmitted to the monitoring device 2. After that, when the S wave is detected, the S wave detection signal is transmitted to the monitoring device 2.
  • the number of uses for the communication line 3 is almost halved, and the use of the communication line 3 corresponding to the decrease can be distributed to the property information from other monitored properties 1, ... other than the occurrence of the earthquake.
  • the monitoring device 2 performs marking for each monitored object 1,... Based on the type of the current property information. As a result, it is possible to recognize at a glance what the status of each monitored object 1, ... is currently, and bring each maintenance object, etc. according to the status of each monitored property 1, ... Maintenance personnel can be dispatched. That is, it becomes possible to proceed with maintenance work quickly.
  • each monitoring device 2 has a large number of monitored objects 1,... In each monitored area, monitoring is performed in a distributed manner in each monitored area. That is, one monitoring device 2 monitors the Tokyo area, and another monitoring device 2 monitors the Kanagawa 11 prefecture area.
  • the monitoring devices 2... are distributed in the internal network (LAN etc.) 31.
  • a large display board 33 is connected to the internal network 31 via a display computer 32.
  • the display computer 32 displays the monitored property information transferred from each of the monitoring devices 2,... On the large display board 33 in accordance with the monitored region.
  • each monitoring device 2 is provided with an individual display unit 25. However, the entire monitoring device 2,... It is possible to do.
  • FIG. 9 is a functional block diagram showing the internal configuration of each monitoring device 2 in the remote monitoring system.
  • Each monitoring device 2 includes a property information reception / writing unit 221, a marking processing unit 222, a property information display unit 223, and a specific property extraction / display unit 224 and a specific property all-cases transfer unit 225.
  • the property information receiving / writing unit 221, the marking processing unit 222, and the property information display unit 223 are the same as those in FIG.
  • the specific property extraction display unit 224 extracts specific property current information (for example, “01” when the elevator is stopped) from the property information in the monitored property information table 26a shown in FIG.
  • the transfer section 225 for the transfer of all specified properties transfers all the monitored property information extracted to the internal network 31 and displays it on the large display board 33 via the display computer 32.
  • FIG. 10 is a flowchart for explaining the operation of the monitoring device 2 according to another embodiment of the present invention. Steps S11 to S16 in the figure have already been described with reference to FIG. [0067]
  • the monitoring processing control unit 22 of the monitoring device 2 determines whether or not the present property information has the power to display the current property information of the type where the elevator is stopped. (Step S21). For example, when there is an earthquake, there is a request to display only the monitored property that is affected by the earthquake, and there are cases where it is desirable to display an emergency call for confining the car in cases other than an earthquake.
  • the monitoring person inputs data “01” indicating the elevator stop and the property extraction instruction from the input unit 23.
  • the monitoring process control unit 22 determines to display the current property information of the type where the elevator is stopped. Then, only the property information when the elevator is stopped is extracted (step S22) and displayed on the display unit 25 (step S23).
  • the extraction of the specific property current information type is not limited to when the elevator is stopped.
  • the processes in steps S21 to S23 correspond to the specific property extraction display unit 224 shown in FIG.
  • the monitoring processing control unit 22 determines whether or not the power is to be transferred to the display computer 32 (step S24).
  • step S24 if there is a preset flag or a transfer instruction input from the input unit 23, it is determined that the extracted property information is to be transferred, and all the monitored property information shown in FIG. 4 relating to when the elevator is stopped is transferred to the display computer 32. Yes (Steps S 25, S 26) 0
  • steps S 24 to S 26 correspond to the specific property all-case transfer unit 225 shown in FIG.
  • the display computer 32 When the display computer 32 receives specific monitored object information from each of the monitoring devices 2,..., The display computer 32 arranges the information for each property information type and each monitored area and displays the information on the large display board 33. At this time, it can be displayed cyclically alternately for each property information type.
  • the present embodiment only the monitoring object condition information of the property type required by the observer is extracted and displayed on the display unit 25. Immediately understand the condition. In addition, it is possible to easily grasp in which area the elevator stops frequently due to the occurrence of an earthquake, and to take measures including the number of personnel when dispatching maintenance personnel. [0073] Also, by extracting only the monitored property information of the property type required by the observer and displaying it on the large display board 33, the observer who monitors a specific area can be affected by earthquakes in other areas. Elevator status can be easily grasped.
  • the seismic sensors 15 and 16 for P wave and S wave are divided. However, one seismic sensor may be shared.
  • the P wave level setting unit 121 and the S wave level setting unit 123 are provided separately, the level for the P wave and the S wave may be set in one level setting unit.
  • the property information in the monitored property information table 26a shown in FIG. 4 is an example of an information array for display on the display unit 25 in a table format. For example, if you want to display a property to be monitored on the map display screen of the region to be monitored, this can be realized by adding latitude and longitude information for each property name.
  • the present invention can be applied to other elevator equipment such as a force estimator described by taking remote monitoring of an elevator as an example, and any other property or equipment that can be remotely monitored.
  • a remote monitoring system that can secure the number of times a communication line is used when an earthquake occurs and can maintain monitoring performance.

Abstract

A remote monitoring system includes: an earthquake detection control unit (12) for an object to be monitored, the unit having earthquake sensors (15, 16) for detecting a first and a second signal transmitted with a time difference upon occurrence of an earthquake, a controlled operation start signal generation unit for transmitting a switching signal to start a controlled operation mode of an elevator to an operation control unit (11) upon detection of the first signal, an elevator stop instruction signal generation unit for transmitting an elevator stop instruction signal to the operation control unit (11) upon detection of the second signal, and an earthquake detection signal transmission unit for transmitting the sensor detection signal via a communication line (3) upon detection of the second signal; and a monitoring device (2) connected to the communication line (3) for monitoring the sensor detection signal transmitted from the earthquake detection control unit (12).

Description

明 細 書  Specification
遠隔監視システム  Remote monitoring system
技術分野  Technical field
[0001] 本発明は、監視センタ力も遠隔地の物件を監視する遠隔監視システムに関する。  The present invention relates to a remote monitoring system that monitors a property in a remote place with a monitoring center capability.
背景技術  Background art
[0002] 従来、遠隔監視対象の物件における地震の影響を把握するために、監視対象物 件の適宜な個所 (例えばエレベータの昇降路内のピット底部、昇降路上部の機械室 、昇降路壁など)に P波地震センサおよび S波地震センサが設置されている。  [0002] Conventionally, in order to grasp the effects of earthquakes on remotely monitored objects, appropriate locations of monitored objects (for example, the bottom of the pit in the elevator hoistway, the machine room above the hoistway, the hoistway wall, etc.) P wave seismic sensor and S wave seismic sensor are installed.
[0003] 図 11の概念図で示すように、 P波 101は縦波または粗密波と呼ばれ、地盤崩壊等 による震源 102から岩盤 103を伝わって最初に建物 104に到達する小さな衝撃波で ある。 S波 105は横波と呼ばれ、 P波が到達した後に岩盤 103を伝わってくる大きな 揺れの波である。 P波は地盤の密度や剛性 (堅さの一種)によって多少異なる力 P 波の速度は 1秒間に約 6km、 S波は 1秒間に 3. 5kmと言われている。すなわち、 P波 は S波の 2倍近く伝わる速度が速い。  [0003] As shown in the conceptual diagram of FIG. 11, the P wave 101 is called a longitudinal wave or a dense wave, and is a small shock wave that first reaches the building 104 from the epicenter 102 due to ground collapse or the like through the rock 103. The S wave 105 is called a transverse wave and is a large shaking wave that travels through the rock mass 103 after the P wave arrives. The P wave has a slightly different force depending on the density and rigidity of the ground (a kind of stiffness). The speed of the P wave is said to be about 6 km per second, and the S wave is about 3.5 km per second. That is, the P wave travels nearly twice as fast as the S wave.
[0004] 従来のエレベータ制御装置は、 P波地震センサで P波を検知すると、地震による管 制運転モードに切替わり、当該管制運転モードにより各エレベータ号機の運転を行う 。エレベータ制御装置は、 P波を検知した後、所定時間内に S波地震センサで S波を 検知すると、各エレベータの号機の運転を停止させる。  [0004] When a P wave is detected by a P wave seismic sensor, a conventional elevator control device switches to a control operation mode due to an earthquake, and operates each elevator in the control operation mode. After detecting the P wave, the elevator controller stops the operation of each elevator unit when the S wave is detected by the S wave seismic sensor within a predetermined time.
[0005] また、エレベータ制御装置は、 P波および S波を検知すると、その P波検知信号およ び S波検知信号を通信回線を通して遠隔地の監視センタの監視装置に送信する。 発明の開示  [0005] When the elevator control device detects the P wave and the S wave, the elevator control device transmits the P wave detection signal and the S wave detection signal to the monitoring device of the remote monitoring center through the communication line. Disclosure of the invention
[0006] 一般に監視センタは、保守契約のもとに広い地域にわたって多数の監視対象物件  [0006] In general, a monitoring center has a large number of monitored objects over a wide area under a maintenance contract.
(保守対象物件)を監視している。そのため、広域災害である地震が発生すると、広 域にわたって点在する多数の監視対象物件の P波地震センサおよび S波地震センサ が一斉に反応する。そして、各監視対象物件のエレベータ制御装置から通信回線を 通して P波および S波の検知信号が一斉に監視センタに送信される。その結果、監視 センタは通信負荷オーバーにより通信不能に陥ってしまう。 [0007] このような事態が発生すると、地震発生地域から比較的遠!、地域で発生した信号( 例えば乗りかご内からの非常呼び信号や、顧客からの要求信号等)が発報されたとし ても、監視センタ側の通信回線がパンク状態となっているので、これらの信号を受信 できなくなる。したがって、遠隔監視システム全体に大きな影響が及ぶ可能性があり、 監視対象物件の安全確保も難しくなる。 (Property to be maintained) is monitored. For this reason, when an earthquake that is a wide-area disaster occurs, the P-wave seismic sensors and S-wave seismic sensors of a large number of monitored properties scattered over a wide area react simultaneously. Then, the P wave and S wave detection signals are sent to the monitoring center all at once from the elevator controller of each monitored property through the communication line. As a result, the monitoring center will be unable to communicate due to overcommunication load. [0007] When such a situation occurs, it is relatively far from the earthquake occurrence area! Signals generated in the area (for example, emergency call signals from the car, request signals from customers, etc.) are reported. However, since the communication line on the monitoring center side is punctured, these signals cannot be received. As a result, the entire remote monitoring system may be greatly affected, and it will be difficult to ensure the safety of the monitored property.
[0008] そこで、本発明は、地震発生時であっても通信回線をできるだけ確保し、監視性能 を維持することのできる遠隔監視システムを提供することを目的とする。  [0008] Therefore, an object of the present invention is to provide a remote monitoring system that can secure a communication line as much as possible and maintain monitoring performance even when an earthquake occurs.
[0009] 本発明の一観点によれば、地震発生時に時間差をもって伝播する第 1および第 2 の信号を検知する地震センサと、この地震センサによって前記第 1の信号が検知され たときに昇降機の管制運転モードを起動させるための切替え信号を運転制御部に送 出する管制運転起動信号発生部と、前記地震センサによって前記第 2の信号が検知 されたときに上記昇降機の停止指示信号を前記運転制御部に送出する停止指示信 号発生部と、前記第 2の信号が検知された時点で前記地震センサの検知信号を通 信回線を介して送信する地震検知信号送信部とを備えた監視対象物件の地震検知 制御部と、前記通信回線に接続され、前記地震検知制御部から送信されてくる前記 地震センサの検知信号を受信する監視装置とを具備したことを特徴とする遠隔監視 システムが提供される。  [0009] According to one aspect of the present invention, an earthquake sensor that detects the first and second signals propagating with a time difference when an earthquake occurs, and the elevator when the first signal is detected by the earthquake sensor, A control operation start signal generating unit that sends a switching signal for starting the control operation mode to the operation control unit, and when the second signal is detected by the earthquake sensor, the elevator stop instruction signal is transmitted to the operation control unit. A monitoring target including a stop instruction signal generation unit to be transmitted to the control unit, and an earthquake detection signal transmission unit that transmits a detection signal of the earthquake sensor via a communication line when the second signal is detected. A remote monitoring system comprising: an earthquake detection control unit for a property; and a monitoring device connected to the communication line and receiving a detection signal of the earthquake sensor transmitted from the earthquake detection control unit. A system is provided.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]図 1は、本発明に係る遠隔監視システムの全体構成を示す図である。 FIG. 1 is a diagram showing an overall configuration of a remote monitoring system according to the present invention.
[図 2]図 2は、図 1に示す地震検知制御部を機能的に表した構成図である。  [FIG. 2] FIG. 2 is a block diagram functionally showing the earthquake detection control unit shown in FIG.
[図 3]図 3は、図 1に示す監視装置の一例を示す構成図である。  FIG. 3 is a block diagram showing an example of the monitoring device shown in FIG. 1.
[図 4]図 4は、図 3に示すセンタデータベースに記憶される監視対象物件情報テープ ル 26aのデータ配列例を示す図である。  [FIG. 4] FIG. 4 is a diagram showing an example of the data arrangement of the monitored property information table 26a stored in the center database shown in FIG.
[図 5]図 5は、図 3に示す監視処理制御部を機能的に表した構成図である。  [FIG. 5] FIG. 5 is a block diagram functionally showing the monitoring processing control unit shown in FIG.
[図 6]図 6は、地震検知制御部の動作手順を説明するためのフローチャートである。  FIG. 6 is a flowchart for explaining an operation procedure of the earthquake detection control unit.
[図 7]図 7は、地震発生時の運転制御部力も乗りかごや各階乗場に発報するメッセ一 ジの一例を示す図である。  [FIG. 7] FIG. 7 is a diagram showing an example of a message for reporting the operation control unit force at the time of the earthquake to the car and each floor.
[図 8]図 8は、監視装置の動作手順を説明するフローチャートである。 [図 9]図 9は、本発明に係る遠隔監視システムの他の実施の形態に係る監視装置の 監視処理制御部を機能的に示した構成図である。 FIG. 8 is a flowchart for explaining the operation procedure of the monitoring apparatus. FIG. 9 is a block diagram functionally showing a monitoring process control unit of a monitoring apparatus according to another embodiment of the remote monitoring system of the present invention.
[図 10]図 10は、本発明の他の実施形態における監視装置の動作を説明するための フローチャートである。  FIG. 10 is a flowchart for explaining the operation of the monitoring device according to another embodiment of the present invention.
[図 11]図 11は、地震発生時の P波及び S波の伝播例を説明する概念図である。 発明を実施するための最良の形態  [FIG. 11] FIG. 11 is a conceptual diagram illustrating an example of propagation of P waves and S waves when an earthquake occurs. BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の実施形態について図面を参照して説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012] (第 1の実施の形態)  [0012] (First embodiment)
図 1は本発明に係る遠隔監視システムの一実施の形態を示す構成図である。  FIG. 1 is a block diagram showing an embodiment of a remote monitoring system according to the present invention.
[0013] 遠隔監視システムは、広域にわたって点在する多数の監視対象物件 1,…と、遠隔 地に設置される監視センタ内の監視装置 2とが通信回線 3で接続されている。ここで 、監視対象物件 1とは、保守契約のもとに定期的または非常時の保守管理を行うエレ ベータ設備を意味する。各監視対象物件 1,…には、それぞれエレベータ制御装置 4が設置されている。  [0013] In the remote monitoring system, a large number of monitored objects 1,... Scattered over a wide area and a monitoring device 2 in a monitoring center installed in a remote area are connected by a communication line 3. Here, the property to be monitored 1 means an elevator facility that performs regular or emergency maintenance management under a maintenance contract. Each monitored property 1, ... has an elevator control device 4 installed.
[0014] エレベータ制御装置 4は、乗場呼びやかご呼びに応答して各エレベータ号機(図 示せず)を目的階に向けて運転制御する運転制御部 11と、地震発生を検知する地 震検知制御部 12とを有する。  [0014] The elevator control device 4 includes an operation control unit 11 that controls the operation of each elevator (not shown) toward the target floor in response to a hall call and a car call, and a seismic detection control that detects the occurrence of an earthquake. Part 12.
[0015] 運転制御部 11は、速度指令に従って電力変換装置(図示せず)を制御し、その電 力変換装置力も得られる可変の電圧,周波数の交流電力を用いて卷上機 13を駆動 制御する。この卷上機 13には図示せぬメインロープが巻き掛けられ、そのメインロー プの一端部には乗りかご、当該メインロープの他端部には釣り合!/、おもりが吊下され ている。また、運転制御部 11は、地震発生時にメッセージデータ設定部 14を備えて いる。このメッセージデータ設定部 14には、エレベータ利用者に所定の情報を提供 するためのメッセージデータが格納されている。  [0015] The operation control unit 11 controls a power converter (not shown) according to the speed command, and drives and controls the hoisting machine 13 using AC power of variable voltage and frequency that can also obtain the power converter power. To do. A main rope (not shown) is wound around the hoisting machine 13, and a cage is suspended at one end of the main rope, and a balance! / Is suspended at the other end of the main rope. . The operation control unit 11 also includes a message data setting unit 14 when an earthquake occurs. The message data setting unit 14 stores message data for providing predetermined information to the elevator user.
[0016] 一方、地震検知制御部 12には、 P波地震センサ 15および S波地震センサ 16が接 続されている。これらの地震センサ 15, 16は、監視対象物件 1の適宜な個所 (例えば 昇降路内のピット底部、昇降路上部の機械室、昇降路の壁部、その他エレベータを 設置する建物の適宜な個所等)に設置される。 [0017] P波地震センサ 15は、地盤崩壊等による震源力も岩盤を伝わって最初に到達する P波(縦波)を検知し、その検知信号を地震検知制御部 12に送出する。 S波地震セン サ 16は、 P波が到達した後に岩盤を伝わってくる大きな揺れを伴った S波 (横波)を検 知し、その検知信号を地震検知制御部 12に送出する。 On the other hand, a P-wave earthquake sensor 15 and an S-wave earthquake sensor 16 are connected to the earthquake detection control unit 12. These seismic sensors 15 and 16 are located at appropriate locations in the monitored property 1 (for example, the bottom of the pit in the hoistway, the machine room above the hoistway, the walls of the hoistway, and other appropriate locations in the building where the elevator is installed) ). [0017] The P-wave earthquake sensor 15 detects the first P wave (longitudinal wave) that also reaches the source force of the ground due to ground collapse, etc., and sends the detection signal to the earthquake detection control unit 12. The S-wave seismic sensor 16 detects an S-wave (transverse wave) accompanied by a large shaking transmitted through the rock after the arrival of the P-wave, and sends the detection signal to the earthquake detection control unit 12.
[0018] 地震検知制御部 12は、各地震センサ 15, 16の検知信号に基づき、運転制御部 1 1には運転変更指示信号を送出し、また、監視装置 2には S波検知信号だけを送信( 後述)する。  [0018] Based on the detection signals of the respective earthquake sensors 15 and 16, the earthquake detection control unit 12 sends an operation change instruction signal to the operation control unit 11 and sends only an S wave detection signal to the monitoring device 2. Send (described later).
[0019] 監視装置 2は、各監視対象物件 1, …の地震検知制御部 12,…から送信されてくる S波検知信号を受信すると、監視対象物件 1ごとに S波検知によってエレベータが停 止中であることを記憶し、表示する機能を有する。  [0019] When the monitoring device 2 receives the S wave detection signal transmitted from the earthquake detection control unit 12, ... of each monitored object 1, ..., the elevator stops for each monitored object 1 by S wave detection. It has the function of memorizing and displaying that it is in the middle.
[0020] 図 2は地震検知制御部 12の内部構成を示す機能ブロック図である。  FIG. 2 is a functional block diagram showing the internal configuration of the earthquake detection control unit 12.
[0021] 地震検知制御部 12は、所定のプログラムデータに従って所定の制御を実行する C PUが設けられている。機能的には、 P波レベル設定部 121、管制運転起動信号発 生部 122、 S波レベル設定部 123、エレベータ停止指示信号発生部 124、地震検知 信号送信部 125、物件識別データ設定部 126を有する。 [0021] The earthquake detection control unit 12 is provided with a CPU that executes predetermined control in accordance with predetermined program data. Functionally, the P wave level setting unit 121, the control operation start signal generation unit 122, the S wave level setting unit 123, the elevator stop instruction signal generation unit 124, the earthquake detection signal transmission unit 125, and the property identification data setting unit 126 Have.
[0022] P波レベル設定部 121には、 P波を検知するための所定レベル (例えばマグ -チュ ード M3以上 M5未満の間で発生すると予想される所定の信号レベル等)が設定され る。管制運転指示信号発生部 122は、 P波地震センサ 15から送られてくる信号レべ ルと P波レベル設定部 121の設定レベルとを比較し、センサ信号レベルが設定レべ ルを越えたとき、 P波検知と判断し、管制運転モードを起動するための信号を運転制 御部 11に送出する。 [0022] The P wave level setting unit 121 is set with a predetermined level for detecting a P wave (for example, a predetermined signal level expected to be generated between M3 and less than M5). . The control operation instruction signal generation unit 122 compares the signal level sent from the P-wave earthquake sensor 15 with the setting level of the P-wave level setting unit 121, and when the sensor signal level exceeds the setting level. , P wave detection is detected, and a signal for starting the control operation mode is sent to the operation control unit 11.
[0023] ここで、管制運転モードとは、各エレベータ号機を最寄階まで運転した後、戸開し て乗客を降ろし、戸閉して所定時間の間(例えば S波検知まで)、一時休止する運転 モードである。  [0023] Here, the control operation mode means that after each elevator is operated to the nearest floor, the doors are opened and the passengers are lowered, the doors are closed and the doors are closed for a predetermined time (for example, until S wave detection). This is an operation mode.
[0024] S波レベル設定部 123には、 S波を検知するための所定レベル (例えばマグ -チュ ード M3以上 M5未満の間の所定の信号レベル等)が設定される。エレベータ停止指 示信号発生部 124は、 S波地震センサ 16から送られてくる信号レベルと S波レベル 設定部 123の設定レベルとを比較し、センサ信号レベルが設定レベルを越えたとき、 s波検知と判断し、エレベータ停止指示信号を運転制御部 11に送出するとともに、 S 波検知信号を地震検知信号送信部 125に送出する。 [0024] The S wave level setting unit 123 is set with a predetermined level for detecting the S wave (for example, a predetermined signal level between the mag-mode M3 and less than M5). The elevator stop instruction signal generator 124 compares the signal level sent from the S-wave seismic sensor 16 with the set level of the S-wave level setting unit 123, and when the sensor signal level exceeds the set level, The s-wave detection is determined and an elevator stop instruction signal is sent to the operation control unit 11 and an S-wave detection signal is sent to the earthquake detection signal transmission unit 125.
[0025] 地震検知信号送信部 125は、 S波検知信号を受け取ると、その S波検知信号に物 件識別データ設定部 126に設定される物件識別データを付して監視装置 2に送信 する。 When the earthquake detection signal transmission unit 125 receives the S wave detection signal, the earthquake detection signal transmission unit 125 attaches the property identification data set in the property identification data setting unit 126 to the S wave detection signal and transmits the property identification data to the monitoring device 2.
[0026] 図 3は監視装置 2の一構成例を示す図である。  FIG. 3 is a diagram illustrating a configuration example of the monitoring device 2.
[0027] 監視装置 2は、処理手順を規定するプログラムデータを記憶するプログラムメモリ 21 [0027] The monitoring device 2 has a program memory 21 for storing program data defining the processing procedure.
、監視制御処理部 22、入力部 23、ノ ッファメモリ 24、表示部 25およびセンタデータ ベース 26を備えている。 A monitoring control processing unit 22, an input unit 23, a nother memory 24, a display unit 25, and a center database 26.
[0028] 監視制御処理部 22は、各地震検知制御部 12から物件識別データ付きの S波検知 信号を受信すると、図 4に示す監視対象物件情報テーブル 26aに物件現在情報とし て記憶して表示する。 [0028] Upon receiving the S-wave detection signal with the property identification data from each earthquake detection control unit 12, the monitoring control processing unit 22 stores and displays the property current information in the monitored property information table 26a shown in FIG. To do.
[0029] 監視対象物件情報テーブル 26aは、表形式で表したもので、監視対象地域 (例え ば東京都、神奈川県、千葉県、埼玉県等)ごとに、対象物件識別データ、物件名(建 物名)、物件住所、物件現在情報、マーキングデータ等に項目分けし、各監視対象 物件 1,…から発報される物件現在情報を記録する。  [0029] The monitored property information table 26a is represented in a tabular format. For each monitored region (for example, Tokyo, Kanagawa, Chiba, Saitama, etc.), the target property identification data, property name (building) Item name), property address, property current information, marking data, etc., and record the current property information issued from each monitored property 1,….
[0030] 入力部 23は、各種データの入力や制御指令などを入力する。 [0030] The input unit 23 inputs various data and control commands.
[0031] ノ ッファメモリ 24は、各監視対象物件 1,…から送信されてくる物件識別データおよ び S波検知信号の他、例えば物件識別データと共に乗りかご力も送られてくる点検信 号、非常呼び信号など、様々なデータを一時的に記憶する。 [0031] In addition to the property identification data and S wave detection signal transmitted from each monitored property 1, ..., the nota memory 24, for example, an inspection signal, emergency power sent along with the property identification data, Various data such as call signals are temporarily stored.
[0032] 表示部 25は、図 4に示す監視対象物件情報テーブル 26aに記憶される物件情報 のうち、例えばマーキングデータを除 、た情報を表示する。 [0032] The display unit 25 displays information obtained by excluding, for example, marking data from the property information stored in the monitored property information table 26a shown in FIG.
[0033] 前記監視制御処理部 22は、 CPUで構成される。機能的には、図 5に示すように、 物件情報受信書込み部 221と、マーキング処理部 222と、物件情報表示部 223とを 有する。 [0033] The monitoring control processing unit 22 includes a CPU. Functionally, as shown in FIG. 5, the property information receiving / writing unit 221, the marking processing unit 222, and the property information display unit 223 are provided.
[0034] 物件情報受信書込み部 221は、各地震検知制御部 12から物件識別データ付きの S波検知信号を受け取ると、センタデータベース 26に格納されている監視対象物件 情報テーブル 26aから監視対象物件名を特定し、当該物件名に対応する物件現在 情報エリアにエレベータ停止データを書き込む。 [0034] Upon receiving the S-wave detection signal with the property identification data from each earthquake detection control unit 12, the property information receiving / writing unit 221 receives the monitored property name from the monitored property information table 26a stored in the center database 26. The property corresponding to the property name Write elevator stop data in the information area.
[0035] マーキング処理部 222は、図 4に示す監視対象物件情報を表示するに際し、物件 現在情報の種別ごとにマーキングを施す処理を行う。ここで、物件現在情報の種別と は、例えばエレベータ停止、力ご閉じによる非常呼び、点検作業中、火災発生等々 である。物件情報表示部 223は、マーキングデータを除く監視対象物件情報を表示 部 25に表示する。  [0035] When the monitoring target property information shown in FIG. 4 is displayed, the marking processing unit 222 performs processing for marking each type of property current information. Here, the types of property current information include, for example, elevator stop, emergency call due to force closing, inspection work, fire, etc. The property information display unit 223 displays the monitored property information excluding marking data on the display unit 25.
[0036] 次に、以上のように構成された遠隔監視システムの動作について、図 6ないし図 8を 参照して説明する。  [0036] Next, the operation of the remote monitoring system configured as described above will be described with reference to FIGS.
[0037] 図 6は各監視対象物件 1,…におけるエレベータ制御装置 4の地震検知制御部 12 の動作手順を説明するためのフローチャートである。  FIG. 6 is a flowchart for explaining an operation procedure of the earthquake detection control unit 12 of the elevator control device 4 in each monitored object 1,.
[0038] 地震検知制御部 12は、常時、 P波地震センサ 15および S波地震センサ 16の出力 を取り込み、地震発生の有無を監視している。  [0038] The earthquake detection control unit 12 constantly takes in the outputs of the P-wave earthquake sensor 15 and the S-wave earthquake sensor 16 and monitors the occurrence of an earthquake.
[0039] すなわち、地震検知制御部 12は、 P波地震センサ 15から送られてくる P波信号を取 り込み (ステップ S1)、この信号レベルと P波レベル設定部 121の設定レベルとを比較 し、地震発生による P波を検知した力否かを判断する (ステップ S2)。ここで、受信信 号レベルが設定レベルに達していない場合には、ステップ S1に戻り、同様の処理を 繰り返し実行する。  [0039] That is, the earthquake detection control unit 12 takes in the P wave signal sent from the P wave earthquake sensor 15 (step S1), and compares this signal level with the setting level of the P wave level setting unit 121. Then, it is determined whether or not the force detected the P wave due to the occurrence of the earthquake (step S2). If the received signal level has not reached the set level, the process returns to step S1 and the same process is repeated.
[0040] また、受信信号レベルが設定レベルを越えたとき、地震検知制御部 12は、 P波を検 知したと判断し、運転制御部 11に対して管制運転モードを起動させるための信号を 送出する (ステップ S3)。これらステップ S1〜S3の処理は、図 2に示す管制運転起動 信号発生部 122に対応する。  [0040] When the received signal level exceeds the set level, the earthquake detection control unit 12 determines that a P wave has been detected, and outputs a signal for starting the control operation mode to the operation control unit 11. Send out (step S3). The processes in steps S1 to S3 correspond to the control operation start signal generator 122 shown in FIG.
[0041] 運転制御部 11は、地震検知制御部 12から管制運転モードの起動信号を受けると 、管制運転モードに切り替えて運転制御を行う。上述したように、管制運転モードとは 、乗りかごを最寄階まで運転した後、戸開して乗客を降ろし、戸閉して一時休止する モードである。そこで、運転制御部 11は、各エレベータ号機を最寄階に向けて運転 中、メッセージデータ設定部 14力もメッセージデータを読み出し、乗りかご内に発報 する。  When the operation control unit 11 receives the control operation mode start signal from the earthquake detection control unit 12, the operation control unit 11 switches to the control operation mode and performs operation control. As described above, the control operation mode is a mode in which, after driving the car to the nearest floor, the door is opened, the passenger is lowered, the door is closed, and the vehicle is paused. Therefore, the operation control unit 11 reads out the message data from the message data setting unit 14 while operating each elevator toward the nearest floor, and issues it to the car.
[0042] 具体的には、図 7 (a)に示すように、例えば「地震発生の可能性有り。最寄階に一 時休止します」といったメッセージを読み出し、各エレベータ号機の乗りかご内に設 置された音声発生器から音声出力するか、乗りかご内に設置された表示器に表示す る。このように、乗りかご内にメッセージを発報することにより、乗りかご内の乗客に降 車を促す効果がある。 Specifically, as shown in FIG. 7 (a), for example, “There is a possibility of an earthquake. Read the message “I will pause” and output the sound from the sound generator installed in the car of each elevator or display it on the display installed in the car. In this way, issuing a message in the car has the effect of prompting passengers in the car to get off.
[0043] 一方、地震検知制御部 12は、 P波検知後、 S波地震センサ 16から送られてくる信 号を取り込み (ステップ S4)、この信号レベルと S波レベル設定部 123の設定レベルと を比較し、地震発生による S波を検知した力否かを判断する (ステップ S5)。  [0043] On the other hand, after detecting the P wave, the earthquake detection control unit 12 takes in the signal sent from the S wave earthquake sensor 16 (step S4), and sets the signal level and the set level of the S wave level setting unit 123. Are compared to determine whether the force detected the S wave due to the occurrence of an earthquake (step S5).
[0044] ここで、受信信号レベルが設定レベルに達していない場合にはステップ S1に戻り、 同様の処理を繰り返し実行する。一方、受信信号レベルが設定レベルを越えた場合 には S波を検知したと判断し、運転制御部 11に対して運転停止指示信号を送出する (ステップ S6)。これらステップ S4〜S6の処理は、図 2に示すエレベータ停止指示信 号発生部 124に対応する。  Here, if the received signal level does not reach the set level, the process returns to step S1, and the same process is repeated. On the other hand, if the received signal level exceeds the set level, it is determined that an S wave has been detected, and an operation stop instruction signal is sent to the operation control unit 11 (step S6). The processes in steps S4 to S6 correspond to the elevator stop instruction signal generator 124 shown in FIG.
[0045] また、地震検知制御部 12は、 S波を検知すると、物件識別データ設定部 126から 物件識別データ「例えば 10001」を取り出し、 S波検知信号に付加して監視装置 2に 送信する (ステップ S 7)。  Further, when detecting the S wave, the earthquake detection control unit 12 takes out the property identification data “for example, 10001” from the property identification data setting unit 126, adds it to the S wave detection signal, and transmits it to the monitoring device 2 ( Step S 7).
[0046] すなわち、地震検知制御部 12は、 P波を検知した段階では監視装置 2に対して P 波検知の旨を送信せず、 S波検知と判断した段階で監視装置 2に対して S波検知信 号を送信する。これにより、通信回線 3の利用回数をほぼ半減させると共に、監視装 置 2側では少なくともエレベータが停止状態に入って 、ることを認識できる。このステ ップ S 7の処理は、図 2に示す地震検知信号送信部 125に対応する。  That is, the earthquake detection control unit 12 does not transmit the P wave detection effect to the monitoring device 2 when the P wave is detected, and does not transmit the S wave detection to the monitoring device 2 when it is determined that the S wave is detected. Send wave detection signal. As a result, the number of times the communication line 3 is used can be almost halved, and at the monitoring device 2 side, it can be recognized that at least the elevator is stopped. The processing in step S7 corresponds to the earthquake detection signal transmission unit 125 shown in FIG.
[0047] 前記運転制御部 11は、地震検知制御部 12からエレベータ停止信号を受けると、 各エレベータ号機に対して運転停止を行うと共に、メッセージデータ設定部 14からメ ッセージデータを読み出し、乗りかご内や各階乗場に発報する。  When the operation control unit 11 receives an elevator stop signal from the earthquake detection control unit 12, the operation control unit 11 stops the operation of each elevator and reads out message data from the message data setting unit 14, Report to each floor platform.
[0048] 具体的には、図 7 (b)に示すように「地震が発生しました。エレベータを停止させま す」と!ヽつたメッセージや、「地震発生のために〇階に停止中です」と!ヽつたメッセ一 ジを読み出し、各エレベータ号機の乗りかご内に設置された音声発生器力も音声出 力したり、各階乗場の表示器に表示する。このように各階乗場に待機中のエレベータ 利用者に対して、エレベータの運転状態を知らせることにより、冷静な行動を促す効 果がある。 [0048] Specifically, as shown in Fig. 7 (b), "An earthquake occurred. The elevator will be stopped!" Read the message and say “I am stopped on the 0th floor due to the occurrence of an earthquake”! Display on the hall indicator. In this way, the elevator users who are waiting at each floor hall are informed of the operating state of the elevator, thereby promoting the calm behavior. There are fruits.
[0049] このとき、監視センタ内の監視装置 2は次のような処理を実行する。  At this time, the monitoring device 2 in the monitoring center executes the following processing.
すなわち、監視装置 2の監視処理制御部 22は、各監視対象物件 1,…から送信さ れてくる物件識別データ付きの S波検知信号を取り込み、順次バッファメモリ 24に記 憶し、所定の処理を実行する。  That is, the monitoring processing control unit 22 of the monitoring device 2 takes in the S-wave detection signal with the property identification data transmitted from each monitored property 1,..., Stores it in the buffer memory 24 sequentially, and performs predetermined processing. Execute.
[0050] 図 8は監視装置 2の監視処理制御部 22の動作手順を説明するフローチャートであ る。 FIG. 8 is a flowchart for explaining the operation procedure of the monitoring process control unit 22 of the monitoring device 2.
[0051] 監視処理制御部 22は、プログラムメモリ 21のプログラムデータに従い、初期化処理 を行った後 (ステップ S11)、各監視対象物件 1,…からの物件情報 (物件識別データ 付き S波検知信号)を受信したか否かを判断する (ステップ S 12)。受信して!/、な!/、場 合には、受信待機状態となる。  [0051] After performing initialization processing according to the program data in the program memory 21 (Step S11), the monitoring processing control unit 22 performs property information from each monitored property 1, ... (S wave detection signal with property identification data) ) Is received or not (step S12). If it is received! /, N! /, It will be in reception standby status.
[0052] 一方、物件情報を受信した場合には、監視処理制御部 22は、当該物件情報の物 件識別データ(例えば 10001)に基づき、図 4に示す監視対象物件情報テーブル 26 aの対象物件識別データを参照し、物件名「X X Aビル」を特定する。そして、この物 件名に対応する物件現在情報エリアに、 S波検知信号に基づくエレベータ停止中「 物件現在情報種別 01」を書き込む (ステップ S 13)。これらステップ S 12, S 13の処理 は、図 5に示す物件情報受信書込み部 221に対応する。  [0052] On the other hand, when the property information is received, the monitoring processing control unit 22 uses the property identification data (for example, 10001) of the property information to display the property to be monitored in the property information table 26a to be monitored shown in FIG. Referring to the identification data, specify the property name “XXA Building”. Then, “Property current information type 01” is written in the property current information area corresponding to the subject name while the elevator is stopped based on the S wave detection signal (step S13). The processes in steps S12 and S13 correspond to the property information reception / writing unit 221 shown in FIG.
[0053] 引き続き、監視処理制御部 22は、物件現在情報の書込み後、マーキング処理を行 うか否かを判断する (ステップ S 14)。ここで、マーキング処理を行うと判断した場合に は、マーキングデータエリアのマーキングデータに基づき、該当物件名に対応する監 視対象物件情報に対してマーキング処理を施す (ステップ S 15)。  [0053] Subsequently, the monitoring process control unit 22 determines whether or not to perform the marking process after writing the property current information (step S14). If it is determined that the marking process is to be performed, the marking process is performed on the property information to be monitored corresponding to the corresponding property name based on the marking data in the marking data area (step S15).
[0054] マーキング処理とは、各監視対象物件 1,…が現在どのような状態になっているか を一目で認識できるようにするための処理である。例えば現在エレベータ停止中なの 力 かご閉じ込めによる非常呼びの状態なのかを認識可能にさせるものである。逆に 、マーキングが施されていない場合には、予め設定させる原因に該当せずに正常な 運転状態にあることを把握できる。これらステップ S 14, S 15の処理は、図 5に示すマ 一キング処理部 222に対応する。  The marking process is a process for making it possible to recognize at a glance what state each of the monitored objects 1,. For example, it makes it possible to recognize whether the elevator is currently stopped or the emergency call is due to the car being trapped. On the other hand, when no marking is given, it is possible to grasp that the vehicle is in a normal operating state without corresponding to the cause to be set in advance. The processes in steps S14 and S15 correspond to the marking processing unit 222 shown in FIG.
[0055] 監視処理制御部 22は、マーキング処理を施した後、図 4に示す監視対象物件情報 テーブル 26aの物件情報のうち、マーキングデータを除く監視対象物件情報を順次 読み出して表示部 25に表示する(ステップ S16)。このステップ S16の処理は図 5に 示す物件情報表示部 223に対応する。そして、監視対象物件を表示した後、監視処 理制御部 22は、継続表示する力否かを判断する (ステップ S17)。継続表示する場 合には、ステップ S12に戻り、同様の処理を繰り返し実行する。 [0055] After performing the marking process, the monitoring process control unit 22 performs monitoring target property information shown in FIG. Of the property information in Table 26a, the monitored property information excluding the marking data is sequentially read and displayed on the display unit 25 (step S16). The processing in step S16 corresponds to the property information display unit 223 shown in FIG. Then, after displaying the property to be monitored, the monitoring processing control unit 22 determines whether or not it is a power to continuously display (Step S17). If the display is to be continued, return to step S12 and repeat the same process.
[0056] 以上のように本実施形態では、次のような効果を奏する。  [0056] As described above, this embodiment has the following effects.
地震発生時に P波と S波が発生する力 従来は各地震センサ 15, 16で検知した P 波検知信号及び S波検知信号を両方とも監視装置 2に送信していた。しかし、広域に わたって点在する各監視対象物件 1,…から一斉に上記検知信号が通信回線 3に送 り込まれた場合、監視装置 2に接続される通信回線 3はパンク状態となる。  Force that P and S waves are generated when an earthquake occurs Previously, both the P wave detection signal and the S wave detection signal detected by each of the seismic sensors 15 and 16 were transmitted to the monitoring device 2. However, if the above detection signals are sent to the communication line 3 all at once from the monitored objects 1,... Scattered over a wide area, the communication line 3 connected to the monitoring device 2 is in a punctured state.
[0057] これに対し、本実施形態における遠隔監視システムでは、 P波を検知したとき、管制 運転モードの起動信号だけを運転制御部 11に送出し、監視装置 2への送信は行わ ない。その後に S波を検知したときに、 S波検知信号を監視装置 2に送信する。これに より、通信回線 3に対する利用回数がほぼ半減し、その減少分に相当する通信回線 3の利用を地震発生以外の他の監視対象物件 1,…からの物件情報に振り分けるこ とができる。その結果、地震発生時であっても、地震発生地域外の地域に点在する 監視対象物件 1,…に関する様々な物件情報を確実に受信できる。このことは、地震 以外の非常に重要な物件情報も確実に監視でき、現場に迅速に保守員を出動させ ることを意味する。  On the other hand, in the remote monitoring system according to the present embodiment, when the P wave is detected, only the activation signal for the control operation mode is sent to the operation control unit 11 and is not transmitted to the monitoring device 2. After that, when the S wave is detected, the S wave detection signal is transmitted to the monitoring device 2. As a result, the number of uses for the communication line 3 is almost halved, and the use of the communication line 3 corresponding to the decrease can be distributed to the property information from other monitored properties 1, ... other than the occurrence of the earthquake. As a result, even when an earthquake occurs, it is possible to reliably receive various property information related to the monitored properties 1, ... scattered in areas outside the earthquake occurrence area. This means that very important property information other than earthquakes can be reliably monitored, and maintenance personnel are dispatched to the site quickly.
[0058] また、この遠隔監視システムは、監視装置 2が物件現在情報の種別に基づいて各 監視対象物件 1,…ごとにマーキングを施して表示する。これにより、各監視対象物 件 1,…が現在どのような状態にあるのか一目で認識でき、各監視対象物件 1,…ご とに当該物件の状況に応じた保守用具等を持参の上、保守員を出動させることがで きる。つまり、迅速に保守作業を進めることが可能となる。  [0058] In addition, in this remote monitoring system, the monitoring device 2 performs marking for each monitored object 1,... Based on the type of the current property information. As a result, it is possible to recognize at a glance what the status of each monitored object 1, ... is currently, and bring each maintenance object, etc. according to the status of each monitored property 1, ... Maintenance personnel can be dispatched. That is, it becomes possible to proceed with maintenance work quickly.
[0059] (第 2の実施形態)  [0059] (Second Embodiment)
次に、本発明の第 2の実施形態について説明する。  Next, a second embodiment of the present invention will be described.
第 2の実施形態は、広範囲の地域にわたる監視対象物件 1,…を監視する場合、あ るいは、各監視対象地域 (例えば東京都、神奈川県等)ごとに多数の監視対象物件 1,…を有する遠隔監視システムに有効な構成を実現することにある。 In the second embodiment, when monitoring monitored objects 1,... Over a wide area, or a large number of monitored objects in each monitored area (for example, Tokyo, Kanagawa Prefecture, etc.). It is to realize an effective configuration for a remote monitoring system having 1,.
[0060] 図 3を参照して説明する。  [0060] This will be described with reference to FIG.
監視センタ内に複数の監視装置 2,…が設置されている。各監視装置 2は、監視対 象地域ごとに多数の監視対象物件 1,…を有するため、各監視対象地域に分けて、 分散的に監視を行う。つまり、ある監視装置 2は東京都地域を監視し、別の監視装置 2は神奈〗 11県地域を監視する。  Multiple monitoring devices 2, ... are installed in the monitoring center. Since each monitoring device 2 has a large number of monitored objects 1,... In each monitored area, monitoring is performed in a distributed manner in each monitored area. That is, one monitoring device 2 monitors the Tokyo area, and another monitoring device 2 monitors the Kanagawa 11 prefecture area.
[0061] ここで、第 2の実施形態では、内部ネットワーク (LAN等) 31に各監視装置 2,…を 分散配置する。また、内部ネットワーク 31には表示用コンピュータ 32を介して大型表 示ボード 33が接続される。表示用コンピュータ 32は、各監視装置 2,…から転送され てくる監視対象物件情報を監視対象地域別に並べて大型表示ボード 33に表示する  Here, in the second embodiment, the monitoring devices 2... Are distributed in the internal network (LAN etc.) 31. A large display board 33 is connected to the internal network 31 via a display computer 32. The display computer 32 displays the monitored property information transferred from each of the monitoring devices 2,... On the large display board 33 in accordance with the monitored region.
[0062] よって、各監視装置 2には個別的に表示部 25が設けられているが、地震発生時に は広域に被害を及ぼすことから、全体の監視装置 2,…は大型表示ボード 33を利用 することを可能とする。 [0062] Therefore, each monitoring device 2 is provided with an individual display unit 25. However, the entire monitoring device 2,... It is possible to do.
[0063] 図 9は、カゝかる遠隔監視システムにおける各監視装置 2の内部構成を示す機能プロ ック図である。  FIG. 9 is a functional block diagram showing the internal configuration of each monitoring device 2 in the remote monitoring system.
[0064] 各監視装置 2は、物件情報受信書込み部 221、マーキング処理部 222、物件情報 表示部 223を有する他、新たに特定物件抽出表示部 224および特定物件全件転送 部 225を備えている。なお、物件情報受信書込み部 221、マーキング処理部 222、 物件情報表示部 223については、図 5と同様のため、その説明は省略する。  [0064] Each monitoring device 2 includes a property information reception / writing unit 221, a marking processing unit 222, a property information display unit 223, and a specific property extraction / display unit 224 and a specific property all-cases transfer unit 225. . The property information receiving / writing unit 221, the marking processing unit 222, and the property information display unit 223 are the same as those in FIG.
[0065] 特定物件抽出表示部 224は、図 4に示す監視対象物件情報テーブル 26aの物件 情報の中から特定の物件現在情報 (例えばエレベータ停止中「01」)を抽出する。特 定物件全件転送部 225は、抽出されたすベての監視対象物件情報を内部ネットヮー ク 31に転送し、表示用コンピュータ 32を介して大型表示ボード 33に表示する。  The specific property extraction display unit 224 extracts specific property current information (for example, “01” when the elevator is stopped) from the property information in the monitored property information table 26a shown in FIG. The transfer section 225 for the transfer of all specified properties transfers all the monitored property information extracted to the internal network 31 and displays it on the large display board 33 via the display computer 32.
[0066] 次に、このような構成の監視装置 2の動作について説明する。  Next, the operation of the monitoring device 2 having such a configuration will be described.
図 10は本発明の他の実施形態における監視装置 2の動作を説明するためのフロ 一チャートである。なお、図中のステップ S11〜S16については、既に図 8で説明し ているので省略する。 [0067] 監視装置 2の監視処理制御部 22は、表示部 25に監視対象物件情報を表示した後 、物件現在情報のうち、エレベータ停止中の種別の物件現在情報を表示する力否か を判断する (ステップ S21)。例えば、地震発生時には地震の影響を受けている監視 対象物件だけを表示したい要求があり、また、地震発生以外の場合にはかご内閉じ 込めの非常呼びを表示したい場合がある。 FIG. 10 is a flowchart for explaining the operation of the monitoring device 2 according to another embodiment of the present invention. Steps S11 to S16 in the figure have already been described with reference to FIG. [0067] After displaying the monitored property information on the display unit 25, the monitoring processing control unit 22 of the monitoring device 2 determines whether or not the present property information has the power to display the current property information of the type where the elevator is stopped. (Step S21). For example, when there is an earthquake, there is a request to display only the monitored property that is affected by the earthquake, and there are cases where it is desirable to display an emergency call for confining the car in cases other than an earthquake.
[0068] そこで、監視員は、入力部 23からエレベータ停止を表すデータ「01」および物件抽 出指示を入力する。監視処理制御部 22は、データ「01」を有する物件抽出指示を受 けると、エレベータ停止中の種別の物件現在情報を表示するものと判断する。そして 、エレベータ停止中の物件情報だけを抽出し (ステップ S22)、表示部 25に表示する (ステップ S23)。  Therefore, the monitoring person inputs data “01” indicating the elevator stop and the property extraction instruction from the input unit 23. When receiving the property extraction instruction having the data “01”, the monitoring process control unit 22 determines to display the current property information of the type where the elevator is stopped. Then, only the property information when the elevator is stopped is extracted (step S22) and displayed on the display unit 25 (step S23).
[0069] なお、特定の物件現在情報種別の抽出は、エレベータ停止中に限らないことは前 述した通りである。これらステップ S21〜S23の処理は、図 9に示す特定物件抽出表 示部 224に対応する。  [0069] As described above, the extraction of the specific property current information type is not limited to when the elevator is stopped. The processes in steps S21 to S23 correspond to the specific property extraction display unit 224 shown in FIG.
[0070] 引き続き、監視処理制御部 22は、表示用コンピュータ 32に転送する力否かを判断 する (ステップ S24)。ここで、予め設定されたフラグあるいは入力部 23から転送指示 入力があれば、抽出物件情報を転送すると判断し、エレベータ停止中に関する図 4 に示す全部の監視対象物件情報を表示用コンピュータ 32に転送する (ステップ S 25 , S26) 0これらステップ S24〜S26の処理は、図 9に示す特定物件全件転送部 225 に対応する。 [0070] Subsequently, the monitoring processing control unit 22 determines whether or not the power is to be transferred to the display computer 32 (step S24). Here, if there is a preset flag or a transfer instruction input from the input unit 23, it is determined that the extracted property information is to be transferred, and all the monitored property information shown in FIG. 4 relating to when the elevator is stopped is transferred to the display computer 32. Yes (Steps S 25, S 26) 0 The processes in steps S 24 to S 26 correspond to the specific property all-case transfer unit 225 shown in FIG.
[0071] 表示用コンピュータ 32は、各監視装置 2,…から特定の監視対象物件情報を受け ると、物件情報種別ごとおよび監視対象地域ごとに整順し、大型表示ボード 33に表 示する。このとき、物件情報種別ごとに分けて交互にサイクリックに表示することがで きる。  When the display computer 32 receives specific monitored object information from each of the monitoring devices 2,..., The display computer 32 arranges the information for each property information type and each monitored area and displays the information on the large display board 33. At this time, it can be displayed cyclically alternately for each property information type.
[0072] 以上のように、本実施形態によれば、監視員が必要とする物件種別の監視対象物 件情報だけを抽出して表示部 25に表示するので、各地域ごとにエレベータの停止状 態を直ちに把握できる。また、どのエリアに地震発生によるエレベータ停止が多いの 力などを容易に把握でき、保守員を出動させるときの人数を含めて対策を講じること ができる。 [0073] また、監視員が必要とする物件種別の監視対象物件情報だけを抽出し、大型表示 ボード 33に表示させることにより、特定の地域を監視する監視員は、他の地域の地 震によるエレベータの状態を容易に把握できる。 [0072] As described above, according to the present embodiment, only the monitoring object condition information of the property type required by the observer is extracted and displayed on the display unit 25. Immediately understand the condition. In addition, it is possible to easily grasp in which area the elevator stops frequently due to the occurrence of an earthquake, and to take measures including the number of personnel when dispatching maintenance personnel. [0073] Also, by extracting only the monitored property information of the property type required by the observer and displaying it on the large display board 33, the observer who monitors a specific area can be affected by earthquakes in other areas. Elevator status can be easily grasped.
[0074] (その他の実施形態)  [0074] (Other Embodiments)
(1)上記各実施形態では、 P波用と S波用の地震センサ 15, 16に分けたが、 1つの 地震センサで共用してもよい。また、 P波レベル設定部 121と S波レベル設定部 123 に分けて設けたが、 1つのレベル設定部に P波用と S波用のレベルを設定してもよい  (1) In the above embodiments, the seismic sensors 15 and 16 for P wave and S wave are divided. However, one seismic sensor may be shared. In addition, although the P wave level setting unit 121 and the S wave level setting unit 123 are provided separately, the level for the P wave and the S wave may be set in one level setting unit.
[0075] (2)図 4に示す監視対象物件情報テーブル 26aの物件情報は、表示部 25に表形 式で表示するための情報配列例である。例えば監視対象地域の地図表示画面に監 視対象物件を表示したい場合には、各物件名ごとに新たに緯度'経度情報を追加す れば、実現できる。 (2) The property information in the monitored property information table 26a shown in FIG. 4 is an example of an information array for display on the display unit 25 in a table format. For example, if you want to display a property to be monitored on the map display screen of the region to be monitored, this can be realized by adding latitude and longitude information for each property name.
[0076] (3)上記各実施形態では、エレベータの遠隔監視を例にとって説明した力 エス力 レータなどの他の昇降機設備や、その他あらゆる遠隔監視対象となり得る物件や機 器に適用できる。  [0076] (3) In each of the above embodiments, the present invention can be applied to other elevator equipment such as a force estimator described by taking remote monitoring of an elevator as an example, and any other property or equipment that can be remotely monitored.
[0077] その他、本発明は上記各実施形態に限定されるものでなぐその要旨を逸脱しない 範囲で種々変形して実施できる。  [0077] In addition, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention.
産業上の利用可能性  Industrial applicability
[0078] 本発明によれば、地震発生時に通信回線の利用回数を確保でき、監視性能を維 持することのできる遠隔監視システムを提供できる。 According to the present invention, it is possible to provide a remote monitoring system that can secure the number of times a communication line is used when an earthquake occurs and can maintain monitoring performance.

Claims

請求の範囲 The scope of the claims
[1] 地震発生時に時間差をもって伝播する第 1および第 2の信号を検知する地震セン サと、  [1] An earthquake sensor that detects the first and second signals propagating with a time difference when an earthquake occurs;
この地震センサによって前記第 1の信号が検知されたときに昇降機の管制運転モ ードを起動させるための切替え信号を運転制御部に送出する管制運転起動信号発 生部と、前記地震センサによって前記第 2の信号が検知されたときに上記昇降機の 停止指示信号を前記運転制御部に送出する停止指示信号発生部と、前記第 2の信 号が検知された時点で前記地震センサの検知信号を通信回線を介して送信する地 震検知信号送信部とを備えた監視対象物件の地震検知制御部と、  When the first signal is detected by the seismic sensor, a control operation start signal generating unit for sending a switching signal for starting the control operation mode of the elevator to the operation control unit, and the earthquake sensor When the second signal is detected, a stop instruction signal generation unit that sends a stop instruction signal of the elevator to the operation control unit; and when the second signal is detected, the detection signal of the earthquake sensor A seismic detection control unit for a monitored property having a seismic detection signal transmission unit for transmitting via a communication line;
前記通信回線に接続され、前記地震検知制御部から送信されてくる前記地震セン サの検知信号を受信する監視装置と  A monitoring device connected to the communication line and receiving a detection signal of the earthquake sensor transmitted from the earthquake detection control unit;
を具備したことを特徴とする遠隔監視システム。  A remote monitoring system comprising:
[2] 前記監視装置は、 [2] The monitoring device includes:
前記監視対象物件の物件名を含む所定の監視対象物件情報をテーブル化して記 憶する記憶部と、  A storage unit that stores predetermined monitoring target property information including the property name of the monitoring target property in a table;
前記地震センサの検知信号を受信した際に、該当する物件名に対応付けて物件 現在情報を上記記憶手段に書き込む物件情報受信書込み部と、  When receiving the detection signal of the earthquake sensor, the property information reception writing unit that writes the property current information in the storage means in association with the corresponding property name;
この物件情報受信書込み部によって書き込まれた物件現在情報の種別に応じてマ 一キング処理を施すマーキング処理部と、  A marking processing unit that performs a marking process according to the type of the property current information written by the property information receiving / writing unit;
このマーキング処理部によるマーキング処理後の物件現在情報を含む監視対象物 件情報を表示する物件情報表示部と  The property information display unit that displays the monitored object information including the current property information after the marking processing by the marking processing unit;
を備えたことを特徴とする請求項 1記載の遠隔監視システム。  The remote monitoring system according to claim 1, further comprising:
[3] 前記監視装置は、 [3] The monitoring device includes:
前記物件情報表示部によって監視対象物件情報を表示した後、前記物件現在情 報の種別に基づいて特定の監視対象物件情報だけを抽出して表示する特定物件抽 出表示部をさらに備えたことを特徴とする請求項 2記載の遠隔監視システム。  After the monitored property information is displayed by the property information display unit, a specific property extraction display unit that extracts and displays only specific monitored property information based on the type of the current property information is further provided. 3. The remote monitoring system according to claim 2, wherein
PCT/JP2006/321251 2005-10-31 2006-10-25 Remote monitoring system WO2007052511A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800406540A CN101300185B (en) 2005-10-31 2006-10-25 Remote monitoring system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005317640A JP4907150B2 (en) 2005-10-31 2005-10-31 Remote monitoring system
JP2005-317640 2005-10-31

Publications (1)

Publication Number Publication Date
WO2007052511A1 true WO2007052511A1 (en) 2007-05-10

Family

ID=38005662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321251 WO2007052511A1 (en) 2005-10-31 2006-10-25 Remote monitoring system

Country Status (3)

Country Link
JP (1) JP4907150B2 (en)
CN (1) CN101300185B (en)
WO (1) WO2007052511A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101663220B (en) * 2007-08-30 2013-04-24 三菱电机株式会社 Control operation system of elevator
JP2014240315A (en) * 2013-06-11 2014-12-25 株式会社日立ビルシステム Remote monitoring system for elevator
JP2015124017A (en) * 2013-12-25 2015-07-06 株式会社日立ビルシステム Remote monitoring system for elevator
US10882717B2 (en) 2017-10-02 2021-01-05 Otis Elevator Company Elevator network for emergency operation

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5014623B2 (en) * 2005-12-12 2012-08-29 三菱電機株式会社 Seismic control operation system for elevator and earthquake control operation method for elevator
JP4924254B2 (en) * 2007-07-12 2012-04-25 三菱電機ビルテクノサービス株式会社 Elevator earthquake response operation device
JP5064966B2 (en) * 2007-10-23 2012-10-31 株式会社産業機電 Apartment house intercom system
JP5408599B2 (en) * 2007-10-31 2014-02-05 東芝エレベータ株式会社 Elevator call system
CN101770681B (en) * 2009-01-04 2014-01-15 许金聪 Household earthquake early warning system
JP5502376B2 (en) * 2009-06-17 2014-05-28 東芝エレベータ株式会社 Wide area disaster communication system and communication method
CN101774499B (en) * 2009-10-19 2013-06-05 秦皇岛开发区前景电子科技有限公司 Elevator management system, method and matched elevator management mainboard
JP2011105412A (en) * 2009-11-13 2011-06-02 Hitachi Ltd Elevator
JP5483707B2 (en) * 2010-03-19 2014-05-07 東芝エレベータ株式会社 Elevator automatic diagnostic equipment
JP5483708B2 (en) * 2010-03-19 2014-05-07 東芝エレベータ株式会社 Elevator automatic diagnostic equipment
JP5492732B2 (en) * 2010-10-21 2014-05-14 株式会社日立製作所 Electronic safety elevator
CN102849555B (en) * 2012-09-21 2015-07-15 日立电梯(中国)有限公司 High-accuracy earthquake management and control method and system based on cloud computing
CN103680072A (en) * 2013-12-17 2014-03-26 广东省特种设备检测研究院 Earthquake early warning device and method used for elevator
CN103956029B (en) * 2014-05-19 2016-09-21 车小月 A kind of high-sensitive multifunction earthquake alarming device
CN104092727B (en) * 2014-06-12 2018-10-19 中国石油集团东方地球物理勘探有限责任公司 A kind of seismic instrument remote support system and method based on 3G Virtual Private Network
KR102318703B1 (en) * 2014-08-04 2021-10-28 인벤티오 아게 Energy-autonomous elevator system control element, and elevator system comprising a control element of said type
JP6222162B2 (en) * 2015-04-20 2017-11-01 三菱電機ビルテクノサービス株式会社 Elevator apparatus and elevator restoration method
CN105185045B (en) * 2015-09-29 2017-11-28 北京立合泰科电气技术有限公司 Portable region multipoint wireless aftershock early warning and alarm device
CN109952261B (en) * 2016-11-10 2020-10-30 三菱电机株式会社 Elevator system
JP6694602B2 (en) * 2017-07-11 2020-05-20 フジテック株式会社 Automatic guidance system
JP7205679B1 (en) * 2021-03-19 2023-01-17 三菱電機ビルソリューションズ株式会社 Elevator remote monitoring device
JP7226478B2 (en) * 2021-06-30 2023-02-21 フジテック株式会社 DRIVING STATUS DISPLAY SYSTEM, CONTROL METHOD AND PROGRAM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159674U (en) * 1983-04-13 1984-10-26 株式会社日立製作所 Elevator earthquake control operation device
JPH03106777A (en) * 1989-09-20 1991-05-07 Mitsubishi Electric Corp Revone monitoring device for elevator
JPH11314865A (en) * 1998-05-07 1999-11-16 Hitachi Ltd Operation forcast method of elevator recovery support system and earthquake sensor, damage analyzing system, and management and operation control device in earthquake

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159674A (en) * 1983-02-28 1984-09-10 Mitsubishi Electric Corp Inverter device
JP2004112271A (en) * 2002-09-18 2004-04-08 Mitsubishi Electric Corp Remote monitoring system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59159674U (en) * 1983-04-13 1984-10-26 株式会社日立製作所 Elevator earthquake control operation device
JPH03106777A (en) * 1989-09-20 1991-05-07 Mitsubishi Electric Corp Revone monitoring device for elevator
JPH11314865A (en) * 1998-05-07 1999-11-16 Hitachi Ltd Operation forcast method of elevator recovery support system and earthquake sensor, damage analyzing system, and management and operation control device in earthquake

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101663220B (en) * 2007-08-30 2013-04-24 三菱电机株式会社 Control operation system of elevator
JP2014240315A (en) * 2013-06-11 2014-12-25 株式会社日立ビルシステム Remote monitoring system for elevator
JP2015124017A (en) * 2013-12-25 2015-07-06 株式会社日立ビルシステム Remote monitoring system for elevator
US10882717B2 (en) 2017-10-02 2021-01-05 Otis Elevator Company Elevator network for emergency operation

Also Published As

Publication number Publication date
CN101300185A (en) 2008-11-05
JP2007119240A (en) 2007-05-17
JP4907150B2 (en) 2012-03-28
CN101300185B (en) 2012-09-05

Similar Documents

Publication Publication Date Title
WO2007052511A1 (en) Remote monitoring system
JP5205754B2 (en) Building monitoring system
US10955573B2 (en) Multi facility earthquake automation system and method
KR100948360B1 (en) Method for remote intervention of elevator
JP6018898B2 (en) Building safety management system
JP2009046263A (en) Earthquake controlled operation system of elevator
JP2004224469A (en) Control operation system of elevator when earthquake occurs
JP2007238202A (en) Maintenance/inspection management system
JP2007119218A (en) Earthquake sensor remote release system of elevator
WO2006016405A1 (en) Elevator monitoring system
JP2002316780A (en) Operation report system used when earthquake occurs
JP2009298546A (en) Control system for elevator
JP5041727B2 (en) Elevator earthquake monitoring control device and its earthquake monitoring control system
JP2010228877A (en) Earthquake time monitoring system of elevator
JPH107337A (en) Restoration supporting system for elevator
JP4951397B2 (en) Earthquake reporting method and system
JP2598248B2 (en) Elevator remote monitoring system
Okada et al. Application of earthquake early warning system to seismic-isolated buildings
JP2017165555A (en) Elevator maintenance management system and elevator maintenance management method
JP2008247553A (en) Elevator monitoring system and communication device, and portable terminal device for rescue
JP5473375B2 (en) Earthquake monitoring control system
JPH07334778A (en) Maintenance monitor device
JP2008180514A (en) Device, system and method for recording tectonic shake data
JP2023030583A (en) elevator system
JP2002321881A (en) Elevator failure data remote gathering device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680040654.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822228

Country of ref document: EP

Kind code of ref document: A1