WO2007049025A1 - Lead-free solder alloy - Google Patents

Lead-free solder alloy Download PDF

Info

Publication number
WO2007049025A1
WO2007049025A1 PCT/GB2006/003948 GB2006003948W WO2007049025A1 WO 2007049025 A1 WO2007049025 A1 WO 2007049025A1 GB 2006003948 W GB2006003948 W GB 2006003948W WO 2007049025 A1 WO2007049025 A1 WO 2007049025A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
solder
copper
silver
bismuth
Prior art date
Application number
PCT/GB2006/003948
Other languages
French (fr)
Inventor
Gerard Campbell
Anthony Ingham
Original Assignee
Alpha Fry Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha Fry Limited filed Critical Alpha Fry Limited
Priority to EP06794884A priority Critical patent/EP1948388A1/en
Publication of WO2007049025A1 publication Critical patent/WO2007049025A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent

Definitions

  • the present invention relates to an alloy and, in particular, a lead-free solder alloy.
  • the alloy is particularly, though not exclusively, suitable for use in tinning of thin copper wires and the manufacture of copper and brass heat exchangers.
  • soldering takes place -at ⁇ a relatively low temperature/ typically " 235 to ⁇ 260°C. " " ⁇ "
  • solder alloys have been proposed for use in this temperature range.
  • the soldering process may need to be conducted at a higher temperature.
  • the use of a higher temperature can lead to problems resulting from the increased rate of dissolution of the substrate into the molten solder.
  • copper or copper-alloy (eg brass) tubes are coated with solder in preparation for the construction of the radiator core.
  • the coating process involves applying flux to the outside of the tube, and then passing the tube through a tank of molten solder, so that the outside surface is wetted by the solder.
  • a thin film typically 5 to 8 microns, is left on the tube as it exits the tank.
  • solder bath temperature of from 330 to 350 0 C is commonly used.
  • the relatively high temperature means that the solder bath will absorb copper (dissolved from the tubes) more quickly than is the case for a low temperature process. This results in a gradual increase in the copper content of the bath.
  • a second high-temperature application is commonly referred to as "lead dipping".
  • the objective is to coat the end of a copper wire with a few microns of solder alloy.
  • This coating enhances the solderability of that section of wire, which facilitates joining " it " to another surface in a subsequent " " soldering operation.
  • the surface of the bare copper wire may be coated with an organic compound to provide corrosion protection. This coating must be removed before the copper wire can be tinned. If the lead "dipping" operation is performed at a relatively high temperature, for example 350 0 C or above, then the organic coating can be burned off, and the tinning can be accomplished in a single operation.
  • solder alloy there are a number of requirements for a solder alloy to be suitable for use in the above-described high temperature applications. First, they must be able to wet the substrate quickly. Second, they must be of suitable composition so that they can be held in a molten bath for extended periods without excessive dross formation. Third, the solder joints formed from the alloys must be sufficiently strong for the conditions of service. Fourth, where the solder is in the form of a coating, the alloy must be compatible with the soldering operation and the soldering material that will ultimately be applied. ⁇
  • the present invention aims to address at least some of the problems associated with the prior art and to provide an improved solder alloy. Accordingly, the present invention provides an alloy suitable for use in tinning or the manufacture of copper and brass heat exchangers, the alloy comprising: " " " " " " ⁇ '
  • Copper provides strength to the resulting tin solder, and in general terms its presence reduces the rate of copper dissolution from the substrate. Higher copper values slow the rate of copper dissolution, but also increase the lrquidus ⁇ temperature r " For these reasons, the inventors " have found that the optimum copper content, in conjunction with the other alloying elements, to achieve the desired balance is from 2 - 6 wt.%, more preferably from 2 - 4.5 wt.%, still more preferably from 2 - 4 wt.%.
  • the lower limit in respect of the Cu may preferably be at least 2.1 wt.%, still more preferably at least 2.3 wt.%, still more preferably at least 2.5 wt . % .
  • Bismuth strengthens the alloy and is also believed to help in the wetting of the solder to the surface. It is also possible that bismuth, in conjunction with other elements present in the alloy, reduces the dissolution rate of copper. For these reasons, the inventors have found that the bismuth content, in conjunction with the other alloying elements, should be from 0.08 - 1.5 wt.%, preferably from 0.08 - 1 wt.%, more preferably from 0.08 - 0.8 wt.%, still more preferably from 0.08 - 0.3 wt.%. If the lower limit is less than 0.08 wt.%, then it has been found that the benefits derived from presence of bismuth, notably the mechanical and soldering properties for the applications in question, may not be sufficient. For this reason, the lower limit in respect of the bismuth is preferably 0.1 wt.%, more
  • the content of bismuth in the alloy preferably does not exceed 1 wt.%. This is because it has been found that high bismuth levels result in a brittle alloy and, furthermore, reduce the solidus of the alloy.
  • the content of bismuth in the alloy preferably does not exceed 0.8 wt.%, more preferably it does not exceed 0.5 wt.%, still more preferably it does not exceed 0.3 wt.%.
  • the alloy comprises, in conjunction with the other alloying elements, from 0.02 - 0.2 wt.% nickel and/or 20 from 0.01 - 0.2 wt.% cobalt. More preferably, if present, the alloy comprises from 0.02 - 0.1 wt . % nickel. Similarly, if present, the alloy preferably comprises from 0.01 - 0.1 wt. % cobalt.
  • the alloy preferably contains no more than 1.5 wt . % silver, for example from 0.1 to 1.5 wt . % . More preferably, the alloy contains no more than 1 wt . % silver, still more preferably no more than 0.5 wt . % silver, still more preferably no more than 0.3 wt . % silver.
  • a low silver content (for example ⁇ 1 wt.%, more preferably ⁇ 0.5 wt.%) has also been found to be beneficial because, in conjunction with the other alloying elements, it provides reduced alloy stiffness.
  • a preferred range is therefore 0.1 to 0.5 wt.%, more preferably 0.1 to ' 0:3 " wf. %. ⁇ - "" " " ⁇
  • the alloy preferably comprises up to 0.01 wt.% phosphorous. Similarly, if present, the alloy preferably comprises up to 0.01 wt.% germanium.
  • Indium if present, has been found to assist the wetting of the solder to copper substrates.
  • the alloys according to the present invention are lead- free or essentially lead-free.
  • the alloys offer environmental advantages over conventional lead-containing solder alloys.
  • the alloys according to the present invention may contain unavoidable impurities, although, in total, these are unlikely to exceed 1 wt.% of the composition.
  • the alloys Preferably, contain unavoidable impurities in an amount of not more than 0.5 wt.% of the composition, more preferably not more than 0.3 wt.% of the composition.
  • the alloys according to the present invention will typically be supplied as a bar, stick or ingot, optionally together with a flux.
  • the alloys may also be provided in the form of a wire, for example a cored wire, which - - incorporates a flux, a sphere, or o " ther ⁇ prefo " rm " typically though not necessarily made by cutting or stamping from a strip or solder. These may be alloy only or coated with a suitable flux as required by the soldering process.
  • the alloys may also be supplied as- a powder, or as a powder blended with a flux to produce a solder paste.
  • the alloys according to the present invention may be used in molten solder baths. Accordingly, the present invention further provides a solder bath or tank for soldering or coating or tinning of a substrate material, wherein the solder bath contains an alloy as herein described in the molten state.
  • the alloys will typically comprise at least 89.9 wt.% tin, preferably from 90 to 97.9 wt.% tin, more preferably from 94 to 97.5 wt.% tin, still more preferably 95 to 97.5 we .% tin. Accordingly, the present invention further provides an alloy for use in tinning or the manufacture of heat exchangers, the alloy comprising:
  • the alloys according to the present invention may consist essentially of the recited elements. It will therefore be appreciated that in addition to those elements which are mandatory (i.e. Sn, Cu, Bi and at least one of Ni, and Co) other non-specified elements may be present in the composition provided that the essential characteristics of the composition are not materially affected by their presence. Accordingly, the present invention further provides an alloy for use in tinning or the manufacture of heat exchangers, the alloy consisting essentially of:
  • the present invention also provides a soldered joint or coating comprising an alloy as herein described.
  • the alloys according to the present invention are particularly well suited to applications involving tinning (or dipping) of thin copper wires and the manufacture of copper and copper-alloy (eg brass) heat exchangers.
  • Suitable quantities of the alloys Sn - 5 wt.% Cu, Sn - 52 wt.% Bi and Sn - 0.3 wt.% Ni were prepared by dissolving the elements into molten tin. Appropriate weights of the resulting master alloys were then melted together to form an alloy whose composition was shown by analysis to be:
  • Copper wires were dipped into a flux (AlphaFry RF800) and then immersed into the solder composition at 350 0 C.
  • the wirer were thereby coated with a thin protective layer of solder. The solder prevents oxidation of the copper wires so that they can then be more readily soldered.
  • the alloy was melted in a tank and maintained at a temperature of 335 0 C.
  • a brass strip was fluxed, pre-warmed and then run through the tank so that it was immersed in the molten solder for approximately three seconds .
  • a uniform coating of solder was produced on the surfaces of the strip.
  • excess solder may be removed using hot air jets at the surface, or by means of a heated die or scraper though which the coated strip is passed.
  • the alloy was cast into a billet, and then extruded and drawn into wire. Slugs of wire were then cut and pre-melted into the base of a fuse cap. The cap containing the solder was then used in the manufacture of a safety fuse.
  • the particular advantage of the low dissolution rate of the fuse wire alloy into the molten solder is a benefit .

Abstract

An alloy suitable for use in tinning or the manufacture of heat exchangers, the alloy comprising: from 2 - 6 wt.% copper, from 0.08 - 1.5 wt.% bismuth, from 0 - 1.5 wt.% silver, from 0 - 0.02 wt.% phosphorus, from 0 - 0.02 wt.% germanium, from 0 - 0.15 wt% of indium, from 0 - 0.3 wt% of silicon, from 0 - 0.2 wt% of zirconium, one or both of from 0.02 - 0.2 wt.% nickel and/or from 0.01 - 0.2 wt.% cobalt, and the balance tin, together with unavoidable impurities.

Description

Lead-free solder alloy
The present invention relates to an alloy and, in particular, a lead-free solder alloy. The alloy is particularly, though not exclusively, suitable for use in tinning of thin copper wires and the manufacture of copper and brass heat exchangers.
For environmental reasons, there is an increasing demand for lead-free replacements for lead-containing conventional alloys.
In many electronic applications, soldering takes place -at~ a relatively low temperature/ typically "235 to~~260°C." " ~" Many lead-free solder alloys have been proposed for use in this temperature range.
For other applications, the soldering process may need to be conducted at a higher temperature. However, the use of a higher temperature can lead to problems resulting from the increased rate of dissolution of the substrate into the molten solder. For example, in the manufacture of heat exchangers, copper or copper-alloy (eg brass) tubes are coated with solder in preparation for the construction of the radiator core. The coating process involves applying flux to the outside of the tube, and then passing the tube through a tank of molten solder, so that the outside surface is wetted by the solder. As a consequence, a thin film, typically 5 to 8 microns, is left on the tube as it exits the tank. In order to provide sufficient heat transfer in a reasonably short contact time, a solder bath temperature of from 330 to 3500C is commonly used. The relatively high temperature means that the solder bath will absorb copper (dissolved from the tubes) more quickly than is the case for a low temperature process. This results in a gradual increase in the copper content of the bath. Although careful management of the composition of the bath, and the use of different top-up alloys can help, the problem is at least a nuisance to the operator.
A second high-temperature application is commonly referred to as "lead dipping". In this process the objective is to coat the end of a copper wire with a few microns of solder alloy. This coating (tinning) enhances the solderability of that section of wire, which facilitates joining" it" to another surface in a subsequent" "soldering operation. The surface of the bare copper wire may be coated with an organic compound to provide corrosion protection. This coating must be removed before the copper wire can be tinned. If the lead "dipping" operation is performed at a relatively high temperature, for example 3500C or above, then the organic coating can be burned off, and the tinning can be accomplished in a single operation. However, if conventional lead-free solder alloys are used in such a "tinning" or "dipping" operation, dissolution of the copper wire can occur owing to the aggressive nature of the conventional alloys at the temperatures involved. Since the wire will often be of very fine gauge, this loss of material can be a problem.
There are a number of requirements for a solder alloy to be suitable for use in the above-described high temperature applications. First, they must be able to wet the substrate quickly. Second, they must be of suitable composition so that they can be held in a molten bath for extended periods without excessive dross formation. Third, the solder joints formed from the alloys must be sufficiently strong for the conditions of service. Fourth, where the solder is in the form of a coating, the alloy must be compatible with the soldering operation and the soldering material that will ultimately be applied.
The present invention aims to address at least some of the problems associated with the prior art and to provide an improved solder alloy. Accordingly, the present invention provides an alloy suitable for use in tinning or the manufacture of copper and brass heat exchangers, the alloy comprising: " " " " ~ '
from 2 - 6 wt . % copper, from 0.08 - 1.5 wt . % bismuth,
from 0 - 1.5 wt.% silver, from 0 - 0.02 wt.% phosphorus, from 0 - 0.02 wt.% germanium, from 0 - 0.15 wt% of indium, from 0 - 0.3 wt% of silicon, from 0 - 0.2 wt% of zirconium,
one or both of from 0.02 - 0.2 wt.% nickel and/or from 0.01 - 0.2 wt.% cobalt,
and the balance tin, together with unavoidable impurities . The present invention will now be further described. In the following passages different aspects of the invention are defined in more detail. Each aspect so defined may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous.
Copper provides strength to the resulting tin solder, and in general terms its presence reduces the rate of copper dissolution from the substrate. Higher copper values slow the rate of copper dissolution, but also increase the lrquidus ~temperature r "For these reasons, the inventors " have found that the optimum copper content, in conjunction with the other alloying elements, to achieve the desired balance is from 2 - 6 wt.%, more preferably from 2 - 4.5 wt.%, still more preferably from 2 - 4 wt.%. The lower limit in respect of the Cu may preferably be at least 2.1 wt.%, still more preferably at least 2.3 wt.%, still more preferably at least 2.5 wt . % .
Bismuth strengthens the alloy and is also believed to help in the wetting of the solder to the surface. It is also possible that bismuth, in conjunction with other elements present in the alloy, reduces the dissolution rate of copper. For these reasons, the inventors have found that the bismuth content, in conjunction with the other alloying elements, should be from 0.08 - 1.5 wt.%, preferably from 0.08 - 1 wt.%, more preferably from 0.08 - 0.8 wt.%, still more preferably from 0.08 - 0.3 wt.%. If the lower limit is less than 0.08 wt.%, then it has been found that the benefits derived from presence of bismuth, notably the mechanical and soldering properties for the applications in question, may not be sufficient. For this reason, the lower limit in respect of the bismuth is preferably 0.1 wt.%, more
5 preferably 0.12 wt.%, still more preferably 0.15 wt.%.
However, the content of bismuth in the alloy preferably does not exceed 1 wt.%. This is because it has been found that high bismuth levels result in a brittle alloy and, furthermore, reduce the solidus of the alloy. For these
10 reasons, the content of bismuth in the alloy preferably does not exceed 0.8 wt.%, more preferably it does not exceed 0.5 wt.%, still more preferably it does not exceed 0.3 wt.%.
- - --- - --The presence- of" nickel" "and/Or "cobalt xn: "the"" aTloy has"""
15 been found to strengthen the alloy owing to the formation of intermetallic compounds. Nickel and cobalt also reduce the rate of copper dissolution to more manageable levels. For these reasons, the alloy comprises, in conjunction with the other alloying elements, from 0.02 - 0.2 wt.% nickel and/or 20 from 0.01 - 0.2 wt.% cobalt. More preferably, if present, the alloy comprises from 0.02 - 0.1 wt . % nickel. Similarly, if present, the alloy preferably comprises from 0.01 - 0.1 wt. % cobalt.
25 The presence of silver, an optional alloying element, in the alloy has been found to promote wetting and to improve the strength of the alloy. At low levels, the inventors have found that the silver does not have any significant effect on the dissolution rate of copper into
30 the solder. In other words, the inventors have found that improved solder wetting and improved alloy strength, which can be derived from silver, can be achieved at low levels. The use of low levels of silver has also been found to be advantageous in that higher levels of silver result in an increased copper dissolution rate and excessive numbers of large silver intermetallic crystals. For these reasons, the alloy preferably contains no more than 1.5 wt . % silver, for example from 0.1 to 1.5 wt . % . More preferably, the alloy contains no more than 1 wt . % silver, still more preferably no more than 0.5 wt . % silver, still more preferably no more than 0.3 wt . % silver. A low silver content (for example ≤ 1 wt.%, more preferably ≤ 0.5 wt.%) has also been found to be beneficial because, in conjunction with the other alloying elements, it provides reduced alloy stiffness. A preferred range is therefore 0.1 to 0.5 wt.%, more preferably 0.1 to ' 0:3"wf. %. ~- "" " " ~~
The presence of phosphorus and/or germanium in the alloy is believed to reduce the volume of dross formed on the top of an open tank of solder. Accordingly, if present, the alloy preferably comprises up to 0.01 wt.% phosphorous. Similarly, if present, the alloy preferably comprises up to 0.01 wt.% germanium.
Indium, if present, has been found to assist the wetting of the solder to copper substrates. Zirconium and/or silicon, if present, have been found to beneficially affect the rate of intermetallic growth at the interface in subsequent ageing of the solder joint.
The alloys according to the present invention are lead- free or essentially lead-free. The alloys offer environmental advantages over conventional lead-containing solder alloys. It will be appreciated that the alloys according to the present invention may contain unavoidable impurities, although, in total, these are unlikely to exceed 1 wt.% of the composition. Preferably, the alloys contain unavoidable impurities in an amount of not more than 0.5 wt.% of the composition, more preferably not more than 0.3 wt.% of the composition.
The alloys according to the present invention will typically be supplied as a bar, stick or ingot, optionally together with a flux. The alloys may also be provided in the form of a wire, for example a cored wire, which - - incorporates a flux, a sphere, or o"ther~prefo"rm "typically though not necessarily made by cutting or stamping from a strip or solder. These may be alloy only or coated with a suitable flux as required by the soldering process. The alloys may also be supplied as- a powder, or as a powder blended with a flux to produce a solder paste.
The alloys according to the present invention may be used in molten solder baths. Accordingly, the present invention further provides a solder bath or tank for soldering or coating or tinning of a substrate material, wherein the solder bath contains an alloy as herein described in the molten state.
The alloys will typically comprise at least 89.9 wt.% tin, preferably from 90 to 97.9 wt.% tin, more preferably from 94 to 97.5 wt.% tin, still more preferably 95 to 97.5 we .% tin. Accordingly, the present invention further provides an alloy for use in tinning or the manufacture of heat exchangers, the alloy comprising:
from 90 - 97.9 wt% tin, from 2 - 6 wt . % copper, from 0.08 - 1.5 wt . % bismuth,
from 0 - 1.5 wt . % silver, from 0 - 0.02 wt . % phosphorus, from 0 - 0.02 wt . % germanium, from 0 - 0.15 wt% of indium, from 0 - 0.3 wt% of silicon, from 0 - 0.2 wt% of zirconium,
one or both of from 0.02 - 0.2 wt . % nickel and/or from 0.01 - 0.2 wt.% cobalt,
and unavoidable impurities.
The alloys according to the present invention may consist essentially of the recited elements. It will therefore be appreciated that in addition to those elements which are mandatory (i.e. Sn, Cu, Bi and at least one of Ni, and Co) other non-specified elements may be present in the composition provided that the essential characteristics of the composition are not materially affected by their presence. Accordingly, the present invention further provides an alloy for use in tinning or the manufacture of heat exchangers, the alloy consisting essentially of:
from 90 - 97.9 wt% tin, from 2 - 6 wt.% copper, from 0.08 - 1.5 wt.% bismuth,
from 0 - 1.5 wt.% silver, from 0 - 0.02 wt.% phosphorus, from 0 - 0.02 wt.% germanium, from 0 - 0.15 wt% of indium, from 0 - 0.3 wt% of silicon, from 0 - 0.2 wt% of zirconium,
one or both of from 0.02 - 0.2 wt.% nickel and/or from 0.01 - 0.2 wt.% cobalt,
and unavoidable impurities .
The present invention also provides a soldered joint or coating comprising an alloy as herein described.
The alloys according to the present invention are particularly well suited to applications involving tinning (or dipping) of thin copper wires and the manufacture of copper and copper-alloy (eg brass) heat exchangers.
The present invention will now be described further with reference to the following non-limiting examples.
Examples
Example 1
Suitable quantities of the alloys Sn - 5 wt.% Cu, Sn - 52 wt.% Bi and Sn - 0.3 wt.% Ni were prepared by dissolving the elements into molten tin. Appropriate weights of the resulting master alloys were then melted together to form an alloy whose composition was shown by analysis to be:
Cu 2.8 wt. % Bi 0.12 wt. % Ni 0.06 wt. % Balance Sn
Copper wires were dipped into a flux (AlphaFry RF800) and then immersed into the solder composition at 3500C. The wirer were thereby coated with a thin protective layer of solder. The solder prevents oxidation of the copper wires so that they can then be more readily soldered.
Example 2
Using pre-prepared master alloys, an alloy of the following composition was prepared:
Cu 3 . 0 wt . %
Ag 0 . 25 wt . %
Bi 0 . 25 wt . %
Ni 0 . 05 wt . %
P 0 . 005 wt . %
Balance Sn
The alloy was melted in a tank and maintained at a temperature of 3350C. A brass strip was fluxed, pre-warmed and then run through the tank so that it was immersed in the molten solder for approximately three seconds . A uniform coating of solder was produced on the surfaces of the strip. Optionally excess solder may be removed using hot air jets at the surface, or by means of a heated die or scraper though which the coated strip is passed.
Example 3
An alloy of the following composition was prepared using the techniques outlined in the example above:
Cu 2.1 wt. % Ag 0.4 wt. % Bi 0.12 wt. % Co 0.035 wt. % Ni 0.04 wt% .-Balance Sn-
The alloy was cast into a billet, and then extruded and drawn into wire. Slugs of wire were then cut and pre-melted into the base of a fuse cap. The cap containing the solder was then used in the manufacture of a safety fuse. In this example, the particular advantage of the low dissolution rate of the fuse wire alloy into the molten solder is a benefit .

Claims

CIAIMS :
1. An alloy suitable for use in tinning or the manufacture of heat exchangers, the alloy comprising:
from 2 - 6 wt.% copper, from 0.08 - 1.5 wt.% bismuth,
from 0 - 1.5 wt.% silver, from 0 - 0.02 wt.% phosphorus, from 0 - 0.02 wt.% germanium, from 0 - 0.15 wt% of indium, from 0 - 0.3 wt% of silicon, from- -0 =-0.2 wfe% of- zirconium,
one or both of from 0.02 - 0.2 wt.% nickel and/or from 0.01 - 0.2 wt.% cobalt,
and the balance tin, together with unavoidable impurities.
2. An alloy as claimed in claim 1, comprising from 2 - 4.5 wt.% copper, preferably from 2 - 4 wt.% copper.
3. An alloy as claimed in claim 1 or claim 2, comprising from 0.08 - 0.8 wt.% bismuth, preferably from 0.08 - 0.3 wt.% bismuth.
4. An alloy as claimed in any one of the preceding claims, comprising from 0.02 - 0.1 wt. % nickel.
5. An alloy as claimed in any one of the preceding claims, comprising from 0.01 - 0.1 wt . % cobalt.
6. An alloy as claimed in any one of the preceding claims, comprising up to 0.5 wt.% silver, preferably up to 0.3 wt.% silver.
7. An alloy as claimed in any one of the preceding claims, comprising up to 0.01 wt.% phosphorous.
8. An alloy as claimed in any one of the preceding claims, comprising up to 0.01 wt.% germanium.
-9- . An all-oy as-claimed- in any one -of" the preceding "claims"" in the form of a bar, a stick, an ingot, optionally together with a flux, a solid or flux-cored wire, a foil or strip, or a powder or paste (powder plus flux blend) , or solder spheres or other pre-formed solder pieces.
10. A solder bath or tank for soldering or coating or tinning of a substrate material, wherein the solder bath contains an alloy as defined in any one of claims 1 to 9 in the molten state.
11. A soldered joint or coating comprising an alloy as defined in any one of claims 1 to 9.
PCT/GB2006/003948 2005-10-24 2006-10-23 Lead-free solder alloy WO2007049025A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06794884A EP1948388A1 (en) 2005-10-24 2006-10-23 Lead-free solder alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0521636A GB2431412B (en) 2005-10-24 2005-10-24 Lead-free solder alloy
GB0521636.1 2005-10-24

Publications (1)

Publication Number Publication Date
WO2007049025A1 true WO2007049025A1 (en) 2007-05-03

Family

ID=35458593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2006/003948 WO2007049025A1 (en) 2005-10-24 2006-10-23 Lead-free solder alloy

Country Status (3)

Country Link
EP (1) EP1948388A1 (en)
GB (1) GB2431412B (en)
WO (1) WO2007049025A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2179815A1 (en) * 2007-08-24 2010-04-28 Kabushiki Kaisha Toshiba Bonding composition
CN105339131A (en) * 2014-04-30 2016-02-17 日本斯倍利亚股份有限公司 Lead-free solder alloy
CN106425154A (en) * 2016-11-29 2017-02-22 东莞市广信知识产权服务有限公司 Unleaded brazing filler metal
CN114807677A (en) * 2021-05-19 2022-07-29 苏州优诺电子材料科技有限公司 Tin alloy and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2406101C (en) * 2004-10-27 2007-09-11 Quantum Chem Tech Singapore Improvements in ro relating to solders
CN111286688B (en) * 2020-04-02 2022-03-01 江西金屹有色金属有限公司 Production process of tinned copper wire

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034376A (en) * 1996-07-26 1998-02-10 Nippon Genma:Kk Lead-free solder
EP0847829A1 (en) * 1996-12-16 1998-06-17 Ford Motor Company Lead-free solder composition
WO1999004048A1 (en) * 1997-07-17 1999-01-28 Litton Systems, Inc. Tin-bismuth based lead-free solders
JP2000288772A (en) * 1999-02-02 2000-10-17 Nippon Genma:Kk Lead-free solder
JP2001334384A (en) * 2000-05-22 2001-12-04 Murata Mfg Co Ltd Solder composition and soldered article
US6365097B1 (en) * 1999-01-29 2002-04-02 Fuji Electric Co., Ltd. Solder alloy
US20020051728A1 (en) * 2000-03-14 2002-05-02 Koji Sato Solder ball and method for producing same
EP1273384A1 (en) * 2001-06-28 2003-01-08 Senju Metal Industry Co., Ltd. Lead-free solder alloy
WO2004096484A2 (en) * 2003-04-25 2004-11-11 Cookson Electronics Assembly Materials Group Alhpa Metals Lötsysteme Gmbh Soldering material based on sn ag and cu
GB2419137A (en) * 2004-10-15 2006-04-19 Alpha Fry Ltd Solder alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8807730D0 (en) * 1988-03-31 1988-05-05 Cookson Group Plc Low toxicity soldering compositions
JP3363393B2 (en) * 1998-12-21 2003-01-08 千住金属工業株式会社 Lead-free solder alloy
JP2003001482A (en) * 2001-06-19 2003-01-08 Tokyo Daiichi Shoko:Kk Lead-free solder alloy
JP3602529B1 (en) * 2003-01-22 2004-12-15 白光株式会社 Lead-free solder for manual soldering or flow soldering and electronic components using it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1034376A (en) * 1996-07-26 1998-02-10 Nippon Genma:Kk Lead-free solder
EP0847829A1 (en) * 1996-12-16 1998-06-17 Ford Motor Company Lead-free solder composition
WO1999004048A1 (en) * 1997-07-17 1999-01-28 Litton Systems, Inc. Tin-bismuth based lead-free solders
US6365097B1 (en) * 1999-01-29 2002-04-02 Fuji Electric Co., Ltd. Solder alloy
JP2000288772A (en) * 1999-02-02 2000-10-17 Nippon Genma:Kk Lead-free solder
US20020051728A1 (en) * 2000-03-14 2002-05-02 Koji Sato Solder ball and method for producing same
JP2001334384A (en) * 2000-05-22 2001-12-04 Murata Mfg Co Ltd Solder composition and soldered article
EP1273384A1 (en) * 2001-06-28 2003-01-08 Senju Metal Industry Co., Ltd. Lead-free solder alloy
WO2004096484A2 (en) * 2003-04-25 2004-11-11 Cookson Electronics Assembly Materials Group Alhpa Metals Lötsysteme Gmbh Soldering material based on sn ag and cu
GB2419137A (en) * 2004-10-15 2006-04-19 Alpha Fry Ltd Solder alloy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2179815A1 (en) * 2007-08-24 2010-04-28 Kabushiki Kaisha Toshiba Bonding composition
EP2179815A4 (en) * 2007-08-24 2010-09-08 Toshiba Kk Bonding composition
CN105339131A (en) * 2014-04-30 2016-02-17 日本斯倍利亚股份有限公司 Lead-free solder alloy
CN108515289A (en) * 2014-04-30 2018-09-11 日本斯倍利亚股份有限公司 Leadless welding alloy
CN114161023A (en) * 2014-04-30 2022-03-11 日本斯倍利亚股份有限公司 Lead-free solder alloy
CN106425154A (en) * 2016-11-29 2017-02-22 东莞市广信知识产权服务有限公司 Unleaded brazing filler metal
CN114807677A (en) * 2021-05-19 2022-07-29 苏州优诺电子材料科技有限公司 Tin alloy and preparation method thereof
CN114807677B (en) * 2021-05-19 2023-08-08 苏州优诺电子材料科技有限公司 Tin alloy and preparation method thereof

Also Published As

Publication number Publication date
EP1948388A1 (en) 2008-07-30
GB2431412B (en) 2009-10-07
GB2431412A (en) 2007-04-25
GB0521636D0 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP7135171B2 (en) solder composition
EP3062956B1 (en) Lead-free, silver-free solder alloys
CN101578382B (en) Aluminum alloy brazing sheet for heat exchanger
US4441118A (en) Composite copper nickel alloys with improved solderability shelf life
US20070178007A1 (en) Lead-free solder, solder joint product and electronic component
US4451541A (en) Soldering composition and method of use
KR101749439B1 (en) Pb-FREE SOLDER ALLOY
JPH06344181A (en) Solder having improved dynamic property and free from pb
WO2006040582A1 (en) Solder alloy
WO2007049025A1 (en) Lead-free solder alloy
TW202045291A (en) Lead-free solder alloy and solder joint
KR20190113903A (en) Solder Alloys, Solder Bonding Materials, and Electronic Circuit Boards
JPH1158066A (en) Solder alloy
GB2494831A (en) Bi-Al-Zn-based Pb-free solder alloy
JP4076182B2 (en) Lead-free solder alloy
JP6165294B2 (en) Aluminum solder and solder joints
JP2004154864A (en) Lead-free soldering alloy
WO2007014530A1 (en) Lead-free sn-ag-cu-ni-al system solder alloy
CN102337422B (en) A kind of high temperature bends down the unleaded application warding off tin alloy of corrode
JP5562749B2 (en) Cu-Mn brazing wire fine wire and method for producing the same
KR20050085603A (en) Brazing sheet product having a clad layer and a coated layer of iron alloy and method of its manufacture
JP4290625B2 (en) Header tank for heat exchanger using extruded aluminum alloy and heat exchanger provided with the same
JP3758090B2 (en) SnCu-based lead-free solder alloy
CN105234585A (en) Lead-free aluminum copper alloy brazing material
TW200817126A (en) Electronic connecting materials for the Sn-Zn-Ag system lead-free solder alloys

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006794884

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006794884

Country of ref document: EP