JP4604183B2 - Ruthenium complex, dye-sensitized metal oxide semiconductor electrode containing the complex, and solar cell including the semiconductor electrode - Google Patents

Ruthenium complex, dye-sensitized metal oxide semiconductor electrode containing the complex, and solar cell including the semiconductor electrode Download PDF

Info

Publication number
JP4604183B2
JP4604183B2 JP2005173193A JP2005173193A JP4604183B2 JP 4604183 B2 JP4604183 B2 JP 4604183B2 JP 2005173193 A JP2005173193 A JP 2005173193A JP 2005173193 A JP2005173193 A JP 2005173193A JP 4604183 B2 JP4604183 B2 JP 4604183B2
Authority
JP
Japan
Prior art keywords
complex
semiconductor electrode
bipyridinyl
mmol
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005173193A
Other languages
Japanese (ja)
Other versions
JP2006347912A (en
Inventor
和行 春日
真利 柳田
伸子 小野澤
雄一郎 姫田
秀樹 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005173193A priority Critical patent/JP4604183B2/en
Publication of JP2006347912A publication Critical patent/JP2006347912A/en
Application granted granted Critical
Publication of JP4604183B2 publication Critical patent/JP4604183B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Pyridine Compounds (AREA)

Description

本発明は、新規なルテニウム錯体、該錯体を含む金属酸化物半導体電極及び該半導体電極を備えた太陽電池に関するものである。   The present invention relates to a novel ruthenium complex, a metal oxide semiconductor electrode containing the complex, and a solar cell including the semiconductor electrode.

スイス・ローザンヌ工科大学のグレッツェル等によって考案された新しい色素増感太陽電池、いわゆるグレッツェル・セルは、従来の太陽電池と比較して低い製造コストで高い性能を実現できる可能性があることから次世代型太陽電池として近年世界的に注目を集めている。   The new dye-sensitized solar cell, the so-called Gretzel cell, devised by Gretzel of Lausanne University of Technology, Switzerland, is the next generation because it may realize high performance at a lower manufacturing cost than conventional solar cells. In recent years, it has attracted worldwide attention as a solar cell.

本タイプの太陽電池に於いては、増感色素としてルテニウム−ポリピリジン錯体が用いられることが多く、特にエネルギー変換効率が高いものとして、2,2´−ビピリジン誘導体あるいはターピリジン誘導体を配位子として有するルテニウム−チオシアネート錯体がよく知られている。   In this type of solar cell, a ruthenium-polypyridine complex is often used as a sensitizing dye, and has a 2,2′-bipyridine derivative or a terpyridine derivative as a ligand, particularly as one having high energy conversion efficiency. Ruthenium-thiocyanate complexes are well known.

色素増感太陽電池の実用化のためには、エネルギー変換効率等電池性能のさらなる向上とともに、電池寿命の向上も極めて重要な研究課題になってくる。そのためにはルテニウム錯体などの増感色素として使用される化合物についても、高温や光照射といった厳しい条件下においても長期にわたって安定であることが要求される。   For practical use of dye-sensitized solar cells, further improvement of battery performance such as energy conversion efficiency and improvement of battery life are extremely important research subjects. For this purpose, a compound used as a sensitizing dye such as a ruthenium complex is required to be stable over a long period even under severe conditions such as high temperature and light irradiation.

その観点から前述の現在最もよく使用されている上記2種のルテニウム錯体について見ると、同錯体においては熱や光の刺激による一部配位子の解離やシス体とトランス体の間の異性化反応の可能性が指摘されており、より安定な錯体増感色素の開発が必要と言える。   From this point of view, the above-mentioned two most commonly used ruthenium complexes mentioned above are dissociated from some ligands and isomerized between cis and trans isomers by heat and light stimulation. The possibility of reaction has been pointed out, and it can be said that development of a more stable complex sensitizing dye is necessary.

環状または擬環状構造の多座配位子化合物は中心金属への配位点の増加により、より安定な金属錯体を形成するという利点があり、上記のような問題を解決できることが期待される。このようなタイプのルテニウム錯体としていくつかの例が報告されている(特許文献1、非特許文献1)。
例えば、特許文献1においては、光や熱に対してより安定な錯体増感色素として、ポリピリジン系の2座配位子が2つ結合した構造の4座配位子を有することを特長とするルテニウム錯体、それを増感色素として用いた金属酸化物半導体電極、その電極により構成された色素増感太陽電池が提案されている。
A polydentate ligand compound having a cyclic or quasi-cyclic structure has the advantage of forming a more stable metal complex by increasing the coordination point to the central metal, and is expected to solve the above problems. Some examples of such a type of ruthenium complex have been reported (Patent Document 1, Non-Patent Document 1).
For example, Patent Document 1 is characterized by having a tetradentate ligand having a structure in which two polypyridine bidentate ligands are bonded as a complex sensitizing dye that is more stable to light and heat. A ruthenium complex, a metal oxide semiconductor electrode using the same as a sensitizing dye, and a dye-sensitized solar cell composed of the electrode have been proposed.

この特許文献1には、「この金属錯体色素は、1,10-フェナントロリン、1,10-フェナントロリン誘導体、2,2'-ビピリジル及び2,2'-ビピリジル誘導体からなる群から選択される何れか2種の2座配位子を2価の基を介して結合させた構造の4座配位子をチオシアンイオン以外の配位子として有する。この4座配位子は、上記の2座配位子が2つずつ独立に配位中心に配位した従来の金属錯体色素に比較して配位中心に対する各配位子の位置移動やそれに伴う配位子の配向の変化を起しにくく、構造安定性に優れている。そのため、本発明の金属錯体色素は優れた耐熱性、耐光性及び化学的安定性を有する。」旨記載されている。また、「特に、配位中心に2座配位子が2つ配位した状態の錯体にはシス型とトランス型の異性体があり、トランス型は不安定で安定なシス型に異性化する。異性化を防いで安定的にトランス型を得るためには、本発明のように2つの2座配位子を連結する方法が有効である。ここで、トランス型を得るためには2つの2座配位子を連結する2価の基が1〜3個の原子鎖を有していることが好ましい。また、シス型を得るためには2つの2座配位子を連結する2価の基が4個以上の原子鎖を有していることが好ましい。」ことも記載されている。   This Patent Document 1 states that “this metal complex dye is selected from the group consisting of 1,10-phenanthroline, 1,10-phenanthroline derivative, 2,2′-bipyridyl and 2,2′-bipyridyl derivative. A tetradentate ligand having a structure in which two types of bidentate ligands are bonded via a divalent group is used as a ligand other than thiocyanate ion. Compared to conventional metal complex dyes in which two ligands are independently coordinated to the coordination center, the position of each ligand relative to the coordination center and the accompanying change in ligand orientation are less likely to occur. It is excellent in structural stability. Therefore, the metal complex dye of the present invention has excellent heat resistance, light resistance and chemical stability. " “In particular, complexes with two bidentate ligands coordinated to the coordination center include cis and trans isomers, and the trans form isomerizes into an unstable and stable cis form. In order to prevent isomerization and stably obtain a trans form, a method of linking two bidentate ligands as in the present invention is effective. The divalent group connecting the bidentate ligand preferably has 1 to 3 atomic chains, and in order to obtain a cis form, the divalent group connecting two bidentate ligands. It is also preferable that the group has a chain of 4 or more atoms ”.

しかしながら、具体的に合成され、かつその性能について言及されている化合物は、実施例1〜5に記載されているシス型の金属錯体に過ぎず、他のシス型化合物更にはトランス型の金属錯体については何ら開示されておらず、また、その性能に関しても何ら言及されていない。
しかも、実施例1〜5に開示されている金属錯体にあっても、これを色素増感剤とした太陽電池はそのエネルギー変換効率は高々2.7%前後であり、その基本性能は何れも高いものとは言えなかった。

Figure 0004604183

Figure 0004604183

Figure 0004604183

Figure 0004604183

Figure 0004604183
However, the compounds specifically synthesized and mentioned for their performance are only the cis-type metal complexes described in Examples 1 to 5, and other cis-type compounds as well as trans-type metal complexes. Is not disclosed at all, and no mention is made regarding its performance.
Moreover, even in the metal complexes disclosed in Examples 1 to 5, the solar cell using this as a dye sensitizer has an energy conversion efficiency of about 2.7% at most, and its basic performance is all. It was not expensive.
Figure 0004604183

Figure 0004604183

Figure 0004604183

Figure 0004604183

Figure 0004604183

特開2003−3083号公報JP 2003-3083 A Inorg. Chem. 2002, 41,367-378Inorg. Chem. 2002, 41,367-378

このように、従来の4座配位子を有し熱や光に対して安定な構造のルテニウム錯体では、太陽電池の増感色素に用いた場合、エネルギー変換効率等の電池の基本性能が低く、その改善が強く求められていた。
本発明は、熱や光に対して安定な構造を持ち、かつ太陽電池の増感色素として用いた場合にそのエネルギー変換効率を飛躍的に増大することができるルテニウム錯体を提供することを目的とするものである。
Thus, the conventional ruthenium complex having a tetradentate ligand and having a stable structure against heat and light has a low basic performance of the battery such as energy conversion efficiency when used as a sensitizing dye of a solar battery. There was a strong demand for improvements.
An object of the present invention is to provide a ruthenium complex that has a stable structure against heat and light and can dramatically increase its energy conversion efficiency when used as a sensitizing dye for solar cells. To do.

本発明者は、ルテニウム錯体の配位子について鋭意検討した結果、2座配位子のビピリジン誘導体がトランス型に配置された構造を特長とするルテニウム錯体を新たに考案することにより、従来のものに比しその性能が著しく向上することを知見した。本発明はかかる知見に基づいてなされたものである。   As a result of intensive studies on ligands of ruthenium complexes, the present inventors have devised a ruthenium complex characterized by a structure in which a bipyridine derivative of a bidentate ligand is arranged in a trans form. It has been found that the performance is remarkably improved compared to The present invention has been made based on such findings.

すなわち、この出願によれば、以下の発明が提供される。
(1)一般式(I)で示されるルテニウム錯体。

Figure 0004604183
(式中、R、R、Rは水素原子またはCOOMであり、そのうち少なくとも一つはCOOMである。Mは水素原子また第4級アンモニウムカチオンを、Rは水素原子あるいは置換基を有してもよいアリール基、置換基を有してもよいアルキル基、置換基を有してもよいパーフルオロアルキル基である。)
(2)上記(1)に記載のルテニウム錯体を含む金属酸化物半導体電極。
(3)半導体電極とその対極、およびそれらの電極に接触するレドックス電解質とから構成される色素増感型太陽電池であって、半導体電極が上記(2)に記載の金属酸化物半導体電極であることを特徴とする色素増感型太陽電池。 That is, according to this application, the following invention is provided.
(1) A ruthenium complex represented by the general formula (I).
Figure 0004604183
(Wherein R 1 , R 2 and R 3 are a hydrogen atom or COOM, at least one of which is COOM. M is a hydrogen atom or a quaternary ammonium cation, and R 4 is a hydrogen atom or a substituent. An aryl group that may have, an alkyl group that may have a substituent, and a perfluoroalkyl group that may have a substituent.)
(2) A metal oxide semiconductor electrode comprising the ruthenium complex according to (1).
(3) A dye-sensitized solar cell including a semiconductor electrode, a counter electrode thereof, and a redox electrolyte in contact with the electrode, wherein the semiconductor electrode is the metal oxide semiconductor electrode according to (2) above A dye-sensitized solar cell characterized by the above.

本発明のルテニウム錯体は、2座配位子のビピリジン誘導体がトランス型に配置されると共にチオシアナート配位子がルテニウム原子の上下に配位された構造を有することから、これを色素増感型太陽電池の金属酸化物半導体電極を修飾する増感剤として用いると、従来の同種のルテニウム錯体を使用した場合に比べ、飛躍的にそのエネルギー変換効率を高めることができる。   The ruthenium complex of the present invention has a structure in which a bidentate bipyridine derivative is arranged in a trans form and a thiocyanate ligand is coordinated above and below a ruthenium atom. When used as a sensitizer for modifying a metal oxide semiconductor electrode of a battery, the energy conversion efficiency can be dramatically increased as compared with the case where a conventional ruthenium complex of the same type is used.

本発明の金属錯体は、前記一般式(I)で示され、2座配位子のビピリジン誘導体がルテニウム金属原子に対してトランスに配置され(ルテニウム金属原子に対向して、2座配位子のビピリジン誘導体が配置され)、チオシアナート配位子がルテニウム原子の上下に配置された構造を有することを特徴としている。   The metal complex of the present invention is represented by the above general formula (I), and a bipyridine derivative of a bidentate ligand is arranged in trans with respect to a ruthenium metal atom (a bidentate ligand facing the ruthenium metal atom). And a thiocyanate ligand is arranged above and below a ruthenium atom.

一般式(I)において、R、R、Rは水素原子またはCOOMであり、そのうち少なくとも一つはCOOMである。Mは水素原子また第4級アンモニウムカチオンを、Rは水素原子あるいは置換基を有してもよいアリール基、置換基を有してもよいアルキル基、置換基を有してもよいパーフルオロアルキル基である。
この場合、前記一般式(I)で示されるルテニウム錯体が、酸化物半導体表面に強固に吸着するように、R、R、Rのうち少なくとも1つ、即ち分子全体では少なくとも2つ以上がCOOMであることが好ましく、更に好ましくは、分子全体では少なくとも3つ以上より好ましくは4つ以上がCOOMであることが望ましい。
In the general formula (I), R 1 , R 2 and R 3 are hydrogen atoms or COOM, and at least one of them is COOM. M is a hydrogen atom or a quaternary ammonium cation, R 4 is a hydrogen atom or an aryl group which may have a substituent, an alkyl group which may have a substituent, or a perfluoro which may have a substituent. It is an alkyl group.
In this case, at least one of R 1 , R 2 , and R 3 , that is, at least two or more in the whole molecule so that the ruthenium complex represented by the general formula (I) is firmly adsorbed on the surface of the oxide semiconductor. Is preferably COOM, more preferably at least 3 or more, and more preferably 4 or more in the whole molecule.

また、前記一般式(I)で示されるルテニウム錯体において、Rが置換基を有してもよいアリール基の例としてはフェニル基、ナフチル基、トリル基、エチルフェニル基などを、置換基を有してもよい炭素数1から30であるアルキル基の例としてはメチル基、エチル基、ヘキシル基、オクチル基、デシル基、ベンジル基、フェネチル基、フェニルブチル基などを挙げることが出来る。また、置換基を有してもよい炭素数1から7であるパーフルオロアルキル基の例としてはパーフルオロメチル基、パーフルオロエチル基、パーフルオロヘキシル基、パーフルオロオクチル基などを挙げることが出来る。 In the ruthenium complex represented by the general formula (I), examples of the aryl group in which R 4 may have a substituent include a phenyl group, a naphthyl group, a tolyl group, and an ethylphenyl group. Examples of the alkyl group having 1 to 30 carbon atoms that may have include a methyl group, an ethyl group, a hexyl group, an octyl group, a decyl group, a benzyl group, a phenethyl group, and a phenylbutyl group. Examples of the perfluoroalkyl group having 1 to 7 carbon atoms that may have a substituent include a perfluoromethyl group, a perfluoroethyl group, a perfluorohexyl group, and a perfluorooctyl group. .

前述の一般式(I)で示されるルテニウム錯体の代表的なものについて、具体的な構造式を示すと下記の式(II)、(III)及び(IV)等で示される化合物が挙げられる。

Figure 0004604183
Figure 0004604183
Figure 0004604183
Specific examples of the ruthenium complex represented by the general formula (I) described above include compounds represented by the following formulas (II), (III), and (IV).
Figure 0004604183
Figure 0004604183
Figure 0004604183

一般式(I)で示されるルテニウム錯体の配位子ビス[2,2´]ビピリジニイル−6−イル−アミン誘導体(一般式(V))は、2分子の一般式(VI)で示される2,2´−ビピリジン誘導体と一般式(VII)で示されるアンモニア又は一級アミンとを反応させることにより製造できる。

Figure 0004604183
Figure 0004604183
Figure 0004604183

(式中、R、R、Rは水素原子またはCOOMであり、そのうち少なくとも一つはCOOMである。Mは水素原子また第4級アンモニウムカチオンを、Rは水素原子あるいは置換基を有してもよいアリール基、置換基を有してもよいアルキル基、置換基を有してもよいパーフルオロアルキル基である。Xは塩素あるいは臭素原子である。) The ligand bis [2,2 ′] bipyridinyl-6-yl-amine derivative (general formula (V)) of the ruthenium complex represented by the general formula (I) is represented by 2 molecules represented by the general formula (VI). , 2′-bipyridine derivative and ammonia or a primary amine represented by the general formula (VII) can be produced.
Figure 0004604183
Figure 0004604183
Figure 0004604183

(Wherein R 1 , R 2 and R 3 are a hydrogen atom or COOM, at least one of which is COOM. M is a hydrogen atom or a quaternary ammonium cation, and R 4 is a hydrogen atom or a substituent. An aryl group that may have, an alkyl group that may have a substituent, and a perfluoroalkyl group that may have a substituent, where X is a chlorine or bromine atom.)

この反応は、適当な溶媒中において、塩基及び触媒の存在下に行うのが有利である。溶媒としては、例えばベンゼン、トルエン、キシレンなどの芳香族炭化水素、n−ヘキサン、シクロヘキサンなどの脂肪族もしくは脂環式炭化水素、エチルアルコール、t−ブチルアルコールなどのアルコール類、ジメチルホルムアミド、アセトアミドなどの酸アミド類、アセトニトリル、プロピオニトリルなどのニトリル類、ジオキサン、テトラヒドロフランなどのエーテル類など挙げることが出来るが、特にトルエンが好適である。塩基としてはナトリウムtert-ブトキシド、カリウム tert-ブトキシドなどの金属アルコキシドや炭酸セシウム、炭酸カリウムなどの炭酸塩が好ましく、また触媒としては2価の酢酸パラジウム、塩化パラジウムなどのパラジウム塩とホスフィンの混合物若しくはゼロ価のパラジウムのホスフィン錯体が好適である。 This reaction is advantageously carried out in a suitable solvent in the presence of a base and a catalyst. Examples of the solvent include aromatic hydrocarbons such as benzene, toluene and xylene, aliphatic or alicyclic hydrocarbons such as n-hexane and cyclohexane, alcohols such as ethyl alcohol and t-butyl alcohol, dimethylformamide and acetamide. Acid amides, nitriles such as acetonitrile and propionitrile, and ethers such as dioxane and tetrahydrofuran, among which toluene is particularly preferable. The base is preferably a metal alkoxide such as sodium tert-butoxide or potassium tert-butoxide, or a carbonate such as cesium carbonate or potassium carbonate, and the catalyst is a mixture of a palladium salt such as divalent palladium acetate or palladium chloride and phosphine, or Zero-valent palladium phosphine complexes are preferred.

反応温度は、使用する原料の種類や触媒の量、溶媒の種類によって異なるが、一般には室温から150℃、好ましくは60〜100℃の範囲で行われる。さらに、反応時間は、反応温度や原料の種類により異なり、一概に定めることは出来ないが、通常2〜24時間である。触媒の量は、前期一般式(VI)で示されるビピリジン誘導体、同じく一般式(VII)で示されるアミンに対してモル量で0.5〜10%、好ましくは2〜5%である。また、触媒の活性を保つために、脱水溶媒を使用し、窒素やアルゴンなどの不活性気体雰囲気下で反応を行うことが望ましい。   The reaction temperature varies depending on the type of raw material used, the amount of catalyst, and the type of solvent, but is generally room temperature to 150 ° C, preferably 60 to 100 ° C. Furthermore, the reaction time varies depending on the reaction temperature and the type of raw material, and cannot be generally defined, but is usually 2 to 24 hours. The amount of the catalyst is 0.5 to 10%, preferably 2 to 5% in terms of a molar amount with respect to the bipyridine derivative represented by the general formula (VI) and the amine represented by the general formula (VII). In order to maintain the activity of the catalyst, it is desirable to use a dehydrated solvent and perform the reaction in an inert gas atmosphere such as nitrogen or argon.

また、一般式(I)で示されるルテニウム錯体の配位子ビス[2,2´]ビピリジニイル−6−イル−アミン誘導体(一般式(V))は、一般式(VIII)で示される2,2´−ビピリジン誘導体と前述の一般式(VI)で示されるビピリジン誘導体とを反応させることによっても製造できる。

Figure 0004604183
In addition, the ligand bis [2,2 ′] bipyridinyl-6-yl-amine derivative (general formula (V)) of the ruthenium complex represented by the general formula (I) is represented by 2, It can also be produced by reacting a 2'-bipyridine derivative with a bipyridine derivative represented by the aforementioned general formula (VI).
Figure 0004604183

前記一般式(I)で示されるルテニウム錯体は、前記一般式(II)で示されるビス[2,2´]ビピリジニイル−6−イル−アミン誘導体と金属化合物を適当な溶媒中で加熱することによって得られる一般式(IX)で示されるルテニウム錯体を経由して製造できるが、金属化合物としては金属塩や置換可能な配位子を有する金属錯体などが挙げられる。例えば、一般式(IX)において、Xが塩素イオンの場合は相当する金属の塩化物を用いる。溶媒としては、例えばベンゼン、トルエン、キシレンなどの芳香族炭化水素、エチルアルコール、t−ブチルアルコールなどのアルコール類、ジメチルホルムアミド、アセトアミドなどの酸アミド類、アセトニトリル、プロピオニトリルなどのニトリル類、ジオキサン、テトラヒドロフラン、ジグライム(ジエチレングリコールジメチルエーテル)などのエーテル類など挙げることが出来るが、特にジメチルホルムアミド、ジグライムが好適である。

Figure 0004604183
((式中、R、R、Rは水素原子またはCOOMであり、そのうち少なくとも一つはCOOMである。Mは水素原子また第4級アンモニウムカチオンを、Rは水素原子あるいは置換基を有してもよいアリール基、置換基を有してもよいアルキル基、置換基を有してもよいパーフルオロアルキル基である。Xは塩素あるいは臭素原子である。) The ruthenium complex represented by the general formula (I) is obtained by heating the bis [2,2 ′] bipyridinyl-6-yl-amine derivative represented by the general formula (II) and a metal compound in an appropriate solvent. Although it can manufacture via the ruthenium complex shown by general formula (IX) obtained, a metal complex etc. which have a metal salt, a substitutable ligand, etc. are mentioned as a metal compound. For example, in the general formula (IX), when X is a chlorine ion, a corresponding metal chloride is used. Examples of the solvent include aromatic hydrocarbons such as benzene, toluene and xylene, alcohols such as ethyl alcohol and t-butyl alcohol, acid amides such as dimethylformamide and acetamide, nitriles such as acetonitrile and propionitrile, and dioxane. , Tetrahydrofuran, diglyme (diethylene glycol dimethyl ether) and the like, and dimethylformamide and diglyme are particularly preferred.
Figure 0004604183
(In the formula, R 1 , R 2 and R 3 are a hydrogen atom or COOM, at least one of which is COOM. M is a hydrogen atom or a quaternary ammonium cation, and R 4 is a hydrogen atom or a substituent. An aryl group that may have a substituent, an alkyl group that may have a substituent, and a perfluoroalkyl group that may have a substituent. X is a chlorine or bromine atom.)

この反応は、使用する誘導体や金属塩の、溶媒の種類によって異なるが、一般には50℃から160℃、好ましくは100〜140℃の範囲で行われる。さらに、反応時間は、反応温度や原料の種類により異なり、一概に定めることは出来ないが、通常2〜5時間である。   This reaction varies depending on the type of the solvent of the derivative or metal salt used, but is generally 50 ° C to 160 ° C, preferably 100-140 ° C. Furthermore, although reaction time changes with reaction temperature and the kind of raw material and cannot be defined unconditionally, it is 2 to 5 hours normally.

一般式(IX)で示されるルテニウム錯体から一般式(I)で示されるルテニウム錯体への変換は、上記金属錯体(IX)とチオシアネートのアルカリ金属塩あるいはアンモニウム塩を適当な溶媒中で加熱することによって得られる。溶媒としては、例えば水、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、エチルアルコール、t−ブチルアルコールなどのアルコール類、ジメチルホルムアミド、アセトアミドなどの酸アミド類、アセトニトリル、プロピオニトリルなどのニトリル類、ジオキサン、テトラヒドロフランなどのエーテル類など挙げることが出来るが、特にジメチルホルムアミドが好適である。   The conversion from the ruthenium complex represented by the general formula (IX) to the ruthenium complex represented by the general formula (I) is carried out by heating the alkali metal salt or ammonium salt of the metal complex (IX) and thiocyanate in an appropriate solvent. Obtained by. Examples of the solvent include water, aromatic hydrocarbons such as benzene, toluene and xylene, alcohols such as ethyl alcohol and t-butyl alcohol, acid amides such as dimethylformamide and acetamide, and nitriles such as acetonitrile and propionitrile. , Ethers such as dioxane and tetrahydrofuran can be mentioned, and dimethylformamide is particularly preferred.

この反応は、使用する原料、溶媒の種類によって異なるが、一般には50℃から160℃、好ましくは100〜140℃の範囲で行われる。さらに、反応時間は、反応温度や原料の種類により異なり、一概に定めることは出来ないが、通常2〜5時間である。   This reaction is generally carried out in the range of 50 to 160 ° C., preferably 100 to 140 ° C., although it varies depending on the raw materials and the solvent used. Furthermore, although reaction time changes with reaction temperature and the kind of raw material and cannot be defined unconditionally, it is 2 to 5 hours normally.

本発明に係るルテニウム錯体は、酸化物半導体電極の増感剤として有用なものである。酸化物半導体としては、多孔質のTiO、ZnO,SnO,WOなどを挙げるが、特にTiOが好適である。本発明のルテニウム金属錯体を用いて酸化物半導体電極を作製する方法は特に制限されないが、たとえば、導電性ガラスなどの基盤の上に形成された酸化物半導体膜をルテニウム錯体の溶液に浸漬することによって作製される。溶媒としてはアルコール類、ニトリル類、アミド類あるいはそれらの混合物が用いられるが、特にメタノール、エタノール、ブチロニトリルなどが好ましい。溶液の濃度や浸漬時間は溶液の温度や溶媒あるいは酸化物半導体膜や金属錯体の種類により異なり、一概に定めることは出来ないが、通常0.2mMの濃度で、室温で24時間程度である。 The ruthenium complex according to the present invention is useful as a sensitizer for oxide semiconductor electrodes. Examples of the oxide semiconductor include porous TiO 2 , ZnO, SnO 2 , and WO 3, and TiO 2 is particularly preferable. A method for manufacturing an oxide semiconductor electrode using the ruthenium metal complex of the present invention is not particularly limited. For example, an oxide semiconductor film formed on a substrate such as conductive glass is immersed in a ruthenium complex solution. It is produced by. As the solvent, alcohols, nitriles, amides or mixtures thereof are used, and methanol, ethanol, butyronitrile and the like are particularly preferable. The concentration of the solution and the immersion time vary depending on the temperature of the solution, the solvent, the type of the oxide semiconductor film, and the metal complex, and cannot be generally defined, but are usually 0.2 mM and about 24 hours at room temperature.

このように作製された一般式(I)で示されるルテニウム錯体で増感された酸化物半導体電極は、半導体電極とその対極、およびそれらの電極に接触するレドックス電解質とから構成される色素増感型太陽電池における半導体電極として利用することができる。
レドックス電解質は、周知のものを用いることが出来、例えば溶媒としてはアセトニトリル、酸化還元対としてヨウ素とヨウ化リチウムの混合物を、電解質としてイミダゾール塩などが用いられる。さらに添加物として4−tert―ブチルピリジンやデオキシコール酸などを加える場合もある。
The oxide semiconductor electrode sensitized with the ruthenium complex represented by the general formula (I) thus prepared is composed of a semiconductor electrode, a counter electrode thereof, and a redox electrolyte in contact with the electrode. It can be used as a semiconductor electrode in a solar cell.
A well-known redox electrolyte can be used. For example, acetonitrile is used as a solvent, a mixture of iodine and lithium iodide is used as a redox couple, and an imidazole salt is used as an electrolyte. Further, 4-tert-butylpyridine or deoxycholic acid may be added as an additive.

以下に、実施例に基づいて本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

実施例1
[(ビス−(4´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン)ジチオシアナートルテニウム(II)(式(II))の合成]
このルテニウム錯体の合成経路を以下に示す。

Figure 0004604183
Example 1
[(Synthesis of (bis- (4′-carboxy- [2,2 ′] bipyridinyl-6-yl) -octyl-amine) dithiocyanate toruthenium (II) (formula (II))]
The synthesis route of this ruthenium complex is shown below.

Figure 0004604183

(1)6´−ブロモ−4−メチル−[2,2´]ビピリジニル(iii)の合成
アルゴン雰囲気下、2,6−ジブロモピリジン(ii)3.96g(16.7mmol)及びテトラキス(トリフェニルホスフィン)パラジウム579mg(0.501mmol)を含むTHF溶液30mlに4−メチル−2−ピリジルジンクブロミド(i)の0.5M THF溶液50ml(25mmol)を室温にて攪拌しつつ加える。反応混合物は一昼夜攪拌の後、水約100mlに注ぎ込む。生成物と錯体を形成している亜鉛の塩をEDTAと炭酸ナトリウムを加えて溶かす。塩化メチレンによる抽出で生成物を分離する。乾燥後塩化メチレンを溜去し、残った残渣をアルミナのカラムクロマトにかけて、塩化メチレンとヘキサンの混合溶媒を溶離液としてオイル状の生成物を分離する。収量2.05g(49.3%)
(1) Synthesis of 6′-bromo-4-methyl- [2,2 ′] bipyridinyl (iii) Under an argon atmosphere, 3.96 g (16.7 mmol) of 2,6-dibromopyridine (ii) and tetrakis (triphenyl) To a 30 ml THF solution containing 579 mg (0.501 mmol) of phosphine) palladium, 50 ml (25 mmol) of a 0.5 M THF solution of 4-methyl-2-pyridylzinc bromide (i) is added at room temperature with stirring. The reaction mixture is stirred overnight and then poured into about 100 ml of water. The zinc salt that forms a complex with the product is dissolved by adding EDTA and sodium carbonate. The product is separated by extraction with methylene chloride. After drying, methylene chloride is distilled off, and the remaining residue is subjected to column chromatography on alumina to separate an oily product using a mixed solvent of methylene chloride and hexane as an eluent. Yield 2.05 g (49.3%)

(2)6´−ブロモ−[2,2´]ビピリジニル−4−カルボン酸エチルエステル(iv)の合成
6´−ブロモ−4−[2,2´]ビピリジニル(iii)1.95g(7.83mmol)を水50mlに懸濁する。還流条件下懸濁液に過マンガン酸カリウム3.71g(23.5mmol)を数回に分けて攪拌しつつ加える。さらに加熱攪拌を3時間続ける。冷却後生成した二酸化マンガンを濾過、濾過物は数回熱水で洗う。濾液と洗液を合わせて全体で約20ml程度になるまで濃縮、3N塩酸でpH3にし、析出した白色固体の生成物(6´−ブロモ−[2,2´]ビピリジニル−4−カルボン酸)を濾過、乾燥する。収量300mg(収率%)二酸化マンガンの残渣を塩化メチレンで洗浄することにより未反応の原料950mgを回収した。
得られた6´−ブロモ−[2,2´]ビピリジニル−4−カルボン酸622mg(2.23mmol)をエチルアルコール30mlに溶解、濃硫酸0.5mlを加え一昼夜加熱還流する。冷却後、エチルアルコールを除去、残渣に氷を入れ水酸化ナトリウム水溶液で中和、生成物を塩化メチレンで抽出する。乾燥後、塩化メチルを溜去、生成物はエチルアルコールからの再結晶化により精製した。収量489mg(収率71.3%)
(2) Synthesis of 6'-bromo- [2,2 '] bipyridinyl-4-carboxylic acid ethyl ester (iv) 6'-bromo-4- [2,2'] bipyridinyl (iii) 1.95 g (7. 83 mmol) is suspended in 50 ml of water. To the suspension under reflux, 3.71 g (23.5 mmol) of potassium permanganate is added in several portions with stirring. Further, heating and stirring are continued for 3 hours. The manganese dioxide produced after cooling is filtered, and the filtrate is washed several times with hot water. The filtrate and washings were combined and concentrated to a total of about 20 ml, adjusted to pH 3 with 3N hydrochloric acid, and the precipitated white solid product (6′-bromo- [2,2 ′] bipyridinyl-4-carboxylic acid) was obtained. Filter and dry. Yield 300 mg (yield%) Manganese dioxide residue was washed with methylene chloride to recover 950 mg of unreacted raw material.
622 mg (2.23 mmol) of 6′-bromo- [2,2 ′] bipyridinyl-4-carboxylic acid obtained is dissolved in 30 ml of ethyl alcohol, 0.5 ml of concentrated sulfuric acid is added, and the mixture is heated to reflux for 24 hours. After cooling, ethyl alcohol is removed, ice is added to the residue, neutralized with an aqueous sodium hydroxide solution, and the product is extracted with methylene chloride. After drying, the methyl chloride was distilled off and the product was purified by recrystallization from ethyl alcohol. Yield 489 mg (Yield 71.3%)

(3)ビス−(4´−エトキシカルボニル−[2,2´]ビピリジニル−6−イル)−オクチル−アミン(v)の合成
アルゴン雰囲気下、2,2´−ビス(ジフェニルホスヒノ)−1,1´−ビナフチル78.0mg(0.125mmol)をシュレンクチューブ中の脱水トルエン約0.7mlに溶解させる。これに酢酸パラジウム18.7mg(0.0835mmol)をトルエン約0.7mlとともに加える。溶液を10分ほど攪拌の後、6´−ブロモ−[2,2´]ビピリジニル−4−カルボン酸エチルエステル(iv)513mg(1.67mmol)をトルエン約3mlとともに加える。さらにn−オクチルアミン258mg(2.00mmol)及び炭酸セシウム1.52g(4.68mmol)をトルエン約3mlとともに加える。反応混合物はアルゴン雰囲気下100℃で24時間攪拌する。反応終了後トルエンを溜去し、残った残渣をアルミナのカラムクロマトにかけて、塩化メチレンとヘキサンの混合溶媒を溶離液として生成物を分離する。さらに分離した生成物はエチルアルコールからの再結晶化により精製した。その結果目的物が収量219mg得られる(収率50%)。さらに副生成物としてアミンとの1:1の付加物6´−オクチルアミノ−[2,2´]ビピリジニル−4−カルボン酸エチルエステル(vi)が収量80.1mgで得られる(収率15%)。生成物の構造、純度はNMRで確認した。
1H NMR (CDCl3): δ8.91(2H, dd, J = 1.0, 1.0); 8.80(2H, d, J = 5.0); 8.03(2H, d, J = 8.0); 7.85(2H, dd, J = 1.0, 5.0); 7.58(1H, t, J = 8.0); 7.31(1H, dd, J = 0.8, 8.0); 4.43(4H, q, J = 7.2); 4.43(2H, t, J = 8.0); 1.92(2H, quint, J = 8.0); 1.51(2H, t, J = 8.0); 1.42(6H, t, J = 7.2); 1.41-1.19(8H, multi); 0.81(3H, t, J = 6.8)
6´−オクチルアミノ−[2,2´]ビピリジニル−4−カルボン酸エチルエステル(vi)
1H NMR (CDCl3): δ8.83(1H, dd, J = 0.8, 1.6); 8.78(1H, dd, J = 0.8, 5.2); 7.81(1H, dd, J = 1.6, 5.2); 7.67(1H, dd, J = 0.8, 7.6); 7.58(1H, t, J = 7.6); 6.45(1H, dd, J = 0.8, 7.6); 4.67(1H, bs); 4.45(2H, q, J = 7.2); 3.35(2H, dt, J = 4.4, 6.8); 1.68(2H, quint, J = 7.2); 1.44(3H, t, J = 7.2); 1.40-1.23(10H, multi); 0.88(3H, t, J = 6.8)
(3) Synthesis of bis- (4′-ethoxycarbonyl- [2,2 ′] bipyridinyl-6-yl) -octyl-amine (v) 2,2′-bis (diphenylphosphino) -1 under an argon atmosphere , 1'-binaphthyl is dissolved in about 0.7 ml of dehydrated toluene in a Schlenk tube. To this is added 18.7 mg (0.0835 mmol) of palladium acetate along with about 0.7 ml of toluene. After stirring the solution for about 10 minutes, 513 mg (1.67 mmol) of 6′-bromo- [2,2 ′] bipyridinyl-4-carboxylic acid ethyl ester (iv) is added together with about 3 ml of toluene. Further, 258 mg (2.00 mmol) of n-octylamine and 1.52 g (4.68 mmol) of cesium carbonate are added together with about 3 ml of toluene. The reaction mixture is stirred for 24 hours at 100 ° C. under an argon atmosphere. After completion of the reaction, toluene is distilled off, and the remaining residue is subjected to alumina column chromatography to separate the product using a mixed solvent of methylene chloride and hexane as an eluent. The separated product was further purified by recrystallization from ethyl alcohol. As a result, 219 mg of the target product is obtained (yield 50%). Furthermore, 1: 1 adduct 6'-octylamino- [2,2 '] bipyridinyl-4-carboxylic acid ethyl ester (vi) with amine as a by-product is obtained in a yield of 80.1 mg (15% yield). ). The structure and purity of the product were confirmed by NMR.
1H NMR (CDCl3): δ8.91 (2H, dd, J = 1.0, 1.0); 8.80 (2H, d, J = 5.0); 8.03 (2H, d, J = 8.0); 7.85 (2H, dd, J = 1.0, 5.0); 7.58 (1H, t, J = 8.0); 7.31 (1H, dd, J = 0.8, 8.0); 4.43 (4H, q, J = 7.2); 4.43 (2H, t, J = 8.0 ); 1.92 (2H, quint, J = 8.0); 1.51 (2H, t, J = 8.0); 1.42 (6H, t, J = 7.2); 1.41-1.19 (8H, multi); 0.81 (3H, t, J = 6.8)
6'-octylamino- [2,2 '] bipyridinyl-4-carboxylic acid ethyl ester (vi)
1H NMR (CDCl3): δ 8.83 (1H, dd, J = 0.8, 1.6); 8.78 (1H, dd, J = 0.8, 5.2); 7.81 (1H, dd, J = 1.6, 5.2); 7.67 (1H , dd, J = 0.8, 7.6); 7.58 (1H, t, J = 7.6); 6.45 (1H, dd, J = 0.8, 7.6); 4.67 (1H, bs); 4.45 (2H, q, J = 7.2 ); 3.35 (2H, dt, J = 4.4, 6.8); 1.68 (2H, quint, J = 7.2); 1.44 (3H, t, J = 7.2); 1.40-1.23 (10H, multi); 0.88 (3H, t, J = 6.8)

前記の副生成物6´−オクチルアミノ−[2,2´]ビピリジニル−4−カルボン酸エチルエステル(vi)と6´−ブロモ−[2,2´]ビピリジニル−4−カルボン酸エチルエステル(iv)からも同様な反応条件で目的物であるビス−(4´−エトキシカルボニル−[2,2´]ビピリジニル−6−イル)−オクチル−アミン(v)が得られる。すなわち、6´−オクチルアミノ−[2,2´]ビピリジニル−4−カルボン酸エチルエステル(vi)97.6mg(0.275mmol)と6´−ブロモ−[2,2´]ビピリジニル−4−カルボン酸エチルエステル(vi)82.9mg(0.270mmol)を酢酸パラジウム2.42mg(0.0108mmol)、トリフェニルホスフィン5.66mg(0.0216mmol)、炭酸セシウム100mg(0.307mmol)の存在下トルエン中で反応させると目的物が76.0mg得られた(収率49%)。   By-products 6'-octylamino- [2,2 '] bipyridinyl-4-carboxylic acid ethyl ester (vi) and 6'-bromo- [2,2'] bipyridinyl-4-carboxylic acid ethyl ester (iv ), The target bis- (4′-ethoxycarbonyl- [2,2 ′] bipyridinyl-6-yl) -octyl-amine (v) is obtained under similar reaction conditions. That is, 67.6-octylamino- [2,2 ′] bipyridinyl-4-carboxylic acid ethyl ester (vi) 97.6 mg (0.275 mmol) and 6′-bromo- [2,2 ′] bipyridinyl-4-carboxylic acid Acid ethyl ester (vi) 82.9 mg (0.270 mmol) in the presence of palladium acetate 2.42 mg (0.0108 mmol), triphenylphosphine 5.66 mg (0.0216 mmol), cesium carbonate 100 mg (0.307 mmol) in toluene In the reaction, 76.0 mg of the desired product was obtained (yield 49%).

(4)ビス−(4´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン(vii)の合成
窒素雰囲気下、ビス−(4´−エトキシカルボニル−[2,2´]ビピリジニル−6−イル)−オクチル−アミン(v)215mg(0.369mmol)をエチルアルコールと水の容積比4:1の混合溶媒40mlに溶解させる。これに水酸化リチウム一水和物34.1mg(0.812mmol)を加えた後、一昼夜攪拌還流する。反応混合物を冷却後、エチルアルコールを溜去する。残渣に氷水を加えた後(約100ml)、1規定塩酸にて溶液を酸性(pH3)にする。精製した沈殿を濾過、水洗の後乾燥させる。目的物が172mg得られる(収率89%)。
(4) Synthesis of bis- (4′-carboxy- [2,2 ′] bipyridinyl-6-yl) -octyl-amine (vii) under nitrogen atmosphere, bis- (4′-ethoxycarbonyl- [2,2 ′) 215 mg (0.369 mmol) of bipyridinyl-6-yl) -octyl-amine (v) are dissolved in 40 ml of a mixed solvent of ethyl alcohol and water in a volume ratio of 4: 1. To this was added 34.1 mg (0.812 mmol) of lithium hydroxide monohydrate, and the mixture was stirred and refluxed overnight. After cooling the reaction mixture, the ethyl alcohol is distilled off. Ice water is added to the residue (about 100 ml), and the solution is acidified (pH 3) with 1N hydrochloric acid. The purified precipitate is filtered, washed with water and dried. 172 mg of the desired product is obtained (yield 89%).

(5)(ビス−(4´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン)ジクロロルテニウム(II)(viii)の合成
アルゴン雰囲気下、ジクロロ(p−クメン)ルテニウム2量体30.6mg(0.05mmol)を脱水したジグライム10mlに溶解させる。これにビス−(4´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン(vii)52.5mg(0.100mmol)のジグライム溶液5mlをゆっくり加える。反応溶液は150分攪拌還流する。冷却後析出した生成物を濾過し、水、エーテルで洗浄後乾燥させる。目的物の緑色の錯体が57.2mg得られる。構造は質量分析で確認した。
MS(ESIMS): m/z: 348.4(M-2H)2-, 696.0(M-H)-; MW: 697 calcd. for C30H31N5O4RuCl2
(5) Synthesis of (bis- (4′-carboxy- [2,2 ′] bipyridinyl-6-yl) -octyl-amine) dichlororuthenium (II) (viii) dichloro (p-cumene) ruthenium under argon atmosphere 30.6 mg (0.05 mmol) of the dimer is dissolved in 10 ml of dehydrated diglyme. To this is slowly added 5 ml of a diglyme solution of 52.5 mg (0.100 mmol) of bis- (4′-carboxy- [2,2 ′] bipyridinyl-6-yl) -octyl-amine (vii). The reaction solution is stirred at reflux for 150 minutes. The product precipitated after cooling is filtered, washed with water and ether and dried. 57.2 mg of the desired green complex is obtained. The structure was confirmed by mass spectrometry.
MS (ESIMS): m / z: 348.4 (M-2H) 2- , 696.0 (MH) - ; MW: 697 calcd.for C 30 H 31 N 5 O 4 RuCl 2

(6)(ビス−(4´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン)ジチオシアナートルテニウム(II)(II)の合成
アルゴン雰囲気下、(ビス−(4´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン)ジクロロルテニウム(viii)57.7mg(0.0828mmol)を脱水したジメチルホルムアミド15mlに溶解させる。これにアンモニウムチオシアナート377mg(4.97mmol)の水溶液5mlをゆっくり加える。反応溶液は四時間攪拌還流する。冷却後ジメチルホルムアミドを除去、約10mlの水を加える。不溶物を濾過、水、エーテルで洗浄後乾燥させる。これをゲル濾過カラム(LH20)で、メチルアルコール−クロロフォルム1:1の混合溶媒を溶離液として精製する。目的物の紫色の錯体が32.5mg得られる。構造は質量分析で確認した。
MS(ESIMS): m/z: 370.3(M-2H)2-, 742.0(M-H)-; MW: 743 calcd. for C32H31N7O4RuS2
なお、(ビス−(4´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン)ジチオシアナートルテニウム(II)がトランス型構造であることは、ルテニウム周りの基本骨格構造が本錯体と全く同一であるビス(1,10−フェナントロリン−2−イル)アミンのルテニウム錯体の結晶構造解析の結果(Inorg. Chem. 2002, 41, 5937-5939)により確認されている。
(6) Synthesis of (bis- (4′-carboxy- [2,2 ′] bipyridinyl-6-yl) -octyl-amine) dithiocyanate toruthenium (II) (II) under an argon atmosphere (bis- (4 '-Carboxy- [2,2'] bipyridinyl-6-yl) -octyl-amine) dichlororuthenium (viii) 57.7 mg (0.0828 mmol) is dissolved in 15 ml of dehydrated dimethylformamide. To this is slowly added 5 ml of an aqueous solution of 377 mg (4.97 mmol) of ammonium thiocyanate. The reaction solution is stirred and refluxed for 4 hours. After cooling, dimethylformamide is removed and about 10 ml of water is added. The insoluble material is filtered, washed with water and ether and then dried. This is purified by a gel filtration column (LH20) using a mixed solvent of methyl alcohol-chloroform 1: 1 as an eluent. 32.5 mg of the desired purple complex is obtained. The structure was confirmed by mass spectrometry.
MS (ESIMS): m / z: 370.3 (M-2H) 2- , 742.0 (MH) - ; MW: 743 calcd. For C 32 H 31 N 7 O 4 RuS 2
In addition, (bis- (4′-carboxy- [2,2 ′] bipyridinyl-6-yl) -octyl-amine) dithiocyanate toruthenium (II) has a trans structure, which is a basic skeleton structure around ruthenium. Is confirmed by the results of crystal structure analysis of a ruthenium complex of bis (1,10-phenanthrolin-2-yl) amine, which is exactly the same as this complex (Inorg. Chem. 2002, 41, 5937-5939).

太陽電池の調製
ルテニウム錯体(ビス−(4´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン)ジチオシアナートルテニウム(II)(II)の0.2mMメチルアルコール溶液を調製し、これに導電性ガラス表面に作成した膜厚30μmの酸化チタン多孔質膜を20時間浸漬させることにより可視光応答性の電極を作製する。導電性ガラス表面に白金を蒸着した対電極との間に電解質溶液をはさみ太陽電池を構成する。電解質溶液としてはヨウ化リチウム(0.1M)、ヨウ素(0.05M)、シ゛メチルイミダゾリウムアイオダイド(0.6M)、4−tert−ブチルピリジン(0.5M)を含むアセトニトリル溶液を用いた。その結果、AM1,5の擬似太陽光照射下において、短絡電流11.8mA/cm、開放電圧0.58V、FF63%、エネルギー変換効率η4.3%の光電流を取り出すことが出来た。
Preparation of Solar Cell A 0.2 mM methyl alcohol solution of ruthenium complex (bis- (4′-carboxy- [2,2 ′] bipyridinyl-6-yl) -octyl-amine) dithiocyanate toruthenium (II) (II) A visible light-responsive electrode is prepared by immersing a 30-μm thick titanium oxide porous film prepared on the conductive glass surface for 20 hours. An electrolyte solution is sandwiched between a counter electrode in which platinum is vapor-deposited on the surface of conductive glass to constitute a solar cell. As the electrolyte solution, an acetonitrile solution containing lithium iodide (0.1 M), iodine (0.05 M), dimethyl imidazolium iodide (0.6 M), and 4-tert-butylpyridine (0.5 M) was used. As a result, a photocurrent having a short-circuit current of 11.8 mA / cm 2 , an open-circuit voltage of 0.58 V, an FF of 63%, and an energy conversion efficiency of η4.3% can be extracted under irradiation of pseudo sunlight of AM1 and 5.

実施例2
[(ビス−(5´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン)ジチオシアナートルテニウム(II)(式(III))の合成]
このルテニウム錯体の合成経路を以下に示す。

Figure 0004604183
Example 2
[(Synthesis of (bis- (5′-carboxy- [2,2 ′] bipyridinyl-6-yl) -octyl-amine) dithiocyanate toruthenium (II) (formula (III))]
The synthesis route of this ruthenium complex is shown below.

Figure 0004604183

(1)6´−ブロモ−5−メチル−[2,2´]ビピリジニル(x)の合成
アルゴン雰囲気下、2,6−ジブロモピリジン(ii)3.96g(16.7mmol)及びテトラキス(トリフェニルホスフィン)パラジウム579mg(0.501mmol)を含むTHF溶液30mlに5−メチル−2−ピリジルジンクブロミド(ix)の0.5M THF溶液50ml(25mmol)を室温にて攪拌しつつ加える。反応混合物は一昼夜攪拌の後、水約100mlに注ぎ込む。生成物と錯体を形成している亜鉛の塩をEDTAと炭酸ナトリウムを加えて溶かす。塩化メチレンによる抽出で生成物を分離する。乾燥後塩化メチレンを溜去し、残った残渣をアルミナのカラムクロマトにかけて、塩化メチレンとヘキサンの混合溶媒を溶離液としてオイル状の生成物を分離する。収量2.23g(54.0%)
(1) Synthesis of 6′-bromo-5-methyl- [2,2 ′] bipyridinyl (x) Under an argon atmosphere, 3.96 g (16.7 mmol) of 2,6-dibromopyridine (ii) and tetrakis (triphenyl) To 30 ml of THF solution containing 579 mg (0.501 mmol) of phosphine) palladium, 50 ml (25 mmol) of 0.5 M THF solution of 5-methyl-2-pyridylzinc bromide (ix) is added at room temperature with stirring. The reaction mixture is stirred overnight and then poured into about 100 ml of water. The zinc salt that forms a complex with the product is dissolved by adding EDTA and sodium carbonate. The product is separated by extraction with methylene chloride. After drying, methylene chloride is distilled off, and the remaining residue is subjected to column chromatography on alumina to separate an oily product using a mixed solvent of methylene chloride and hexane as an eluent. Yield 2.23 g (54.0%)

(2)6´−ブロモ−[2,2´]ビピリジニル−5−カルボン酸エチルエステル(xi)の合成
6´−ブロモ−5−メチル−[2,2´]ビピリジニル(x)1.37g(5.5mmol)を水50mlに懸濁する。還流条件下懸濁液に過マンガン酸カリウム2.60g(16.5mmol)を数回に分けて攪拌しつつ加える。加熱攪拌を3時間続けた後、過マンガン酸カリウム0.5gをさらに加える。冷却後生成した二酸化マンガンを濾過、濾過物は数回熱水で洗う。濾液と洗液を合わせて全体で約20ml程度になるまで濃縮、3N塩酸でpH3にし、析出した白色固体の生成物(6´−ブロモ−[2,2´]ビピリジニル−5−カルボン酸)を濾過、乾燥する。収量454mg(収率%)二酸化マンガンの残渣を塩化メチレンで洗浄することにより未反応の原料340mgを回収した。
得られた6´−ブロモ−[2,2´]ビピリジニル−5−カルボン酸450mg(1.61mmol)をエチルアルコール30mlに溶解、濃硫酸0.5mlを加え一昼夜加熱還流する。冷却後、エチルアルコールを除去、残渣に氷を入れ水酸化ナトリウム水溶液で中和、生成物を塩化メチレンで抽出する。乾燥後、塩化メチルを溜去、生成物はエチルアルコールからの再結晶化により精製した。収量405mg(収率82.0%)
(2) Synthesis of 6'-bromo- [2,2 '] bipyridinyl-5-carboxylic acid ethyl ester (xi) 6'-bromo-5-methyl- [2,2'] bipyridinyl (x) 1.37 g ( 5.5 mmol) is suspended in 50 ml of water. To the suspension under reflux, 2.60 g (16.5 mmol) of potassium permanganate is added in several portions with stirring. After heating and stirring for 3 hours, 0.5 g of potassium permanganate is further added. The manganese dioxide produced after cooling is filtered, and the filtrate is washed several times with hot water. The filtrate and washings were combined and concentrated to a total of about 20 ml, adjusted to pH 3 with 3N hydrochloric acid, and the precipitated white solid product (6′-bromo- [2,2 ′] bipyridinyl-5-carboxylic acid) was obtained. Filter and dry. Yield 454 mg (yield%) Manganese dioxide residue was washed with methylene chloride to recover 340 mg of unreacted raw material.
450 mg (1.61 mmol) of 6′-bromo- [2,2 ′] bipyridinyl-5-carboxylic acid obtained is dissolved in 30 ml of ethyl alcohol, 0.5 ml of concentrated sulfuric acid is added, and the mixture is heated to reflux overnight. After cooling, ethyl alcohol is removed, ice is added to the residue, neutralized with an aqueous sodium hydroxide solution, and the product is extracted with methylene chloride. After drying, the methyl chloride was distilled off and the product was purified by recrystallization from ethyl alcohol. Yield 405 mg (Yield 82.0%)

(3)ビス−(5´−エトキシカルボニル−[2,2´]ビピリジニル−6−イル)−オクチル−アミン(xii)の合成
アルゴン雰囲気下、2,2´−ビス(ジフェニルホスヒノ)−1,1´−ビナフチル76.0mg(0.122mmol)をシュレンクチューブ中の脱水トルエン約0.7mlに溶解させる。これに酢酸パラジウム18.0mg(0.0815mmol)をトルエン約0.5mlとともに加える。溶液を10分ほど攪拌の後、6−ブロモ−[2,2´]ビピリジニル−5−カルボン酸エチルエステル(xi)500mg(1.96mmol)をトルエン約3mlとともに加える。さらにn−オクチルアミン252mg(2.00mmol)及び炭酸セシウム1.28g(3.92mmol)をトルエン約3mlとともに加える。反応混合物はアルゴン雰囲気下100℃で24時間攪拌する。反応終了後トルエンを溜去し、残った残渣をアルミナのカラムクロマトにかけて、塩化メチレンとヘキサンの混合溶媒を溶離液として生成物を分離する。さらに分離した生成物はエチルアルコールからの再結晶化により精製した。その結果目的物が収量219mg得られる(収率50%(コンバージョン92%))。さらに副生成物としてアミンとの1:1の付加物6´−オクチルアミノ−[2,2´]ビピリジニル−5−カルボン酸エチルエステル(xiii)が収量140mgで得られる(収率26%)。生成物の構造、純度はNMRで確認した。
1H NMR (CDCl3) δ:9.27(2H, dd, J = 0.6, 2.2); 8.44(2H, dd, J = 0.6, 8.2); 8.39(2H, dd, J = 2.2, 8.2); 8.10(2H, d, J = 7.2); 7.71(2H, t, J = 8); 7.28(2H, d, J = 8.4); 4.44(4H, q, J = 7.2); 4.39(2H, t, J = 8.0); 1.79(2H, quint, J = 8.0); 1.43(6H, t, J = 7.2); 1.93-1.25(10H, multi); 0.86(3H, t, J = 6.8)
6´−オクチルアミノ−[2,2´]ビピリジニル−5−カルボン酸エチルエステル(xiii)
1H NMR (CDCl3): δ9.24(1H, dd, J = 0.8, 2.0); 8.41(1H, dd, J = 0.8, 8.0); 8.36(1H, dd, J = 2.0, 8.4); 7.74(1H, d, J = 7.2); 7.58(1H, t, J = 8.0); 6.47(1H, d, J = 8.0); 4.60(1H, t, ); 4.43(2H, q, J = 7.2); 3.36(2H, dt, J = 6.0, 6.8); 1.67(2H, quint, J = 7.2); 1.43(3H, t, J = 7.2); 1.38-1.24(10H, multi); 0.89(3H, t, J = 6.8)
(3) Synthesis of bis- (5′-ethoxycarbonyl- [2,2 ′] bipyridinyl-6-yl) -octyl-amine (xii) 2,2′-bis (diphenylphosphino) -1 under an argon atmosphere , 1′-binaphthyl (76.0 mg, 0.122 mmol) is dissolved in about 0.7 ml of dehydrated toluene in a Schlenk tube. To this is added 18.0 mg (0.0815 mmol) of palladium acetate along with about 0.5 ml of toluene. After stirring the solution for about 10 minutes, 500 mg (1.96 mmol) of 6-bromo- [2,2 ′] bipyridinyl-5-carboxylic acid ethyl ester (xi) is added along with about 3 ml of toluene. Further, 252 mg (2.00 mmol) of n-octylamine and 1.28 g (3.92 mmol) of cesium carbonate are added together with about 3 ml of toluene. The reaction mixture is stirred for 24 hours at 100 ° C. under an argon atmosphere. After completion of the reaction, toluene is distilled off, and the remaining residue is subjected to alumina column chromatography to separate the product using a mixed solvent of methylene chloride and hexane as an eluent. The separated product was further purified by recrystallization from ethyl alcohol. As a result, 219 mg of the target product is obtained (yield 50% (conversion 92%)). Furthermore, 1: 1 adduct 6′-octylamino- [2,2 ′] bipyridinyl-5-carboxylic acid ethyl ester (xiii) with amine is obtained as a by-product in a yield of 140 mg (yield 26%). The structure and purity of the product were confirmed by NMR.
1H NMR (CDCl3) δ: 9.27 (2H, dd, J = 0.6, 2.2); 8.44 (2H, dd, J = 0.6, 8.2); 8.39 (2H, dd, J = 2.2, 8.2); 8.10 (2H, d, J = 7.2); 7.71 (2H, t, J = 8); 7.28 (2H, d, J = 8.4); 4.44 (4H, q, J = 7.2); 4.39 (2H, t, J = 8.0) 1.79 (2H, quint, J = 8.0); 1.43 (6H, t, J = 7.2); 1.93-1.25 (10H, multi); 0.86 (3H, t, J = 6.8)
6'-octylamino- [2,2 '] bipyridinyl-5-carboxylic acid ethyl ester (xiii)
1H NMR (CDCl3): δ 9.24 (1H, dd, J = 0.8, 2.0); 8.41 (1H, dd, J = 0.8, 8.0); 8.36 (1H, dd, J = 2.0, 8.4); 7.74 (1H , d, J = 7.2); 7.58 (1H, t, J = 8.0); 6.47 (1H, d, J = 8.0); 4.60 (1H, t,); 4.43 (2H, q, J = 7.2); 3.36 (2H, dt, J = 6.0, 6.8); 1.67 (2H, quint, J = 7.2); 1.43 (3H, t, J = 7.2); 1.38-1.24 (10H, multi); 0.89 (3H, t, J = 6.8)

前記の副生成物6´−オクチルアミノ−[2,2´]ビピリジニル−5−カルボン酸エチルエステル(xiii)と6´−ブロモ−[2,2´]ビピリジニル−5−カルボン酸エチルエステル(xi)からも同様な反応条件で目的物であるビス−(5´−エトキシカルボニル−[2,2´]ビピリジニル−6−イル)−オクチル−アミン(xii)が得られる。すなわち、6´−オクチルアミノ−[2,2´]ビピリジニル−5−カルボン酸エチルエステル100mg(0.282mmol)(xiii)と6´−ブロモ−[2,2´]ビピリジニル−5−カルボン酸エチルエステル(xi)82.0mg(0.268mmol)を酢酸パラジウム2.40mg(0.0107mmol)、トリフェニルホスフィン5.61mg(0.0214mmol)、炭酸セシウム100mg(0.307mmol)の存在下トルエン中で反応させると目的物が136mg(0.234mmol)得られた(収率87%)。   By-products 6′-octylamino- [2,2 ′] bipyridinyl-5-carboxylic acid ethyl ester (xiii) and 6′-bromo- [2,2 ′] bipyridinyl-5-carboxylic acid ethyl ester (xi ), Bis- (5′-ethoxycarbonyl- [2,2 ′] bipyridinyl-6-yl) -octyl-amine (xii), which is the target product, is obtained under similar reaction conditions. That is, 6'-octylamino- [2,2 '] bipyridinyl-5-carboxylic acid ethyl ester 100 mg (0.282 mmol) (xiii) and 6'-bromo- [2,2'] bipyridinyl-5-carboxylic acid ethyl Ester (xi) 82.0 mg (0.268 mmol) in toluene in the presence of palladium acetate 2.40 mg (0.0107 mmol), triphenylphosphine 5.61 mg (0.0214 mmol), cesium carbonate 100 mg (0.307 mmol) The reaction yielded 136 mg (0.234 mmol) of the desired product (yield 87%).

(4)ビス−(5´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン(xiv)の合成
窒素雰囲気下、ビス−(5´−エトキシカルボニル−[2,2´]ビピリジニル−6−イル)−オクチル−アミン(xii)213mg(0.366mmol)をエチルアルコールと水の容積比4:1の混合溶媒40mlに溶解させる。これに水酸化リチウム一水和物33.8mg(0.805mmol)を加えた後、一昼夜攪拌還流する。反応混合物を冷却後、エチルアルコールを溜去する。残渣に氷水を加えた後(約100ml)、1規定塩酸にて溶液を酸性(pH3)にする。精製した沈殿を濾過、水洗の後乾燥させる。目的物が193mg得られる(収率100%)。
(4) Synthesis of bis- (5′-carboxy- [2,2 ′] bipyridinyl-6-yl) -octyl-amine (xiv) under nitrogen atmosphere, bis- (5′-ethoxycarbonyl- [2,2 ′) 213 mg (0.366 mmol) of bipyridinyl-6-yl) -octyl-amine (xii) are dissolved in 40 ml of a mixed solvent of ethyl alcohol and water in a volume ratio of 4: 1. To this was added 33.8 mg (0.805 mmol) of lithium hydroxide monohydrate, and the mixture was stirred and refluxed overnight. After cooling the reaction mixture, the ethyl alcohol is distilled off. Ice water is added to the residue (about 100 ml), and the solution is acidified (pH 3) with 1N hydrochloric acid. The purified precipitate is filtered, washed with water and dried. 193 mg of the desired product is obtained (yield 100%).

(5)(ビス−(5´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン)ジクロロルテニウム(II)(xv)の合成
アルゴン雰囲気下、ジクロロ(p−クメン)ルテニウム(II)2量体30.6mg(0.05mmol)を脱水したジグライム10mlに溶解させる。これにビス−(5´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン(xiv)52.5mg(0.100mmol)のジグライム溶液5mlをゆっくり加える。反応溶液は150分攪拌還流する。冷却後析出した生成物を濾過し、水、エーテルで洗浄後乾燥させる。目的物の緑色の錯体が61.8mg得られる。構造は質量分析で確認した。
MS(ESIMS): m/z: 348.4(M-2H)2-, 696.0(M-H)-; MW: 697 calcd. for C30H31N5O4RuCl2
(5) Synthesis of (bis- (5′-carboxy- [2,2 ′] bipyridinyl-6-yl) -octyl-amine) dichlororuthenium (II) (xv) dichloro (p-cumene) ruthenium under argon atmosphere (II) 30.6 mg (0.05 mmol) of the dimer is dissolved in 10 ml of dehydrated diglyme. To this is slowly added 5 ml of a diglyme solution of 52.5 mg (0.100 mmol) of bis- (5′-carboxy- [2,2 ′] bipyridinyl-6-yl) -octyl-amine (xiv). The reaction solution is stirred at reflux for 150 minutes. The product precipitated after cooling is filtered, washed with water and ether and dried. 61.8 mg of the target green complex is obtained. The structure was confirmed by mass spectrometry.
MS (ESIMS): m / z: 348.4 (M-2H) 2- , 696.0 (MH) - ; MW: 697 calcd.for C 30 H 31 N 5 O 4 RuCl 2

(6)(ビス−(5´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン)ジチオシアナートルテニウム(II)(III)の合成
アルゴン雰囲気下、(ビス−(5´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン)ジクロロルテニウム(II)(xv)61.8mg(0.0887mmol)を脱水したジメチルホルムアミド15mlに溶解させる。これにアンモニウムチオシアナート404mg(5.32mmol)の水溶液5mlをゆっくり加える。反応溶液は4時間攪拌還流する。冷却後ジメチルホルムアミドを除去、約10mlの水を加える。不溶物を濾過、水、エーテルで洗浄後乾燥させる。目的物の青色の錯体が57.0mg得られる。構造は質量分析で確認した。
MS(ESIMS): m/z: 369.9(M-2H)2-, 742.0(M-H)-; MW: 743 calcd. for C32H31N7O4RuS2
なお、(ビス−(5´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン)ジチオシアナートルテニウム(II)がトランス型構造であることは、ルテニウム周りの基本骨格構造が本錯体と全く同一であるビス(1,10−フェナントロリン−2−イル)アミンのルテニウム錯体の結晶構造解析の結果(Inorg. Chem. 2002, 41,
5937-5939)により確認されている。
(6) Synthesis of (bis- (5′-carboxy- [2,2 ′] bipyridinyl-6-yl) -octyl-amine) dithiocyanate toruthenium (II) (III) under an argon atmosphere, (bis- (5 61.8 mg (0.0887 mmol) of '-carboxy- [2,2'] bipyridinyl-6-yl) -octyl-amine) dichlororuthenium (II) (xv) are dissolved in 15 ml of dehydrated dimethylformamide. To this is slowly added 5 ml of an aqueous solution of 404 mg (5.32 mmol) of ammonium thiocyanate. The reaction solution is stirred and refluxed for 4 hours. After cooling, dimethylformamide is removed and about 10 ml of water is added. The insoluble material is filtered, washed with water and ether and then dried. 57.0 mg of the desired blue complex is obtained. The structure was confirmed by mass spectrometry.
MS (ESIMS): m / z: 369.9 (M-2H) 2- , 742.0 (MH) - ; MW: 743 calcd. For C 32 H 31 N 7 O 4 RuS 2
In addition, (bis- (5′-carboxy- [2,2 ′] bipyridinyl-6-yl) -octyl-amine) dithiocyanate toruthenium (II) has a trans structure, which is a basic skeleton structure around ruthenium. Of the crystal structure of a ruthenium complex of bis (1,10-phenanthrolin-2-yl) amine, which is exactly the same as the complex (Inorg. Chem. 2002, 41,
5937-5939).

太陽電池の調製
(II)の場合と同じくルテニウム錯体(ビス−(5´−カルボキシ−[2,2´]ビピリジニル−6−イル)−オクチル−アミン)ジチオシアナートルテニウム(II)(III)の0.2mMメチルアルコール溶液を調製し、これに導電性ガラス表面に作成した膜厚30μmの酸化チタン多孔質膜を20時間浸漬させることにより可視光応答性の電極を作製する。導電性ガラス表面に白金を蒸着した対電極との間に電解質溶液をはさみ太陽電池を構成する。電解質溶液としてはヨウ化リチウム(0.1M)、ヨウ素(0.05M)、シ゛メチルイミダゾリウムアイオダイド(0.6M)、4−tert−ブチルピリジン(0.5M)を含むアセトニトリル溶液を用いた。その結果、AM1,5の擬似太陽光照射下において、短絡電流8.9mA/cm、開放電圧0.56V、FF72%、エネルギー変換効率η3.6%の光電流を取り出すことが出来た。
Preparation of solar cell of ruthenium complex (bis- (5'-carboxy- [2,2 '] bipyridinyl-6-yl) -octyl-amine) dithiocyanate toruthenium (II) (III) as in (II) A 0.2 mM methyl alcohol solution is prepared, and a titanium oxide porous film having a film thickness of 30 μm prepared on the surface of the conductive glass is immersed in the solution for 20 hours to produce a visible light responsive electrode. An electrolyte solution is sandwiched between a counter electrode in which platinum is vapor-deposited on the surface of conductive glass to constitute a solar cell. As the electrolyte solution, an acetonitrile solution containing lithium iodide (0.1 M), iodine (0.05 M), dimethyl imidazolium iodide (0.6 M), and 4-tert-butylpyridine (0.5 M) was used. As a result, a photocurrent having a short-circuit current of 8.9 mA / cm 2 , an open-circuit voltage of 0.56 V, an FF of 72%, and an energy conversion efficiency of η3.6% could be extracted under irradiation of simulated sunlight of AM1 and 5.

以上の結果から明らかなように、本発明に係るルテニウム錯体は、前記特開2003−3083号公報で実質的に開示されているものに比し、その色素増感作用が著しく優れており、これを色素増感剤とした太陽電池はエネルギー変換効率が飛躍的に増大することが判る。
As is clear from the above results, the ruthenium complex according to the present invention has a dye sensitizing action significantly superior to that substantially disclosed in JP-A-2003-3083. It can be seen that the energy conversion efficiency of a solar cell using a dye sensitizer increases dramatically.

Claims (3)

一般式(I)で示されるルテニウム錯体。
Figure 0004604183
(式中、R、R、Rは水素原子またはCOOMであり、そのうち少なくとも一つはCOOMである。Mは水素原子また第4級アンモニウムカチオンを、Rは水素原子あるいは置換基を有してもよいアリール基、置換基を有してもよいアルキル基、パーフルオロアルキル基である。)
A ruthenium complex represented by the general formula (I).
Figure 0004604183
(Wherein R 1 , R 2 and R 3 are a hydrogen atom or COOM, at least one of which is COOM. M is a hydrogen atom or a quaternary ammonium cation, and R 4 is a hydrogen atom or a substituent. It may have an aryl group, an optionally substituted alkyl group, a path perfluoroalkyl group.)
請求項1に記載のルテニウム錯体を含む金属酸化物半導体電極。   A metal oxide semiconductor electrode comprising the ruthenium complex according to claim 1. 半導体電極とその対極、およびそれらの電極に接触するレドックス電解質とを備えた色素増感型太陽電池であって、半導体電極が請求項2に記載の金属酸化物半導体電極であることを特徴とする色素増感型太陽電池。   A dye-sensitized solar cell comprising a semiconductor electrode, a counter electrode thereof, and a redox electrolyte in contact with the electrode, wherein the semiconductor electrode is the metal oxide semiconductor electrode according to claim 2. Dye-sensitized solar cell.
JP2005173193A 2005-06-14 2005-06-14 Ruthenium complex, dye-sensitized metal oxide semiconductor electrode containing the complex, and solar cell including the semiconductor electrode Expired - Fee Related JP4604183B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173193A JP4604183B2 (en) 2005-06-14 2005-06-14 Ruthenium complex, dye-sensitized metal oxide semiconductor electrode containing the complex, and solar cell including the semiconductor electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173193A JP4604183B2 (en) 2005-06-14 2005-06-14 Ruthenium complex, dye-sensitized metal oxide semiconductor electrode containing the complex, and solar cell including the semiconductor electrode

Publications (2)

Publication Number Publication Date
JP2006347912A JP2006347912A (en) 2006-12-28
JP4604183B2 true JP4604183B2 (en) 2010-12-22

Family

ID=37644117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173193A Expired - Fee Related JP4604183B2 (en) 2005-06-14 2005-06-14 Ruthenium complex, dye-sensitized metal oxide semiconductor electrode containing the complex, and solar cell including the semiconductor electrode

Country Status (1)

Country Link
JP (1) JP4604183B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5181550B2 (en) * 2007-07-04 2013-04-10 コニカミノルタビジネステクノロジーズ株式会社 Photoelectric conversion element
JP5211679B2 (en) * 2007-12-26 2013-06-12 コニカミノルタビジネステクノロジーズ株式会社 Photoelectric conversion element
KR101751754B1 (en) 2010-12-17 2017-07-11 한국전자통신연구원 Organometallic compound, method of preparing the same, and dye-sensitized solar cell including the same
CN103897428B (en) * 2012-12-28 2016-08-03 中国科学院上海硅酸盐研究所 The synthetic method of bipyridyl ruthenium class complex

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003083A (en) * 2001-06-20 2003-01-08 Toyota Central Res & Dev Lab Inc Metal complex dye, photoelectrode and dye sensitizing solar battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003083A (en) * 2001-06-20 2003-01-08 Toyota Central Res & Dev Lab Inc Metal complex dye, photoelectrode and dye sensitizing solar battery

Also Published As

Publication number Publication date
JP2006347912A (en) 2006-12-28

Similar Documents

Publication Publication Date Title
JP4576494B2 (en) Photosensitizing dye
JP5633370B2 (en) Binuclear ruthenium complex dye, ruthenium-osmium complex dye, photoelectric conversion element having the complex dye, and photochemical battery
US8889872B2 (en) Bisazole-based compound and group VIII transition metal complex
US20130018189A1 (en) 2-phenyl-6-azolylpyridine-based ligand and group viii transition metal complex
US20120204959A1 (en) Photoelectric conversion element comprising binuclear ruthenium complex dye having substituted bipyridyl group, and photochemical cell
Abdellah et al. The molecular engineering, synthesis and photovoltaic studies of a novel highly efficient Ru (ii) complex incorporating a bulky TPA ancillary ligand for DSSCs: donor versus π-spacer effects
JP4604183B2 (en) Ruthenium complex, dye-sensitized metal oxide semiconductor electrode containing the complex, and solar cell including the semiconductor electrode
JP5293190B2 (en) Method for producing binuclear metal complex
JP5099748B2 (en) Dye and dye-sensitized solar cell using the same
JP5428312B2 (en) Photoelectric conversion element and photochemical battery
JP5776099B2 (en) Transition metal complex, photosensitizing dye, oxide semiconductor electrode containing the dye, and dye-sensitized solar cell
JP5061626B2 (en) Method for producing binuclear metal complex
JPWO2009102068A1 (en) Binuclear ruthenium complex dye solution, photoelectric conversion element using photosensitized semiconductor fine particles obtained using the complex dye solution, and photochemical battery using the same
JP2011195745A (en) Dye and dye-sensitized solar cell using the same
JP5493857B2 (en) Dinuclear ruthenium complex dye, dinuclear ruthenium complex dye acidic aqueous solution and method for producing the same
JP2009129652A (en) Photoelectric conversion element and photochemical battery
JPWO2016171153A1 (en) Dye-sensitized solar cell and electrolyte for dye-sensitized solar cell
JP5446207B2 (en) Photoelectric conversion element and photochemical battery
JP5040150B2 (en) Metal complex raw material containing quinolinolato ligand and method for producing the same
JP5239269B2 (en) Dinuclear ruthenium complex dye and method for producing the same
KR100759947B1 (en) Novel Dithiafuvalenes compounds, methods of preparing the compounds, and dye-sensitized solar cells using dyes comprising the compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees