WO2007049382A1 - High-frequency module - Google Patents

High-frequency module Download PDF

Info

Publication number
WO2007049382A1
WO2007049382A1 PCT/JP2006/312896 JP2006312896W WO2007049382A1 WO 2007049382 A1 WO2007049382 A1 WO 2007049382A1 JP 2006312896 W JP2006312896 W JP 2006312896W WO 2007049382 A1 WO2007049382 A1 WO 2007049382A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
transmission line
substrate
frequency
impedance
Prior art date
Application number
PCT/JP2006/312896
Other languages
French (fr)
Japanese (ja)
Inventor
Yuya Dokai
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Publication of WO2007049382A1 publication Critical patent/WO2007049382A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters

Definitions

  • the present invention relates to a high-frequency module used in a high-frequency circuit such as a mobile phone, and more particularly to a high-frequency module that includes a high-frequency element and an RF circuit unit and is integrated.
  • a high-frequency module including a high-frequency element and a high-frequency circuit portion connected to the high-frequency element.
  • various circuits in which a bandpass filter is connected to a high-frequency element have been proposed.
  • Patent Document 1 discloses an LC filter using a line connected to an antenna.
  • FIG. 25 is a perspective view schematically showing the filter described in Patent Document 1. As shown in FIG.
  • a plurality of dielectric substrates 102 to 106 are laminated via metal base plates 107 to L10.
  • via metal patches 111 to 113 are arranged in the slots 107a to 109a so as not to contact the metal ground planes 107 to 109.
  • the via hole electrode 114 is provided so as to penetrate the portion where the above-mentioned slots 107a to l10a are provided so as to penetrate the laminated body formed by laminating the dielectric substrates 102 to 106! ing.
  • the via hole electrode 114 is electrically connected to the via metal patches 111 to 113.
  • the upper end of the via-hole electrode 114 is electrically connected to the microstrip line 115.
  • the microstrip line 115 is formed on the upper surface of the dielectric substrate 106 and is electrically connected to the antenna element.
  • the lower end of the via-hole electrode 114 is electrically connected to the microstrip line 116 on the lower surface of the dielectric substrate 102.
  • the microstrip line 116 is electrically connected to the high frequency circuit part.
  • the via hole electrode 114 that is, the inductivity of the line, and the via metal patch 111.
  • the filter 101 is configured by using a line portion that connects an antenna and a high-frequency circuit to which the antenna is connected. Therefore, the high-frequency module including the filter can be downsized. It is possible to plan.
  • Patent Document 1 JP 2000-101377 A
  • An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to reduce the amount of attenuation that can be achieved simply by configuring an LC filter using a line portion formed by connecting a high-frequency element and a high-frequency circuit. It is an object of the present invention to provide a high-frequency module that can be reduced in size, can suppress spuriouses effectively, and can be easily manufactured.
  • an RF circuit unit, a high frequency element, and a line connecting the RF circuit unit and the high frequency element are provided, and the stray capacitance of the line force is connected to a ground potential.
  • the high-frequency element and the transmission line one end connected to the high-frequency element, one end connected to the transmission line, and the other end to the R A wiring line connected to an F circuit, wherein the transmission line is provided on the second substrate, the impedance of the transmission line being lower than the impedance of the wiring line, and the transmission line
  • An input impedance viewed from the wiring line side is set higher than an input impedance viewed from the high-frequency element side force of the transmission line.
  • a ratio of an input impedance viewed from the high frequency element side of the transmission line to an input impedance viewed from the wiring line side of the transmission line is 0.63 or less.
  • an input impedance of the wiring line viewed from the RF circuit side is set lower than an input impedance of the wiring line viewed from the transmission line side.
  • the transmission line is a coplanar line.
  • the transmission line is configured by a strip line, and a ground electrode is disposed above and below the portion where the strip line is provided.
  • the high-frequency element includes:
  • the high-frequency element is
  • the transmission line is mounted at a position shifted from the center of the first substrate, and one end of the transmission line is connected to a portion where the high-frequency element is mounted.
  • the high-frequency element is an antenna element.
  • a high-frequency element is provided on the second substrate, an RF circuit unit is provided on the first substrate, and a line connecting the high-frequency element and the RF circuit
  • the path includes a transmission line having one end connected to the high-frequency element, and a wiring line having one end connected to the transmission line and the other end connected to the RF circuit.
  • the impedance of the transmission line is made lower than the impedance of the wiring line, and the input line seen from the wiring line side of the transmission line. Since the impedance is higher than the input impedance seen from the high-frequency element side of the transmission line, the LC filter is configured using L by the wiring line and the capacitance of the transmission line. Therefore, a bandpass filter composed of an LC filter can be configured using the high-frequency module line itself, and the miniaturization of the high-frequency module can be promoted.
  • the transmission force has a capacitive characteristic of the transmission line due to the inductivity of the wiring line and the input impedance viewed from the wiring line side of the transmission line higher than the input impedance viewed from the high-frequency element side force.
  • the manufacturing force can be easily manufactured.
  • the attenuation is further increased. be able to.
  • the transmission line is a coplanar line
  • a planar coplanar line can be easily formed on the second substrate, and around the coplanar line on the main surface of the second substrate.
  • a large ground pattern can be formed, whereby the characteristics of the high-frequency device can be further improved.
  • the transmission line is provided with a strip line provided in the second substrate and the ground electrodes are arranged above and below the strip line, the strip line can be electromagnetically shielded by the ground. As a result, the filter characteristics can be further stabilized.
  • the second substrate is included. Therefore, the mechanical strength of the entire high-frequency module can be increased, and the module characteristics can be stabilized even in an environment such as an impact.
  • the transmission line connected to the high frequency element can be lengthened, whereby the transmission line and The L part of the line including the wiring line can be increased. Therefore, the amount of attenuation can be further increased, and spurious can be more effectively suppressed.
  • the antenna element When the high-frequency element is an antenna element, the antenna element emits a strong radio wave.
  • the antenna element can be easily shielded from other components. Therefore, it is possible to obtain a high-frequency module with less interference between the antenna element and other components. Furthermore, it is preferable to arrange an antenna element at the center of the ground electrode because the antenna characteristics can be further improved.
  • FIG. 1 is a partially cutaway perspective view showing a main part of a high-frequency module according to an embodiment of the present invention.
  • FIG. 2 is a front cross-sectional view of a high-frequency module according to an embodiment of the present invention.
  • FIG. 3 is a plan view of a second substrate in the high-frequency module according to one embodiment of the present invention.
  • FIG. 4 is a plan view for explaining a frame-like member provided on the first substrate in the high-frequency module of one embodiment of the present invention.
  • FIG. 5 is a diagram showing a transmission circuit of a filter configured in an embodiment of the present invention.
  • FIG. 6 is a schematic exploded perspective view for explaining a modification of the transmission line.
  • FIG. 7 is a schematic plan view of a second substrate for explaining another modification of the transmission line.
  • FIGS. 8 (a) and 8 (b) are diagrams showing the pass characteristics of a single wiring line in an experimental example of the high-frequency module of the embodiment and an enlarged view of the main part of the pass characteristics.
  • FIGS. 9 (a) and 9 (b) show the reflection characteristics S 11 and the reflection characteristics viewed from the transmission line side of the single RF circuit side wiring line of the high-frequency module in one embodiment of the present invention. Show 22 It is a figure.
  • FIGS. 10 (a) and 10 (b) show the reflection characteristic S11 as seen from the RF circuit side of the wiring line alone of the high-frequency module in one embodiment of the present invention and the reflection characteristic as seen from the transmission line side. It is a Smith chart which shows.
  • FIG. 11 is a schematic perspective view for explaining the specifications of a coplanar line.
  • FIGS. 12 (a) and 12 (b) are enlarged views showing the pass characteristic of the low-pass filter of the first experimental example and the main part of the pass characteristic.
  • FIGS. 13 (a) and 13 (b) are diagrams showing a reflection characteristic S11 viewed from the RF circuit side and a reflection characteristic S22 viewed from the antenna element side of the low-pass filter of the first experimental example.
  • FIGS. 14 (a) and 14 (b) are a Smith chart showing the reflection characteristics of the high-frequency module of the first experimental example, which also shows the RF circuit side force, and a Smith chart showing the reflection characteristics S22 seen from the antenna element side. It is a chart.
  • FIGS. 15 (a) and 15 (b) are enlarged views showing the pass characteristics of the coplanar line alone and the pass characteristics in the first experimental example.
  • FIGS. 16 (a) and 16 (b) show the reflection characteristics seen from the coplanar line alone wiring line side in the high frequency module of the first experimental example, and the reflection characteristics seen from the antenna element side side. It is a figure which shows S22.
  • FIG. 17 (a) is an impedance Smith chart of the reflection characteristic S11 seen from the wiring line side of the coplanar line alone in the high-frequency module of the first experimental example, and (B) is seen from the antenna element side. It is an impedance Smith chart of the reflection characteristic S22.
  • FIGS. 18 (a) and 18 (b) are enlarged views showing the pass characteristics of the high-frequency module of the second experimental example and the main parts of the pass characteristics.
  • FIGS. 19 (a) and 19 (b) are diagrams showing the reflection characteristic S11 in which the RF circuit side force of the high-frequency module of the second experimental example is also seen and the reflection characteristic S22 in view from the antenna element side.
  • FIG. 20 (a) is a diagram showing an impedance Smith chart of the reflection characteristic S11 in which the RF circuit side force of the high-frequency module of the second experimental example is also seen, and (b) is an antenna element of the high-frequency module.
  • FIG. 10 is a diagram showing an impedance Smith chart of reflection characteristics S22 as seen from the side.
  • FIGS. 21 (a) and 21 (b) are enlarged views showing a pass characteristic of a coplanar line alone and a main part of the pass characteristic in the high frequency module of the second experimental example.
  • FIGS. 22 (a) and 22 (b) show the reflection characteristics seen from the coplanar line alone wiring line side in the high-frequency module of the second experimental example and the reflection characteristics seen from the antenna element side side. It is a figure which shows S22.
  • FIG. 23 (a) is a diagram showing an impedance Smith chart showing the reflection characteristic S11 as seen from the wiring line side of the coplanar line alone in the high-frequency module of the second experimental example, and FIG. It is a figure which shows the impedance Smith chart of the reflective characteristic seen from the antenna element side of this coplanar line.
  • FIG. 24 shows the input impedance as seen from the antenna element side of the transmission line relative to the input impedance ratio Z of the transmission line in the high-frequency module of the present invention.
  • FIG. 6 is a diagram showing the relationship between the ratio z / z of the impedance z and the attenuation.
  • FIG. 25 is a schematic perspective view showing an example of a conventional filter.
  • FIG. 2 is a front sectional view of the high-frequency module according to one embodiment of the present invention.
  • the high frequency module 1 has a structure in which a first substrate 2 and a second substrate 3 are laminated.
  • the first substrate 2 is composed of a low-temperature fired ceramic multilayer substrate.
  • Bare chip ICs 4 and 5 as high-frequency elements are mounted on the upper surface of the first substrate 2.
  • other electronic component elements 6, 7 and the like are surface-mounted on the lower surface of the first substrate 2.
  • the bare chip ICs 4 and 5 and the electronic component elements 6 and 7 are electrically connected by wiring provided on the first substrate 2, thereby forming an RF circuit.
  • the second substrate 3 is made of synthetic resin in the present embodiment.
  • synthetic resin an appropriate synthetic resin such as polyimide, epoxy, and glass epoxy can be used.
  • the second substrate 3 may be made of a material other than synthetic resin, for example, ceramics.
  • FIG. 3 is a plan view of the second substrate 3.
  • an antenna element is mounted as a high-frequency element in a region surrounded by an alternate long and short dash line A at the center.
  • the ground electrode 8 is formed on almost the entire surface.
  • the ground electrode 8 has an L-shaped opening 8a. In this opening 8a, a copier as a transmission line is formed. Narrain 9 is provided.
  • One end 9a of the coplanar line 9 as a transmission line is electrically connected to the antenna element, and the other end 9b is a through-hole electrode penetrating through the second substrate 3 as shown in FIG. 10 is electrically connected to one end.
  • the lower end of the through-hole electrode 10 reaches the lower surface of the second substrate 3.
  • the ground electrode 8A is also formed on the lower surface of the second substrate 3 in the most part.
  • the antenna element 11 uses a suitable antenna element such as a dielectric antenna for the antenna element 11 mounted on the upper surface of the second substrate 3. be able to.
  • the coplanar line 9 constituting and transmitting the transmission line is a wiring line including the through hole electrode 10 and the conductive connection member 12 connected to the lower end of the through hole electrode 10. , Connected to the RF circuit described above.
  • FIG. 4 is a plan view for explaining a portion where the conductive connection member 12 is provided.
  • a rectangular frame-shaped frame member 13 is fixed on the first substrate 2.
  • the rectangular frame-shaped frame member 13 is made of an appropriate synthetic resin such as polyimide.
  • the conductive connection member 12 is embedded so as to penetrate the lower surface from the upper surface of the frame-shaped member 13.
  • At least one conductive connecting member 12 connects the antenna element 11 and the RF circuit described above, and the force frame member 13 constituting a part of the wiring line through which a signal flows is provided with a duller.
  • a plurality of conductive connection members 14 connected to the ground potential are also provided. The upper end of the conductive connection member 14 is connected to a through-hole electrode 15 provided on the second substrate 3, and the through-hole electrode 15 is electrically connected to the ground electrode 8 provided on the second substrate 3. Connected.
  • the lower end of the conductive connection member 14 is electrically connected to the ground potential of the RF circuit.
  • the second substrate 3 side and the RF circuit on the first substrate 2 side are electrically connected by the conductive connection members 12 and 14 provided on the frame member 13. ing.
  • a resin coating layer 16 is provided so as to cover the bare chips IC4, 5 (see FIG. 2).
  • the bare chip ICs 4 and 5 are sealed with the resin so that the environmental resistance is improved.
  • the plurality of conductive connecting members 14 surround the high-frequency circuit portion including the bare chips IC4 and 5, it is possible to suppress deterioration of characteristics due to the electromagnetic field of the antenna element 11 side force. Has been.
  • the high-frequency module 1 of the present embodiment is characterized in that the wiring line is provided on the second substrate 3 and includes the coplanar line 9 as the transmission line, the through-hole electrode 10, and the conductive connecting member 12 Thus, a low-pass filter is configured. This will be described more specifically with reference to FIG. 1 and FIG.
  • FIG. 1 is a partially cutaway perspective view showing an enlarged main part of the high-frequency module of the present embodiment.
  • the antenna element 11 is omitted and a conductive connecting member 12 is provided. Enlarge the end of the side and show it partially! /
  • One end 9a of the coplanar line 9 is actually arranged at substantially the center of the substrate 3, and the antenna element 11 is mounted in the center.
  • the above-described through-hole electrode 10 is connected to the other end 9b of the coplanar line 9, and the conductive connecting member 12 is electrically connected to the lower end of the through-hole electrode 10,
  • the through-hole electrode 10 and the conductive connecting member 12 constitute a wiring line 17.
  • the wiring line 17 is connected to the RF circuit of the first substrate 2.
  • the LC filter is composed of the inductivity of the wiring line 17, ie, the L component, and the capacitance of the coplanar line 9, ie, the C component.
  • the impedance of the coplanar line 9, which is the transmission line is lower than the impedance of the wiring line, and the input impedance viewed from the wiring line 17 side of the coplanar line is greater than the input impedance viewed from the antenna element 11 side force of the coplanar line 9.
  • a low-pass filter having good band characteristics and sufficient out-of-band attenuation is configured. That is, as shown in FIG. 5, a low-pass filter composed of an LC filter is configured by the L portion by the wiring line and the C portion by the portion where the coplanar line 9 is provided.
  • a transmission line is configured by the coplanar line 9!
  • the transmission line in the present invention can be variously modified.
  • a ground electrode 21 is provided in the second substrate 3A at an intermediate height position, and an L-shaped opening 21a is formed in the ground electrode 21. Yes.
  • a strip line 22 is arranged inside.
  • the stripline 22 constitutes the transmission line.
  • ground electrodes 23 and 24 are arranged above and below the portions constituting the ground electrode 21 and the strip line 22, respectively.
  • One end of the strip line 22 passes through an opening (not shown) provided in the ground electrode 23 and is electrically connected to a through-hole electrode electrically connected to the antenna element. . Further, the other end of the strip line 22 is electrically connected to the RF circuit by a through-hole electrode passing through an opening provided in the ground electrode 24.
  • the stripline 22 is sufficiently electromagnetically shielded, so that the filter characteristics are more stable. And can suppress spurious more effectively
  • the antenna element is mounted at a position where the central force on the upper surface of the second substrate 3 is also shifted, more specifically, near the end of the second substrate 3. It is structured as follows.
  • the area where the antenna element is mounted is indicated by a one-dot chain line A. Therefore, the length of the coplanar line 31 as a transmission line connected to the antenna element can be increased by forming a meandering shape as shown in the figure. Therefore, the length of the transmission line is lengthened, and as a result, the L portion of the entire transmission line is increased, so that the attenuation can be further increased.
  • the wiring line connecting the transmission line and the RF circuit also has various through-hole electrodes other than the structure using the conductive connecting member 12 embedded in the frame-shaped member 13 described above. Conductor lines can be used.
  • the impedance of the coplanar line 9 constituting the transmission line is set lower than the impedance of the wiring line 17, and the transmission line is constituted. Since the input impedance viewed from the wiring line side of the coplanar line 9 is higher than the input impedance viewed from the antenna element side force, sufficient attenuation and good spurious suppression characteristics can be realized. This is shown in Figs. 8 to 23. This will be described more specifically with reference to FIG.
  • a low-pass filter having a center frequency of 5.8 GHz is configured.
  • FIGS. 8 (a) and 8 (b) are diagrams showing the transmission characteristics of the wiring line 17 alone and the transmission characteristics showing an enlarged main part in the above embodiment.
  • (a) and (b) show the reflection characteristic S 11 on the RF circuit side of the wiring line 17 and the reflection characteristic S22 on the coplanar line 9 side
  • FIGS. 10 (a) and (b) show the reflection characteristic S 11 and It is a Smith chart drawn based on S22.
  • the impedance on the RF circuit side of the wiring line 17 obtained from FIGS. 9 (a), 9 (b) and 10 (a), 10 (b) is about 145 ⁇ as shown in Table 1 below. Yes, the input impedance in terms of the coplanar line side force is about 158 ⁇ .
  • FIGS. 8 (a) to 10 (b) are the results when the wiring line 17 is manufactured with the following specifications.
  • Conductive connection member 12 Thickness ⁇ ⁇ . 15mm, length 1. Omm
  • Fig. 12 (a) to Fig. 14 (b) show the characteristics of an embodiment in which a coplanar line having the following specifications is connected to the wiring line 17 having the above characteristics.
  • the coplanar line 9 has the following specifications.
  • T, G, V, L, and H in the following specifications are as follows: L: Length of the coplanar line, W: Width dimension of the coplanar line, G: Ground facing the coplanar line Horizontal direction between electrodes T: Thickness of electrode (fixed at 20 / zm), H: Vertical distance between ground electrodes (fixed at 0.4 mm), C3: Through-hole electrode 10 And stray capacitance at the connection between the coplanar line 9 and C4: stray capacitance at the connection between the coplanar line and the antenna feed terminal.
  • FIG. 12 (a) shows the pass characteristics of the above embodiment having the coplanar line and the wiring line designed as described above, and FIG.
  • FIGS. 13A and 13B show the reflection characteristic SI 1 viewed from the RF circuit side and the reflection characteristic S 22 viewed from the antenna element side of the above embodiment.
  • FIGS. 14A and 14B show impedance Smith charts obtained based on the reflection characteristics S11 and S22.
  • FIGS. 15 (a) and 15 (b) show the pass characteristics of the coplanar line 9 alone in the above embodiment and the pass characteristics shown by enlarging the main part thereof. Also, the reflection characteristic S11 seen from the wiring line side of the coplanar line 9 and the reflection characteristic S22 seen from the antenna element side are shown in FIGS. 16 (a) and 16 (b).
  • FIGS. 17 (a) and 17 (b) are Smith charts drawn based on the reflection characteristics Sl l and S22.
  • the impedance on the wiring line side of the coplanar line 9 is about 132 ⁇ , and the input impedance on the antenna element side is about 95 ⁇ .
  • the impedance of the coplanar line 9 is made lower than the impedance of the wiring line 17 side shown in Table 1 described above, thereby further reducing the impedance of the coplanar line 9 to the antenna element side.
  • the input impedance on the wiring line side higher than the input impedance of the line, it is confirmed that a large attenuation is secured as described above. Karu. This is due to the effect that a low-pass filter is formed by the inductivity of the wiring line 17 and the capacitance of the coplanar line 9.
  • the attenuation is about 35dB, which is larger than the above experimental example.
  • FIG. 19A shows the reflection characteristic S11 in which the RF circuit side force is also seen
  • FIG. 19B shows the reflection characteristic S22 in which the antenna element side force is also seen
  • Figures 20 (a) and 20 (b) show impedance Smith charts for the reflection characteristics Sl l and S22 drawn based on Figs. 19 (a) and 19 (b), respectively.
  • FIG. 21 (a) shows the single passage characteristic of the coplanar line 9 in this second experimental example
  • FIG. 22 (a) and 22 (b) show the reflection characteristic S11 as seen from the wiring line side of the coplanar line 9 and the reflection characteristic S22 as seen from the antenna element side.
  • FIGS. 23 (a) and 23 (b) are impedance Smith charts drawn based on the reflection characteristics S11 and S22 of the coplanar line alone.
  • the input impedance on the wiring line side of the coplanar line portion is about 124.4 ⁇
  • the input impedance on the antenna element side is about 58.6 ⁇
  • the impedance of the wiring line is the same as that of the first experiment described above. Similar to the example, the input impedance on the RF circuit side is 145 ⁇ , and the input impedance on the coplanar line side is 158 ⁇ . Therefore, in the second experimental example, the impedance of the coplanar line is less than the impedance of the wiring line 17. Is also low.
  • the impedance of the coplanar line is made lower than the impedance of the wiring line, and the input impedance ⁇ viewed from the wiring line side of the coplanar line is Input impedance seen from the antenna element side ⁇
  • the impedance ratio ⁇ / ⁇ is 0.63 or less, the out-of-band attenuation is more effectively suppressed.
  • Z / Z can be controlled by configuring the transmission line and controlling the above dimensions and area of the coplanar line 9 or the thickness of the conductor constituting the coplanar line 9.
  • the impedance ratio can be increased by increasing the stray capacitance by increasing the line length, and the impedance ratio can be decreased by increasing the stray capacitance by decreasing the line length.
  • Z / Z can be used for various transmission line structures.
  • the high-frequency element is not limited to an antenna element, and an antenna matting element, switch element, power amplifier, low noise amplifier, transmitting RF or IC, receiving RF or IC, or the like may be used. Oh ,.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

A high-frequency module with a filter, which can be miniaturized, exhibits an adequate amount of out-of-band attenuation, and can effectively suppress the out-of-band spurious. In a high-frequency module (1), an RF circuit part is provided on a first substrate (2), a high-frequency element is mounted on a second substrate (3), a line connecting the high-frequency element and the RF circuit is provided with a transmission line (9) and a wiring line (17), the impedance of the transmission line (9) is made lower than the impedance of the wiring line (17), and the input impedance ZS11 when viewed from the side of the wiring line (17) of the transmission line (9) is made higher than the input impedance ZS22 when viewed from the side of the high-frequency element of the transmission line (9).

Description

明 細 書  Specification
高周波モジュール  High frequency module
技術分野  Technical field
[0001] 本発明は、例えば携帯電話機などの高周波回路に用いられる高周波モジュールに 関し、より詳細には、高周波素子と RF回路部とが備えられ、かつ一体化されている高 周波モジュールに関する。  The present invention relates to a high-frequency module used in a high-frequency circuit such as a mobile phone, and more particularly to a high-frequency module that includes a high-frequency element and an RF circuit unit and is integrated.
背景技術  Background art
[0002] 移動体通信機器等においては、高周波素子及び高周波素子に接続される高周波 回路部分を備えた高周波モジュールの小型化が望まれている。また、良好な周波数 特性を実現するために、高周波素子にバンドパスフィルタを接続した回路も種々提 案されている。  In mobile communication devices and the like, it is desired to reduce the size of a high-frequency module including a high-frequency element and a high-frequency circuit portion connected to the high-frequency element. In order to achieve good frequency characteristics, various circuits in which a bandpass filter is connected to a high-frequency element have been proposed.
[0003] 例えば、下記の特許文献 1には、アンテナに接続される線路を利用した LCフィルタ が開示されている。図 25は、特許文献 1に記載のフィルタを模式的に示す斜視図で ある。  [0003] For example, Patent Document 1 below discloses an LC filter using a line connected to an antenna. FIG. 25 is a perspective view schematically showing the filter described in Patent Document 1. As shown in FIG.
[0004] フィルタ 101では、複数の誘電体基板 102〜106が金属地板 107〜: L 10を介して 積層されている。各金属地板 107〜: L 10においては、ほぼ中央に、スロット 107a〜l 10aが形成されている。金属地板 107〜109においては、スロット 107a〜109a内に 、ビア用金属パッチ 111〜113が金属地板 107〜 109と接触しな 、ように配置されて いる。そして、誘電体基板 102〜106を積層してなる積層体を貫通するように、ビアホ ール電極 114が上記スロット 107a〜l 10aが設けられて!/、る部分を貫通するように設 けられている。ビアホール電極 114は、上記ビア用金属パッチ 111〜113に電気的 に接続されている。また、ビアホール電極 114の上端は、マイクロストリップ線路 115 に電気的に接続されている。マイクロストリップ線路 115は、誘電体基板 106の上面 に形成されており、アンテナ素子に電気的に接続される。  [0004] In the filter 101, a plurality of dielectric substrates 102 to 106 are laminated via metal base plates 107 to L10. Each metal base plate 107-: In L10, slots 107a-l10a are formed substantially at the center. In the metal ground planes 107 to 109, via metal patches 111 to 113 are arranged in the slots 107a to 109a so as not to contact the metal ground planes 107 to 109. Then, the via hole electrode 114 is provided so as to penetrate the portion where the above-mentioned slots 107a to l10a are provided so as to penetrate the laminated body formed by laminating the dielectric substrates 102 to 106! ing. The via hole electrode 114 is electrically connected to the via metal patches 111 to 113. The upper end of the via-hole electrode 114 is electrically connected to the microstrip line 115. The microstrip line 115 is formed on the upper surface of the dielectric substrate 106 and is electrically connected to the antenna element.
[0005] 他方、誘電体基板 102の下面において、ビアホール電極 114の下端がマイクロスト リップ線路 116に電気的に接続されている。マイクロストリップ線路 116は、高周波回 路部分に電気的に接続される。 [0006] ここでは、ビアホール電極 114、すなわち線路の誘導性と、ビア用金属パッチ 111On the other hand, the lower end of the via-hole electrode 114 is electrically connected to the microstrip line 116 on the lower surface of the dielectric substrate 102. The microstrip line 116 is electrically connected to the high frequency circuit part. Here, the via hole electrode 114, that is, the inductivity of the line, and the via metal patch 111.
〜113と金属地板 107〜109との間でそれぞれ構成される静電容量とを利用して、 LTo 113 and the metal base plate 107 to 109, respectively, and using the capacitance respectively, L
Cフィルタが構成されて!、る。 C filter is configured!
[0007] すなわち、フィルタ 101は、アンテナと、アンテナが接続される高周波回路とを接続 している線路部分を利用して構成されており、従って、フィルタを備えた高周波モジュ ールの小型化を図ることが可能とされて 、る。 That is, the filter 101 is configured by using a line portion that connects an antenna and a high-frequency circuit to which the antenna is connected. Therefore, the high-frequency module including the filter can be downsized. It is possible to plan.
特許文献 1 :特開 2000— 101377号公報  Patent Document 1: JP 2000-101377 A
発明の開示  Disclosure of the invention
[0008] 特許文献 1に記載のフィルタでは、上記のように、アンテナとアンテナが接続される 回路とを電気的に接続している線路をコイルとして利用し、該線路とグラウンド電位と の間にコンデンサを構成することにより、 LCフィルタが形成されていた。しかしながら 、特許文献 1に記載の構成では、コンデンサとコンデンサを接続するコイルの L値を 大きくすることができないため、十分な減衰量を得ることが困難であり、かつスプリアス を効果的に抑圧することも困難であった。加えて、コンデンサを構成するために、金 属地板 107〜109に、金属地板 107〜109と所定の間隔を隔てて配置されたビア用 金属パッチ 111〜113を高精度に形成しなければならな力つた。すなわち、フィルタ を構成するために、上記スロット 107a〜 109aや金属パッチ 111〜 113を高精度に 形成しなければならな力つた。  [0008] In the filter described in Patent Document 1, as described above, a line electrically connecting an antenna and a circuit to which the antenna is connected is used as a coil, and the line and the ground potential are interposed between the line and the ground potential. The LC filter was formed by configuring the capacitor. However, with the configuration described in Patent Document 1, it is difficult to obtain a sufficient amount of attenuation because the L value of the coil connecting the capacitors cannot be increased, and spurious can be effectively suppressed. It was also difficult. In addition, in order to configure a capacitor, via metal patches 111 to 113 arranged at a predetermined interval from the metal ground plates 107 to 109 must be formed on the metal ground plates 107 to 109 with high accuracy. I helped. That is, in order to configure the filter, the slots 107a to 109a and the metal patches 111 to 113 must be formed with high precision.
[0009] 本発明の目的は、上述した従来技術の欠点を解消し、高周波素子と高周波回路と を接続して ヽる線路部分を利用して LCフィルタを構成し得るだけでなぐ減衰量を十 分な大きさとすることができ、かつスプリアスを効果的に抑圧することが可能であり、し 力も製造容易な高周波モジュールを提供することにある。  [0009] An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to reduce the amount of attenuation that can be achieved simply by configuring an LC filter using a line portion formed by connecting a high-frequency element and a high-frequency circuit. It is an object of the present invention to provide a high-frequency module that can be reduced in size, can suppress spuriouses effectively, and can be easily manufactured.
[0010] 本発明によれば、 RF回路部と、高周波素子と、前記 RF回路部と高周波素子とを接 続する線路とを備え、前記線路力 の浮遊容量をグラウンド電位に接続することによ り、前記線路がローパスフィルタとして用いられている高周波モジュールであって、第 1の基板と、第 1の基板に設けられた前記 RF回路部と、第 2の基板と、第 2の基板に 設けられた前記高周波素子と、前記線路を構成しており、一端が前記高周波素子に 接続されている伝送線路及び前記伝送線路に一端が接続されており、他端が前記 R F回路に接続されている配線線路を備え、前記伝送線路が前記第 2の基板に設けら れており、該伝送線路のインピーダンスが配線線路のインピーダンスよりも低くされて おり、前記伝送線路の前記配線線路側からみた入力インピーダンスが前記伝送線路 の高周波素子側力もみた入力インピーダンスよりも高くされていることを特徴とする、 高周波モジュールが提供される。好ましくは、上記伝送線路が前記配線線路側から みた入力インピーダンスに対する前記伝送線路の高周波素子側からみた入力インピ 一ダンスの比が 0. 63以下とされる。 According to the present invention, an RF circuit unit, a high frequency element, and a line connecting the RF circuit unit and the high frequency element are provided, and the stray capacitance of the line force is connected to a ground potential. A high-frequency module in which the line is used as a low-pass filter, provided on a first substrate, the RF circuit unit provided on the first substrate, a second substrate, and a second substrate. The high-frequency element and the transmission line, one end connected to the high-frequency element, one end connected to the transmission line, and the other end to the R A wiring line connected to an F circuit, wherein the transmission line is provided on the second substrate, the impedance of the transmission line being lower than the impedance of the wiring line, and the transmission line An input impedance viewed from the wiring line side is set higher than an input impedance viewed from the high-frequency element side force of the transmission line. Preferably, a ratio of an input impedance viewed from the high frequency element side of the transmission line to an input impedance viewed from the wiring line side of the transmission line is 0.63 or less.
[0011] 本発明に係る高周波モジュールのある特定の局面では、前記配線線路の前記 RF 回路側からみた入力インピーダンスが、前記配線線路の前記伝送線路側からみた入 力インピーダンスよりも低くされて 、る。  [0011] In a specific aspect of the high-frequency module according to the present invention, an input impedance of the wiring line viewed from the RF circuit side is set lower than an input impedance of the wiring line viewed from the transmission line side. .
[0012] 本発明に係る高周波モジュールのさらに他の特定の局面では、前記伝送線路がコ プレナラインである。  [0012] In yet another specific aspect of the high-frequency module according to the present invention, the transmission line is a coplanar line.
[0013] 本発明に係る高周波モジュールのさらに別の特定の局面では、上記伝送線路はス トリップラインにより構成されており、かつ該ストリップラインが設けられている部分の上 下にグラウンド電極が配置されて 、る。  [0013] In still another specific aspect of the high-frequency module according to the present invention, the transmission line is configured by a strip line, and a ground electrode is disposed above and below the portion where the strip line is provided. And
[0014] 本発明に係る高周波モジュールのさらに他の特定の局面では、高周波素子が、第[0014] In still another specific aspect of the high-frequency module according to the present invention, the high-frequency element includes:
2の基板の一方主面にぉ 、て中央に搭載されて 、る。 It is mounted on one main surface of the board 2 and in the center.
[0015] 本発明に係る高周波モジュールのさらに他の特定の局面では、上記高周波素子がIn still another specific aspect of the high-frequency module according to the present invention, the high-frequency element is
、第 1の基板の中央からずらされた位置に搭載されており、該高周波素子が搭載され る部分に、前記伝送線路の一端が接続されている。 The transmission line is mounted at a position shifted from the center of the first substrate, and one end of the transmission line is connected to a portion where the high-frequency element is mounted.
[0016] 本発明に係る高周波モジュールのさらに別の特定の局面では、前記高周波素子が アンテナ素子である。 In yet another specific aspect of the high-frequency module according to the present invention, the high-frequency element is an antenna element.
(発明の効果)  (The invention's effect)
[0017] 本発明に係る高周波モジュールでは、第 2の基板に高周波素子が設けられており、 第 1の基板に RF回路部が設けられており、高周波素子と RF回路とを接続している線 路が、高周波素子に一端が接続された伝送線路と、一端が伝送線路に、他端が RF 回路に接続されている配線線路とを備える。そして、伝送線路のインピーダンスが配 線線路のインピーダンスより低くされており、伝送線路の配線線路側から見た入カイ ンピーダンスが伝送線路の高周波素子側から見た入力インピーダンスよりも高くされ ているため、配線線路による L分と、伝送線路における容量性とを利用して LCフィル タが構成されている。従って、高周波モジュールの線路自体を利用して LCフィルタか らなるバンドパスフィルタを構成でき、高周波モジュールの小型化を進めることができ る。 In the high-frequency module according to the present invention, a high-frequency element is provided on the second substrate, an RF circuit unit is provided on the first substrate, and a line connecting the high-frequency element and the RF circuit The path includes a transmission line having one end connected to the high-frequency element, and a wiring line having one end connected to the transmission line and the other end connected to the RF circuit. The impedance of the transmission line is made lower than the impedance of the wiring line, and the input line seen from the wiring line side of the transmission line. Since the impedance is higher than the input impedance seen from the high-frequency element side of the transmission line, the LC filter is configured using L by the wiring line and the capacitance of the transmission line. Therefore, a bandpass filter composed of an LC filter can be configured using the high-frequency module line itself, and the miniaturization of the high-frequency module can be promoted.
[0018] し力も、上記のように、配線線路の誘導性と、伝送線路の上記配線線路側から見た 入力インピーダンスを高周波素子側力 見た入力インピーダンスよりも高くした構成 により伝送線路の容量性が利用されているため、従来の線路を利用したフィルタに比 ベて、十分大きな減衰量を得ることができるとともに、スプリアスを効果的に抑圧する ことができ、良好な周波数特性を得ることが可能となる。  [0018] As described above, the transmission force has a capacitive characteristic of the transmission line due to the inductivity of the wiring line and the input impedance viewed from the wiring line side of the transmission line higher than the input impedance viewed from the high-frequency element side force. Can be used to obtain a sufficiently large attenuation compared to a filter using a conventional line, and can effectively suppress spurious and obtain a good frequency characteristic. It becomes.
[0019] し力も、コンデンサを構成するための電極パターンやパッチを必要としないので、容 易に製造することができる。  [0019] Since the electrode pattern and the patch for forming the capacitor are not required, the manufacturing force can be easily manufactured.
[0020] 前記伝送線路の前記配線線路側からみた入力インピーダンスに対する伝送線路 の前記高周波素子側からみた入力インピーダンスの比が 0. 63以下である場合には 、後述の実験例から明らかなように、より一層大きな帯域外減衰量を得ることができる  [0020] When the ratio of the input impedance viewed from the high-frequency element side of the transmission line to the input impedance viewed from the wiring line side of the transmission line is 0.63 or less, as will be apparent from the experimental example described below, A much larger out-of-band attenuation can be obtained.
[0021] 本発明にお 、て、配線線路の RF回路側から見た入力インピーダンス力 配線線路 の伝送線路側力も見た入力インピーダンスよりも低くされている場合には、減衰量を より一層大きくすることができる。 [0021] In the present invention, when the input impedance force viewed from the RF circuit side of the wiring line is lower than the input impedance of the transmission line side force of the wiring line, the attenuation is further increased. be able to.
[0022] 前記伝送線路がコプレナラインである場合には、第 2の基板上に平面的なコプレナ ラインを容易に形成することができ、かつ第 2の基板の主面上において、コプレナライ ンの周囲に大きなグラウンドパターンを形成することができ、それによつて高周波素子 の特性をより一層改善することができる。  [0022] When the transmission line is a coplanar line, a planar coplanar line can be easily formed on the second substrate, and around the coplanar line on the main surface of the second substrate. A large ground pattern can be formed, whereby the characteristics of the high-frequency device can be further improved.
[0023] 上記伝送線路が第 2の基板内に設けられたストリップラインにより、ストリップラインを 挟んで上下にグラウンド電極が配置されている場合には、ストリップラインをグラウンド により電磁シールドすることができ、それによつてフィルタ特性をより一層安定とするこ とがでさる。  [0023] When the transmission line is provided with a strip line provided in the second substrate and the ground electrodes are arranged above and below the strip line, the strip line can be electromagnetically shielded by the ground. As a result, the filter characteristics can be further stabilized.
[0024] 高周波素子が第 2の基板の主面中央に搭載されている場合には、第 2の基板を含 む高周波モジュール全体の機械的強度を高めることができ、衝撃などの環境中にお Vヽてもモジュール特性を安定ィ匕することができる。 [0024] When the high-frequency element is mounted in the center of the main surface of the second substrate, the second substrate is included. Therefore, the mechanical strength of the entire high-frequency module can be increased, and the module characteristics can be stabilized even in an environment such as an impact.
[0025] 高周波素子が第 2の基板の主面において中央力 ずらされた部分に配置されてい る場合には、高周波素子に接続される伝送線路を長くすることができ、それによつて 伝送線路及び配線線路を含む線路の L分を大きくすることができる。よって、減衰量 をより一層拡大することができ、かつスプリアスをより効果的に抑圧することができる。  [0025] In the case where the high frequency element is arranged in a portion where the central force is shifted on the main surface of the second substrate, the transmission line connected to the high frequency element can be lengthened, whereby the transmission line and The L part of the line including the wiring line can be increased. Therefore, the amount of attenuation can be further increased, and spurious can be more effectively suppressed.
[0026] 高周波素子がアンテナ素子である場合には、アンテナ素子は強い電波を発するが 、本発明によれば、アンテナ素子と他の部品との遮蔽を容易に行うことができる。従つ て、アンテナ素子と他の部品との干渉の少ない高周波モジュールを得ることができる 。さらに、グラウンド電極中央部にアンテナ素子を配置すると、アンテナ特性をさらに 向上させることができ、好ましい。  [0026] When the high-frequency element is an antenna element, the antenna element emits a strong radio wave. However, according to the present invention, the antenna element can be easily shielded from other components. Therefore, it is possible to obtain a high-frequency module with less interference between the antenna element and other components. Furthermore, it is preferable to arrange an antenna element at the center of the ground electrode because the antenna characteristics can be further improved.
図面の簡単な説明  Brief Description of Drawings
[0027] [図 1]図 1は本発明の一実施形態に係る高周波モジュールの要部を示す部分切欠斜 視図である。  [0027] FIG. 1 is a partially cutaway perspective view showing a main part of a high-frequency module according to an embodiment of the present invention.
[図 2]図 2は本発明の一実施形態に係る高周波モジュールの正面断面図である。  FIG. 2 is a front cross-sectional view of a high-frequency module according to an embodiment of the present invention.
[図 3]図 3は、本発明の一実施形態の高周波モジュールにおける第 2の基板の平面 図である。  FIG. 3 is a plan view of a second substrate in the high-frequency module according to one embodiment of the present invention.
[図 4]図 4は本発明の一実施形態の高周波モジュールにおける第 1の基板上に設け られた枠状部材を説明するための平面図である。  FIG. 4 is a plan view for explaining a frame-like member provided on the first substrate in the high-frequency module of one embodiment of the present invention.
[図 5]図 5は本発明の一実施形態において構成されるフィルタの透過回路を示す図 である。  FIG. 5 is a diagram showing a transmission circuit of a filter configured in an embodiment of the present invention.
[図 6]図 6は伝送線路の変形例を説明するための模式的分解斜視図である。  FIG. 6 is a schematic exploded perspective view for explaining a modification of the transmission line.
[図 7]図 7は伝送線路の他の変形例を説明するための第 2の基板の模式的平面図で ある。  FIG. 7 is a schematic plan view of a second substrate for explaining another modification of the transmission line.
[図 8]図 8 (a) , (b)は、実施形態の高周波モジュールの実験例における配線線路単 独の通過特性を示す図及び該通過特性の要部を拡大して示す図である。  FIGS. 8 (a) and 8 (b) are diagrams showing the pass characteristics of a single wiring line in an experimental example of the high-frequency module of the embodiment and an enlarged view of the main part of the pass characteristics.
[図 9]図 9 (a) , (b)は、本発明の一実施形態における高周波モジュールの配線線路 単独の RF回路側カゝら見た反射特性 S 11及び伝送線路側から見た反射特性 22を示 す図である。 [FIG. 9] FIGS. 9 (a) and 9 (b) show the reflection characteristics S 11 and the reflection characteristics viewed from the transmission line side of the single RF circuit side wiring line of the high-frequency module in one embodiment of the present invention. Show 22 It is a figure.
[図 10]図 10 (a) , (b)は、本発明の一実施形態における高周波モジュールの配線線 路単独の RF回路側から見た反射特性 S 11及び伝送線路側から見た反射特性 22を 示すスミスチャートである。  [FIG. 10] FIGS. 10 (a) and 10 (b) show the reflection characteristic S11 as seen from the RF circuit side of the wiring line alone of the high-frequency module in one embodiment of the present invention and the reflection characteristic as seen from the transmission line side. It is a Smith chart which shows.
[図 11]図 11はコプレナラインの仕様を説明するための模式的斜視図である。  FIG. 11 is a schematic perspective view for explaining the specifications of a coplanar line.
[図 12]図 12 (a) , (b)は、第 1の実験例のローパスフィルタの通過特性及び該通過特 性の要部を拡大して示す図である。  [FIG. 12] FIGS. 12 (a) and 12 (b) are enlarged views showing the pass characteristic of the low-pass filter of the first experimental example and the main part of the pass characteristic.
[図 13]図 13 (a) , (b)は、第 1の実験例のローパスフィルタの RF回路側から見た反射 特性 S11及びアンテナ素子側から見た反射特性 S22を示す図である。  FIGS. 13 (a) and 13 (b) are diagrams showing a reflection characteristic S11 viewed from the RF circuit side and a reflection characteristic S22 viewed from the antenna element side of the low-pass filter of the first experimental example.
[図 14]図 14 (a) , (b)は、第 1の実験例の高周波モジュールの RF回路側力も見た反 射特性を示すスミスチャート及びアンテナ素子側から見た反射特性 S22を示すスミス チャートである。 [FIG. 14] FIGS. 14 (a) and 14 (b) are a Smith chart showing the reflection characteristics of the high-frequency module of the first experimental example, which also shows the RF circuit side force, and a Smith chart showing the reflection characteristics S22 seen from the antenna element side. It is a chart.
[図 15]図 15 (a) , (b)は、第 1の実験例におけるコプレナライン単独の通過特性及び 該通過特性を拡大して示す図である。  [FIG. 15] FIGS. 15 (a) and 15 (b) are enlarged views showing the pass characteristics of the coplanar line alone and the pass characteristics in the first experimental example.
[図 16]図 16 (a) , (b)は、第 1の実験例の高周波モジュールにおけるコプレナライン 単独の配線線路側カゝら見た反射特性 S 11及びアンテナ素子側カゝら見た反射特性 S 22を示す図である。  [FIG. 16] FIGS. 16 (a) and 16 (b) show the reflection characteristics seen from the coplanar line alone wiring line side in the high frequency module of the first experimental example, and the reflection characteristics seen from the antenna element side side. It is a figure which shows S22.
[図 17]図 17 (a)は、第 1の実験例の高周波モジュールにおけるコプレナライン単独の 配線線路側から見た反射特性 S11のインピーダンススミスチャートであり、(B)は、ァ ンテナ素子側から見た反射特性 S22のインピーダンススミスチャートである。  [FIG. 17] FIG. 17 (a) is an impedance Smith chart of the reflection characteristic S11 seen from the wiring line side of the coplanar line alone in the high-frequency module of the first experimental example, and (B) is seen from the antenna element side. It is an impedance Smith chart of the reflection characteristic S22.
[図 18]図 18 (a) , (b)は、第 2の実験例の高周波モジュールの通過特性及び該通過 特性の要部を拡大して示す図である。 FIGS. 18 (a) and 18 (b) are enlarged views showing the pass characteristics of the high-frequency module of the second experimental example and the main parts of the pass characteristics.
圆 19]図 19 (a) , (b)は、第 2の実験例の高周波モジュールの RF回路側力も見た反 射特性 S11及びアンテナ素子側から見た反射特性 S22を示す図である。 [19] FIGS. 19 (a) and 19 (b) are diagrams showing the reflection characteristic S11 in which the RF circuit side force of the high-frequency module of the second experimental example is also seen and the reflection characteristic S22 in view from the antenna element side.
圆 20]図 20 (a)は、第 2の実験例の高周波モジュールの RF回路側力も見た反射特 性 S11のインピーダンススミスチャートを示す図であり、(b)は、該高周波モジュール のアンテナ素子側から見た反射特性 S22のインピーダンススミスチャートを示す図で ある。 [図 21]図 21 (a) , (b)は、第 2の実験例の高周波モジュールにおけるコプレナライン 単独の通過特性及び該通過特性の要部を拡大して示す図である。 20] FIG. 20 (a) is a diagram showing an impedance Smith chart of the reflection characteristic S11 in which the RF circuit side force of the high-frequency module of the second experimental example is also seen, and (b) is an antenna element of the high-frequency module. FIG. 10 is a diagram showing an impedance Smith chart of reflection characteristics S22 as seen from the side. FIGS. 21 (a) and 21 (b) are enlarged views showing a pass characteristic of a coplanar line alone and a main part of the pass characteristic in the high frequency module of the second experimental example.
[図 22]図 22 (a) , (b)は、第 2の実験例の高周波モジュールにおけるコプレナライン 単独の配線線路側カゝら見た反射特性 S 11及びアンテナ素子側カゝら見た反射特性 S 22を示す図である。 [FIG. 22] FIGS. 22 (a) and 22 (b) show the reflection characteristics seen from the coplanar line alone wiring line side in the high-frequency module of the second experimental example and the reflection characteristics seen from the antenna element side side. It is a figure which shows S22.
[図 23]図 23 (a)は、第 2の実験例の高周波モジュールにおけるコプレナライン単独の 配線線路側から見た反射特性 S 11を示すインピーダンススミスチャートを示す図であ り、(b)は、該コプレナラインのアンテナ素子側から見た反射特性のインピーダンスス ミスチャートを示す図である。  [FIG. 23] FIG. 23 (a) is a diagram showing an impedance Smith chart showing the reflection characteristic S11 as seen from the wiring line side of the coplanar line alone in the high-frequency module of the second experimental example, and FIG. It is a figure which shows the impedance Smith chart of the reflective characteristic seen from the antenna element side of this coplanar line.
[図 24]図 24は本発明の高周波モジュールにおける伝達線路の線路側力もみた入力 インピーダンス比 Z に対する伝送線路のアンテナ素子側からみた入力インピーダ  [FIG. 24] FIG. 24 shows the input impedance as seen from the antenna element side of the transmission line relative to the input impedance ratio Z of the transmission line in the high-frequency module of the present invention.
S11  S11
ンス z の比 z /z と減衰量との関係を示す図である。 FIG. 6 is a diagram showing the relationship between the ratio z / z of the impedance z and the attenuation.
S22 S22 S11  S22 S22 S11
[図 25]図 25は従来のフィルタの一例を示す模式的斜視図である。  FIG. 25 is a schematic perspective view showing an example of a conventional filter.
符号の説明 Explanation of symbols
1…高周波モジユーノレ  1 ... High frequency module
2· ··第 1の基板  2 ··· First board
3· ··第 2の基板  3 ··· Second substrate
3Α· ··第 2の基板  3Α ···· Second board
4, 5· ··ベアチップ IC  4, 5 ... Bare chip IC
6, 7…電子部品素子  6, 7… Electronic component elements
8· ··グラウンド電極  8 ... Ground electrode
8a…開口部  8a ... Opening
8A…グラウンド電極  8A ... Ground electrode
9· ··コプレナライン  9 ... Coplana Line
9a, 9b…端部  9a, 9b… End
10…スルーホール電極  10 ... Through hole electrode
11…アンテナ素子  11 ... Antenna element
12…導電性接続部材 13· ··枠状部材 12… Conductive connection member 13 ··· Frame member
14…導電性接続部材  14… Conductive connection member
15…スルーホール電極  15 ... Through hole electrode
16…榭脂被覆層  16… Resin coating layer
21…グラウンド電極  21 ... Ground electrode
21a…開口部  21a… Opening
22…ストリップライン  22 ... Stripline
23, 24· ··グラウンド電極  23, 24 ... Ground electrode
31· ··コプレナライン  31 ... Coplana Line
A…アンテナ素子搭載領域  A: Antenna element mounting area
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0029] 以下、図面を参照しつつ本発明の具体的な実施形態を説明することにより、本発明 を明らかにする。 Hereinafter, the present invention will be clarified by describing specific embodiments of the present invention with reference to the drawings.
[0030] 図 2は本発明の一実施形態に係る高周波モジュールの正面断面図である。  FIG. 2 is a front sectional view of the high-frequency module according to one embodiment of the present invention.
[0031] 高周波モジュール 1は、第 1の基板 2と、第 2の基板 3を積層した構造を有する。 The high frequency module 1 has a structure in which a first substrate 2 and a second substrate 3 are laminated.
[0032] 第 1の基板 2は、本実施形態では、低温焼成型のセラミック多層基板により構成され ている。第 1の基板 2の上面には、高周波素子としてのベアチップ IC4及び 5が実装さ れている。また、第 1の基板 2の下面には、他の電子部品素子 6, 7などが表面実装さ れている。ベアチップ IC4, 5及び電子部品素子 6, 7は、第 1の基板 2に設けられた 配線により電気的に接続されており、それによつて RF回路を構成している。 [0032] In the present embodiment, the first substrate 2 is composed of a low-temperature fired ceramic multilayer substrate. Bare chip ICs 4 and 5 as high-frequency elements are mounted on the upper surface of the first substrate 2. In addition, other electronic component elements 6, 7 and the like are surface-mounted on the lower surface of the first substrate 2. The bare chip ICs 4 and 5 and the electronic component elements 6 and 7 are electrically connected by wiring provided on the first substrate 2, thereby forming an RF circuit.
[0033] 他方、第 2の基板 3は、本実施形態では、合成樹脂からなる。合成樹脂としては、ポ リイミド、エポキシ、ガラスエポキシなどの適宜の合成樹脂を用いることができる。また 、第 2の基板 3は、合成樹脂以外の材料、例えばセラミックスにより構成されていても よい。 On the other hand, the second substrate 3 is made of synthetic resin in the present embodiment. As the synthetic resin, an appropriate synthetic resin such as polyimide, epoxy, and glass epoxy can be used. The second substrate 3 may be made of a material other than synthetic resin, for example, ceramics.
[0034] 図 3は、第 2の基板 3の平面図である。第 2の基板 3の上面においては、中央に一点 鎖線 Aで囲まれた領域に高周波素子としてアンテナ素子が搭載される。そして、第 2 の基板 3の上面においては、ほぼ全面にグラウンド電極 8が形成されている。グラウン ド電極 8は、 L字型の開口部 8aを有する。この開口部 8aに、伝送線路としてのコプレ ナライン 9が設けられている。伝送線路としてのコプレナライン 9の一端 9aは、アンテ ナ素子に電気的に接続され、他端 9bは、図 2に示されているように、第 2の基板 3内 を貫通しているスルーホール電極 10の一端に電気的に接続されている。スルーホー ル電極 10の下端は、第 2の基板 3の下面に至っている。第 2の基板 3の下面にも、そ の大部分にグラウンド電極 8Aが形成されて 、る。 FIG. 3 is a plan view of the second substrate 3. On the upper surface of the second substrate 3, an antenna element is mounted as a high-frequency element in a region surrounded by an alternate long and short dash line A at the center. On the upper surface of the second substrate 3, the ground electrode 8 is formed on almost the entire surface. The ground electrode 8 has an L-shaped opening 8a. In this opening 8a, a copier as a transmission line is formed. Narrain 9 is provided. One end 9a of the coplanar line 9 as a transmission line is electrically connected to the antenna element, and the other end 9b is a through-hole electrode penetrating through the second substrate 3 as shown in FIG. 10 is electrically connected to one end. The lower end of the through-hole electrode 10 reaches the lower surface of the second substrate 3. The ground electrode 8A is also formed on the lower surface of the second substrate 3 in the most part.
[0035] 図 2に示すように、アンテナ素子 11は、第 2の基板 3の上面に搭載されている力 こ のアンテナ素子 11につ 、ては、誘電体アンテナなどの適宜のアンテナ素子を用いる ことができる。 As shown in FIG. 2, the antenna element 11 uses a suitable antenna element such as a dielectric antenna for the antenna element 11 mounted on the upper surface of the second substrate 3. be able to.
[0036] 本実施形態では、上記伝送線路を構成して!/ヽるコプレナライン 9は、スルーホール 電極 10及びスルーホール電極 10の下端に接続されている導電性接続部材 12を含 む配線線路により、前述した RF回路に接続されている。  [0036] In this embodiment, the coplanar line 9 constituting and transmitting the transmission line is a wiring line including the through hole electrode 10 and the conductive connection member 12 connected to the lower end of the through hole electrode 10. , Connected to the RF circuit described above.
[0037] 図 4は、上記導電性接続部材 12が設けられている部分を説明するための平面図で あり、ここでは、第 1の基板 2上に、矩形枠状の枠状部材 13が固定されている。矩形 枠状の枠状部材 13は、ポリイミドなどの適宜の合成樹脂からなる。枠状部材 13の上 面から下面を貫通するように、導電性接続部材 12が埋め込まれている。  FIG. 4 is a plan view for explaining a portion where the conductive connection member 12 is provided. Here, a rectangular frame-shaped frame member 13 is fixed on the first substrate 2. Has been. The rectangular frame-shaped frame member 13 is made of an appropriate synthetic resin such as polyimide. The conductive connection member 12 is embedded so as to penetrate the lower surface from the upper surface of the frame-shaped member 13.
[0038] また、少なくとも 1個の導電性接続部材 12が、前述したアンテナ素子 11と RF回路 を接続し、信号が流れる配線線路の一部を構成している力 枠状部材 13には、ダラ ゥンド電位に接続される導電性接続部材 14も複数設けられて 、る。導電性接続部材 14の上端は、第 2の基板 3に設けられたスルーホール電極 15に接続されており、ス ルーホール電極 15は、第 2の基板 3に設けられた前述したグラウンド電極 8に電気的 に接続されている。  Further, at least one conductive connecting member 12 connects the antenna element 11 and the RF circuit described above, and the force frame member 13 constituting a part of the wiring line through which a signal flows is provided with a duller. A plurality of conductive connection members 14 connected to the ground potential are also provided. The upper end of the conductive connection member 14 is connected to a through-hole electrode 15 provided on the second substrate 3, and the through-hole electrode 15 is electrically connected to the ground electrode 8 provided on the second substrate 3. Connected.
[0039] また、導電性接続部材 14の下端は、 RF回路のグラウンド電位に電気的に接続され ている。  [0039] The lower end of the conductive connection member 14 is electrically connected to the ground potential of the RF circuit.
[0040] 本実施形態では、上記枠状部材 13に設けられた導電性接続部材 12, 14により、 第 2の基板 3側と、第 1の基板 2側の RF回路とが電気的に接続されている。  In the present embodiment, the second substrate 3 side and the RF circuit on the first substrate 2 side are electrically connected by the conductive connection members 12 and 14 provided on the frame member 13. ing.
[0041] ベアチップ IC4, 5を被覆するように、榭脂被覆層 16が設けられている(図 2参照)。  [0041] A resin coating layer 16 is provided so as to cover the bare chips IC4, 5 (see FIG. 2).
榭脂被覆層 16を設けることにより、ベアチップ IC4, 5が榭脂封止されるため、耐環境 特性が高められる。 [0042] また、上記複数の導電性接続部材 14が、ベアチップ IC4, 5を含む高周波回路部 分を囲んでいるため、アンテナ素子 11側力もの電磁界による特性の劣化を抑制する ことが可能とされている。 By providing the resin coating layer 16, the bare chip ICs 4 and 5 are sealed with the resin so that the environmental resistance is improved. [0042] Further, since the plurality of conductive connecting members 14 surround the high-frequency circuit portion including the bare chips IC4 and 5, it is possible to suppress deterioration of characteristics due to the electromagnetic field of the antenna element 11 side force. Has been.
[0043] 本実施形態の高周波モジュール 1の特徴は、第 2の基板 3に設けられており、かつ 上記伝送線路としてのコプレナライン 9と、スルーホール電極 10及び導電性接続部 材 12を含む配線線路とにより、ローパスフィルタが構成されていることにある。これを 、図 1及び図 5も参照してより具体的に説明する。  [0043] The high-frequency module 1 of the present embodiment is characterized in that the wiring line is provided on the second substrate 3 and includes the coplanar line 9 as the transmission line, the through-hole electrode 10, and the conductive connecting member 12 Thus, a low-pass filter is configured. This will be described more specifically with reference to FIG. 1 and FIG.
[0044] 図 1は、本実施形態の高周波モジュールの要部を拡大して示す部分切欠斜視図あ り、ここでは、アンテナ素子 11は省略されており、かつ導電性接続部材 12が設けら れて 、る側の端部を拡大して部分的に示して!/、る。  FIG. 1 is a partially cutaway perspective view showing an enlarged main part of the high-frequency module of the present embodiment. Here, the antenna element 11 is omitted and a conductive connecting member 12 is provided. Enlarge the end of the side and show it partially! /
[0045] コプレナライン 9の一端 9aは、実際には、基板 3の略中央に配置されており、該中 央において、アンテナ素子 11が搭載される。  [0045] One end 9a of the coplanar line 9 is actually arranged at substantially the center of the substrate 3, and the antenna element 11 is mounted in the center.
[0046] 本実施形態では、コプレナライン 9の他端 9bに、前述したスルーホール電極 10が 接続されており、スルーホール電極 10の下端に、導電性接続部材 12が電気的に接 続され、該スルーホール電極 10及び導電性接続部材 12により、配線線路 17が構成 されている。配線線路 17は第 1の基板 2の RF回路に接続されている。配線線路 17 の誘導性すなわち L分と、コプレナライン 9による容量性すなわち C分とにより、 LCフ ィルタが構成される。この場合、伝送線路であるコプレナライン 9のインピーダンス力 配線線路のインピーダンスよりも低くされており、コプレナラインの配線線路 17側から 見た入力インピーダンスが、コプレナライン 9のアンテナ素子 11側力 見た入力イン ピーダンスよりも高くされており、それによつて、良好な帯域特性を有し、かつ十分な 帯域外減衰量を有するローパスフィルタが構成される。すなわち、図 5に示すように、 上記配線線路による L分と、上記コプレナライン 9が設けられて ヽる部分による C分に より LCフィルタからなるローパスフィルタが構成されている。  In the present embodiment, the above-described through-hole electrode 10 is connected to the other end 9b of the coplanar line 9, and the conductive connecting member 12 is electrically connected to the lower end of the through-hole electrode 10, The through-hole electrode 10 and the conductive connecting member 12 constitute a wiring line 17. The wiring line 17 is connected to the RF circuit of the first substrate 2. The LC filter is composed of the inductivity of the wiring line 17, ie, the L component, and the capacitance of the coplanar line 9, ie, the C component. In this case, the impedance of the coplanar line 9, which is the transmission line, is lower than the impedance of the wiring line, and the input impedance viewed from the wiring line 17 side of the coplanar line is greater than the input impedance viewed from the antenna element 11 side force of the coplanar line 9. As a result, a low-pass filter having good band characteristics and sufficient out-of-band attenuation is configured. That is, as shown in FIG. 5, a low-pass filter composed of an LC filter is configured by the L portion by the wiring line and the C portion by the portion where the coplanar line 9 is provided.
[0047] なお、本実施形態では、上記コプレナライン 9により、伝送線路が構成されて!、たが 、本発明における伝送線路は、種々変形することができる。例えば、図 6に示す変形 例では、第 2の基板 3A内に、中間高さ位置に、グラウンド電極 21が設けられており、 グラウンド電極 21には、 L字型の開口部 21aが形成されている。そして、開口部 21a 内に、ストリップライン 22が配置されている。このストリップライン 22により、上記伝送 線路が構成されている。なお、グラウンド電極 21及びストリップライン 22を構成してい る部分の上下に、それぞれ、グラウンド電極 23, 24が配置される。 In the present embodiment, a transmission line is configured by the coplanar line 9! However, the transmission line in the present invention can be variously modified. For example, in the modification shown in FIG. 6, a ground electrode 21 is provided in the second substrate 3A at an intermediate height position, and an L-shaped opening 21a is formed in the ground electrode 21. Yes. And the opening 21a Inside, a strip line 22 is arranged. The stripline 22 constitutes the transmission line. In addition, ground electrodes 23 and 24 are arranged above and below the portions constituting the ground electrode 21 and the strip line 22, respectively.
[0048] ストリップライン 22の一端は、グラウンド電極 23に設けられている開口部(図示せず )を通り、アンテナ素子に電気的に接続されるスルーホール電極に電気的に接続さ れることになる。また、ストリップライン 22の他端は、グラウンド電極 24に設けられてい る開口部を通るスルーホール電極により RF回路に電気的に接続されることになる。  [0048] One end of the strip line 22 passes through an opening (not shown) provided in the ground electrode 23 and is electrically connected to a through-hole electrode electrically connected to the antenna element. . Further, the other end of the strip line 22 is electrically connected to the RF circuit by a through-hole electrode passing through an opening provided in the ground electrode 24.
[0049] このようなストリップライン 22の上下をグラウンド電極 23, 24で挟んだ構造の伝送線 路を用いた場合には、ストリップライン 22が十分に電磁シールドされるため、フィルタ 特性をより安定にすることができ、かつスプリアスをより効果的に抑圧することができる  [0049] When a transmission line having a structure in which the upper and lower sides of the stripline 22 are sandwiched between the ground electrodes 23 and 24 is used, the stripline 22 is sufficiently electromagnetically shielded, so that the filter characteristics are more stable. And can suppress spurious more effectively
[0050] また、図 7に示す変形例では、第 2の基板 3の上面の中央力もずらされた位置、より 具体的には、第 2の基板 3の端部近傍にアンテナ素子が搭載されるように構成されて いる。図 7では、アンテナ素子が搭載される領域が一点鎖線 Aで示されている。従つ て、アンテナ素子に接続される伝送線路としてのコプレナライン 31は、図示のように 蛇行形状としたりすることにより、その長さを長くすることができる。従って、伝送線路 の長さを長くし、それによつて、伝送線路全体の L分が大きくなるため、より減衰量を 大きくすることができる。 In the modification shown in FIG. 7, the antenna element is mounted at a position where the central force on the upper surface of the second substrate 3 is also shifted, more specifically, near the end of the second substrate 3. It is structured as follows. In FIG. 7, the area where the antenna element is mounted is indicated by a one-dot chain line A. Therefore, the length of the coplanar line 31 as a transmission line connected to the antenna element can be increased by forming a meandering shape as shown in the figure. Therefore, the length of the transmission line is lengthened, and as a result, the L portion of the entire transmission line is increased, so that the attenuation can be further increased.
[0051] このように、本発明における伝送線路の形態については、上述した実施形態に限 定されず、種々変形することができる。  [0051] Thus, the form of the transmission line in the present invention is not limited to the above-described embodiment, and various modifications can be made.
[0052] また、本発明においては、伝送線路と RF回路とを接続する配線線路についても、 上述した枠状部材 13に埋め込まれた導電性接続部材 12を利用した構造以外様々 なスルーホール電極や導体線路を用いることができる。  In the present invention, the wiring line connecting the transmission line and the RF circuit also has various through-hole electrodes other than the structure using the conductive connecting member 12 embedded in the frame-shaped member 13 described above. Conductor lines can be used.
[0053] V、ずれにしても、本実施形態では、上記伝送線路を構成して ヽるコプレナライン 9 のインピーダンスが、上記配線線路 17のインピーダンスよりも低くされており、かつ伝 送線路を構成しているコプレナライン 9の配線線路側から見た入力インピーダンスが 、アンテナ素子側力 見た入力インピーダンスよりも高くされていることにより、十分な 減衰量及び良好なスプリアス抑圧特性を実現することができる。これを、図 8〜図 23 を参照してより具体的に説明する。 [0053] Even if V is shifted, in this embodiment, the impedance of the coplanar line 9 constituting the transmission line is set lower than the impedance of the wiring line 17, and the transmission line is constituted. Since the input impedance viewed from the wiring line side of the coplanar line 9 is higher than the input impedance viewed from the antenna element side force, sufficient attenuation and good spurious suppression characteristics can be realized. This is shown in Figs. 8 to 23. This will be described more specifically with reference to FIG.
[0054] なお、以下の実験例では、中心周波数が 5. 8GHzであるローパスフィルタが構成さ れている。  [0054] In the following experimental example, a low-pass filter having a center frequency of 5.8 GHz is configured.
[0055] 図 8 (a)及び (b)は、上記実施形態にお!ヽて、配線線路 17単独の通過特性及びそ の要部を拡大して示す通過特性を示す図であり、図 9 (a) , (b)は、上記配線線路 17 の RF回路側の反射特性 S 11及びコプレナライン 9側の反射特性 S22を示し、図 10 ( a)及び (b)は、上記反射特性 S 11及び S22に基づいて描いたスミスチャートである。  FIGS. 8 (a) and 8 (b) are diagrams showing the transmission characteristics of the wiring line 17 alone and the transmission characteristics showing an enlarged main part in the above embodiment. (a) and (b) show the reflection characteristic S 11 on the RF circuit side of the wiring line 17 and the reflection characteristic S22 on the coplanar line 9 side, and FIGS. 10 (a) and (b) show the reflection characteristic S 11 and It is a Smith chart drawn based on S22.
[0056] 上記図 9 (a) , (b)及び図 10 (a) , (b)から求められた配線線路 17の RF回路側のィ ンピーダンスは下記の表 1に示すように約 145 Ωであり、コプレナライン側力 見た入 力インピーダンスは約 158 Ωである。  [0056] The impedance on the RF circuit side of the wiring line 17 obtained from FIGS. 9 (a), 9 (b) and 10 (a), 10 (b) is about 145 Ω as shown in Table 1 below. Yes, the input impedance in terms of the coplanar line side force is about 158 Ω.
[0057] [表 1]
Figure imgf000014_0001
[0057] [Table 1]
Figure imgf000014_0001
[0058] なお、図 8 (a)〜図 10 (b)に示した特性は、配線線路 17を以下の仕様で作製した 場合の結果である。 [0058] The characteristics shown in FIGS. 8 (a) to 10 (b) are the results when the wiring line 17 is manufactured with the following specifications.
スルーホール電極 10· ··太さ φ θ. 3mm、長さ 1. Omm  Through-hole electrode 10 ··· Thickness φ θ. 3mm, length 1. Omm
導電性接続部材 12…太さ φ θ. 15mm、長さ 1. Omm  Conductive connection member 12… Thickness φ θ. 15mm, length 1. Omm
[0059] 上記特性の配線線路 17に対し、以下の仕様のコプレナラインを接続してなる実施 形態の特性を図 12 (a)〜図 14 (b)に示す。 [0059] Fig. 12 (a) to Fig. 14 (b) show the characteristics of an embodiment in which a coplanar line having the following specifications is connected to the wiring line 17 having the above characteristics.
[0060] すなわち、コプレナライン 9は以下の仕様とした。なお、以下の仕様における寸法 T 、 G、 V、 L、 Hは、図 11に示すように、 L:コプレナラインの長さ、 W:コプレナラインの 幅方向寸法、 G :コプレナラインと、対向されているグラウンド電極との間の水平方向 去、 T:電極の厚み(20 /z mで固定とした)、 H:グラウンド電極間の垂直方向の距離( 0. 4mmで固定とした)、 C3 :スルーホール電極 10とコプレナライン 9との接続部の浮 遊容量、 C4:コプレナラインとアンテナ給電端子との接続部分における浮遊容量 具体的には、 L = 3. 99mm, W=0. 2mm、 G = 0. 98mm, C3 = 0. 38pF及び C 4 = 0. 50pFとした。 [0061] 上記のようにして設計されたコプレナライン及び配線線路を有する上記実施形態の 通過特性を図 12 (a)に、その要部を拡大して図 12 (b)に示す。 [0060] That is, the coplanar line 9 has the following specifications. Note that the dimensions T, G, V, L, and H in the following specifications are as follows: L: Length of the coplanar line, W: Width dimension of the coplanar line, G: Ground facing the coplanar line Horizontal direction between electrodes T: Thickness of electrode (fixed at 20 / zm), H: Vertical distance between ground electrodes (fixed at 0.4 mm), C3: Through-hole electrode 10 And stray capacitance at the connection between the coplanar line 9 and C4: stray capacitance at the connection between the coplanar line and the antenna feed terminal. Specifically, L = 3.99 mm, W = 0.2 mm, G = 0.98 mm, C3 = 0.38 pF and C 4 = 0.50 pF. [0061] FIG. 12 (a) shows the pass characteristics of the above embodiment having the coplanar line and the wiring line designed as described above, and FIG.
[0062] 図 12 (a) , (b)から明らかなように、中心周波数 f = 5. 8GHzに対し、 2f = 11. 6G [0062] As is clear from Figs. 12 (a) and (b), 2f = 11.6G for the center frequency f = 5.8GHz.
0 0  0 0
Hz及び 3f = 17. 4GHzにおいて、約 25dBの減衰量が確保されていることがわかる  It can be seen that about 25 dB attenuation is secured at Hz and 3f = 17.4 GHz.
0  0
[0063] 図 13 (a) , (b)は、上記実施形態の RF回路側から見た反射特性 SI 1及びアンテナ 素子側から見た反射特性 S22を示す。また、図 14 (a) , (b)は、上記反射特性 S11, S22に基づいて求められたインピーダンススミスチャートを示す。 FIGS. 13A and 13B show the reflection characteristic SI 1 viewed from the RF circuit side and the reflection characteristic S 22 viewed from the antenna element side of the above embodiment. FIGS. 14A and 14B show impedance Smith charts obtained based on the reflection characteristics S11 and S22.
[0064] 図 12 (a) , (b)から明らかなように、中心周波数よりも高域側において大きな減衰量 を確保でき、従って、十分大きな帯域外減衰量を有するローパスフィルタが実現され ていることがわ力る。  [0064] As is apparent from FIGS. 12 (a) and 12 (b), a large attenuation can be secured on the higher frequency side than the center frequency, and thus a low-pass filter having a sufficiently large out-of-band attenuation is realized. I can tell you.
[0065] 上記実施形態におけるコプレナライン 9単独の通過特性及びその要部を拡大して 示す通過特性を図 15 (a) , (b)に示す。また、コプレナライン 9の配線線路側から見 た反射特性 S11及びアンテナ素子側から見た反射特性 S22を図 16 (a) , (b)に示す 。図 17 (a) , (b)は、上記反射特性 Sl l, S22に基づいて描かれた各スミスチャート である。  [0065] FIGS. 15 (a) and 15 (b) show the pass characteristics of the coplanar line 9 alone in the above embodiment and the pass characteristics shown by enlarging the main part thereof. Also, the reflection characteristic S11 seen from the wiring line side of the coplanar line 9 and the reflection characteristic S22 seen from the antenna element side are shown in FIGS. 16 (a) and 16 (b). FIGS. 17 (a) and 17 (b) are Smith charts drawn based on the reflection characteristics Sl l and S22.
[0066] 図 16 (a)〜図 17 (b)から求められたコプレナライン 9におけるインピーダンスは下記 の表 2に示す通りとなる。  [0066] The impedance in the coplanar line 9 obtained from FIGS. 16 (a) to 17 (b) is as shown in Table 2 below.
[0067] [表 2]
Figure imgf000015_0001
[0067] [Table 2]
Figure imgf000015_0001
[0068] すなわち、コプレナライン 9の配線線路側のインピーダンスは約 132 Ωであり、アン テナ素子側の入力インピーダンスは約 95 Ωである。 That is, the impedance on the wiring line side of the coplanar line 9 is about 132 Ω, and the input impedance on the antenna element side is about 95 Ω.
[0069] 従って、本実施形態では、コプレナライン 9のインピーダンスを、前述した表 1に示さ れている配線線路 17側のインピーダンスよりも低くすることにより、さらにコプレナライ ン 9にお 、て、アンテナ素子側の入力インピーダンスよりも配線線路側の入力インピ 一ダンスを高くすることにより、上記のように大きな減衰量が確保されていることがわ かる。これは、配線線路 17の誘導性とコプレナライン 9の容量性によりローパスフィル タが形成された効果による。 Therefore, in the present embodiment, the impedance of the coplanar line 9 is made lower than the impedance of the wiring line 17 side shown in Table 1 described above, thereby further reducing the impedance of the coplanar line 9 to the antenna element side. By making the input impedance on the wiring line side higher than the input impedance of the line, it is confirmed that a large attenuation is secured as described above. Karu. This is due to the effect that a low-pass filter is formed by the inductivity of the wiring line 17 and the capacitance of the coplanar line 9.
[0070] 次に、上記コプレナラインにおいて、 L = 3. 10mm, W=0. 2mm、 G= l. OOmm 、 C3 = 0. 66pF及び C4 = 0. 89pFとしたことを除いては、上記実験例と同様にして 、高周波モジュールを構成した。この場合の通過特性を図 18 (a)に、通過特性の要 部を拡大して図 18 (b)に示す。図 18 (a) , (b)から明らかなように、 2f = 11. 6GHz [0070] Next, in the coplanar line, L = 3.10 mm, W = 0.2 mm, G = l. OOmm, C3 = 0.66 pF, and C4 = 0.89 pF In the same manner, a high frequency module was constructed. Figure 18 (a) shows the pass characteristics in this case, and Fig. 18 (b) shows an enlarged view of the main parts of the pass characteristics. As is clear from Fig. 18 (a) and (b), 2f = 11.6 GHz
0  0
及び 3f = 17. 4GHzにおいて、減衰量が約 35dBと、上記実験例よりも大きくされて And at 3f = 17.4GHz, the attenuation is about 35dB, which is larger than the above experimental example.
0 0
いることがわ力る。  It is powerful to be.
[0071] この場合の RF回路側力も見た反射特性 S11を図 19 (a)を、アンテナ素子側力も見 た反射特性 S22を図 19 (b)に示す。また、図 19 (a) , (b)に基づいて描かれた反射 特性 Sl l, S22についてのインピーダンススミスチャートを図 20 (a) , (b)にそれぞれ 示す。  In this case, FIG. 19A shows the reflection characteristic S11 in which the RF circuit side force is also seen, and FIG. 19B shows the reflection characteristic S22 in which the antenna element side force is also seen. Figures 20 (a) and 20 (b) show impedance Smith charts for the reflection characteristics Sl l and S22 drawn based on Figs. 19 (a) and 19 (b), respectively.
[0072] この第 2の実験例におけるコプレナライン 9の単独の通過特¾を図 21 (a)に、その 要部を拡大して図 21 (b)に示す。また、図 22 (a) , (b)は、コプレナライン 9の配線線 路側から見た反射特性 S 11及びアンテナ素子側カゝら見た反射特性 S22を示す。さら に、図 23 (a) , (b)は、コプレナライン単独の上記反射特性 S 11, S22に基づいて描 力れた各インピーダンススミスチャートである。  [0072] FIG. 21 (a) shows the single passage characteristic of the coplanar line 9 in this second experimental example, and FIG. 22 (a) and 22 (b) show the reflection characteristic S11 as seen from the wiring line side of the coplanar line 9 and the reflection characteristic S22 as seen from the antenna element side. Further, FIGS. 23 (a) and 23 (b) are impedance Smith charts drawn based on the reflection characteristics S11 and S22 of the coplanar line alone.
[0073] 図 22 (a) , (b)及び図 23 (a) , (b)からインピーダンスを求めると、下記の表 3に示す 通りとなる。  [0073] When the impedance is obtained from FIGS. 22 (a) and 22 (b) and FIGS. 23 (a) and 23 (b), it is as shown in Table 3 below.
[0074] [表 3]
Figure imgf000016_0001
[0074] [Table 3]
Figure imgf000016_0001
[0075] すなわち、第 2の実験例におけるコプレナライン部の配線線路側の入力インピーダ ンスは約 124. 4 Ωであり、アンテナ素子側の入力インピーダンスは約 58. 6 Ωであり 、このインピーダンス比 Ζ /Ζ は、 58. 6/124. 4 = 0. 471となり、配線線路側 That is, in the second experimental example, the input impedance on the wiring line side of the coplanar line portion is about 124.4 Ω, the input impedance on the antenna element side is about 58.6 Ω, and this impedance ratio Ζ / Ζ is 58. 6/124. 4 = 0. 471, the wiring line side
S22 S11  S22 S11
のインピーダンスが非常に大きくなつている。  The impedance of is becoming very large.
[0076] なお、第 2の実験例にお 、ても、配線線路のインピーダンスは、前述した第 1の実験 例と同様に、 RF回路側の入力インピーダンスが 145 Ωであり、コプレナライン側の入 力インピーダンスが 158 Ωであるため、第 2の実験例においても、コプレナラインのィ ンピーダンスは、配線線路 17のインピーダンスよりも低くされている。 [0076] In the second experimental example, the impedance of the wiring line is the same as that of the first experiment described above. Similar to the example, the input impedance on the RF circuit side is 145 Ω, and the input impedance on the coplanar line side is 158 Ω. Therefore, in the second experimental example, the impedance of the coplanar line is less than the impedance of the wiring line 17. Is also low.
[0077] 第 1,第 2の実験例から明らかなように、コプレナラインのインピーダンスを配線線路 のインピーダンスより低くし、かつ、コプレナラインの配線線路側カゝら見た入力インピ 一ダンス Ζ を、コプレナラインのアンテナ素子側から見た入力インピーダンス Ζ よ [0077] As is clear from the first and second experimental examples, the impedance of the coplanar line is made lower than the impedance of the wiring line, and the input impedance 見 viewed from the wiring line side of the coplanar line is Input impedance seen from the antenna element side Ζ
Sll S22 りも高くすることにより、言い換えれば、 Ζ を Ζ よりも小さくすることにより、大きな帯  By making Sll S22 higher, in other words, by making Ζ smaller than Ζ
S22 S11  S22 S11
域外減衰量を得ることができ、かつスプリアスを効果的に抑圧し得ることがわかる。  It can be seen that out-of-band attenuation can be obtained and spurious can be effectively suppressed.
[0078] この場合、実験例 2では、実験例 1に比べて、インピーダンス比 Ζ /Ζ 力 、さく [0078] In this case, in the experimental example 2, compared with the experimental example 1, the impedance ratio Ζ / Ζ force,
S22 S11 されており、それによつて、減衰量がより一層大きくされている。本願発明者の実験に よれば、コプレナラインの配線線路側からみた入力インピーダンス ζ に対するコプ  S22 and S11, and accordingly, the attenuation is further increased. According to the experiments of the present inventor, a copy of the input impedance ζ as seen from the wiring line side of the coplanar line
S11  S11
レナラインのアンテナ素子側力もみた入力インピーダンス Ζ の比率である上記イン  The above-mentioned input which is the ratio of the input impedance
S22  S22
ピーダンス比 Ζ /Ζ は、 0. 63以下とすれば、帯域外減衰量をより効果的に抑圧  If the impedance ratio Ζ / Ζ is 0.63 or less, the out-of-band attenuation is more effectively suppressed.
S22 S11  S22 S11
し得ることが確かめられている。すなわち、図 24及び下記の表 4に示すように、上記ィ ンピーダンス比を変化させた場合、帯域外減衰量は、図示のように変化する。他方、 スプリアス発射強度についての規格は、 ARIB STD— Τ75に定める規格値: 2. 5 W以下、 2. 5 ,u W= 26. 0206dBmである。従って、上記インピーダンス itを 0. 6 3以下とした場合、 27dB以上の帯域外減衰量を得ることができるので、上記規格を 満足することができる。よって、スプリアスを抑圧するためのフィルタを削除できるので 、高周波モジュールの小型化をより一層進めることができる。従って、上記インピーダ ンス比 Z /Z を 0. 63以下とするとこが望ましいことがわかる。  It has been confirmed that That is, as shown in FIG. 24 and Table 4 below, when the impedance ratio is changed, the out-of-band attenuation changes as shown. On the other hand, the standard for the spurious emission strength is the standard value specified in ARIB STD-75: 2.5 W or less, 2.5, u W = 26.0206 dBm. Therefore, when the impedance it is 0.63 or less, an out-of-band attenuation of 27 dB or more can be obtained, so that the above standard can be satisfied. Therefore, since the filter for suppressing spurious can be deleted, the high-frequency module can be further reduced in size. Therefore, it can be seen that it is desirable to set the impedance ratio Z / Z to 0.63 or less.
S22 S11  S22 S11
[0079] [表 4]
Figure imgf000018_0001
[0079] [Table 4]
Figure imgf000018_0001
[0080] なお、上記 Z 及び Z の値の制御は、コプレナラインの長さゃコプレナライン両端 [0080] It should be noted that the Z and Z values are controlled by the length of the coplanar line.
Sll S22  Sll S22
部の浮遊容量などの各値の調整により行うことができる。すなわち、例えば、伝送線 路を構成して 、るコプレナライン 9の上記各寸法や面積、あるいはコプレナライン 9を 構成している導体の厚み等を制御することにより、 Z /Z を制御することができる  This can be done by adjusting each value such as stray capacitance. That is, for example, Z / Z can be controlled by configuring the transmission line and controlling the above dimensions and area of the coplanar line 9 or the thickness of the conductor constituting the coplanar line 9.
S22 S11  S22 S11
。より具体的には、ライン長さを長ぐ浮遊容量を小さくすることにより、インピーダンス 比を高めることができ、ライン長さを短ぐ浮遊容量を大きくすることにより、インピーダ ンス比を低めたりすることができる。すなわち、 Z /Z は、伝送線路の構造を種々  . More specifically, the impedance ratio can be increased by increasing the stray capacitance by increasing the line length, and the impedance ratio can be decreased by increasing the stray capacitance by decreasing the line length. Can do. In other words, Z / Z can be used for various transmission line structures.
S22 S11  S22 S11
変化することにより、容易に制御し得るものである。無論、局面によってはコプレナラ インの幅やグラウンド電極との距離などその他のパラメータにより制御することも可能 である。  By changing, it can be easily controlled. Of course, depending on the situation, it can be controlled by other parameters such as the width of the coplanar line and the distance to the ground electrode.
[0081] 本発明においては、高周波素子はアンテナ素子に限られず、アンテナ用マツチン グ素子、スィッチ素子、パワーアンプ、ローノイズアンプ、送信用 RFもしくは IC、また は受信用 RFもしくは ICなどを用いてもょ 、。  [0081] In the present invention, the high-frequency element is not limited to an antenna element, and an antenna matting element, switch element, power amplifier, low noise amplifier, transmitting RF or IC, receiving RF or IC, or the like may be used. Oh ,.

Claims

請求の範囲 The scope of the claims
[1] RF回路部と、高周波素子と、前記 RF回路部と高周波素子とを接続する線路とを備 え、前記線路力 の浮遊容量をグラウンド電位に接続することにより、前記線路が口 一パスフィルタとして用いられて!/、る高周波モジュールであって、  [1] An RF circuit section, a high-frequency element, and a line connecting the RF circuit section and the high-frequency element, and connecting the stray capacitance of the line force to a ground potential allows the line to be connected to a single path. Used as a filter! /
第 1の基板と、  A first substrate;
第 1の基板に設けられた前記 RF回路部と、  The RF circuit portion provided on the first substrate;
第 2の基板と、  A second substrate;
第 2の基板に設けられた前記高周波素子と、  The high-frequency element provided on the second substrate;
前記線路を構成しており、一端が前記高周波素子に接続されている伝送線路及び 前記伝送線路に一端が接続されており、他端が前記 RF回路に接続されている配線 線路を備え、  The transmission line comprising the transmission line, one end connected to the high-frequency element and the transmission line, one end connected to the transmission line, and the other end connected to the RF circuit,
前記伝送線路が前記第 2の基板に設けられており、該伝送線路のインピーダンス が配線線路のインピーダンスよりも低くされており、前記伝送線路の前記配線線路側 力 みた入力インピーダンスが前記伝送線路の高周波素子側からみた入力インピー ダンスよりも高くされていることを特徴とする、高周波モジュール。  The transmission line is provided on the second substrate, the impedance of the transmission line is made lower than the impedance of the wiring line, and the input impedance viewed from the wiring line side of the transmission line is the high frequency of the transmission line. A high-frequency module characterized by being higher than the input impedance seen from the element side.
[2] 前記伝送線路の前記配線線路側からみた入力インピーダンスに対する前記伝送 線路の前記高周波素子側からみた入力インピーダンスの比が 0. 63以下であること を特徴とする、請求項 1に記載の高周波モジュール。  [2] The high frequency device according to claim 1, wherein a ratio of an input impedance viewed from the high frequency element side of the transmission line to an input impedance viewed from the wiring line side of the transmission line is 0.63 or less. module.
[3] 前記配線線路の前記 RF回路側力もみた入力インピーダンスが、前記配線線路の 前記伝送線路側からみた入力インピーダンスよりも低くされて 、る、請求項 1または 2 に記載の高周波モジュール。  [3] The high frequency module according to claim 1 or 2, wherein an input impedance of the wiring line viewed from the RF circuit side force is set lower than an input impedance of the wiring line viewed from the transmission line side.
[4] 前記伝送線路がコプレナラインである、請求項 1〜3のいずれか 1項に記載の高周 波モジユーノレ。  [4] The high frequency module according to any one of claims 1 to 3, wherein the transmission line is a coplanar line.
[5] 前記伝送線路が前記第 2の基板内に設けられたストリップラインであり、該ストリップ ラインを挟んで上下にグラウンド電極が配置されている、請求項 1〜3のいずれか 1項 に記載の高周波モジュール。  [5] The transmission line according to any one of claims 1 to 3, wherein the transmission line is a strip line provided in the second substrate, and a ground electrode is disposed above and below the strip line. High frequency module.
[6] 前記高周波素子が前記第 2の基板の主面中央に搭載されている、請求項 1〜4の いずれか 1項に記載の高周波モジュール。 [6] The high-frequency module according to any one of claims 1 to 4, wherein the high-frequency element is mounted in the center of the main surface of the second substrate.
[7] 前記高周波素子が前記第 2の基板の主面において中央力 ずらされた部分に搭 載されており、該高周波素子が搭載される部分に前記伝送線路の一端が接続されて いる、請求項 1〜6のいずれか 1項に記載の高周波モジュール。 [7] The high-frequency element is mounted on a portion of the main surface of the second substrate that is shifted in central force, and one end of the transmission line is connected to the portion on which the high-frequency element is mounted. Item 7. The high-frequency module according to any one of items 1 to 6.
[8] 前記高周波素子がアンテナ素子であることを特徴とする、請求項 1〜7のいずれか 1項に記載の高周波モジュール。  8. The high frequency module according to any one of claims 1 to 7, wherein the high frequency element is an antenna element.
PCT/JP2006/312896 2005-10-27 2006-06-28 High-frequency module WO2007049382A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-312887 2005-10-27
JP2005312887 2005-10-27

Publications (1)

Publication Number Publication Date
WO2007049382A1 true WO2007049382A1 (en) 2007-05-03

Family

ID=37967504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312896 WO2007049382A1 (en) 2005-10-27 2006-06-28 High-frequency module

Country Status (1)

Country Link
WO (1) WO2007049382A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7990318B2 (en) 2007-03-22 2011-08-02 Brother Kogyo Kabushiki Kaisha Radio-frequency telephone set
CN102332640A (en) * 2010-07-09 2012-01-25 日立电线精密技术株式会社 Electromagnetic coupler and information communication device including same
JP2015023473A (en) * 2013-07-19 2015-02-02 株式会社東芝 Antenna device
JP2016092817A (en) * 2014-11-04 2016-05-23 パナソニックIpマネジメント株式会社 Antenna device and electronic equipment

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567919A (en) * 1991-07-25 1993-03-19 Nec Corp Millimeter microwave transmission/reception module
JPH0856113A (en) * 1994-08-11 1996-02-27 Matsushita Electric Ind Co Ltd Detector for millimeter wave
JP2605502B2 (en) * 1991-05-14 1997-04-30 三菱電機株式会社 package
JPH10209720A (en) * 1997-01-17 1998-08-07 Hitachi Ltd Multilayer mounted mmic circuit
JPH10294616A (en) * 1997-04-18 1998-11-04 Seiko Epson Corp Superconductive thin film circuit
JPH11234033A (en) * 1998-02-12 1999-08-27 Taiyo Yuden Co Ltd High-frequency antenna module
JP2000101377A (en) * 1998-09-21 2000-04-07 Nippon Telegr & Teleph Corp <Ntt> Filtering device and antenna system
JP2001088097A (en) * 1999-09-16 2001-04-03 Hitachi Ltd Millimeter wave multi-layer substrate module and its manufacture
JP2004096180A (en) * 2002-08-29 2004-03-25 Alps Electric Co Ltd Antenna unit
WO2004075336A1 (en) * 2003-02-21 2004-09-02 Matsushita Electric Industrial Co., Ltd. High frequency circuit
JP3708382B2 (en) * 1999-10-12 2005-10-19 日本碍子株式会社 Antenna device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2605502B2 (en) * 1991-05-14 1997-04-30 三菱電機株式会社 package
JPH0567919A (en) * 1991-07-25 1993-03-19 Nec Corp Millimeter microwave transmission/reception module
JPH0856113A (en) * 1994-08-11 1996-02-27 Matsushita Electric Ind Co Ltd Detector for millimeter wave
JPH10209720A (en) * 1997-01-17 1998-08-07 Hitachi Ltd Multilayer mounted mmic circuit
JPH10294616A (en) * 1997-04-18 1998-11-04 Seiko Epson Corp Superconductive thin film circuit
JPH11234033A (en) * 1998-02-12 1999-08-27 Taiyo Yuden Co Ltd High-frequency antenna module
JP2000101377A (en) * 1998-09-21 2000-04-07 Nippon Telegr & Teleph Corp <Ntt> Filtering device and antenna system
JP2001088097A (en) * 1999-09-16 2001-04-03 Hitachi Ltd Millimeter wave multi-layer substrate module and its manufacture
JP3708382B2 (en) * 1999-10-12 2005-10-19 日本碍子株式会社 Antenna device
JP2004096180A (en) * 2002-08-29 2004-03-25 Alps Electric Co Ltd Antenna unit
WO2004075336A1 (en) * 2003-02-21 2004-09-02 Matsushita Electric Industrial Co., Ltd. High frequency circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7990318B2 (en) 2007-03-22 2011-08-02 Brother Kogyo Kabushiki Kaisha Radio-frequency telephone set
CN102332640A (en) * 2010-07-09 2012-01-25 日立电线精密技术株式会社 Electromagnetic coupler and information communication device including same
JP2012019433A (en) * 2010-07-09 2012-01-26 Hitachi Cable Fine Tech Ltd Electromagnetic coupler, and information communication device mounting the same
US8803629B2 (en) 2010-07-09 2014-08-12 Hitachi Metals, Ltd. Electromagnetic coupler and information communication device including same
JP2015023473A (en) * 2013-07-19 2015-02-02 株式会社東芝 Antenna device
US9698482B2 (en) 2013-07-19 2017-07-04 Kabushiki Kaisha Toshiba Antenna device
JP2016092817A (en) * 2014-11-04 2016-05-23 パナソニックIpマネジメント株式会社 Antenna device and electronic equipment

Similar Documents

Publication Publication Date Title
US7649499B2 (en) High-frequency module
JP3863464B2 (en) Filter built-in antenna
US6822534B2 (en) Laminated electronic component, laminated duplexer and communication device
US7978031B2 (en) High frequency module provided with power amplifier
EP1164656A2 (en) Antenna system and radio unit using the same
US8283990B2 (en) Signal transmission communication unit and coupler
US9225057B2 (en) Antenna apparatus and wireless communication device using same
US9629282B2 (en) Electronic device, structure, and heat sink
CN110431714B (en) Patch antenna feed unit
JP6741186B2 (en) Circuit board, circuit board module, and antenna module
WO2007049382A1 (en) High-frequency module
WO2018185935A1 (en) Inter-circuit-board connection structure
JP2000223905A (en) Electronic device
JP2008270363A (en) High-frequency package
JP2009033624A (en) Dielectric resonator component
JP2004153607A (en) Chip-shaped antenna element and antenna-mounted printed wiring board
WO2010113845A1 (en) Distributed constant circuit
JPH088499A (en) Printed circuit board structure of distributed constant circuit
JP2012038863A (en) Multilayer circuit board, circuit module mounting multilayer circuit board, and electronic device
JP3152138B2 (en) Surface acoustic wave device
JP6940286B2 (en) Wiring boards, electronic component packages and electronic devices
JP3111672U (en) High frequency electronic components
JP3661326B2 (en) Printed wiring board device
JP2008078184A (en) Multilayer wiring board for mounting high-frequency chip, and high-frequency circuit module
KR102515991B1 (en) Circuit board, inductor, and radio apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767513

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP