WO2007046452A1 - Dye and dye-sensitized solar cell - Google Patents

Dye and dye-sensitized solar cell Download PDF

Info

Publication number
WO2007046452A1
WO2007046452A1 PCT/JP2006/320809 JP2006320809W WO2007046452A1 WO 2007046452 A1 WO2007046452 A1 WO 2007046452A1 JP 2006320809 W JP2006320809 W JP 2006320809W WO 2007046452 A1 WO2007046452 A1 WO 2007046452A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
dye
general formula
substituted
hydrogen atom
Prior art date
Application number
PCT/JP2006/320809
Other languages
French (fr)
Japanese (ja)
Inventor
Yong Wang
Kinji Yamada
Tetsuya Satou
Original Assignee
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corporation filed Critical Jsr Corporation
Publication of WO2007046452A1 publication Critical patent/WO2007046452A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a dye and a dye-sensitized solar cell using the same.
  • dyes used in the above dye-sensitized solar cells include, for example, a dye called ⁇ 719] represented by the following formula (4), and a formula (5) There are dyes called “black dyes”, and these dyes are often used in dye-sensitized solar cells (for example, see Non-Patent Documents 1 and 2).
  • Patent Document 1 US Pat. No. 4,927,721
  • Patent Document 2 Pamphlet of International Publication No. 98Z50393
  • Non-Patent Document 1 Am. Chem. Soc., 115, 6382-6390 (1993)
  • Non-Patent Document 2 Am. Chem. Soc., 123, 1613-1624 (2001) Disclosure of the Invention
  • the power generation efficiency of the dye-sensitized solar cell is largely dependent on the dye, and the dye-sensitized solar cell using the dye still has sufficient power generation efficiency. Absent. Therefore, development of a dye-sensitized solar cell having sufficient power generation efficiency is required. That is, there is a demand for development of a dye for obtaining a dye-sensitized solar cell capable of obtaining sufficient power generation efficiency.
  • the present inventors have found that the dye represented by the following general formula (1) is high. It is extremely useful as a compound that can exhibit power generation efficiency. Dye-sensitized solar cells using this dye are
  • the inventors have found that the present invention has higher power generation efficiency than conventional dye-sensitized solar cells, and have made the present invention.
  • the present invention provides the following dye and a dye-sensitized solar cell using the dye.
  • M is an element of Group 8 to L0 on the long periodic table
  • L 1 is a bidentate ligand represented by the following general formula (2)
  • L 2 is It is a bidentate ligand represented by the following general formula (2) or the following general formula (3)
  • X 1 and X 2 are monovalent atomic groups or monodentate ligands
  • a 1 is a hydrogen atom, a carboxy group, a sulfonic acid group, a phosphoric acid group, or a salt thereof
  • R 1 and R 2 are a hydrogen atom or a monovalent organic group.
  • R 3 is a monovalent organic group or a hydrogen atom
  • one of R 4 and R 5 is a monovalent organic group
  • the other is a monovalent organic group or a hydrogen atom.
  • Each is an integer from 1 to 3)
  • R 6 and R 7 are a hydrogen atom or a monovalent organic group
  • m3 and m4 Are each independently an integer from 0 to 3
  • R 4 and R 5 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, or a substituted group.
  • the pigment according to 2 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, or a substituted group.
  • a dye capable of producing a dye-sensitized solar cell having high power generation efficiency, and a dye-sensitized solar cell using the dye can be provided.
  • One embodiment of the dye of the present invention is represented by the following general formula (1). The details will be described below.
  • M is an element of Group 8 to L0 on the long periodic table
  • L 1 is a bidentate ligand represented by the following general formula (2)
  • L 2 is It is a bidentate ligand represented by the following general formula (2) or the following general formula (3)
  • X 1 and X 2 are monovalent atomic groups or monodentate ligands
  • a 1 is a hydrogen atom, a carboxy group, a sulfonic acid group, a phosphoric acid group, or a salt thereof
  • R 1 and R 2 are a hydrogen atom or a monovalent organic group.
  • R 3 is a monovalent organic group or a hydrogen atom
  • one of R 4 and R 5 is a monovalent organic group
  • the other is a monovalent organic group or a hydrogen atom.
  • Each is an integer from 1 to 3) [0024] [Chemical 8]
  • a 2 and A 3 are a carboxy group, a sulfonic acid group, a phosphoric acid group or a salt thereof, R 6 and R 7 are a hydrogen atom or a monovalent organic group, m 3 And m4 are each independently an integer of 0 to 3)
  • L 1 in the general formula (1) is a bidentate ligand represented by the general formula (2).
  • a 1 is a hydrogen atom, a carboxy group, a sulfonic acid group, a phosphoric acid group, or a salt thereof.
  • a hydrogen atom, a carboxy group, or a salt thereof is preferable. More preferably, it is a hydrogen atom.
  • a 1 is a salt
  • specific examples of counter force thione include ammonia ion, dimethylammonium ion, jetylammonium ion, tetramethylammonium ion, tetraethylammonium ion, tetrapropylammonium ion, Examples thereof include tetrabutyl ammonium ion, sodium ion, potassium ion, and the like.
  • R 1 in the general formula (2) is a hydrogen atom or a monovalent organic group.
  • the monovalent organic group include an alkyl group having 1 to 4 carbon atoms or an alkoxy group. Among these, a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable, and a hydrogen atom or a methyl group is more preferable.
  • Ml represents an integer of 1 to 3.
  • R 2 is a hydrogen atom or a monovalent organic group.
  • the monovalent organic group include an alkyl group having 1 to 40 carbon atoms or an alkoxy group. Among these, an alkyl group having 1 to 24 carbon atoms is preferable.
  • M2 is an integer from 1 to 3 Represents.
  • R 2 is not particularly limited as long as it is a monovalent organic group, but when A 1 is a hydrogen atom, it is a monovalent organic group other than a carboxyl group, a sulfonic acid group, and a phosphoric acid group. It is preferable.
  • R 3 in the general formula (2) is a monovalent organic group or a hydrogen atom. Of these, an alkyl group or a hydrogen atom is preferred, and a methyl group, an ethyl group, or a hydrogen atom is particularly preferred.
  • One of R 4 and R 5 in the general formula (2) is a monovalent organic group, and the other is a hydrogen atom or a monovalent organic group.
  • R 4 and R 5 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group, substituted or unsubstituted An unsubstituted alkylamino group and a substituted or unsubstituted arylyl group, an aryl group or a heteroaromatic group substituted with at least one selected group.
  • Particularly preferred are, for example, organic groups represented by the following general formulas (6-1) and (6-2).
  • Ar is a divalent aromatic hydrocarbon group or heteroaromatic group
  • X is a sulfur atom, oxygen atom or single bond
  • R 8 is a substituted or unsubstituted alkyl group, Or substituted or unsubstituted aryl group, wherein Ar is a divalent aromatic hydrocarbon group or heteroaromatic group, and one of R 9 and R 1C> is substituted or unsubstituted.
  • Ar in the general formulas (6-1) and (6-2) is a divalent aromatic hydrocarbon group or a heteroaromatic group.
  • the aromatic ring in the divalent aromatic hydrocarbon group or heteroaromatic group include a benzene ring, a naphthalene ring, an indene ring, and a furan ring. Of these, a group represented by the following formula (6-3) is particularly preferred.
  • R 8 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • an alkyl group, a phenyl group, a naphthyl group, or an alkoxyalkyl group is preferable.
  • the carbon number of R 8 is preferably 1 to 50, particularly preferably 1 to 12.
  • X in the general formula (6-1) is a sulfur atom, an oxygen atom or a single bond.
  • R 9 and R 1C> are one of a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group, and the other is a hydrogen atom, a substituted or unsubstituted alkyl group. Or a substituted or unsubstituted aryl group.
  • one is preferably an alkyl group or a phenyl group, and the other is preferably a hydrogen atom, an alkyl group, or a phenyl group.
  • R 4 and R 5 are a group represented by the general formula (6-1), the other is a hydrogen atom, and the general formula (6— It is particularly preferred that X in 1) is an oxygen atom or an R 8 cation group.
  • the dye of the present invention is first characterized by having a bidentate ligand represented by the general formula (2).
  • the bidentate ligand represented by the general formula (2) is characterized in that it has a substituted vinyl group in one pyridine ring of the biviridine skeleton.
  • the substituted vinyl group in the general formula (2) can be introduced into the biviridine skeleton using, for example, the Wittig reaction.
  • a phosphonium chloride derivative is synthesized by a reaction represented by the formula (8).
  • a bidentate ligand represented by the general formula (2) is obtained by reacting the synthesized phosphomuchloride derivative with a bipyridine compound having a carbonyl group or an aldehyde group. Can be synthesized.
  • a 1 in the general formula (2) is a carboxy group, a sulfonic acid group, a phosphoric acid group or a salt thereof, and A 1 in the formula (9) is the same, but a carboxy group, a sulfonic acid group, or a phosphoric acid It is also preferred that the group is a group protected with a protecting group. Alternatively, a group that easily becomes a carboxy group, a sulfonic acid group, or a phosphoric acid group by oxidation or the like, or a group that protects these groups is preferably A 1 in Formula (9). These groups can be converted into a carboxy group, a sulfonic acid group or a phosphoric acid group by deprotection and acid after completion of the reaction represented by the formula (9).
  • the bidentate ligand represented by the general formula (2) may be represented by the following formula (7) when A 1 is a hydrogen atom (hereinafter sometimes referred to as "second embodiment"). — 23) to (7- 43) The compound which has is mentioned.
  • the dye of the present invention may include a trans isomer, a cis isomer, and both of them. Of these, many are in the trans form.
  • the bidentate ligand represented by the general formula (2) has a substituted bur group in one pyridin ring in the biviridine skeleton, and a carboxy group, a sulfonic acid group, and a phosphorus group in the other pyridine ring.
  • a structure having an organic group other than an acid group is preferable.
  • the other pyridine ring has an organic group other than a carboxy group, a sulfonic acid group, and a phosphoric acid group, electron leakage to the electrolyte solution is prevented, so that there is an advantage that higher power generation efficiency can be obtained. is there.
  • the bidentate ligand represented by the general formula (2) is a substituted bull group in the general formula (2) using, for example, a dehydration reaction of alcohol. It can be synthesized by introducing it into the biviridine skeleton. For example, first, a biviridine derivative alcohol is synthesized. Next, the synthesized biviridine derivative alcohol is dehydrated using a salt by a reaction as shown in formula (10) to form olefin. In this way, the bidentate ligand represented by the general formula (2) can be synthesized. Even if A 1 is other than a hydrogen atom, as shown in Synthesis Example 3 to be described later, this method can be used to synthesize by first introducing a substituted vinyl group and then introducing the substituent A 1. Can do.
  • R ⁇ R 5 , ml and m2 are each in the general formula (2)! ⁇ 1 ⁇ ! ⁇ 5 , ml and m2 are supported.
  • L 2 in the general formula (1) is a bidentate ligand represented by the general formula (2) or the general formula (3).
  • General formula (2) has the above-described configuration.
  • a 2 and A 3 in the general formula (3) are each independently a carboxy group, a sulfonic acid group, a phosphoric acid group, or a salt thereof. Among these, a carboxy group or a salt thereof is preferable.
  • a 2 and A 3 are salts, the same ions as those mentioned as specific examples of the counter counter force thione of A 1 described above can be preferably used as the force counter cation.
  • R 6 and R 7 are a hydrogen atom or a monovalent organic group.
  • the organic acid include an alkyl group having 1 to 4 carbon atoms or an alkoxy group. Among these, a hydrogen atom or a methyl group is preferable.
  • M3 and m4 in the general formula (3) are each independently an integer of 1 to 3.
  • L 1 and L 2 are bidentate ligands in which L 1 is represented by the general formula (2), and L 2 is the general formula (2) or the general formula (3). As long as it is a bidentate ligand represented, there is no particular limitation!
  • the case where both of the forces L 1 and L 2 are represented by the above general formula (2) is also a preferred embodiment.
  • M in the general formula (1) is an element of group 8 to 10 on the long periodic table.
  • this element include iron, cobalt, nickel, ruthenium, osmium, iridium, platinum and the like. Among these, ruthenium is preferable.
  • X 1 and X 2 in the general formula (1) are a monovalent atomic group or a monodentate ligand.
  • Examples of the monovalent atomic group or monodentate ligand include atomic groups or ligands represented by the following formulas (11) to (17).
  • R 11 in the general formula (12) is preferably an alkyl group having 1 to 6 carbon atoms.
  • Ar in the general formulas (13) and (17) is an aryl group having 6 to 12 carbon atoms.
  • X 1 and X 2 in the general formula (1) are preferably those represented by the above general formula (2) (isothiocyanate) among the above atomic groups or ligands!
  • the dye of the present invention can be synthesized by synthesizing a ligand according to the formula (8) and the formula (9) or the formula (10), and then “Nat. Mater. 2, 402-407 (2003) ”.
  • the dye-sensitized solar cell of the present invention can suitably use the dye of the present invention.
  • the dye-sensitized solar cell of the present invention may have at least a cathode, an anode facing the cathode, and an electrolyte held between the cathode and the anode.
  • the cathode may have an oxide thin film electrode in which the above-described dye is chemically adsorbed on a transparent conductive glass.
  • the transparent conductive glass include tin oxide and indium-tin oxide ( ⁇ ).
  • Examples of the material constituting the oxide thin film electrode include titanium oxide, niobium oxide, zinc oxide, tin oxide, tungsten oxide, and indium oxide. Of these, titanium oxide, niobium oxide, and tin oxide are preferred, and titanium oxide is particularly preferred.
  • the method of forming the oxide thin film electrode For example, oxide fine particles to be an oxide thin film electrode are formed, suspended in an appropriate solvent, and applied onto transparent conductive glass. A method of heating after removing the solvent can be employed.
  • a transparent conductive film having an oxide thin film electrode on the surface obtained as described above can be used. It can be carried out by immersing the glass in a solution containing the pigment of the present invention.
  • the solvent that can be used here include jetyl ether, acetonitrile, ethanol, and the like.
  • the concentration of the dye solution is preferably 0.1 to: LOmmolZL.
  • As the soaking time 0.5 to: LOO time is preferred 2 to 50 hours is more preferred.
  • the temperature during the immersion is preferably 0 to 100 ° C, more preferably 10 to 50 ° C.
  • the anode is not particularly limited as long as it has electrical conductivity.
  • a material obtained by adhering a small amount of platinum or conductive carbon on transparent conductive glass can be suitably used.
  • the electrolyte for example, a solution containing a redox system, a solid, or an ionic liquid can be used. Specific examples thereof include, for example, a system using the following reaction of iodine (shown by Formula 18) as a redox system, and an electrolyte solution containing, for example, acetonitrile or propio-tolyl as a solvent. .
  • 4, 4- 1-dimethyl 1, 2, 2, 1-biviridine l lg was dissolved in 300 ml of tetrahydrofuran. Separately, 35 ml of lithium diisopropylamide solution (concentration 1.8 M, mixed solvent of tetrahydrofuran Z heptane Z ethylbenzene) and 3 ml of tetrahydrofuran were mixed and kept at ⁇ 78 ° C. To this solution, a tetrahydrofuran solution of 4,4′dimethyl-2,2′biviridine was added dropwise over 75 minutes while stirring at 78 ° C. under a nitrogen atmosphere. After completion of dropping, the mixture was further stirred for 15 minutes.
  • the temperature was raised to 0 ° C over 15 minutes with stirring, and then maintained at 0 ° C for 60 minutes.
  • the mixture was stirred while maintaining a temperature of 0 ° C under a nitrogen atmosphere, and 88 ml of tetrahydrofuran solution containing 7.5 ml of p-methoxybenzaldehyde was added dropwise over 60 minutes. Thereafter, the mixture was stirred for 120 minutes. Next, while stirring under a nitrogen atmosphere, the temperature was raised to room temperature over 90 minutes, and further stirred at room temperature for 12 hours.
  • Tetrahydrofuran was distilled off under reduced pressure at room temperature, 300 ml of dichloromethane and 500 ml of ion-exchanged water were added and stirred, and then the aqueous layer and the organic layer were separated.
  • the aqueous layer was extracted twice with 300 ml of dichloromethane, the extract and the organic layer were mixed, washed twice with 300 ml of ion-exchanged water, and dried by adding 22 g of magnesium sulfate. After drying, magnesium sulfate was filtered off, dichloromethane was distilled off under reduced pressure at room temperature, and further dried under reduced pressure at room temperature to obtain 2 lg of a yellow solid.
  • This solid was purified using a silica gel column under the conditions described later to obtain 9.8 g of product.
  • This product was analyzed by 1 H-NMR and found to be 4- [2- (4-methoxyphenyl) 2 -hydroxyethyl] -4'-methyl-2,2'-biviridine. — The result of NMR is shown below.
  • Silica gel lOOg was packed into a 200 ml column and the column was filled with black mouth form.
  • the above yellow solid was dissolved in 50 ml of black mouth form and applied to the above column. After developing with black mouth form, the volume was developed with 90.5 / 7.5 black mouth form Z methanol solvent and fractionated.
  • [0084] 4 was synthesized by the above (5, 5-dimethyl-1, 3 Jiokisa 2 cyclohexyl) one 4, one (4-methoxy-styryl) one 2, 2, - Bibirijin the mixture 814mg containing p- Torue Nsuruhon acid pyrid -15 mg of acetone, 160 ml of acetone and 40 ml of water were added and refluxed at 100 ° C for 12 hours. After the reaction, the mixture was concentrated with an evaporator and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and concentrated by an evaporator to obtain 440 mg of a mixture containing 2,2′bibilidine- 4 , ( 4 -methoxystyryl) -4 carboxaldehyde.
  • the powder was reprecipitated with dichloromethane-hexane solution and purified to obtain 6.7 g of the product.
  • the product was analyzed by 1 H-NMR and found to be 4- (N, N, 1 dimethylaminovinyl) 4, 1 (4-methoxystyryl) -2, 2, 1 biviridine. I understood. The results of H-NMR are shown below.
  • the formed precipitate was filtered off, and tetrahydrofuran was distilled off under reduced pressure at room temperature. After adding 10 Oml of dichloromethane and stirring, the aqueous layer and the organic layer were separated. The aqueous layer was extracted twice with 100 ml of dichloromethane, the extract and the organic layer were mixed, washed twice with 100 ml of saturated brine, and dried by adding lg of magnesium sulfate. After drying, magnesium sulfate was filtered off, dichloromethane was distilled off under reduced pressure at room temperature, and further dried under reduced pressure at room temperature to obtain 5.5 g of a yellow solid. The product was analyzed by 1 H-NMR and found to be 4 carbaldehyde -4 ′-(4-methoxystyryl) 2,2′-biviridine. The results of NMR are shown below.
  • Ethanol was distilled off under reduced pressure at room temperature, 1000 ml of a 6% dimethylformamide aqueous solution was added and stirred, and then the pH was adjusted to 3 with hydrochloric acid (concentration 1M). The resulting precipitate was collected by filtration and further dried under reduced pressure at room temperature to obtain 5.6 g of a black solid. This solid was purified using a silica gel column under the following conditions, and further purified by reprecipitation with a dimethylformamide-toluene solution to obtain 1.4 g of a product.
  • the conductive glass substrate for a cathode was pulled up and naturally dried for 2 hours to make this conductive glass substrate a cathode.
  • an anode conductive glass substrate is prepared, and platinum is deposited on this glass substrate. The anode was used.
  • an electrolyte solution containing 0.1 ImolZL iodine and 0.5 molZL lithium iodide in acetonitrile was prepared.
  • the surface of the cathode having the titanium oxide thin film and the surface of the anode on which platinum is deposited face inward, face each other at a distance of 0.1 mm, and sandwich the electrolyte solution therebetween (dye-sensitized solar cell) Battery cell).
  • a dye-sensitized solar cell (dye-sensitized solar cell) was produced in the same manner as in Example 5 except that the dye “T1” obtained in Example 2 was used, and the power generation efficiency was evaluated. It was confirmed that the dye-sensitized solar cell of this example had a power generation efficiency of 8.1%.
  • a dye-sensitized solar cell (dye-sensitized solar cell) was produced in the same manner as in Example 5 except that the dye “Tla” obtained in Example 3 was used, and the power generation efficiency was evaluated. It was confirmed that the power generation efficiency of the dye-sensitized solar cell of this example was 8.6%. [Example 8]:
  • a dye-sensitized solar cell (dye-sensitized solar cell) was produced in the same manner as in Example 5 except that the dye “T3” obtained in Example 4 was used, and the power generation efficiency was evaluated.
  • the dye-sensitized solar cell of this example was confirmed to have a power generation efficiency of 8.4%.
  • Dye sensitization was performed in the same manner as in Example 5 except that a commercially available dye “ ⁇ 719” (manufactured by Solaronix) was used as the dye having the structure represented by the above formula (4) instead of the dye “ ⁇ 2”.
  • a solar cell was produced and evaluated in the same manner as in “Evaluation of dye-sensitized solar cell” in Example 5. As a result, it was confirmed that the power generation efficiency was 6.1%.
  • the dye of the present invention and the dye-sensitized solar cell using this dye are excellent in power generation efficiency, they can be applied to various fields as a dye for solar cells and a solar cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pyridine Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

Disclosed is a dye which is represented by the general formula (1) below and capable of exhibiting high power generation efficiency. ML1L2X1X2 (1) (In the general formula (1), M represents a group 8-10 element of the long form periodic table; L1 represents a bidentate ligand represented by a certain formula; L2 represents a bidentate ligand represented by the aforementioned certain formula or a formula different from the aforementioned certain formula; and X1 and X2 respectively represent a monovalent atom group or a monodentate ligand.)

Description

明 細 書  Specification
色素及び色素増感太陽電池  Dye and dye-sensitized solar cell
技術分野  Technical field
[0001] 本発明は、色素及びそれを用いた色素増感太陽電池に関する。  [0001] The present invention relates to a dye and a dye-sensitized solar cell using the same.
背景技術  Background art
[0002] エネルギー問題に対する関心の高まりとともに光、特に太陽光を効率よく電気に変 換できる太陽電池の研究が進められている。現在、一般に太陽電池としては、ァモル ファスシリコン又は多結晶シリコンを利用したシリコン系の太陽電池が普及し始めてい る。しかし、シリコン系太陽電池は、コストが高ぐまた、高純度シリコンを使用するため 、その供給面での問題がある。そのため、シリコン系太陽電池が一般に広く普及する には限界があると!/、われて!/、る。  [0002] With increasing interest in energy problems, research on solar cells that can efficiently convert light, particularly sunlight, into electricity has been underway. At present, silicon solar cells using amorphous silicon or polycrystalline silicon are beginning to become popular as solar cells. However, the cost of silicon-based solar cells is high, and high-purity silicon is used, so there are problems in terms of supply. For this reason, there is a limit to the widespread use of silicon-based solar cells in general!
[0003] 上記のようにシリコン系太陽電池には限界があるため、近年では、シリコン系太陽電 池に代えて、色素を用いた色素増感太陽電池が関心を集めている。即ち、この色素 増感太陽電池は、発電効率が高ぐ酸化チタン等の安価な酸化物半導体を高純度 に精製することなくそのまま原料として使用できることができるため製造コストが比較 的低ぐ更に、製造するための設備が安価である等の利点があるため、シリコン系太 陽電池と比較して多くの利点を有する太陽電池として期待されている(例えば、特許 文献 1及び 2参照)。 [0003] Since silicon-based solar cells have limitations as described above, in recent years, dye-sensitized solar cells using a dye instead of silicon-based solar cells have attracted attention. In other words, this dye-sensitized solar cell can be used as a raw material as it is without purification of high-purity inexpensive oxide semiconductors such as titanium oxide, which have high power generation efficiency. Therefore, it is expected to be a solar cell having many advantages over silicon-based solar cells (see, for example, Patent Documents 1 and 2).
[0004] 上記色素増感太陽電池に使用される従来力 知られている色素としては、例えば、 下記式 (4)で表される ΓΝ719]と呼ばれる色素や、下記式(5)で表される「ブラック · ダイ」と呼ばれる色素があり、これらの色素は色素増感太陽電池に多く用いられてい る(例えば、非特許文献 1及び 2参照)。  [0004] Conventionally known dyes used in the above dye-sensitized solar cells include, for example, a dye called ΓΝ719] represented by the following formula (4), and a formula (5) There are dyes called “black dyes”, and these dyes are often used in dye-sensitized solar cells (for example, see Non-Patent Documents 1 and 2).
[0005] [化 1]
Figure imgf000003_0001
[0005] [Chemical 1]
Figure imgf000003_0001
[0006] [化 2] [0006] [Chemical 2]
Figure imgf000003_0002
Figure imgf000003_0002
(但し、上記式 (4)及び(5)中、 TBA+は、テトラプチルアンモ -ゥムイオンを表す) [0007] 特許文献 1:米国特許第 4927721号明細書 (However, in the above formulas (4) and (5), TBA + represents a tetraptyl ammonium ion) [0007] Patent Document 1: US Pat. No. 4,927,721
特許文献 2:国際公開第 98Z50393号パンフレット  Patent Document 2: Pamphlet of International Publication No. 98Z50393
非特許文献 1 : Am. Chem. Soc. , 115, 6382-6390 (1993) 非特許文献 2 : Am. Chem. Soc. , 123, 1613- 1624 (2001) 発明の開示 Non-Patent Document 1: Am. Chem. Soc., 115, 6382-6390 (1993) Non-Patent Document 2: Am. Chem. Soc., 123, 1613-1624 (2001) Disclosure of the Invention
[0008] し力 ながら、色素増感太陽電池の発電効率ゃ耐候性、耐熱性は、色素に大きく 依存し、上記色素を使用した色素増感太陽電池は、未だ十分な発電効率が得られ ていない。そのため、十分な発電効率を有する色素増感太陽電池の開発が求められ ている。即ち、十分な発電効率が得られる色素増感太陽電池を得るための色素の開 発が求められている。  [0008] However, the power generation efficiency of the dye-sensitized solar cell is largely dependent on the dye, and the dye-sensitized solar cell using the dye still has sufficient power generation efficiency. Absent. Therefore, development of a dye-sensitized solar cell having sufficient power generation efficiency is required. That is, there is a demand for development of a dye for obtaining a dye-sensitized solar cell capable of obtaining sufficient power generation efficiency.
[0009] 本発明者らは、上記のような色素及びこの色素を用いた色素増感太陽電池を開発 すべく鋭意検討を重ねた結果、下記一般式(1)で表される色素が、高い発電効率を 発揮し得る化合物として極めて有用であり、この色素を用いた色素増感太陽電池は [0009] As a result of intensive studies to develop the above-described dye and a dye-sensitized solar cell using the dye, the present inventors have found that the dye represented by the following general formula (1) is high. It is extremely useful as a compound that can exhibit power generation efficiency. Dye-sensitized solar cells using this dye are
、従来の色素増感太陽電池と比較して高い発電効率を有することを見出して、本発 明を成すに至った。 The inventors have found that the present invention has higher power generation efficiency than conventional dye-sensitized solar cells, and have made the present invention.
[0010] 即ち、本発明は以下に示す色素、及びこの色素を用いた色素増感太陽電池を提 供される。  That is, the present invention provides the following dye and a dye-sensitized solar cell using the dye.
[0011] [1] 下記一般式(1)で表される色素。  [0011] [1] A dye represented by the following general formula (1).
[0012] [化 3] [0012] [Chemical 3]
ML 1 L 2 X 1 X 2 · · · ( 1 ) ML 1 L 2 X 1 X 2 (1)
(上記一般式(1)中、 Mは長周期表上の 8〜: L0族の元素であり、 L1は下記一般式(2 )で表される二座配位子であり、 L2は下記一般式(2)又は下記一般式(3)で表される 二座配位子であり、 X1及び X2は一価の原子団又は一座配位子である) (In the above general formula (1), M is an element of Group 8 to L0 on the long periodic table, L 1 is a bidentate ligand represented by the following general formula (2), and L 2 is It is a bidentate ligand represented by the following general formula (2) or the following general formula (3), and X 1 and X 2 are monovalent atomic groups or monodentate ligands)
[0013] [化 4] [0013] [Chemical 4]
Figure imgf000005_0001
Figure imgf000005_0001
(上記一般式(2)中、 A1は水素原子、カルボキシ基、スルホン酸基、リン酸基、又はこ れらの塩であり、 R1及び R2は水素原子又は一価の有機基であり、 R3は一価の有機 基又は水素原子であり、 R4及び R5の一方は一価の有機基であり、他方は一価の有 機基又は水素原子である。 ml及び m2はそれぞれ 1〜3の整数である) (In the general formula (2), A 1 is a hydrogen atom, a carboxy group, a sulfonic acid group, a phosphoric acid group, or a salt thereof, and R 1 and R 2 are a hydrogen atom or a monovalent organic group. R 3 is a monovalent organic group or a hydrogen atom, one of R 4 and R 5 is a monovalent organic group, and the other is a monovalent organic group or a hydrogen atom. Each is an integer from 1 to 3)
[0014] [化 5] [0014] [Chemical 5]
Figure imgf000005_0002
Figure imgf000005_0002
(上記一般式(3)中、 A及び ΑΊまカルボキシ基、スルホン酸基、リン酸基又はこれら の塩であり、 R6及び R7は水素原子又は一価の有機基であり、 m3及び m4はそれぞ れ独立に 0〜3の整数である) (In the above general formula (3), A and a sesame carboxy group, a sulfonic acid group, a phosphoric acid group or a salt thereof, R 6 and R 7 are a hydrogen atom or a monovalent organic group, m3 and m4 Are each independently an integer from 0 to 3)
[0015] [2] 上記一般式(1)中の Mがルテニウムである前記 [1]に記載の色素。 [0015] [2] The dye according to [1], wherein M in the general formula (1) is ruthenium.
[0016] [3] 上記一般式 (2)中の R4及び R5の少なくとも一方が、置換若しくは非置換のァ ルキル基、置換若しくは非置換のアルコキシ基、置換若しくは非置換のァリーロキシ 基、置換若しくは非置換のアルキルチオ基、置換若しくは非置換のアルキルアミノ基 、及び置換若しくは非置換のァリールアミノ基力 選ばれる少なくとも 1つの基で置換 されたァリール基又は複素芳香族基である前記 [1]又は [2]に記載の色素。 [0016] [3] In the general formula (2), at least one of R 4 and R 5 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, or a substituted group. Or an arylalkyl group or a heteroaromatic group substituted with at least one selected from an unsubstituted alkylthio group, a substituted or unsubstituted alkylamino group, and a substituted or unsubstituted arylol group; The pigment according to 2].
[0017] [4] 色素増感太陽電池用である前記 [1]〜[3]のいずれかに記載の色素。 [0017] [4] The dye according to any one of [1] to [3], which is used for a dye-sensitized solar cell.
[0018] [5] 前記 [1]〜[3]のいずれかに記載の色素を使用した色素増感太陽電池。 [0019] 本発明によれば、高 、発電効率を有する色素増感太陽電池を製造し得る色素、及 びこの色素を用いた色素増感太陽電池を提供することができる。 [0018] [5] A dye-sensitized solar cell using the dye according to any one of [1] to [3]. According to the present invention, a dye capable of producing a dye-sensitized solar cell having high power generation efficiency, and a dye-sensitized solar cell using the dye can be provided.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0020] 以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の 形態に限定されるものではなぐ本発明の趣旨を逸脱しない範囲で、当業者の通常 の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも 本発明の範囲に入ることが理解されるべきである。 Hereinafter, the best mode for carrying out the present invention will be described. However, the present invention is not limited to the following embodiment, and is within the scope of the gist of the present invention. Based on the above, it should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention.
[0021] [1]色素: [0021] [1] Dye:
本発明の色素の一実施形態は、下記一般式(1)で表されるものである。以下、その 詳細について説明する。  One embodiment of the dye of the present invention is represented by the following general formula (1). The details will be described below.
[0022] [化 6] [0022] [Chemical 6]
ML 1 L 2 X 1 X 2 · · · ( 1 ) ML 1 L 2 X 1 X 2 (1)
(上記一般式(1)中、 Mは長周期表上の 8〜: L0族の元素であり、 L1は下記一般式(2 )で表される二座配位子であり、 L2は下記一般式(2)又は下記一般式(3)で表される 二座配位子であり、 X1及び X2は一価の原子団又は一座配位子である) (In the above general formula (1), M is an element of Group 8 to L0 on the long periodic table, L 1 is a bidentate ligand represented by the following general formula (2), and L 2 is It is a bidentate ligand represented by the following general formula (2) or the following general formula (3), and X 1 and X 2 are monovalent atomic groups or monodentate ligands)
[0023] [化 7] [0023] [Chemical 7]
Figure imgf000006_0001
Figure imgf000006_0001
(上記一般式(2)中、 A1は水素原子、カルボキシ基、スルホン酸基、リン酸基、又はこ れらの塩であり、 R1及び R2は水素原子又は一価の有機基であり、 R3は一価の有機 基又は水素原子であり、 R4及び R5の一方は一価の有機基であり、他方は一価の有 機基又は水素原子である。 ml及び m2はそれぞれ 1〜3の整数である) [0024] [化 8] (In the general formula (2), A 1 is a hydrogen atom, a carboxy group, a sulfonic acid group, a phosphoric acid group, or a salt thereof, and R 1 and R 2 are a hydrogen atom or a monovalent organic group. R 3 is a monovalent organic group or a hydrogen atom, one of R 4 and R 5 is a monovalent organic group, and the other is a monovalent organic group or a hydrogen atom. Each is an integer from 1 to 3) [0024] [Chemical 8]
Figure imgf000007_0001
Figure imgf000007_0001
(上記一般式(3)中、 A2及び A3はカルボキシ基、スルホン酸基、リン酸基又はこれら の塩であり、 R6及び R7は水素原子又は一価の有機基であり、 m3及び m4はそれぞ れ独立に 0〜3の整数である) (In the above general formula (3), A 2 and A 3 are a carboxy group, a sulfonic acid group, a phosphoric acid group or a salt thereof, R 6 and R 7 are a hydrogen atom or a monovalent organic group, m 3 And m4 are each independently an integer of 0 to 3)
[0025] このような構成により、色素増感太陽電池に用いたい場合に高い発電効率を発揮 し得るという利点がある。  [0025] With such a configuration, there is an advantage that high power generation efficiency can be exhibited when it is desired to use the dye-sensitized solar cell.
[0026] [1 1]一般式(1)中の L1 : [0026] [1 1] L 1 in general formula (1):
一般式(1)中の L1は、上記一般式(2)で表される二座配位子である。この一般式( 2)において A1は、水素原子、カルボキシ基、スルホン酸基、リン酸基、またはこれら の塩である。これらの中でも、水素原子、カルボキシ基、又はこの塩であることが好ま しい。更に好ましくは、水素原子である。 L 1 in the general formula (1) is a bidentate ligand represented by the general formula (2). In the general formula (2), A 1 is a hydrogen atom, a carboxy group, a sulfonic acid group, a phosphoric acid group, or a salt thereof. Among these, a hydrogen atom, a carboxy group, or a salt thereof is preferable. More preferably, it is a hydrogen atom.
[0027] A1が塩の場合、カウンタ一力チオンの具体例としては、アンモ-ゥムイオン、ジメチ ルアンモ -ゥムイオン、ジェチルアンモ -ゥムイオン、テトラメチルアンモ -ゥムイオン 、テトラエチルアンモ -ゥムイオン、テトラプロピルアンモ-ゥムイオン、テトラブチルァ ンモ -ゥムイオン、ナトリウムイオン、カリウムイオン等を挙げることができる。 [0027] When A 1 is a salt, specific examples of counter force thione include ammonia ion, dimethylammonium ion, jetylammonium ion, tetramethylammonium ion, tetraethylammonium ion, tetrapropylammonium ion, Examples thereof include tetrabutyl ammonium ion, sodium ion, potassium ion, and the like.
[0028] 一般式(2)中の R1は、水素原子又は一価の有機基である。一価の有機基としては 、例えば、炭素数 1〜4であるアルキル基、又はアルコキシ基等が挙げられる。これら の中でも、水素原子又は炭素数 1〜4であるアルキル基が好ましぐ更に好ましくは水 素原子又はメチル基である。なお、 mlは 1〜3の整数を表している。 [0028] R 1 in the general formula (2) is a hydrogen atom or a monovalent organic group. Examples of the monovalent organic group include an alkyl group having 1 to 4 carbon atoms or an alkoxy group. Among these, a hydrogen atom or an alkyl group having 1 to 4 carbon atoms is preferable, and a hydrogen atom or a methyl group is more preferable. Ml represents an integer of 1 to 3.
[0029] また、一般式 (2)中の R2は、水素原子又は一価の有機基である。一価の有機基と しては、例えば、炭素数 1〜40であるアルキル基、又はアルコキシ基等が挙げられる 。この中でも、炭素数 1〜24であるアルキル基が好ましい。なお、 m2は 1〜3の整数 を表している。 [0029] In the general formula (2), R 2 is a hydrogen atom or a monovalent organic group. Examples of the monovalent organic group include an alkyl group having 1 to 40 carbon atoms or an alkoxy group. Among these, an alkyl group having 1 to 24 carbon atoms is preferable. M2 is an integer from 1 to 3 Represents.
[0030] R2は、一価の有機基である限り特に制限はないが、 A1が水素原子の場合、カルボ キシ基、スルホン酸基、及びリン酸基以外の一価の有機基であることが好ましい。 [0030] R 2 is not particularly limited as long as it is a monovalent organic group, but when A 1 is a hydrogen atom, it is a monovalent organic group other than a carboxyl group, a sulfonic acid group, and a phosphoric acid group. It is preferable.
[0031] 一般式(2)中の R3は、一価の有機基又は水素原子である。この中でも、アルキル基 、又は水素原子であることが好ましぐメチル基、ェチル基、又は水素原子であること が特に好ましい。また、一般式 (2)中の R4及び R5は、一方が一価の有機基であり、他 方が水素原子、又は一価の有機基である。好ましくは、 R4及び R5の少なくとも一方が 、置換若しくは非置換のアルキル基、置換若しくは非置換のアルコキシ基、置換若し くは非置換のァリーロキシ基、置換若しくは非置換のアルキルチオ基、置換若しくは 非置換のアルキルアミノ基及び置換若しくは非置換のァリールアミノ基力 選ばれる 少なくとも 1つの基で置換された、ァリール基又は複素芳香族基である。特に好ましく は、例えば、下記一般式 (6— 1)、 (6— 2)で表される有機基である。 R4及び R5を上 記のような置換基にすることによって、より高い発電効率を有する色素増感太陽電池 に使用することができる色素を得ることができるという利点がある。 [0031] R 3 in the general formula (2) is a monovalent organic group or a hydrogen atom. Of these, an alkyl group or a hydrogen atom is preferred, and a methyl group, an ethyl group, or a hydrogen atom is particularly preferred. One of R 4 and R 5 in the general formula (2) is a monovalent organic group, and the other is a hydrogen atom or a monovalent organic group. Preferably, at least one of R 4 and R 5 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, a substituted or unsubstituted alkylthio group, substituted or unsubstituted An unsubstituted alkylamino group and a substituted or unsubstituted arylyl group, an aryl group or a heteroaromatic group substituted with at least one selected group. Particularly preferred are, for example, organic groups represented by the following general formulas (6-1) and (6-2). By using R 4 and R 5 as substituents as described above, there is an advantage that a dye that can be used in a dye-sensitized solar cell having higher power generation efficiency can be obtained.
[0032] [化 9] [0032] [Chemical 9]
Ar一 X ( 6 - 1 ) Ar X (6-1)
Figure imgf000008_0001
Figure imgf000008_0001
(上記一般式 (6— 1)中、 Arは 2価の芳香族炭化水素基又は複素芳香族基、 Xは硫 黄原子、酸素原子又は単結合、 R8は置換若しくは非置換のアルキル基、又は置換 若しくは非置換のァリール基である。上記一般式 (6— 2)中、 Arは 2価の芳香族炭化 水素基又は複素芳香族基、 R9及び R1C>の一方は置換若しくは非置換のアルキル基、 又は置換若しくは非置換のァリール基であり、他方は水素原子、置換若しくは非置換 のアルキル基、又は置換若しくは非置換のァリール基である) [0033] 一般式 (6— 1)及び一般式 (6— 2)中の Arは、 2価の芳香族炭化水素基又は複素 芳香族基である。上記 2価の芳香族炭化水素基又は複素芳香族基中の芳香環とし ては、例えば、ベンゼン環、ナフタレン環、インデン環、フラン環等が挙げられる。この 中でも、下記式 (6— 3)で表される基であることが特に好ま 、。 (In the above general formula (6-1), Ar is a divalent aromatic hydrocarbon group or heteroaromatic group, X is a sulfur atom, oxygen atom or single bond, R 8 is a substituted or unsubstituted alkyl group, Or substituted or unsubstituted aryl group, wherein Ar is a divalent aromatic hydrocarbon group or heteroaromatic group, and one of R 9 and R 1C> is substituted or unsubstituted. An alkyl group, or a substituted or unsubstituted aryl group, and the other is a hydrogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted aryl group) [0033] Ar in the general formulas (6-1) and (6-2) is a divalent aromatic hydrocarbon group or a heteroaromatic group. Examples of the aromatic ring in the divalent aromatic hydrocarbon group or heteroaromatic group include a benzene ring, a naphthalene ring, an indene ring, and a furan ring. Of these, a group represented by the following formula (6-3) is particularly preferred.
[0034] [化 10]  [0034] [Chemical 10]
Figure imgf000009_0001
Figure imgf000009_0001
[0035] 一般式 (6— 1)中の R8は、置換若しくは非置換のアルキル基、又は置換若しくは非 置換のァリール基である。この中でも、アルキル基、フエ-ル基、ナフチル基、又はァ ルコキシアルキル基であることが好ましい。また、 R8の炭素数は、 1〜50であることが 好ましぐ 1〜12であることが特に好ましい。一般式 (6— 1)中の Xは、硫黄原子、酸 素原子又は単結合である。一般式 (6— 2)中の R9及び R1C>は、一方が置換若しくは非 置換のアルキル基、又は置換若しくは非置換のァリール基であり、他方が水素原子、 置換若しくは非置換のアルキル基、又は置換若しくは非置換のァリール基である。こ の中でも、一方がアルキル基、又はフエニル基であることが好ましぐ他方が水素原 子、アルキル基、又はフエ-ル基であることが好ましい。 In general formula (6-1), R 8 is a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. Among these, an alkyl group, a phenyl group, a naphthyl group, or an alkoxyalkyl group is preferable. The carbon number of R 8 is preferably 1 to 50, particularly preferably 1 to 12. X in the general formula (6-1) is a sulfur atom, an oxygen atom or a single bond. In general formula (6-2), R 9 and R 1C> are one of a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group, and the other is a hydrogen atom, a substituted or unsubstituted alkyl group. Or a substituted or unsubstituted aryl group. Among these, one is preferably an alkyl group or a phenyl group, and the other is preferably a hydrogen atom, an alkyl group, or a phenyl group.
[0036] なお、一般式(2)中の R4及び R5は、一方が一般式 (6— 1)で表される基であり、他 方が水素原子であって、一般式 (6— 1)中の Xが酸素原子、 R8カ チル基であること が特に好ましい。 [0036] In the general formula (2), one of R 4 and R 5 is a group represented by the general formula (6-1), the other is a hydrogen atom, and the general formula (6— It is particularly preferred that X in 1) is an oxygen atom or an R 8 cation group.
[0037] 上記一般式 (2)で表される二座配位子は、 A1がカルボキシ基の場合 (以下「第一 の態様」と記す場合がある)、例えば、下記式 (7— 1)〜(7— 22)で表される構造を持 つ化合物を挙げることができる。なお、上記一般式 (2)中の置換ビュル基(一 R3C = CR4R5)の二重結合を中心とした立体配置については特に制限はなぐトランス体、 シス体のいずれであってもよい。また、本発明の色素は、トランス体、シス体、及びこ れらの両方を含むものあってもよい。なお、これらの中でも、トランス体であるものが多 い。 [0038] [化 11] [0037] In the bidentate ligand represented by the general formula (2), when A 1 is a carboxy group (hereinafter sometimes referred to as "first embodiment"), for example, the following formula (7-1) ) To (7-22). Note that the configuration around the double bond of the substituted bur group (one R 3 C = CR 4 R 5 ) in the above general formula (2) is either a trans isomer or a cis isomer with no particular restrictions. Also good. Further, the dye of the present invention may include a trans isomer, a cis isomer, and both of them. Of these, many are in the trans form. [0038] [Chemical 11]
Figure imgf000010_0001
Figure imgf000010_0001
[0040] [化 13] [0040] [Chemical 13]
Figure imgf000011_0001
Figure imgf000011_0001
Figure imgf000011_0002
Figure imgf000011_0002
[0042] [化 15] [0042] [Chemical 15]
Figure imgf000012_0001
Figure imgf000012_0001
[0044] [ィ匕 17] [0044] [I 匕 17]
Figure imgf000013_0001
Figure imgf000013_0001
Figure imgf000013_0002
Figure imgf000013_0002
(7-20) (7-21 ) (7-22)  (7-20) (7-21) (7-22)
[0046] 本発明の色素は、第一に、一般式 (2)で表される二座配位子を有する点に特徴が ある。第二に、一般式(2)で表される二座配位子は、ビビリジン骨格の一方のピリジン 環に、置換ビニル基を有する点に特徴がある。一般式(2)中の置換ビニル基は、例 えば Wittig反応を利用してビビリジン骨格に導入することができる。 [0046] The dye of the present invention is first characterized by having a bidentate ligand represented by the general formula (2). Second, the bidentate ligand represented by the general formula (2) is characterized in that it has a substituted vinyl group in one pyridine ring of the biviridine skeleton. The substituted vinyl group in the general formula (2) can be introduced into the biviridine skeleton using, for example, the Wittig reaction.
[0047] 例えば、式 (8)に示すような反応によりホスホニゥムクロリド誘導体を合成する。次に 、式(9)に示すように、合成したホスホ-ゥムクロリド誘導体と、カルボニル基又はアル デヒド基を有するビビリジン系化合物とを反応させて一般式 (2)で表される二座配位 子を合成することができる。  [0047] For example, a phosphonium chloride derivative is synthesized by a reaction represented by the formula (8). Next, as shown in the formula (9), a bidentate ligand represented by the general formula (2) is obtained by reacting the synthesized phosphomuchloride derivative with a bipyridine compound having a carbonyl group or an aldehyde group. Can be synthesized.
[0048] [化 19] R5 R [0048] [Chemical 19] R 5 R
CH CI ^ CH P+Ph2C · · · (8 ) CH CI ^ CH P + Ph 2 C ( 8)
R FT  R FT
[0049] [化 20] [0049] [Chemical 20]
Figure imgf000014_0001
Figure imgf000014_0001
[0050] 式(8)及び(9)にお!/、て、 〜 、 ml及び m2は、各々一般式(2)における!^〜尺 5、 ml及び m2に対応し、 PPhはトリフエ-ルホスフィン、 nBuLiは n—ブチルリチウム [0050] In the formulas (8) and (9),! /, ~, Ml and m2 are respectively in the general formula (2)! ^ ~ Corresponds to 5, 5, and m2, PPh is triphenylphosphine, nBuLi is n-butyllithium
3  Three
を意味する。一般式(2)における A1は、カルボキシ基、スルホン酸基、リン酸基又は これらの塩であり、式(9)における A1も同様であるが、カルボキシ基、スルホン酸基、 又はリン酸基を保護基で保護した基とすることも好ましい。または、酸化等により容易 にカルボキシ基、スルホン酸基若しくはリン酸基になる基、又はこれらを保護した基を 式(9)における A1とすることも好ましい。これらの基は、式(9)で表される反応が終了 した後、脱保護及び酸ィ匕等によりカルボキシ基、スルホン酸基又はリン酸基にするこ とがでさる。 Means. A 1 in the general formula (2) is a carboxy group, a sulfonic acid group, a phosphoric acid group or a salt thereof, and A 1 in the formula (9) is the same, but a carboxy group, a sulfonic acid group, or a phosphoric acid It is also preferred that the group is a group protected with a protecting group. Alternatively, a group that easily becomes a carboxy group, a sulfonic acid group, or a phosphoric acid group by oxidation or the like, or a group that protects these groups is preferably A 1 in Formula (9). These groups can be converted into a carboxy group, a sulfonic acid group or a phosphoric acid group by deprotection and acid after completion of the reaction represented by the formula (9).
[0051] また、上記一般式 (2)で表される二座配位子は、 A1が水素原子の場合 (以下「第二 の態様」と記す場合がある)、例えば、下記式(7— 23)〜(7— 43)で表される構造を 持つ化合物を挙げることができる。なお、上記一般式 (2)中の置換ビュル基(一 R3C = CR4R5)の二重結合を中心とした立体配置については特に制限はなぐトランス体 、シス体のいずれであってもよい。また、本発明の色素は、トランス体、シス体、及びこ れらの両方を含むものあってもよい。なお、これらの中でも、トランス体であるものが多 い。即ち、一般式(2)で表される二座配位子は、ビビリジン骨格のうち、一方のピリジ ン環に置換ビュル基を有し、他方のピリジン環にカルボキシ基、スルホン酸基、及び リン酸基以外の有機基を有している構成とすることが好ましい。このように、置換ビ- ル基を有することによって、吸着効率が高くなるため高い発電効率を得ることができる 。また、他方のピリジン環にカルボキシ基、スルホン酸基、及びリン酸基以外の有機 基を有することによって、電解液への電子リークを防止するため、より高い発電効率 を得ることができるという利点がある。 [0051] In addition, the bidentate ligand represented by the general formula (2) may be represented by the following formula (7) when A 1 is a hydrogen atom (hereinafter sometimes referred to as "second embodiment"). — 23) to (7- 43) The compound which has is mentioned. The configuration of the substituted bur group (one R 3 C = CR 4 R 5 ) in the general formula (2) is not particularly limited with respect to the configuration of the trans isomer or cis isomer. Also good. Further, the dye of the present invention may include a trans isomer, a cis isomer, and both of them. Of these, many are in the trans form. That is, the bidentate ligand represented by the general formula (2) has a substituted bur group in one pyridin ring in the biviridine skeleton, and a carboxy group, a sulfonic acid group, and a phosphorus group in the other pyridine ring. A structure having an organic group other than an acid group is preferable. Thus, by having a substituted beryl group, high power generation efficiency can be obtained because the adsorption efficiency is increased. In addition, since the other pyridine ring has an organic group other than a carboxy group, a sulfonic acid group, and a phosphoric acid group, electron leakage to the electrolyte solution is prevented, so that there is an advantage that higher power generation efficiency can be obtained. is there.
[0052] [化 21] [0052] [Chemical 21]
Figure imgf000015_0001
Figure imgf000015_0001
[0053] [化 22] [0053] [Chemical 22]
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0001
Figure imgf000016_0002
Figure imgf000016_0003
Figure imgf000016_0003
(7 - 32) (7 - 33) (7 - 34) [0056] [化 25] (7-32) (7-33) (7-34) [0056] [Chemical 25]
Figure imgf000017_0001
Figure imgf000017_0001
(7 - 35) (7 - 36) (7 - 37) (7-35) (7-36) (7-37)
[0057] [化 26] [0057] [Chemical 26]
Figure imgf000017_0002
Figure imgf000017_0002
(7— 38) (7 - 39) (7 -40) (7- 38) (7-39) (7 -40)
[0058] [化 27] [0058] [Chemical 27]
Figure imgf000018_0001
Figure imgf000018_0001
(7-41) (7-42) (7-43)  (7-41) (7-42) (7-43)
[0059] A1が水素原子の場合、上記一般式 (2)で表される二座配位子は、一般式 (2)中の 置換ビュル基は、例えば、アルコールの脱水反応を利用してビビリジン骨格に導入し て合成することができる。例えば、まず、ビビリジン誘導体アルコールを合成する。次 に、式(10)に示すような反応により、合成したビビリジン誘導体アルコールを、塩を用 いて脱水させ、ォレフィン化する。このようにして、一般式(2)で表される二座配位子 を合成することができる。なお、 A1は水素原子以外であっても、後述する合成例 3で 示すように、この方法で、まず置換ビニル基を導入し、その後、置換基 A1を導入する ことによりに合成することができる。 [0059] When A 1 is a hydrogen atom, the bidentate ligand represented by the general formula (2) is a substituted bull group in the general formula (2) using, for example, a dehydration reaction of alcohol. It can be synthesized by introducing it into the biviridine skeleton. For example, first, a biviridine derivative alcohol is synthesized. Next, the synthesized biviridine derivative alcohol is dehydrated using a salt by a reaction as shown in formula (10) to form olefin. In this way, the bidentate ligand represented by the general formula (2) can be synthesized. Even if A 1 is other than a hydrogen atom, as shown in Synthesis Example 3 to be described later, this method can be used to synthesize by first introducing a substituted vinyl group and then introducing the substituent A 1. Can do.
[0060] [化 28] [0060] [Chemical 28]
Figure imgf000019_0001
Figure imgf000019_0001
• · ( 1 0 )  • · ( Ten )
Figure imgf000019_0002
Figure imgf000019_0002
[0061] なお、式(10)において、 R^R5, ml及び m2は、各々一般式(2)における!^1〜!^5 、 ml及び m2に対応している。 [0061] In Expression (10), R ^ R 5 , ml and m2 are each in the general formula (2)! ^ 1 ~! ^ 5 , ml and m2 are supported.
[0062] [1 2]—般式(1)中の L2: [0062] [1 2] - general formula (1) in L 2:
一般式(1)中の L2は、上記一般式(2)又は上記一般式(3)で表される二座配位子 である。一般式(2)は、上述した構成ものである。一般式(3)中の A2及び A3は、各々 独立にカルボキシ基、スルホン酸基、リン酸基、又はこれらの塩である。この中でも、 カルボキシ基、又はその塩であることが好ましい。 A2及び A3が塩である場合には、力 ゥンターカチオンとして、上述した A1のカウンタ一力チオンの具体例として挙げたィォ ンと同様のイオンを好適に用いることができる。 L 2 in the general formula (1) is a bidentate ligand represented by the general formula (2) or the general formula (3). General formula (2) has the above-described configuration. A 2 and A 3 in the general formula (3) are each independently a carboxy group, a sulfonic acid group, a phosphoric acid group, or a salt thereof. Among these, a carboxy group or a salt thereof is preferable. In the case where A 2 and A 3 are salts, the same ions as those mentioned as specific examples of the counter counter force thione of A 1 described above can be preferably used as the force counter cation.
[0063] 一般式(3)中の R6及び R7は、水素原子又は一価の有機基である。この有機酸とし ては、例えば、炭素数 1〜4であるアルキル基、又はアルコキシ基等が挙げられる。こ れらの中でも、水素原子又はメチル基であることが好ましい。一般式(3)中の m3及び m4は、それぞれ独立に 1〜3の整数である。 In the general formula (3), R 6 and R 7 are a hydrogen atom or a monovalent organic group. Examples of the organic acid include an alkyl group having 1 to 4 carbon atoms or an alkoxy group. Among these, a hydrogen atom or a methyl group is preferable. M3 and m4 in the general formula (3) are each independently an integer of 1 to 3.
[0064] なお、 L1及び L2は、 L1が上記一般式(2)で表される二座配位子であり、 L2が上記 一般式 (2)又は上記一般式 (3)で表される二座配位子である限り、特に制限がな!、 力 L1及び L2がともに、上記一般式(2)である場合も好ましい態様の一つである。な お、良好な発電効率を得るためには置換基としてカルボキシル基を有することが好ま しいという点から、 L1及び L2がともに上記一般式(2)である場合には、上記第一の態 様 (一般式(2)中の A1がカルボキシ基)であることが好ま U、。 [0064] Note that L 1 and L 2 are bidentate ligands in which L 1 is represented by the general formula (2), and L 2 is the general formula (2) or the general formula (3). As long as it is a bidentate ligand represented, there is no particular limitation! The case where both of the forces L 1 and L 2 are represented by the above general formula (2) is also a preferred embodiment. In order to obtain good power generation efficiency, it is preferable to have a carboxyl group as a substituent. Therefore, when both L 1 and L 2 are represented by the above general formula (2), it is preferable that the first mode (A 1 in the general formula (2) is a carboxy group). ,.
[0065] [1 3]—般式(1)中の M : [0065] [1 3] —M in general formula (1):
一般式(1)中の Mは、長周期表上の 8〜10族の元素である。この元素としては、例 えば、鉄、コバルト、ニッケル、ルテニウム、オスミウム、イリジウム、白金等を挙げること ができる。この中でも、ルテニウムが好ましい。  M in the general formula (1) is an element of group 8 to 10 on the long periodic table. Examples of this element include iron, cobalt, nickel, ruthenium, osmium, iridium, platinum and the like. Among these, ruthenium is preferable.
[0066] [1 4]一般式(1)中の X1及び X2[0066] [1 4] X 1 and X 2 in the general formula (1):
一般式(1)中の X1及び X2は、一価の原子団又は一座配位子である。一価の原子 団又は一座配位子としては、例えば、下記式(11)〜(17)で表される原子団又は配 位子を挙げることができる。 X 1 and X 2 in the general formula (1) are a monovalent atomic group or a monodentate ligand. Examples of the monovalent atomic group or monodentate ligand include atomic groups or ligands represented by the following formulas (11) to (17).
[0067] [化 29] [0067] [Chemical 29]
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000020_0002
C ( 1 5 ) 0H: ( 1 6 )
Figure imgf000020_0003
例えば、上記一般式(12)中の R11は、炭素数 1〜6のアルキル基であることが好ま しい。また、一般式(13)及び一般式(17)中の Arは、炭素数 6〜 12のァリール基で あることが好ましい。一般式(1)中の X1及び X2は、上記の原子団又は配位子の中で も、上記一般式(2)で示すもの (イソチオシアナート)が好まし!/、。
Figure imgf000020_0002
C (1 5) 0H: (1 6)
Figure imgf000020_0003
For example, R 11 in the general formula (12) is preferably an alkyl group having 1 to 6 carbon atoms. Ar in the general formulas (13) and (17) is an aryl group having 6 to 12 carbon atoms. Preferably there is. X 1 and X 2 in the general formula (1) are preferably those represented by the above general formula (2) (isothiocyanate) among the above atomic groups or ligands!
[0069] 本発明の色素は、例えば、上述のように、式(8)及び式(9)、又は式(10)のように して配位子を合成した後、「Nat. Mater. , 2、 402— 407 (2003)」に記載された方 法等により合成することができる。  [0069] For example, as described above, the dye of the present invention can be synthesized by synthesizing a ligand according to the formula (8) and the formula (9) or the formula (10), and then “Nat. Mater. 2, 402-407 (2003) ”.
[0070] [2]色素増感太陽電池:  [0070] [2] Dye-sensitized solar cell:
本発明の色素増感太陽電池は、本発明の色素を好適に用いることができる。本発 明の色素増感太陽電池は、少なくとも、陰極及びそれと対向する陽極並びに陰極と 陽極との間に保持された電解質を有するものとすることができる。上記陰極は、透明 導電性ガラス上に、上述した色素をィ匕学吸着させた酸ィ匕物薄膜電極を有するものと することができる。ここで、透明導電性ガラスとしては、例えば、酸化スズ、インジウム —スズ酸化物 (ΙΤΟ)等を挙げることができる。  The dye-sensitized solar cell of the present invention can suitably use the dye of the present invention. The dye-sensitized solar cell of the present invention may have at least a cathode, an anode facing the cathode, and an electrolyte held between the cathode and the anode. The cathode may have an oxide thin film electrode in which the above-described dye is chemically adsorbed on a transparent conductive glass. Here, examples of the transparent conductive glass include tin oxide and indium-tin oxide (ΙΤΟ).
[0071] 酸化物薄膜電極を構成する材料としては、酸化チタン、酸化ニオブ、酸化亜鉛、酸 ィ匕スズ、酸化タングステン、酸化インジウム等を挙げることができる。これらのうち、酸 化チタン、酸化ニオブ、酸化スズが好ましぐ特に酸ィ匕チタンが好ましい。酸化物薄 膜電極の形成方法は問わないが、例えば、酸化物薄膜電極となるべき酸化物の微 粒子を形成し、これを適当な溶媒に懸濁させて透明導電性ガラス上に塗布し、溶媒 を除去した後に、加熱する方法によることができる。  [0071] Examples of the material constituting the oxide thin film electrode include titanium oxide, niobium oxide, zinc oxide, tin oxide, tungsten oxide, and indium oxide. Of these, titanium oxide, niobium oxide, and tin oxide are preferred, and titanium oxide is particularly preferred. There is no limitation on the method of forming the oxide thin film electrode. For example, oxide fine particles to be an oxide thin film electrode are formed, suspended in an appropriate solvent, and applied onto transparent conductive glass. A method of heating after removing the solvent can be employed.
[0072] 酸ィ匕物薄膜電極に本発明の色素を吸着させるには、適宜の方法を採用することが できるが、例えば、上記の如くして得た表面に酸化物薄膜電極を有する透明導電性 ガラスを、本発明の色素を含有する溶液に浸漬して行うことができる。ここで使用でき る溶媒としては、例えば、ジェチルエーテル、ァセトニトリル、エタノール等を挙げるこ とができる。色素溶液の濃度としては、 0. 1〜: LOmmolZLとすることが好ましい。浸 漬時間としては、 0. 5〜: LOO時間が好ましぐ 2〜50時間が更に好ましい。浸漬の際 の温度としては、 0〜100°Cであることが好ましぐ 10〜50°Cであることがより好ましい  [0072] In order to adsorb the dye of the present invention to the oxide thin film electrode, an appropriate method can be adopted. For example, a transparent conductive film having an oxide thin film electrode on the surface obtained as described above can be used. It can be carried out by immersing the glass in a solution containing the pigment of the present invention. Examples of the solvent that can be used here include jetyl ether, acetonitrile, ethanol, and the like. The concentration of the dye solution is preferably 0.1 to: LOmmolZL. As the soaking time, 0.5 to: LOO time is preferred 2 to 50 hours is more preferred. The temperature during the immersion is preferably 0 to 100 ° C, more preferably 10 to 50 ° C.
[0073] 上記陽極は、導電性を有している限り特に制限はないが、例えば、透明導電性ガラ ス上に微量の白金又は導電性カーボンを付着させたものを好適に用いることができ る。上記電解質としては、例えばレドックス系を含有する溶液若しくは固体又はイオン 性液体を使用することができる。その具体例としては、例えば、レドックス系としてヨウ 素の下記反応 (式 18で示す)を利用する系を含有し、溶媒として例えばァセトニトリル 、プロピオ-トリル等を含有する電解質溶液を使用することができる。 [0073] The anode is not particularly limited as long as it has electrical conductivity. For example, a material obtained by adhering a small amount of platinum or conductive carbon on transparent conductive glass can be suitably used. The As the electrolyte, for example, a solution containing a redox system, a solid, or an ionic liquid can be used. Specific examples thereof include, for example, a system using the following reaction of iodine (shown by Formula 18) as a redox system, and an electrolyte solution containing, for example, acetonitrile or propio-tolyl as a solvent. .
I " + 2e" = 3I" + I (18)  I "+ 2e" = 3I "+ I (18)
3 2  3 2
実施例  Example
[0074] 以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施 例に限定されるものではない。  [0074] Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
[0075] (配位子の合成) [0075] (Synthesis of ligand)
(合成例 1):  (Synthesis Example 1):
4, 4,一ジメチル一 2, 2,一ビビリジン l lgをテトラヒドロフラン 300mlに溶解させた。 これとは別にリチウムジイソプロピルアミド溶液 35ml (濃度 1. 8M、テトラヒドロフラン Zヘプタン Zェチルベンゼンの混合溶媒)とテトラヒドロフラン 3 lmlを混合させ、—7 8°Cに保った。この溶液に窒素雰囲気下で、 4, 4' ジメチルー 2, 2' ビビリジンの テトラヒドロフラン溶液を 75分間かけて滴下しつつ、 78°Cを維持しながら攪拌した 。滴下終了後には、更に 15分間攪拌した。続いて、攪拌しながら 15分間かけて 0°C まで昇温させ、次いで 60分間、 0°Cを維持した。窒素雰囲気下で 0°Cを維持しながら 攪拌し、 p—メトキシベンズアルデヒド 7. 5mlのテトラヒドロフラン溶液 88mlを 60分間 かけて滴下した。その後、 120分間攪拌した。次いで窒素雰囲気下で攪拌しながら 9 0分間かけて室温まで昇温させ、更に室温で 12時間攪拌した。  4, 4, 1-dimethyl 1, 2, 2, 1-biviridine l lg was dissolved in 300 ml of tetrahydrofuran. Separately, 35 ml of lithium diisopropylamide solution (concentration 1.8 M, mixed solvent of tetrahydrofuran Z heptane Z ethylbenzene) and 3 ml of tetrahydrofuran were mixed and kept at −78 ° C. To this solution, a tetrahydrofuran solution of 4,4′dimethyl-2,2′biviridine was added dropwise over 75 minutes while stirring at 78 ° C. under a nitrogen atmosphere. After completion of dropping, the mixture was further stirred for 15 minutes. Subsequently, the temperature was raised to 0 ° C over 15 minutes with stirring, and then maintained at 0 ° C for 60 minutes. The mixture was stirred while maintaining a temperature of 0 ° C under a nitrogen atmosphere, and 88 ml of tetrahydrofuran solution containing 7.5 ml of p-methoxybenzaldehyde was added dropwise over 60 minutes. Thereafter, the mixture was stirred for 120 minutes. Next, while stirring under a nitrogen atmosphere, the temperature was raised to room temperature over 90 minutes, and further stirred at room temperature for 12 hours.
[0076] テトラヒドロフランを室温下で減圧留去後、ジクロロメタン 300mlとイオン交換水 500 mlを添加し攪拌後、水層と有機層を分離した。水層をジクロロメタン 300mlで 2回抽 出し、抽出液と上記有機層とを混合させ、これをイオン交換水 300mlで 2回洗浄後、 硫酸マグネシウム 22gを添加して乾燥させた。乾燥後、硫酸マグネシウムを濾別し、 室温下でジクロロメタンを減圧留去し、更に室温下で減圧乾燥し、黄色固体 2 lgを得 た。この固体を、シリカゲルカラムを用いて後述する条件にて精製し、生成物 9. 8gを 得た。この生成物を1 H—NMRで分析したところ 4— [2— (4—メトキシフエ-ル) 2 ーヒドロキシェチル]—4'ーメチルー 2, 2'—ビビリジンであることが分かった。 — NMRの結果を以下に示す。 Tetrahydrofuran was distilled off under reduced pressure at room temperature, 300 ml of dichloromethane and 500 ml of ion-exchanged water were added and stirred, and then the aqueous layer and the organic layer were separated. The aqueous layer was extracted twice with 300 ml of dichloromethane, the extract and the organic layer were mixed, washed twice with 300 ml of ion-exchanged water, and dried by adding 22 g of magnesium sulfate. After drying, magnesium sulfate was filtered off, dichloromethane was distilled off under reduced pressure at room temperature, and further dried under reduced pressure at room temperature to obtain 2 lg of a yellow solid. This solid was purified using a silica gel column under the conditions described later to obtain 9.8 g of product. This product was analyzed by 1 H-NMR and found to be 4- [2- (4-methoxyphenyl) 2 -hydroxyethyl] -4'-methyl-2,2'-biviridine. — The result of NMR is shown below.
[0077] — NMR(CDCL , 298K, 300ΜΗζ, δ (ppm) ); δ =8. 52 (t, 2Η)、 8. 25 [0077] — NMR (CDCL, 298K, 300ΜΗζ, δ (ppm)); δ = 8.52 (t, 2Η), 8. 25
3  Three
(d, 2Η)、 7. 26 (m, 2Η)、 7. 10 (t, 2Η)、 6. 88 (d, 2Η)、 4. 96 (d, 1Η)、 3. 81 (m, 3Η, Me)、 3. 07 (m, 2H)、 2. 42 (d, 3H, Me)、 2. 22 (s, 1H)  (d, 2Η), 7.26 (m, 2Η), 7.10 (t, 2Η), 6.88 (d, 2Η), 4.96 (d, 1Η), 3.81 (m, 3Η, Me), 3.07 (m, 2H), 2.42 (d, 3H, Me), 2.22 (s, 1H)
[0078] [シリカゲルカラム精製条件]: [0078] [Silica gel column purification conditions]:
シリカゲル lOOgを 200mlカラムに充填し、このカラムをクロ口ホルムで満たした。上 記黄色固体をクロ口ホルム 50mlに溶解し、上記カラムに供した。クロ口ホルムで展開 させた後、容積比で 92. 5/7. 5のクロ口ホルム Zメタノール溶媒で展開させ、分取 した。  Silica gel lOOg was packed into a 200 ml column and the column was filled with black mouth form. The above yellow solid was dissolved in 50 ml of black mouth form and applied to the above column. After developing with black mouth form, the volume was developed with 90.5 / 7.5 black mouth form Z methanol solvent and fractionated.
[0079] 上記のようにして合成した 4 [2- (4ーメトキシフエ-ル) 2 ヒドロキシェチル] —4,一メチル 2, 2,一ビピリジン 7. 2g、及び l lg ammonium p- toluene sulf onateをトルエン 2000mlに溶解させた。窒素雰囲気下で上記溶液を 90°Cで 11時 間加熱還流後、 60分間かけて室温に戻した。イオン交換水 600mlで洗浄後、硫酸 マグネシウム 14gで乾燥した。次いで硫酸マグネシウムを濾別し、トルエンを減圧留 去して室温下で減圧乾燥し、黄色粉末 4. 5gを得た。この生成物を1 H— NMRで分 祈したところ 4ーメチルー 4'一(4ーメトキシスチリル) 2, 2'—ビビリジンであることが 分かった。 NMRの結果を以下に示す。 [0079] 4 [2- (4-methoxyphenyl) 2 hydroxyethyl] —4,1-methyl-2,2, bipyridine, and l lg ammonium p-toluene sulfonate synthesized as described above were used. Dissolved in 2000 ml of toluene. The above solution was heated to reflux at 90 ° C. for 11 hours under a nitrogen atmosphere, and then returned to room temperature over 60 minutes. After washing with 600 ml of ion-exchanged water, it was dried with 14 g of magnesium sulfate. Next, magnesium sulfate was filtered off, toluene was distilled off under reduced pressure, and dried under reduced pressure at room temperature to obtain 4.5 g of a yellow powder. This product was deduced by 1 H-NMR and found to be 4-methyl-4 ′-(4-methoxystyryl) 2,2′-biviridine. The result of NMR is shown below.
[0080] — NMR(CDCL , 298K, 270ΜΗζ, δ (ppm) ); δ =8. 61 (d, 1Η)、 8. 57  [0080] — NMR (CDCL, 298K, 270ΜΗζ, δ (ppm)); δ = 8.61 (d, 1Η), 8. 57
3  Three
(d, 1Η)、 8. 49 (s, 1Η)、 8. 26 (s, 1Η)、 7. 51 (d, 2Η)、 7. 41 (d, 1Η)、 7. 35 ( m, 1Η)、 7. 16 (d, 1Η)、 7. 01 (d, 1Η)、 6. 93 (d, 2Η)、 3. 82 (s, 3Η, Me) , 2 . 46 (s, 3H, Me)  (d, 1Η), 8.49 (s, 1Η), 8.26 (s, 1Η), 7.51 (d, 2Η), 7.41 (d, 1Η), 7.35 (m, 1Η) 7.16 (d, 1Η), 7.01 (d, 1Η), 6.93 (d, 2Η), 3.82 (s, 3Η, Me), 2.46 (s, 3H, Me)
[0081] (合成例 2) [0081] (Synthesis Example 2)
2, 2,—ビビリジン—4, 4,ージカルボキシアルデヒド 27gと p—トルエンスルホン酸 一水和物 73gにクロ口ホルム 2500mlを添カ卩し、撹拌した。この溶液に対して、 2, 2 ジメチルー 1, 3 プロパンジオール 13gにクロ口ホルム 500mlを添カ卩した溶液を 滴下し、室温で 12時間撹拌し、更に 2日間静置した。反応溶液に飽和炭酸ナトリウム 水溶液を添加した後、クロ口ホルムで抽出した。有機層を水洗後、硫酸マグネシウム で乾燥させ、エバポレーターで濃縮することで 2, 2,—ビビリジンー4,一 (5, 5 ジメ チル—1, 3 ジォキサ 2 シクロへキシル) 4 カルボキシアルデヒドを含む混 合物 32gを得た。これを精製せずに次の反応に用いた。 To 27 g of 2,2, -biviridine-4,4, -dicarboxaldehyde and 73 g of p-toluenesulfonic acid monohydrate was added 2500 ml of black mouth form and stirred. To this solution, a solution prepared by adding 500 ml of chloroform to 13 g of 2,2 dimethyl-1,3 propanediol was added dropwise, stirred at room temperature for 12 hours, and allowed to stand for another 2 days. A saturated aqueous sodium carbonate solution was added to the reaction solution, followed by extraction with black mouth form. The organic layer is washed with water, dried over magnesium sulfate, and concentrated with an evaporator to give 2, 2, -biviridine-4, 1 (5, 5 dimethyl). (Chillyl-1,3 dioxa 2 cyclohexyl) 4 32 g of a mixture containing carboxaldehyde was obtained. This was used in the next reaction without purification.
[0082] これとは別に、 4—メトキシベンジルクロリド 172gとトリフエ-ルホスフィン 262gにトル ェン 2000mlを添カ卩し、窒素雰囲気下 120°Cで 12時間還流した。放冷後、生じた固 体を濾取し、これをトルエンで洗浄し、更に真空乾燥させることでメトキシベンジルホ スホ -ゥムクロリド 222gを得た。  [0082] Separately, 2000 ml of toluene was added to 172 g of 4-methoxybenzyl chloride and 262 g of triphenylphosphine, and the mixture was refluxed at 120 ° C for 12 hours under a nitrogen atmosphere. After allowing to cool, the resulting solid was collected by filtration, washed with toluene, and further vacuum dried to obtain 222 g of methoxybenzyl phosphate chloride.
[0083] 上記により合成したメトキシベンジルホスホ-ゥムクロリド 20. 9gに無水テトラヒドロフ ラン 200mlを窒素雰囲気下で添加した。この溶液を窒素雰囲気下 0°Cに保ちながら n—ブチルリチウムのへキサン溶液 (濃度 1. 6M) 31mlを滴下し、 0°Cにて 2時間撹 拌した。この溶液を— 78°Cに冷却し、上記で合成した 2, 2,—ビビリジン— 4, - (5, 5 -ジメチル 1, 3 ジォキサ 2 シクロへキシル) 4 カルボキシアルデヒドを 含む混合物 14. Ogにテトラヒドロフラン 2000mlを添カ卩した溶液を滴下し、 78°Cに て 2時間、室温にて 12時間撹拌した。反応後、水 150mlを加え、エバポレーターで 濃縮し、ジクロロメタンで抽出した。有機層を水洗後、硫酸マグネシウムで乾燥させ、 エバポレーターで濃縮することで 4— (5, 5 ジメチルー 1, 3 ジォキサ一 2 シクロ へキシル)ー4,一(4ーメトキシスチリル)—2, 2,—ビビリジンを含む混合物 830mgを 得た。  [0083] 200 ml of anhydrous tetrahydrofuran was added under nitrogen atmosphere to 20.9 g of methoxybenzylphosphonium chloride synthesized as described above. While maintaining this solution at 0 ° C. in a nitrogen atmosphere, 31 ml of a hexane solution of n-butyllithium (concentration 1.6 M) was added dropwise and stirred at 0 ° C. for 2 hours. This solution was cooled to -78 ° C, and the mixture containing 2,2, -biviridine-4,-(5,5-dimethyl 1,3 dioxa-2 cyclohexyl) 4 carboxaldehyde synthesized above 14. to Og A solution containing 2000 ml of tetrahydrofuran was added dropwise, and the mixture was stirred at 78 ° C. for 2 hours and at room temperature for 12 hours. After the reaction, 150 ml of water was added, concentrated with an evaporator, and extracted with dichloromethane. The organic layer is washed with water, dried over magnesium sulfate, and concentrated with an evaporator to give 4- (5,5 dimethyl-1,3 dioxa-2-cyclohexyl) -4,1- (4-methoxystyryl) -2,2, -830 mg of a mixture containing biviridine was obtained.
[0084] 上記により合成した 4 (5, 5 ジメチルー 1, 3 ジォキサ 2 シクロへキシル) 一 4, 一(4ーメトキシスチリル)一 2, 2,—ビビリジンを含む混合物 814mgに p—トルェ ンスルホン酸ピリジ-ゥム 15mg、アセトン 160ml及び水 40mlを添カ卩し、 100°Cにて 12時間還流した。反応後、エバポレーターで濃縮し、ジクロロメタンで抽出した。有機 層を硫酸マグネシウムで乾燥させ、エバポレーターで濃縮することで 2, 2' ビビリジ ンー 4, (4ーメトキシスチリル)ー4 カルボキシアルデヒドを含む混合物 440mgを 得た。 [0084] 4 was synthesized by the above (5, 5-dimethyl-1, 3 Jiokisa 2 cyclohexyl) one 4, one (4-methoxy-styryl) one 2, 2, - Bibirijin the mixture 814mg containing p- Torue Nsuruhon acid pyrid -15 mg of acetone, 160 ml of acetone and 40 ml of water were added and refluxed at 100 ° C for 12 hours. After the reaction, the mixture was concentrated with an evaporator and extracted with dichloromethane. The organic layer was dried over magnesium sulfate and concentrated by an evaporator to obtain 440 mg of a mixture containing 2,2′bibilidine- 4 , ( 4 -methoxystyryl) -4 carboxaldehyde.
[0085] この 2, 2,一ビビリジン一 4, - (4—メトキシスチリル) 4—カルボキシアルデヒドを 含む混合物 420mgにエタノール 12mlを添カ卩した溶液に、硝酸銀 255mgに水 3ml を添加した溶液を添加した。この溶液に対して、水酸ィ匕ナトリウム水溶液 (濃度 1M) 6 mlを滴下し、室温で 12時間撹拌した。反応溶液を濾過後、エバポレーターで濃縮し 、塩酸を加えて pH3に調整した後、ジクロロメタンで抽出した。有機層を水洗後、硫 酸マグネシウムで乾燥させ、エバポレーターで濃縮することで固体 242mgを得た。こ の固体をイオン交換カラムとシリカゲルカラムを用いて精製し、生成物 185mgを得た 。この生成物を1 H—NMRで分析したところ 2, 2,一ビビリジン一 4, - (4—メトキシス チリル) 4一力ルボン酸であることが分かった。 [0085] This mixture of 2, 2, 1 biviridine and 1, 4- (4-methoxystyryl) 4-carboxaldehyde was added to a solution obtained by adding 12 ml of ethanol to 420 mg, and a solution obtained by adding 3 ml of water to 255 mg of silver nitrate. did. To this solution, 6 ml of sodium hydroxide aqueous solution (concentration 1M) was added dropwise and stirred at room temperature for 12 hours. The reaction solution is filtered and concentrated with an evaporator. Hydrochloric acid was added to adjust the pH to 3, followed by extraction with dichloromethane. The organic layer was washed with water, dried over magnesium sulfate, and concentrated with an evaporator to obtain 242 mg of a solid. This solid was purified using an ion exchange column and a silica gel column to obtain 185 mg of a product. This product was analyzed by 1 H-NMR and found to be 2, 2, 1 biviridine, 1-, 4- (4-methoxystyryl) 4 strength rubonic acid.
[0086] (合成例 3) [0086] (Synthesis Example 3)
合成例 2で合成した 2, 2'—ビビリジン一 4' - (4—メトキシスチリル) 4—カルボン 酸の別の合成方法について以下に説明する。まず、合成例 1と同様にして 4—メチル -4'一(4ーメトキシスチリル) 2, 2'—ビビリジンを合成した。この 4ーメチルー 4' (4—メトキシスチリル)— 2, 2,—ビビリジン 6. 7gをジメチルホルムアミド 67mlに溶解 させ、 150°Cに保った。この溶液に窒素雰囲気下で、 t ブトキシビスジメチルアミノメ タン 7. 7gを滴下し、窒素雰囲気下で上記溶液を 150°Cで 10時間加熱還流後、 60 分間かけて室温に戻し、イオン交換水 50mlを加えた。  Another synthesis method of 2,2′-biviridine mono 4 ′-(4-methoxystyryl) 4-carboxylic acid synthesized in Synthesis Example 2 is described below. First, 4-methyl-4 ′-(4-methoxystyryl) 2,2′-biviridine was synthesized in the same manner as in Synthesis Example 1. 6.7 g of this 4-methyl-4 ′ (4-methoxystyryl) -2,2, -biviridine was dissolved in 67 ml of dimethylformamide and kept at 150 ° C. To this solution, 7.7 g of butoxybisdimethylaminomethane was added dropwise under a nitrogen atmosphere, and the above solution was heated to reflux at 150 ° C for 10 hours under a nitrogen atmosphere, and then returned to room temperature over 60 minutes. 50 ml was added.
[0087] ジクロロメタン 50mlとイオン交換水 50mlを添加し攪拌後、水層と有機層を分離した 。水層をジクロロメタン 50mlで 2回抽出し、抽出液と上記有機層とを混合させ、これを 飽和食塩水 100mlで 2回洗浄後、硫酸マグネシウム lgを添加して乾燥させた。乾燥 後、硫酸マグネシウムを濾別し、室温下でジクロロメタン、ジメチルホルムアミドを減圧 留去し、更に室温下で減圧乾燥し、黄色固体 8. 5gを得た。この粉末を、ジクロロメタ ン—へキサン溶液力も再沈澱させ、精製し、生成物 6. 7gを得た。この生成物を1 H— NMRで分析したところ、この生成物は 4— (N, N,一ジメチルアミノビ-ル) 4,一( 4ーメトキシスチリル)ー 2, 2,一ビビリジンであることが分かった。 H— NMRの結果 を以下に示す。 [0087] 50 ml of dichloromethane and 50 ml of ion-exchanged water were added and stirred, and then the aqueous layer and the organic layer were separated. The aqueous layer was extracted twice with 50 ml of dichloromethane, the extract and the organic layer were mixed, washed twice with 100 ml of saturated brine, and dried by adding lg of magnesium sulfate. After drying, magnesium sulfate was filtered off, dichloromethane and dimethylformamide were distilled off under reduced pressure at room temperature, and further dried under reduced pressure at room temperature to obtain 8.5 g of a yellow solid. The powder was reprecipitated with dichloromethane-hexane solution and purified to obtain 6.7 g of the product. The product was analyzed by 1 H-NMR and found to be 4- (N, N, 1 dimethylaminovinyl) 4, 1 (4-methoxystyryl) -2, 2, 1 biviridine. I understood. The results of H-NMR are shown below.
[0088] — NMR(CDCL , 298K, 270ΜΗζ, δ (ppm) ); δ =8. 59 (d, 1Η)、 8. 46  [0088] — NMR (CDCL, 298K, 270ΜΗζ, δ (ppm)); δ = 8.59 (d, 1Η), 8. 46
3  Three
(s, 1Η)、 8. 29 (d, 1Η)、 8. 09 (s, 1Η)、 7. 71 (d, 2Η)、 7. 61 (d, 1Η)、 7. 49 ( d, 1Η)、 7. 33 (d, 1Η)、 7. 17 (d, 1Η)、 7. 03 (d, 1Η)、 6. 94 (d, 2Η)、 5. 10 ( d, 1Η)、 3. 86 (s, 6Η, Me)、 2. 93 (s, 3H, Me)  (s, 1Η), 8.29 (d, 1Η), 8.09 (s, 1Η), 7.71 (d, 2Η), 7.61 (d, 1Η), 7.49 (d, 1Η) 7.33 (d, 1Η), 7.17 (d, 1Η), 7.03 (d, 1Η), 6.94 (d, 2Η), 5.10 (d, 1Η), 3.86 ( s, 6Η, Me), 2.93 (s, 3H, Me)
[0089] 上記のようにして合成した 4— (N, N,—ジメチルアミノビ-ル)—4, - (4—メトキシ スチリル)一 2, 2,一ビビリジン 6. 3gをテトラヒドロフラン 300mlに溶解させた。この溶 液に、過ヨウ素酸ナトリウム水溶液 200ml (濃度 0. 35M)を 75分間かけて滴下し、室 温で 8時間攪拌した。 [0089] 4- (N, N, -dimethylaminovinyl) -4,-(4-methoxystyryl) -1,2,2, monobiviridine synthesized as described above was dissolved in 300 ml of tetrahydrofuran. It was. This solution To the solution, 200 ml of a sodium periodate aqueous solution (concentration: 0.35 M) was added dropwise over 75 minutes, and the mixture was stirred at room temperature for 8 hours.
[0090] 生成した沈澱を濾別し、テトラヒドロフランを室温下で減圧留去後、ジクロロメタン 10 Omlを添加し攪拌後、水層と有機層を分離した。水層をジクロロメタン 100mlで 2回 抽出し、抽出液と上記有機層とを混合させ、これを飽和食塩水 100mlで 2回洗浄後 、硫酸マグネシウム lgを添加して乾燥させた。乾燥後、硫酸マグネシウムを濾別し、 室温下でジクロロメタンを減圧留去し、更に室温下で減圧乾燥し、黄色固体 5. 5gを 得た。この生成物を1 H— NMRで分析したところ、この生成物は 4 カルバルデヒド -4' - (4—メトキシスチリル) 2, 2'—ビビリジンであることが分かった。 NMR の結果を以下に示す。 [0090] The formed precipitate was filtered off, and tetrahydrofuran was distilled off under reduced pressure at room temperature. After adding 10 Oml of dichloromethane and stirring, the aqueous layer and the organic layer were separated. The aqueous layer was extracted twice with 100 ml of dichloromethane, the extract and the organic layer were mixed, washed twice with 100 ml of saturated brine, and dried by adding lg of magnesium sulfate. After drying, magnesium sulfate was filtered off, dichloromethane was distilled off under reduced pressure at room temperature, and further dried under reduced pressure at room temperature to obtain 5.5 g of a yellow solid. The product was analyzed by 1 H-NMR and found to be 4 carbaldehyde -4 ′-(4-methoxystyryl) 2,2′-biviridine. The results of NMR are shown below.
[0091] 'H-NMRCDMSO-d , 298K, 270ΜΗζ, δ (ppm) ); δ = 9. 61 (s, 1Η)、 8  [0091] 'H-NMRCDMSO-d, 298K, 270ΜΗζ, δ (ppm)); δ = 9.61 (s, 1Η), 8
6  6
. 84 (s, 1Η)、 8. 81 (d, 1Η)、 8. 67 (d, 1Η)、 8. 53 (s, 1Η)、 7. 80 (d, 1Η)、 7 . 64 (d, 2Η)、 7. 63 (d, 1Η)、 7. 58 (d, 1Η)、 7. 21 (d, 1Η)、 6. 96 (d, 2Η)、 3 . 75 (s, 3Η, Me)  84 (s, 1mm), 8.81 (d, 1mm), 8.67 (d, 1mm), 8.53 (s, 1mm), 7.80 (d, 1mm), 7.64 (d, 2Η), 7.63 (d, 1Η), 7.58 (d, 1Η), 7.21 (d, 1Η), 6.96 (d, 2Η), 3.75 (s, 3Η, Me)
[0092] 上記のようにして合成した 4一カルバルデヒドー 4,一(4ーメトキシスチリル)一 2, 2, —ビビリジン 5. 5gを 95%エタノール 150mlに混合させた。この懸濁液に、硝酸銀水 溶液 30ml (濃度 0. 06M)を 15分間かけて滴下し、室温で 30分撹拌した。更に水酸 化ナトリウム水溶液 75ml (濃度 1M)を 45分かけて滴下し、室温で 2時間攪拌した。  [0092] Four-one carbaldehyde 4, 1, 1- (4-methoxystyryl) 1, 2, 2, -biviridine synthesized as described above was mixed with 150 ml of 95% ethanol. To this suspension, 30 ml of an aqueous silver nitrate solution (concentration 0.06 M) was added dropwise over 15 minutes, and the mixture was stirred at room temperature for 30 minutes. Further, 75 ml of an aqueous sodium hydroxide solution (concentration: 1M) was added dropwise over 45 minutes, and the mixture was stirred at room temperature for 2 hours.
[0093] エタノールを室温下で減圧留去後、 6%ジメチルホルムアミド水溶液 1000mlを添 加し攪拌後、塩酸 (濃度 1M)で pHを 3に調整した。生じた沈殿を濾取し、更に室温 下で減圧乾燥し、黒色固体 5. 6gを得た。この固体を、シリカゲルカラムを用いて以 下に示す条件にて精製し、更にジメチルホルムアミド―トルエン溶液により再沈澱さ せて精製し、生成物 1. 4gを得た。この生成物を1 H— NMRで分析したところ、この生 成物は 4 カルボキシルー 4,一(4ーメトキシスチリル)—2, 2,—ビビリジン(2, 2,一 ビビリジン一 4, - (4—メトキシスチリル) 4—カルボン酸)であることが分かった。ェ!! NMRの結果を以下に示す。 [0093] Ethanol was distilled off under reduced pressure at room temperature, 1000 ml of a 6% dimethylformamide aqueous solution was added and stirred, and then the pH was adjusted to 3 with hydrochloric acid (concentration 1M). The resulting precipitate was collected by filtration and further dried under reduced pressure at room temperature to obtain 5.6 g of a black solid. This solid was purified using a silica gel column under the following conditions, and further purified by reprecipitation with a dimethylformamide-toluene solution to obtain 1.4 g of a product. When this product was analyzed by 1 H-NMR, this product was found to be 4 carboxyl-4, 1 (4-methoxystyryl) -2, 2, 2-biviridine (2, 2, 1 biviridine 1 4,-(4 -Methoxystyryl) 4-carboxylic acid). Yeah! The result of NMR is shown below.
[0094] 'H-NMRCDMSO-d , 298K, 270ΜΗζ, δ (ppm) ); δ =8. 85 (s, 1Η)、 8  [0094] 'H-NMRCDMSO-d, 298K, 270ΜΗζ, δ (ppm)); δ = 8.85 (s, 1Η), 8
6  6
. 83 (d, 1Η)、 8. 66 (d, 1Η)、 8. 54 (s, 1Η)、 7. 86 (d, 1Η)、 7. 66 (d, 2Η)、 7 . 64 (d, 1H)、 7. 60 (d, 1H)、 7. 25 (d, 1H)、 6. 99 (d, 2H)、 3. 78 (s, 3H, Me83 (d, 1mm), 8.66 (d, 1mm), 8.54 (s, 1mm), 7.86 (d, 1mm), 7.66 (d, 2mm), 7 64 (d, 1H), 7.60 (d, 1H), 7.25 (d, 1H), 6.99 (d, 2H), 3.78 (s, 3H, Me
) )
[0095] (色素の合成)  [0095] (Synthesis of dye)
(実施例 1):  (Example 1):
二塩化(P シメン)ルテニウム(II)二量体 150mgに N, N—ジメチルホルムアミド 7 5mLを添カ卩した溶液に、上記合成例 1で得られた 4—メチル 4' - (4—メトキシスチ リル)—2, 2,—ビビリジン 149mgを添カ卩した。この混合物を窒素雰囲気下、 60°Cで 4時間撹拌した後、 2, 2 '—ビビリジン— 4, 4'—ジカルボン酸 121mgを添加し、 150 °Cにて 4時間還流した。その後、チォシアン酸カリウム 483mgを添カ卩し、更に 150°C にて 4時間還流した。放冷後、エバポレーターで濃縮し、水 45mLを加え、室温で撹 拌しながら希硝酸をカ卩えて pHを 2. 5に調整した。生じた沈殿を濾取し、 Sephadex LH— 20カラム(市販品、 Amersham Biosciences社製)を用いて精製することで 生成物 121mgを得た。 — NMRで分析したところ、この生成物は下記式(19)で 表されるものであることが分力つた (収率 32%)。この化合物を「T2」とする。 'Η-Ν MRの結果を以下に示す。  4-methyl 4 '-(4-methoxystyryl) obtained in Synthesis Example 1 above was added to a solution of N, N-dimethylformamide 7 5mL added to 150mg dimer (Pcymene) ruthenium (II) dimer. ) -2, 2,-Biviridine 149mg was added. The mixture was stirred at 60 ° C. for 4 hours under a nitrogen atmosphere, 121 mg of 2,2′-biviridine-4,4′-dicarboxylic acid was added, and the mixture was refluxed at 150 ° C. for 4 hours. Thereafter, 483 mg of potassium thiocyanate was added, and the mixture was further refluxed at 150 ° C. for 4 hours. After standing to cool, the mixture was concentrated by an evaporator, 45 mL of water was added, and the pH was adjusted to 2.5 by adding dilute nitric acid while stirring at room temperature. The resulting precipitate was collected by filtration and purified using a Sephadex LH-20 column (commercially available, manufactured by Amersham Biosciences) to obtain 121 mg of product. — Analysis by NMR revealed that this product was represented by the following formula (19) (yield 32%). This compound is designated “T2”. 'Η-Ν MR results are shown below.
[0096] — NMR(DMSO— d , 298Κ, 270ΜΗζ, δ (ppm) ); δ = 9. 45 (d, 2Η)、 9 [0096] — NMR (DMSO—d, 298Κ, 270ΜΗζ, δ (ppm)); δ = 9.45 (d, 2Η), 9
6  6
. 09 (m, 2Η)、 8. 96 (d, 1Η)、 8. 83 (d, 1Η)、 8. 69 (d, 1Η)、 8. 55 (d, 1Η)、 8 . 28 (m, 2Η)、 7. 91 (t, 1Η)、 7. 85 (d, 1Η)、 7. 78 (m, 2Η)、 7. 72 (m, 1Η)、 7. 61 (m, 1Η)、 7. 29 (m, 2Η)、 3. 82 (d, 3Η, Me)  09 (m, 2Η), 8.96 (d, 1Η), 8.83 (d, 1Η), 8.69 (d, 1Η), 8.55 (d, 1Η), 8.28 (m, 2Η), 7.91 (t, 1Η), 7.85 (d, 1Η), 7.78 (m, 2Η), 7.72 (m, 1Η), 7.61 (m, 1Η), 7. 29 (m, 2Η), 3.82 (d, 3Η, Me)
[0097] [化 30] [0097] [Chemical 30]
Figure imgf000028_0001
Figure imgf000028_0001
[0098] (実施例 2) : [Example 2]:
二塩化(p—シメン)ルテニウム(II)二量体 153mgに N, N—ジメチルホルムアミド 7 5mLを添加した溶液に、上記合成例 2で得られた 2, 2,—ビビリジン— 4, - (4—メト キシスチリル)— 4—カルボン酸 166mgを添加した以外は実施例 1と同様にして下記 式(20)で表される色素を合成した。 118mgの色素が得られ、収率は 29%であった 。この化合物を「T1」とする。  2,2, -biviridine-4,-(4) obtained in Synthesis Example 2 above was added to a solution obtained by adding 5 mL of N, N-dimethylformamide 7 to 153 mg of dimer (p-cymene) ruthenium (II) dichloride. —Methoxystyryl) — A dye represented by the following formula (20) was synthesized in the same manner as in Example 1 except that 166 mg of 4-carboxylic acid was added. 118 mg of dye was obtained and the yield was 29%. This compound is designated “T1”.
[0099] [化 31] [0099] [Chemical 31]
Figure imgf000029_0001
Figure imgf000029_0001
[0100] (実施例 3) : [0100] (Example 3):
二塩化(p シメン)ルテニウム(II)二量体 153mgに N, N—ジメチルホルムアミド 7 5mLを添加した溶液に、上記合成例 3で得られた 2, 2,—ビビリジン— 4, - (4-メト キシスチリル)— 4—カルボン酸 166mgを添加した以外は実施例 1と同様にして色素 を合成した。 118mgの色素が得られ、収率は 29%であった。この化合物を「Tla」と する。なお、本実施例の色素は上記式(20)で表される構造を有するものである。  2, 2, -biviridine-4,-(4-) obtained in Synthesis Example 3 above was added to a solution of 153 mg of N, N-dimethylformamide 7 in 153 mg of dimer (p-cymene) ruthenium (II) dichloride. A dye was synthesized in the same manner as Example 1 except that 166 mg of methoxystyryl) -4-carboxylic acid was added. 118 mg of dye was obtained and the yield was 29%. This compound is referred to as “Tla”. In addition, the pigment | dye of a present Example has a structure represented by the said Formula (20).
[0101] (実施例 4) :  [0101] (Example 4):
二塩化(P シメン)ルテニウム(II)二量体 150mgに N, N—ジメチルホルムアミド 7 5mLを添カ卩した溶液に、上記合成例 3で得られた 4—カルボキシル 4' - (4—メト キシスチリル)—2, 2,—ビビリジン 159mgを添カ卩した。この混合物を窒素雰囲気下、 60°Cで 4時間撹拌した後、上記合成例 1で得られた 4一力ルポキシルー 4'一(4ーメ トキシスチリル)— 2, 2,—ビビリジン 159mgを添カロし、 150°Cにて 4時間還流した。そ れ以降は実施例 1と同様にして下記式(21)で表される色素を合成した。 118mgの 色素が得られ、収率は 29%であった。この化合物を「T3」とする。 — NMRの結果 を以下に示す。 4-Carboxyl 4 '-(4-methyoxystyryl) obtained in Synthesis Example 3 above was added to a solution obtained by adding 5 mL of N, N-dimethylformamide 7 to 150 mg of dimer (P-cymene) ruthenium (II) dimer. ) -2, 2,-Biviridine 159mg was added. This mixture was placed under a nitrogen atmosphere. After stirring at 60 ° C for 4 hours, 159 mg of 4 ol-poxylulu 4'-one (4-methoxystyryl) -2,2, -biviridine obtained in Synthesis Example 1 above was added, and the mixture was added at 150 ° C. Reflux for hours. Thereafter, a dye represented by the following formula (21) was synthesized in the same manner as in Example 1. 118 mg of dye was obtained, and the yield was 29%. This compound is designated “T3”. — The NMR results are shown below.
[0102] — NMR(DMSO— d , 298Κ, 270ΜΗζ, δ (ppm) ); δ = 9. 44 6. 96 (m  [0102] — NMR (DMSO— d, 298 Κ, 270 ΜΗζ, δ (ppm)); δ = 9. 44 6. 96 (m
6  6
, 24Η)、 3. 82 (d, 6Η, Me)  , 24Η), 3.82 (d, 6Η, Me)
[0103] [化 32] [0103] [Chemical 32]
Figure imgf000030_0001
Figure imgf000030_0001
[0104] (色素増感太陽電池の製造) (実施例 5): [0104] (Production of dye-sensitized solar cell) (Example 5):
ァセチルアセトン 0. 4mLとイオン交換水 20mLの混合媒体中に、酸化チタン微粒 子 12g及び分散剤 Triton X— 100 (市販品、アルドリッチ社製) 0. 2gを添カ卩し、分 散液を調製した。この分散液を、厚さ lmmの導電性ガラス基板 (酸化スズ製、抵抗値 = 10 Ω Ζ«η2)上に塗布し、空気中において 500°Cで 1時間加熱し、表面に酸化チ タン薄膜を有する陰極用導電性ガラス基板を得た。このガラス基板を、濃度 0. 4mm olZLの上記実施例 1で得られた色素「T2」を含有するァセトニトリル Ζブタノール( 体積比 1Z1)溶液中に 23°Cで 24時間浸漬した。次 、で上記陰極用導電性ガラス基 板を引き上げ、 2時間自然乾燥することにより、この導電性ガラス基板を陰極とした。 一方、上記陰極用導電性ガラス基板とは別に、陽極用導電性ガラス基板 (厚さ lmm 、酸化スズ製、抵抗値 = 10 Ω Ζ«η2)を用意し、このガラス基板上に白金を蒸着し、 陽極とした。 In a mixed medium of 0.4 mL of acetylylacetone and 20 mL of ion-exchanged water, 12 g of titanium oxide fine particles and 0.2 g of dispersant Triton X-100 (commercially available, manufactured by Aldrich) are added, and the dispersion liquid is added. Prepared. This dispersion was applied onto a 1 mm thick conductive glass substrate (made of tin oxide, resistance = 10 Ω Ζ «η 2 ), heated in air at 500 ° C for 1 hour, and titanium oxide on the surface. A conductive glass substrate for cathode having a thin film was obtained. This glass substrate was immersed in a solution of acetonitrile = butanol (volume ratio: 1Z1) containing the dye “T2” obtained in Example 1 at a concentration of 0.4 mmol ZL at 23 ° C. for 24 hours. Next, the conductive glass substrate for a cathode was pulled up and naturally dried for 2 hours to make this conductive glass substrate a cathode. On the other hand, apart from the cathode conductive glass substrate, an anode conductive glass substrate (thickness lmm, tin oxide, resistance = 10 Ω = «η 2 ) is prepared, and platinum is deposited on this glass substrate. The anode was used.
[0105] 更に、ァセトニトリル中に 0. ImolZLのヨウ素及び 0. 5molZLのヨウ化リチウムを 含有する電解質溶液を調製した。上記陰極の酸化チタン薄膜を有する面及び陽極 の白金を蒸着した面を内側にして、距離 0. lmmで対向させ、その間に上記電解質 溶液を挟持する構造の色素増感太陽電池 (色素増感太陽電池セル)を製造した。  [0105] Furthermore, an electrolyte solution containing 0.1 ImolZL iodine and 0.5 molZL lithium iodide in acetonitrile was prepared. The surface of the cathode having the titanium oxide thin film and the surface of the anode on which platinum is deposited face inward, face each other at a distance of 0.1 mm, and sandwich the electrolyte solution therebetween (dye-sensitized solar cell) Battery cell).
[0106] (色素増感太陽電池の評価):  [0106] (Evaluation of dye-sensitized solar cell):
上記のように製造した色素増感太陽電池について、ソーラーシミュレーター「XC— 100BJ (セリック社製)を用いて疑似太陽光を lOOOWZm2の照度で照射し、発電効 率を測定したところ、 8. 7%であることが確認できた。 With respect to the dye-sensitized solar cell manufactured as described above, when the solar simulator “XC-100BJ (manufactured by Celic)” was used to irradiate pseudo-sunlight with an illuminance of lOOOWZm 2 , the power generation efficiency was measured. It was confirmed that it was%.
[0107] (実施例 6) :  [Example 6]:
実施例 2で得られた色素「T1」を使用した以外は実施例 5と同様にして色素増感太 陽電池 (色素増感太陽電池セル)を製造し、上記発電効率の評価を行った。本実施 例の色素増感太陽電池は、発電効率が 8. 1%であることが確認できた。  A dye-sensitized solar cell (dye-sensitized solar cell) was produced in the same manner as in Example 5 except that the dye “T1” obtained in Example 2 was used, and the power generation efficiency was evaluated. It was confirmed that the dye-sensitized solar cell of this example had a power generation efficiency of 8.1%.
[0108] (実施例 7) : [0108] (Example 7):
実施例 3で得られた色素「Tla」を使用した以外は実施例 5と同様にして色素増感 太陽電池 (色素増感太陽電池セル)を製造し、上記発電効率の評価を行った。本実 施例の色素増感太陽電池は、発電効率が 8. 6%であることが確認できた。 [0109] (実施例 8) : A dye-sensitized solar cell (dye-sensitized solar cell) was produced in the same manner as in Example 5 except that the dye “Tla” obtained in Example 3 was used, and the power generation efficiency was evaluated. It was confirmed that the power generation efficiency of the dye-sensitized solar cell of this example was 8.6%. [Example 8]:
実施例 4で得られた色素「T3」を使用した以外は実施例 5と同様にして色素増感太 陽電池 (色素増感太陽電池セル)を製造し、上記発電効率の評価を行った。本実施 例の色素増感太陽電池は、発電効率が 8. 4%であることが確認できた。  A dye-sensitized solar cell (dye-sensitized solar cell) was produced in the same manner as in Example 5 except that the dye “T3” obtained in Example 4 was used, and the power generation efficiency was evaluated. The dye-sensitized solar cell of this example was confirmed to have a power generation efficiency of 8.4%.
[0110] (比較例 1) : [0110] (Comparative Example 1):
色素「Τ2」の代わりに前記式 (4)で表される構造を有する色素として市販の色素「Ν 719」(Solaronix社製)を使用した以外は、実施例 5と同様にして、色素増感太陽電 池を製造し、実施例 5の「色素増感太陽電池の評価」と同様にして評価した。その結 果、発電効率は 6. 1%であることが確認できた。  Dye sensitization was performed in the same manner as in Example 5 except that a commercially available dye “Ν 719” (manufactured by Solaronix) was used as the dye having the structure represented by the above formula (4) instead of the dye “Τ 2”. A solar cell was produced and evaluated in the same manner as in “Evaluation of dye-sensitized solar cell” in Example 5. As a result, it was confirmed that the power generation efficiency was 6.1%.
産業上の利用可能性  Industrial applicability
[0111] 本発明の色素及びこの色素を用いた色素増感太陽電池は、発電効率に優れるた め、太陽電池用色素及び太陽電池として、種々の分野に適用することができる。 [0111] Since the dye of the present invention and the dye-sensitized solar cell using this dye are excellent in power generation efficiency, they can be applied to various fields as a dye for solar cells and a solar cell.

Claims

請求の範囲 下記一般式(1)で表される色素。 [化 1] ML1 L2 X1 X2 · · · (1) Claims Dye represented by the following general formula (1). [Chemical 1] ML1 L2 X1 X2 (1)
(上記一般式(1)中、 Mは長周期表上の 8〜: L0族の元素であり、 L1は下記一般式(2 )で表される二座配位子であり、 L2は下記一般式(2)又は下記一般式(3)で表される 二座配位子であり、 X1及び X2は一価の原子団又は一座配位子である) (In the above general formula (1), M is an element of Group 8 to L0 on the long periodic table, L 1 is a bidentate ligand represented by the following general formula (2), and L 2 is It is a bidentate ligand represented by the following general formula (2) or the following general formula (3), and X 1 and X 2 are monovalent atomic groups or monodentate ligands)
[化 2] [Chemical 2]
Figure imgf000033_0001
Figure imgf000033_0001
(上記一般式(2)中、 A1は水素原子、カルボキシ基、スルホン酸基、リン酸基、又はこ れらの塩であり、 R1及び R2は水素原子又は一価の有機基であり、 R3は一価の有機 基又は水素原子であり、 R4及び R5の一方は一価の有機基であり、他方は一価の有 機基又は水素原子である。 ml及び m2はそれぞれ 1〜3の整数である) (In the general formula (2), A 1 is a hydrogen atom, a carboxy group, a sulfonic acid group, a phosphoric acid group, or a salt thereof, and R 1 and R 2 are a hydrogen atom or a monovalent organic group. R 3 is a monovalent organic group or a hydrogen atom, one of R 4 and R 5 is a monovalent organic group, and the other is a monovalent organic group or a hydrogen atom. Each is an integer from 1 to 3)
[化 3] [Chemical 3]
(3)(3)
Figure imgf000033_0002
(上記一般式(3)中、 A2及び A3はカルボキシ基、スルホン酸基、リン酸基又はこれら の塩であり、 R6及び R7は水素原子又は一価の有機基であり、 m3及び m4はそれぞ れ独立に 0〜3の整数である)
Figure imgf000033_0002
(In the above general formula (3), A 2 and A 3 are a carboxy group, a sulfonic acid group, a phosphoric acid group or a salt thereof, R 6 and R 7 are a hydrogen atom or a monovalent organic group, m 3 And m4 are each independently an integer of 0 to 3)
[2] 上記一般式(1)中の Mがルテニウムである請求項 1に記載の色素。 [2] The dye according to claim 1, wherein M in the general formula (1) is ruthenium.
[3] 上記一般式 (2)中の R4及び R5の少なくとも一方が、置換若しくは非置換のアルキ ル基、置換若しくは非置換のアルコキシ基、置換若しくは非置換のァリーロキシ基、 置換若しくは非置換のアルキルチオ基、置換若しくは非置換のアルキルアミノ基、及 び置換若しくは非置換のァリールアミノ基力 選ばれる少なくとも 1つの基で置換され たァリール基又は複素芳香族基である請求項 1又は 2に記載の色素。 [3] In the general formula (2), at least one of R 4 and R 5 is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted aryloxy group, substituted or unsubstituted The alkylthio group, a substituted or unsubstituted alkylamino group, and a substituted or unsubstituted arylylamino group, an arylene group substituted with at least one selected group or a heteroaromatic group according to claim 1 or 2. Pigment.
[4] 色素増感太陽電池用である請求項 1〜3のいずれか一項に記載の色素。 [4] The dye according to any one of claims 1 to 3, which is used for a dye-sensitized solar cell.
[5] 請求項 1〜3のいずれか一項に記載の色素を使用した色素増感太陽電池。 [5] A dye-sensitized solar cell using the dye according to any one of claims 1 to 3.
PCT/JP2006/320809 2005-10-19 2006-10-19 Dye and dye-sensitized solar cell WO2007046452A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-304053 2005-10-19
JP2005304053 2005-10-19
JP2006048409 2006-02-24
JP2006-048409 2006-02-24

Publications (1)

Publication Number Publication Date
WO2007046452A1 true WO2007046452A1 (en) 2007-04-26

Family

ID=37962545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320809 WO2007046452A1 (en) 2005-10-19 2006-10-19 Dye and dye-sensitized solar cell

Country Status (2)

Country Link
TW (1) TW200728409A (en)
WO (1) WO2007046452A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120253043A1 (en) * 2009-09-29 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Novel ligands for sensitizing dyes of dye-sensitized solar cells
CN101538416B (en) * 2009-04-03 2013-09-18 新奥科技发展有限公司 Organometallic dye, dye sensitized electrode, solar cell and reactor
CN106795377A (en) * 2014-08-28 2017-05-31 株式会社东进世美肯 Novel ruthenium-based dye and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102532005A (en) * 2011-12-08 2012-07-04 河南省商业科学研究所有限责任公司 One-step synthesis method of 2,2'-dipyridyl-4,4'-diformaldehyde

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291534A (en) * 2000-01-31 2001-10-19 Fuji Photo Film Co Ltd Photoelectric conversion element and photocell and metal complex pigment
JP2002105346A (en) * 2000-07-25 2002-04-10 Fuji Photo Film Co Ltd Metal complex dye, photoelectric conversion element and photocell
JP2004296170A (en) * 2003-03-26 2004-10-21 Mitsui Chemicals Inc Material for photoelectric transfer element, photoelectric transfer element, and ruthenium complex compound
EP1622178A1 (en) * 2004-07-29 2006-02-01 Ecole Polytechnique Federale De Lausanne (Epfl) 2,2 -Bipyridine ligand, sensitizing dye and dye sensitized solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001291534A (en) * 2000-01-31 2001-10-19 Fuji Photo Film Co Ltd Photoelectric conversion element and photocell and metal complex pigment
JP2002105346A (en) * 2000-07-25 2002-04-10 Fuji Photo Film Co Ltd Metal complex dye, photoelectric conversion element and photocell
JP2004296170A (en) * 2003-03-26 2004-10-21 Mitsui Chemicals Inc Material for photoelectric transfer element, photoelectric transfer element, and ruthenium complex compound
EP1622178A1 (en) * 2004-07-29 2006-02-01 Ecole Polytechnique Federale De Lausanne (Epfl) 2,2 -Bipyridine ligand, sensitizing dye and dye sensitized solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538416B (en) * 2009-04-03 2013-09-18 新奥科技发展有限公司 Organometallic dye, dye sensitized electrode, solar cell and reactor
US20120253043A1 (en) * 2009-09-29 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Novel ligands for sensitizing dyes of dye-sensitized solar cells
US9359334B2 (en) * 2009-09-29 2016-06-07 Ecole Polytechnique Federale De Lausanne (Epfl) Ligands for sensitizing dyes of dye-sensitized solar cells
CN106795377A (en) * 2014-08-28 2017-05-31 株式会社东进世美肯 Novel ruthenium-based dye and method for producing same
CN106795377B (en) * 2014-08-28 2019-07-19 株式会社东进世美肯 Novel ruthenium-based dye and method for producing same

Also Published As

Publication number Publication date
TW200728409A (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP4576494B2 (en) Photosensitizing dye
TWI457344B (en) Haloalkyl-bisazole-based compound and group viii transition metal complexes
JP5325161B2 (en) Organic dye and photoelectric conversion device
TWI632427B (en) Light sensitizer and photoelectric conversion element
WO2007046452A1 (en) Dye and dye-sensitized solar cell
JP5099748B2 (en) Dye and dye-sensitized solar cell using the same
KR101808982B1 (en) Photoelectric conversion element, dye-sensitized solar cell, metal-complex pigment, pigment solution, and terpyridine compound or esterified terpyridine compound
KR20070004834A (en) Dye and dye-sensitized solar cell
JP5087857B2 (en) Metal complex raw material containing terpyridyl ligand and method for producing the same
JP4604183B2 (en) Ruthenium complex, dye-sensitized metal oxide semiconductor electrode containing the complex, and solar cell including the semiconductor electrode
KR101485520B1 (en) Tungsten precursors with aminothiolate, preparation method thereof and process for the formation of thin films using the same
JP2012007084A (en) New photosensitizer
JP2003003083A (en) Metal complex dye, photoelectrode and dye sensitizing solar battery
JP2010064976A (en) New silole compound and method for producing the same
JP5407332B2 (en) Method for producing quarterpyridine derivative and its intermediate
JP6842696B2 (en) Compounds, compound synthesis methods and organic semiconductor materials
JP5939573B2 (en) Donor-π-acceptor compound and dye-sensitized solar cell dye
Constable et al. Approaches to wired terpyridine: Bithienyl alkynyl derivatives of 2, 2′: 6′, 2 ″-terpyridine and their ruthenium (II) complexes
US5084567A (en) Substituted tetrachalcogenofulvalenes and a process for their preparation
JP2007277146A (en) Binaphthoimidazole-based ligand and method for producing the same
Siemeling et al. Large Scale Synthesis of 4’-(4-Bromophenyl)-2, 2’: 6’, 2”-terpyridine and Nature of the Mysterious Green By-product
JP2005320429A (en) Colorant and dye-sensitized solar battery
KR101339707B1 (en) Thieno-Quinoxaline Based Compound, Organic Dye Containing the Same, and Dye-Sensitized Solar Cells Comprising the Organic Dye
JP2007059293A (en) Dye-sensitized solar cell and manufacturing method of same
Benniston et al. Properties and single-crystal X-ray structure of Bis [3, 3 ″-bis (4-methylphenyl)-2, 2′: 6′, 2 ″-terpyridine] iron (II) hexafluorophosphate–acetonitrile–diisopropyl ether (1/1.5/1)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 06811997

Country of ref document: EP

Kind code of ref document: A1