WO2007046352A1 - 有機遷移金属錯体化合物の製造方法、その方法で製造されるメタセシス触媒、それによる開環メタセシス重合体および重合体の製造方法 - Google Patents

有機遷移金属錯体化合物の製造方法、その方法で製造されるメタセシス触媒、それによる開環メタセシス重合体および重合体の製造方法 Download PDF

Info

Publication number
WO2007046352A1
WO2007046352A1 PCT/JP2006/320613 JP2006320613W WO2007046352A1 WO 2007046352 A1 WO2007046352 A1 WO 2007046352A1 JP 2006320613 W JP2006320613 W JP 2006320613W WO 2007046352 A1 WO2007046352 A1 WO 2007046352A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
transition metal
metal complex
complex compound
organic transition
Prior art date
Application number
PCT/JP2006/320613
Other languages
English (en)
French (fr)
Inventor
Takashi Ochiai
Yuichi Okawa
Tadahiro Sunaga
Original Assignee
Mitsui Chemicals, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals, Inc. filed Critical Mitsui Chemicals, Inc.
Priority to CN2006800386903A priority Critical patent/CN101291944B/zh
Priority to US12/090,830 priority patent/US8143429B2/en
Priority to JP2007540971A priority patent/JP4944787B2/ja
Priority to EP06811868.6A priority patent/EP1950216B1/en
Publication of WO2007046352A1 publication Critical patent/WO2007046352A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F11/00Compounds containing elements of Groups 6 or 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/002Osmium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/69Chromium, molybdenum, tungsten or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/54Metathesis reactions, e.g. olefin metathesis
    • B01J2231/543Metathesis reactions, e.g. olefin metathesis alkene metathesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/50Complexes comprising metals of Group V (VA or VB) as the central metal
    • B01J2531/56Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/50Complexes comprising metals of Group V (VA or VB) as the central metal
    • B01J2531/58Tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/64Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/66Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/70Complexes comprising metals of Group VII (VIIB) as the central metal
    • B01J2531/74Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/825Osmium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/20Non-coordinating groups comprising halogens
    • B01J2540/22Non-coordinating groups comprising halogens comprising fluorine, e.g. trifluoroacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Definitions

  • the present invention relates to a method for producing an organic transition metal complex compound, a metathesis catalyst produced by the method, a ring-opening metathesis polymer obtained by polymerization using the metathesis catalyst, and a method for producing the polymer .
  • an organic transition metal complex compound is easily affected by oxygen, water, and a compound having a proton donating property.
  • a compound having a proton donating property when it comes into contact with oxygen, water, or a compound having a proton-donating property, it decomposes by oxidative decomposition, hydrolysis or elimination decomposition.
  • an organic transition metal complex compound having a strong electron donating atomic group such as cyclopentagel, alkoxy, carboxyl, etc.
  • a compound having a proton donating property has no proton donating property. It is often converted to an alkyl alkali metal salt and used as a reaction reagent for atomic groups with a stronger electron donating property.
  • the organic transition metal complex compound when an organic transition metal complex compound is produced by this method, due to the strong cationic nature of the alkali metal, the organic transition metal complex compound can be decomposed without reacting with the desired site of the organic transition metal complex compound, or a side reaction can occur. Or the desired organic transition metal complex compound may not be obtained! / ⁇ .
  • the reactivity of ligand exchange differs depending on the type of alkali metal ion and counter-on atom group, which limits the organic transition metal complex compounds that can be produced. For these reasons, decomposition reactions and side reactions do not occur. Improvement of the manufacturing method of an organic transition metal complex compound is desired.
  • organic transition metal metallocene complex compounds having hydrocarbon ligands such as cyclopentagel are used in a conventional manner by Jordan et al.
  • organometallic compounds such as butyllithium and alkali metal hydrides.
  • a method of synthesizing an organic transition metal meta-octene complex compound without using an alkali metal salt by contacting a specific proton-donating cyclopentagen and a transition metal dimethylamide compound without performing a reaction has been reported. .
  • Non-patent Documents 2, 3 and 4 are organic electron transition metal alkylidene complex compounds that have stronger electron donating properties such as alkoxy and atomic groups, and compounds that have proton donating properties such as alcohol and sodium, lithium, force lithium or An organic transition metal complex having an alkylalkali metal salt obtained by contact with such a metal hydride compound or an organic metal compound such as butyl lithium as an electron-attracting atomic group halogen or triflate as a ligand.
  • an excess of an alkyl alkali metal salt that is a reaction reagent remains in the produced metathesis catalyst, and when a metathesis reaction is performed using a metathesis catalyst in which these by-products or reaction reagents remain. Due to the strong ionic nature of by-products and reaction reagents, the by-products and reaction reagents act as polymerization initiators for anion polymerization to polymerize the reaction substrate, or cause ligand exchange reactions with active species in the metathesis reaction. Metathesis catalyst may be altered or decomposed. In addition, if metal remains in a product produced by a metathesis reaction, the physical properties and color of the product may be adversely affected.
  • the unsaturated bond formed in the main chain after polymerization is generally converted to a saturated bond by a hydrogenation reaction.
  • the product contains an alkali metal salt derived from a metathesis catalyst synthesis reaction, that is, a by-product or a reaction reagent
  • the by-product or the reaction reagent reacts with the hydrogenation reaction catalyst to cause alteration or decomposition. May interfere with normal hydrogenation reaction.
  • the conventional methods for synthesizing metathesis catalysts have high ionicity and various problems due to the use of alkali metals, and development of methods for producing metathesis catalysts without using alkali metals is desired. .
  • Patent Document 1 International Publication No. 95Z32979 Pamphlet
  • Patent Document 2 US Pat. No. 5,597,935
  • Non-Patent Document 1 Gary M. Diamond and 1 other, "Synthesis of Group 4 Metal rac- (EBI) M (NR 2) 2 Complexes by Amine Elimination. Scope and Limitations", Organometallics, 15, 4030-4037 (1996)
  • Non-Patent Document 2 Richard R. Schrock, “Living Ring-Opening Metathesis Polymerization Catalyzed by Well-Characterized Transition-Metal Alkylidene Complexes”, Acc. Chem. Res., 23, 158 (1990)
  • Non-Patent Document 3 R.R.Schrock and 13 others, ⁇ Further Studies of Imido Alkylidene Complex es of Tungsten, Well-Characterized Olefin Metathesis Catalysts with ControllableJ, Organometallics ⁇ 9, 2262 (1990)
  • Non-Patent Document 4 Richard R. Schrock et al., "Synthesis of Molybdenum Imido Alkyiden e Complexes and Some Reactions Involving Acyclic 01efins", J. Am. And hem. Soc., 112, 3875 (1990)
  • the present invention provides an industrially or economically advantageous organic transition metal complex compound having an electron-donating atomic group in the presence of a basic compound in which a compound having proton-donating properties is not converted to a metal salt.
  • a production method for synthesis, a metathesis catalyst produced by the method, a ring-opening metathesis polymer obtained by polymerization using the metathesis catalyst, and a method for producing the polymer are provided.
  • the present inventor arbitrarily selected an organic transition metal complex compound having an arbitrary electron-withdrawing atomic group in the presence of an arbitrary basic compound.
  • the electron-withdrawing atomic group in the organic transition metal complex compound having an arbitrary electron-withdrawing atomic group is derived from the compound having an arbitrary proton-donating property.
  • Electron-withdrawing atoms with strong electron donating properties A method for producing a novel organic transition metal complex compound to be converted into a group, a metathesis catalyst having a reduced alkali metal content obtained by the method, and further polymerizing cyclic olefins using the metathesis catalyst.
  • the present inventors have found a ring-opening metathesis polymer and a method for producing the polymer, thereby completing the present invention.
  • the present invention provides:
  • a metathesis catalyst represented by the following general formula (1) obtained by synthesis by the method for producing an organic transition metal complex compound according to any one of the above;
  • R 1 is selected from alkyl, aryl, substituted aryl force.
  • R 2 and R 3 are each independently hydrogen, alkyl, aryl, substituted aryl, alkylsilyl, alkyl- Luka is also selected and may be the same or different
  • R 4 is selected from alkyl, halogenated alkyl, aryl, substituted aryl force, N is a nitrogen atom, Q is an oxygen or sulfur atom.
  • E is a coordination molecule and is selected from ether, alkylphosphine, aryl phosphine, alkoxyphosphine, pyridine, alkylamine, and alkylideneamine.
  • M is a transition metal atom selected from Groups 3 to 12 of the periodic table.
  • m is an integer of 1 to 3, and when m is 2 or 3, R 4 may be bonded to each other.
  • N is an integer from 0 to 2.
  • the transition metal atom M selected from Group 3 to Group 12 of the periodic table is tantalum, vanadium, molybdenum, tandastene, rhenium, ruthenium and One kind of group power consisting of osmium
  • M is 1 or 2, and n is 0 or 1,
  • a metathesis catalyst represented by the following general formula (1) and having an alkali metal content of 10 ppm or less;
  • R 1 is selected from alkyl, aryl, substituted aryl force.
  • R 2 and R 3 are each independently hydrogen, alkyl, aryl, substituted aryl, alkylsilyl.
  • Alkelluka are also selected, which may be the same or different R 4 is alkyl, alkyl halide, aryl, substituted aryl force N is a nitrogen atom, Q is oxygen or sulfur
  • E is a coordination molecule, selected from ether, alkylphosphine, allylphosphine, alkoxyphosphine, pyridine, alkylamine, alkylideneamine M is selected from groups 3 to 12 of the periodic table M is an integer from 1 to 3, and when m is 2 or 3, R 4 is bonded to each other Also good.
  • N is an integer from 0 to 2.
  • a method for producing a ring-opening metathesis polymer comprising a step of superimposing a cyclic olefin in the presence of the metathesis catalyst according to any one of [4] to [7].
  • the organic transition metal complex compound can be produced industrially and economically efficiently.
  • the ring-opening metathesis polymer polymerized using the catalyst is: The hydrogenation reaction can be performed without removing the alkali metal beforehand.
  • the ring-opening metathesis polymer or the hydrogenated product thereof can be suitably used for applications such as electronic materials having severe restrictions on the alkali metal content, and is extremely valuable industrially.
  • FIG. 1 is a diagram showing a 1 H-NMR spectrum of an organic transition metal complex compound obtained in an example.
  • the method for producing an organic transition metal complex compound according to the present invention comprises:
  • each component used in the present invention will be described using specific examples, but the present invention is not limited to the following exemplified compounds.
  • an exemplary compound may be used independently and may be used in multiple combination.
  • Me represents a methyl group
  • 3 ⁇ 4 ⁇ represents a tert-butyl group
  • Ph represents a phenyl group
  • Ad represents an adamantyl group.
  • PMe represents trimethylphosphine
  • P (OMe) represents trimethoxyphosphine.
  • 1,2-dimethoxyethane 1,2-dimethoxyethane, thf represents tetrahydrofuran.
  • the basic compound is a molecule or proton acceptor having a coordinated unshared electron pair, for example, a basic organic compound.
  • the basic compound does not contain an alkali metal!
  • organic basic compound examples include primary amines such as ammonia and methylamine; secondary amines such as diphenylamine;
  • Tertiary amines such as triethylamine, ethyldiisopropylamine.
  • 1,4-diazabicyclo [2, 2, 2] nitrogen-containing heterocycles such as octane, pyridine and lutidine; nitrogen-containing basic organic compounds such as;
  • Examples thereof include phosphorus-containing basic organic compounds such as phosphine.
  • triethylamine, ethyldiisopropylamine, pyridine, lutidine, and 1,4-diazabicyclo [2,2,2] octane are particularly preferable. Further, two or more of these basic compounds may be used in an arbitrary ratio.
  • the electron withdrawing property means strong electronegativity.
  • electron-withdrawing atomic groups Is a strong electronegative group, halogen, halogen-containing alkyl or aryl sulfonate, alkyl or aryl sulfonate, halogen-containing phosphate, halogen-containing alkyl or aryl carboxylate, and Examples include alkyl or aryl carboxylate. More specific examples of electron-withdrawing atomic groups include fluorine, chlorine, bromine, iodine, trifluoromethanesulfonate, ie triflate, toluenesulfonate, hexafluorophosphate, and trifluoroacetate. Of these, chlorine, trifluoromethanesulfonate, and toluenesulfonate are particularly preferable. Two or more of these may be used in combination.
  • the organic transition metal complex compound having an electron-withdrawing atomic group has (A) an electron-withdrawing atomic group in the organic transition metal complex compound having an electron-withdrawing atomic group.
  • an organic transition metal complex compound having an electron-withdrawing atomic group can be a single atom or many atoms that may have any ligand in addition to the electron-withdrawing atomic group. Examples include ligands containing atomic groups that are neutral, cationic, or anionic.
  • the organic transition metal complex compound having an electron-withdrawing atomic group is preferably an organic transition metal complex compound having metal alkylidene or metal alkylidine or a precursor thereof.
  • An organic transition metal complex compound having a metal alkylidene or a metal alkylidin is an organic transition metal complex compound having an electron-attracting atomic group between a transition center metal atom and a carbon at the ⁇ -position.
  • a precursor of an organic transition metal complex-containing compound having a metal alkylidene or a metal alkylidene is itself a divalent or 3-valent compound between the transition center metal atom and the ⁇ -position carbon.
  • the metal alkylidene is subjected to a treatment such as alkyl ⁇ as a catalyst, followed by heating or contact with an organometallic reagent.
  • N is an organometallic complex compound capable of forming metal alkylidyne.
  • the compound (B) having a proton donating property may be any compound that can donate a proton, but (A) an organic transition metal complex having an electron-withdrawing atomic group.
  • a compound that can be substituted with an atomic group having a stronger electron donating property derived from a compound having a proton donating property is (B) A compound that can be substituted with an atomic group having a stronger electron donating property derived from a compound having a proton donating property.
  • (B) the electron-donating property of the electron-withdrawing atomic group derived from the compound having a proton-donating property is as follows: It is stronger than the electron donating property of the electron-withdrawing atomic group in the organic transition metal compound having a group.
  • (B) the compound having a proton donating property may be the same compound as the basic compound or may be a different compound.
  • (B) Specific examples of compounds having a proton donating property include tert butyl alcohol (2-methylolene 2-prono-norole), 1, 1, 1, 3, 3, 3 Propanol, perfluoro-tert butyl alcohol, phenol, 2,6 diisopropyl phenol, 2,6 diclonal phenol, 2, 2 'biphenol, 3, 3' di tert-butyl-5,5 ', 6,6'-tetramethyl-2 2 'dihydroxybiphenyl, etc.
  • Primary amines such as dimethylamine, and the like.
  • the compound having a proton donating property is at least one selected from alcohol and thiol power.
  • the alcohol may contain an alcoholic hydroxyl group or a phenolic hydroxyl group.
  • the compound having proton-donating property is at least one or more selected from alcohol and thiol force
  • (A) the organic transition metal complex compound having an electron-withdrawing atomic group is combined.
  • An organic transition metal complex-containing compound having metal alkylidene or metal alkylidine may be used.
  • the compound having a proton donating property may be one proton or a polyfunctional compound having two or more protons, and these compounds may contain both halogen, cyanide, cyan ether, ester and the like. You may contain. These compounds may be used alone or in combination of two or more.
  • the (C) organic transition metal complex compound in the present invention is a periodic table (long-period type) Group 3?
  • an organic transition metal complex compound having a transition metal atom up to Group 12 as a central metal preferably an organic transition metal complex compound consisting of a transition metal atom from Group 4 to Group 9.
  • transition metal atoms include titanium, vanadium, niobium, tantalum, molybdenum, tungsten, rhenium, ruthenium, osmium, rhodium, and the like, and preferably tantalum, vanadium, molybdenum, tungsten, Rhenium, ruthenium and osmium are preferred, and molybdenum or tandastene is more preferred.
  • organic transition metal complex compound for example, an alkylidene complex compound, an alkylidine complex compound, a Fischer-type carbene complex compound, a meta-cene complex compound, and a post-meta complex
  • alkylidene complex compound for example, an alkylidene complex compound, an alkylidine complex compound, a Fischer-type carbene complex compound, a meta-cene complex compound, and a post-meta complex
  • examples include cene complex compounds.
  • the organic transition metal complex compound having an electron-withdrawing atomic group is an organic transition metal complex compound having metal alkylidene or metal alkylidin
  • (C) organic The transition metal complex compound can be suitably used as a catalyst or a precursor of a catalyst such as metathesis polymerization, ring-opening metathesis reaction, ring-closing metathesis reaction or cross-metathesis reaction.
  • each component when (B) a compound having proton donating property is brought into contact with (A) an organic transition metal complex compound having an electron-withdrawing atomic group For example, the amount is as follows.
  • the amount of the (B) proton-donating compound used relative to 1 mol of the organic transition metal complex compound having an electron-withdrawing atomic group is, for example, 0.1 mol or more, preferably 0.2 mol or more. To do.
  • the amount of the (B) proton-donating compound used per 1 mol of the (A) organic transition metal complex compound having an electron-withdrawing atomic group is, for example, 100 mol or less, preferably 10 mol or less. To do.
  • the amount of the basic compound used relative to 1 mol of the compound (B) having a proton donating property is, for example, 0.1 mol or more, preferably 0.2 mol or more.
  • the amount of the basic compound used per 1 mol of the compound (B) having a proton donating property is, for example, 100 mol or less, preferably 10 mol or less. However, this does not apply when the basic compound also serves as a solvent.
  • the contact form of (A) the organic transition metal complex compound having an electron-withdrawing atomic group and (B) the compound having a proton donating property Suspension contact, homogeneous solution contact in these media, contact in the gas phase, etc. may be used.
  • hydrocarbons such as pentane, hexane, toluene, and xylene
  • Ethers such as jetyl ether, tetrahydrofuran, dixan, dimethoxyethane; halogenated hydrocarbons such as dichloromethane, dichloroethane, chloroform, chlorobenzene; and
  • Examples thereof include basic compounds such as pyridine and piperidine. These can be used alone or in combination of two or more.
  • the temperature at which these are brought into contact is, for example, 100 ° C or higher, preferably 80 ° C or higher.
  • the contact temperature is, for example, 200 ° C or lower, preferably 100 ° C or lower.
  • the contact may be performed in an atmosphere of an inert gas such as nitrogen or argon.
  • the pressure for contact is, for example, normal pressure or higher.
  • the contact pressure is, for example, lOMPa or less
  • the contact time is, for example, 0.1 hour or longer, preferably 0.5 hour or longer, more preferably 1 hour or longer.
  • the contact time is, for example, 1 month or less, preferably 200 hours or less, more preferably 50 hours or less.
  • the (C) organic transition metal complex compound obtained by the production method of the present invention may be isolated or separated and purified as necessary. This purification involves general distillation, extraction and separation.
  • 10-6 ⁇ is about LOMPa, it is possible to select conditions suitable for each method.
  • the production method of the present invention is suitably used, for example, as a method for producing a metathesis catalyst represented by the following general formula (1).
  • a metathesis catalyst represented by the following general formula (1) In the present invention, (C) an organic transition metal complex compound force metathesis catalyst may be used.
  • R is selected from alkyl, aryl, and substituted aryl power, and particularly, alkyl, aryl, and substituted aryl having 4 to 30 carbon atoms, and further having 4 to 20 carbon atoms. preferable.
  • alkyl, aryl, and substituted aryl having 4 to 30 carbon atoms, and further having 4 to 20 carbon atoms.
  • tert-butyl, phenol, 4-tert-butylphenyl, 2,6 dimethylphenyl, 2,6 diisopropylmethyl, 1 naphthyl, 2,6 —diclonal phenyl, 4 fluoro-2,6 dimethylphenol -L, adamantyl, etc. are preferable examples.
  • hydrogen, alkyl, aryl, substituted aryl, alkylsilyl, and alklucar are also selected as R 2 and R 3 , and these are the same.
  • hydrogen, alkyl having 4 to 20 carbon atoms, aryl, substituted aryl, alkylsilyl, and alkyl are preferred, specifically hydrogen, methyl, ethyl, isopropyl.
  • R 4 is also selected from alkyl, halogenated alkyl, aryl, and substituted aryl force, and in particular, an alkyl or halogenated carbon having 4 to 20 carbon atoms.
  • alkyl, aryl, and substituted aryl are preferred: isopropyl, perfluorinated propyl, tert butyl, perfluoro-n-butyl, 1, 1, 1 trifluoro-2-methylinol-2-propinole, 1, 1, 1, 3, 3, 3 Hexa-fanolate 2-propylene, perfluoro-tert-butyl, phenyl, 1-naphthyl, 2,6 diisopropylphenol, 2,6 dimethylphenol, 2,6 dichlorophenol, 2 , 2'-bi-fell etc. are preferred examples.
  • N is a nitrogen atom
  • Q is an oxygen or sulfur atom. is there.
  • E is a coordination molecule in which ether, alkylphosphine, arylphosphine, alkoxyphosphine, pyridine, alkylamine, and alkylideneamine forces are also selected.
  • Specific examples of E include dimethyl ether, tetrahydrofuran, trimethylphosphine, triphenylphosphine, trimethoxyphosphine, pyridine, lutidine, triethylamine, propylidamine, and the like.
  • M is a transition metal atom selected from the periodic table (long-period type) Group 3 force from Group 12 and preferably, Group 4 force to Group 9 Transition metal atom.
  • the transition metal atom include titanium, vanadium, niobium, tantalum, molybdenum, tungsten, ruthenium, osmium, and rhodium.
  • Preferred are tantalum, vanadium, molybdenum, tungsten, rhenium, norte Sulfur and osmium, more preferably molybdenum and tungsten.
  • M force is one selected from the group force including tantalum, vanadium, molybdenum, tungsten, rhenium, ruthenium and osmium muc, m may be 1 or 2, and n may be 0 or 1.
  • m is an integer of 1 or more and 3 or less, preferably 1 or 2.
  • R 4 may be bonded to each other.
  • 3, 3'-di-tert-butyl-1,5,5 ', 6,6'-tetramethyl-1,2,2'-biphenyl and the like are exemplified.
  • N is an integer of 0 or more and 2 or less, preferably 0 or 1.
  • the metathesis catalyst of the general formula (1) is not limited as long as it is a catalyst capable of performing a metathesis reaction and polymerization.
  • R 7 is 3 ⁇ 4 ⁇ , CMe
  • R 8 is 3 ⁇ 4 ⁇ ⁇ CMe CF, CMe (CF), C (CF), CH, 2 ⁇ Bu
  • Alkyl groups such as C H, 2 ⁇ 4, 5—Me C H, 2, 6—CI C H, halides
  • Rukil group, aryl group, R 9 is 3 ⁇ 4 ⁇ ⁇ CMe CF, CMe (CF), C (CF), Ph, 2 ⁇ Bu
  • R 1Q is an alkyl group such as 3 ⁇ 4 ⁇ and adamantyl
  • R 11 is an alkyl group such as H and Me, an alkoxy group such as OMe, or an aryl group such as Ph
  • Py is a pyridine such as pyridine and lutidine.
  • Derivatives or amine derivatives such as triethylamine and propylidamine, Me is a methyl group, 'Pr is an isopropyl group, 3 ⁇ 4 ⁇ is a tert butyl group, OMe is a methoxy group, and Ph is a phenol group.
  • R 8 is 3 ⁇ 4 ⁇ , CMe CF, CM
  • R 9 is ⁇ ⁇ CMe CF, CMe (CF), C (CF), Ph, 2- l BuC H, 2— ⁇ 4
  • R 9 may be bonded to each other.
  • R 1Q is 3 ⁇ 411, an alkyl group such as adamantyl
  • R 11 is an alkyl group such as H or Me
  • an alkoxy group such as OMe
  • an aryl group such as Ph
  • Py is a pyridine derivative such as pyridine or lutidine or triethylamine.
  • amine derivatives such as propylidamine, Me represents a methyl group, 'Pr represents an isopropyl group, 3 ⁇ 4 ⁇ represents a tert-butyl group, OMe represents a methoxy group, and Ph represents a phenyl group.
  • Molybdenum-based alkylidene catalysts such as
  • CH CMePh
  • CH CPh, Ph, SiMe and other alkyl groups, aryl groups, and key residues
  • R 8 is 3 ⁇ 4 ⁇ ⁇ CMe CF, CMe (CF), C (CF), CH, 2- l BuC H, 2— ⁇ —— 4
  • alkyl group, halogenated alkyl group, aryl group, R 1Q is an alkyl group such as 3 ⁇ 4 ⁇ and adamantyl
  • R 11 is an alkyl group such as H and Me
  • an alkoxy group such as OMe
  • Ph Py is a pyridine derivative such as pyridine or lutidine, or an amine derivative such as triethylamine or propylidamine
  • Me is a methyl group
  • ⁇ ⁇ : is an iso-propyl group
  • 3 ⁇ 4 ⁇ is tert-butyl Group
  • OMe represents a methoxy group
  • Ph represents a phenol group.
  • Vanadium alkylidene catalysts such as
  • R 5 and R 6 are alkyl groups such as H, 'Pr, Me, etc.
  • Alkyl groups such as Me CH, halogenated alkyl groups, aryl groups, R 9 is 3 ⁇ 4 ⁇ , CMe C
  • Alkyl group such as alkyl group, halogenated alkyl group, aryl group, R 1Q is alkyl group such as 3 ⁇ 4 ⁇ and adamantyl
  • R 11 is alkyl group such as H and Me
  • alkoxy group such as OMe, or aryl group such as Ph
  • Py Is a pyridine derivative such as pyridine or lutidine
  • an amine derivative such as triethylamine or propylidamine
  • Me is a methyl group
  • ⁇ ⁇ : is an iso-propyl group
  • 3 ⁇ 411 is a tert-butyl group
  • OMe is a methoxy group
  • Ph is Indicates a phenol group.
  • Osmium-based alkylidene catalysts such as
  • Examples of the (C) organic transition metal complex compound include a metathesis catalyst comprising a combination of an organic transition metal complex as a precursor of a metathesis catalyst and a Lewis acid as a promoter.
  • a metathesis catalyst comprising a combination of an organic transition metal complex as a precursor of a metathesis catalyst and a Lewis acid as a promoter.
  • ⁇ ⁇ represents an isopropyl group
  • 3 ⁇ 4 ⁇ represents a tert-butyl group
  • R represents an alkyl group
  • X represents a halogen
  • thf represents tetrahydrofuran.
  • these ring-opening metathesis polymerization catalysts may be used alone or in combination of two or more.
  • an organic transition metal complex compound (C) of the present invention a basic compound and (B) a compound having a proton donating property are used.
  • the electron-withdrawing atomic group of the organic transition metal complex compound having a neutral atomic group can be converted into an atomic group having a stronger electron-donating property.
  • (C) an organic transition metal complex compound can be obtained without using a compound containing an alkali metal. For this reason, the concentration of alkali metal in the (C) organic transition metal complex compound can be reduced.
  • the alkali metal content may be, for example, 10 ppm or less, preferably 5 ppm or less, and more preferably 2 ppm or less.
  • the content of the alkali metal in the metathesis catalyst is, for example, Oppm or more. Further, the content of the alkali metal may be included in a range that does not impair the object of the present invention, which is preferably less, from the viewpoint of more reliably suppressing the occurrence of side reactions due to the influence of the alkali metal. For example, about 0.001 ppm may be contained.
  • the alkali metal in the metathesis catalyst is contained as an alkali metal salt, if the content of the alkali metal is too large, As described above, side reactions with the reaction substrate occur during the metathesis polymerization reaction, resulting in The possibility of affecting the physical properties of the resulting polymer is increased.
  • the alkali metal salt remaining in the polymer reacts with the hydrogenation catalyst to be altered or decomposed to correct. The possibility of inhibiting the normal hydrogenation reaction is increased.
  • the alkali metal means lithium, sodium and potassium, and the content of alkali metal is the total amount of the alkali metal in the metathesis catalyst.
  • the metathesis catalyst represented by the general formula (1) can be obtained without using a compound containing an alkali metal, the alkali metal is substantially excluded except for the unavoidable inclusion in the metathesis catalyst. It is also possible not to be included.
  • the alkali metal concentration in the metathesis catalyst can be set below the detection limit in inductively coupled plasma mass spectrometry (ICP-MS), more specifically below lOppb. As a result, it is possible to more reliably prevent deterioration of the product quality during the metathesis polymerization reaction and subsequent hydrogenation.
  • the ring-opening metathesis polymer is obtained by polymerizing cyclic olefins in the presence of the metathesis catalyst represented by the general formula (1).
  • the method for producing a ring-opening metathesis polymer in the present invention includes a step of polymerizing cyclic olefin in the presence of the metathesis catalyst represented by the general formula (1).
  • the cyclic olefin represented by the following general formula (2) or the following general formula (3) is polymerized using the metathesis catalyst represented by the above general formula (1), and then opened.
  • a ring metathesis polymer can be obtained.
  • R ′′ to R 15 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, halogen, A halogenated alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, an alkoxycarbonyl group having 2 to 20 carbon atoms, A group force consisting of an aryloxycarbonyl group having 6 to 20 carbon atoms, a hydroxy group, a hydroxyalkyl group having 1 to 20 carbon atoms, an acid anhydride, a cyano group, and a silicon-containing group force.
  • R 12 to R 15 may be bonded to each other to form a ring structure
  • X 1 is —O—, —S—, —NR 16 —, —PR 16 —, and —CR 16 From — (R 16 represents hydrogen, an alkyl group having 1 to 20 carbon atoms)
  • p represents 0 or an integer of 1 to 3.
  • R 1 R 1S independently represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, halogen, carbon, Halogenated alkyl group having 1 to 20 atoms, alkoxy group having 1 to 20 carbon atoms, alkoxyalkyl group having 2 to 20 carbon atoms, alkoxycarbonyl group having 2 to 20 carbon atoms, carbon An aryloxycarbonyl group having 6 to 20 atoms A droxy group, a hydroxyalkyl group having 1 to 20 carbon atoms, an acid anhydride, a cyano group, and a silicon-containing basic group are selected groups, and R 17 to R 18 are bonded to each other to form a ring structure May be formed.
  • X 2 is selected from O, 1 S, 1 NR 19 —, —PR 19 —, and —CR 19 — (R 19 represents hydrogen, an alkyl group having 1 to 20 carbon atoms)
  • q represents 0 or an integer of 1 to 3.
  • cyclic olefin represented by the general formula (2) or the general formula (3) to be polymerized using a metathesis catalyst bicycloheptene in which p or q is 0.
  • tetracyclododecene in which p or q is 1 derivatives of hexacycloheptadecene in which p or q is 2
  • R 12 to R 15 in the general formula (2) is like et be the following.
  • R 12 to R 15 examples include hydrogen.
  • alkyl group having 1 to 20 carbon atoms examples include methyl, ethyl, propyl, isopropyl, n-butyl, tert butyl, cyclohexyl, menthyl and the like.
  • aryl groups having 6 to 20 carbon atoms include alkyl-substituted aryls such as phenyl, naphthyl, and methyl.
  • halogen examples include a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom.
  • halogenoalkyl group having 1 to 20 carbon atoms include fluoromethyl, chloromethyl, bromomethyl, difluoromethyl, dichloromethyl, dibromomethyl, trifluoromethyl, trichloromethyl, tribromomethyl and the like.
  • examples of the alkoxy group having 1 to 20 carbon atoms include methoxy, ethoxy, isopropoxy, n-butoxy, tert-butoxy, menthoxy and the like.
  • alkoxyalkyl group having 2 to 20 carbon atoms examples include alkoxy sugars such as methoxymethyl, methoxyethyl, tert-butoxymethyl, tert-butoxystil, methoxymenthol, and methylglucose.
  • alkoxycarbonyl group having 2 to 20 carbon atoms methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, isopropoxycanoleboninole, n-butoxycarbonyl, tert-butoxycarbonyl, 1-methylcyclopentyloxycarboninole, 1- Ethenorecyclopentinoreoxycanoleboninole, 1-etinolenenoreboninoreoxycanole, 1-ethyladamantyloxycarbole, cyclohexyloxycarbonyl, tetrahydropyran 2-yloxycarbonyl, tetrahydrofuran 2-yloxycarbonyl, 1 ethoxyethoxycarbonyl, 1 butoxyethoxycarbonyl, and the like.
  • Examples of the aryloxycarbonyl group having 6 to 20 carbon atoms include phenoxycarbonyl.
  • hydroxyalkyl group having 1 to 20 carbon atoms examples include hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl, hydroxyhexyl, menthol, and hydroxyalkyl groups containing sugars such as glucose.
  • Examples of the acid anhydride include carboxylic anhydride.
  • cyan group examples include a cyan group having 1 to 20 carbon atoms, such as nitrile, cyanomethyl or cyanoethyl.
  • the C-containing group has 3 or more carbon atoms such as trimethylsilyl, triethylsilyl, triprovirsilyl, triisopropylpropylsilyl, tributylsilyl, triisobutylsilyl, tri-tert-butylsilyl, tripentylsilyl, trihexylsilyl, etc. 20 The following trialkylsilyl groups;
  • R 12 to R 15 may be bonded to each other to form a ring structure.
  • a cyclic alkyl structure capable of forming a cyclohexyl ring, a rataton ring examples include a cyclic ester structure that can be formed, a cyclic imide structure that can form a phenylmaleimide ring, and an acid anhydride structure that can form a carboxylic anhydride.
  • X 1 is further selected as 1 O, 1 S, 1 NR 16 —, 1 PR 16 —, and CR 16 — force.
  • R 16 is hydrogen or an alkyl having 1 to 20 carbon atoms.
  • p is 0 or an integer of 1 or more and 3 or less, preferably 0 or 1.
  • X 1 may be the same or different.
  • NR 16 —, -PR 16 and CR 16 — R 16 is hydrogen, methyl having 1 to 20 carbon atoms, ethyl
  • alkyl groups such as n-propyl, isopropyl, n-butyl, tert-butyl, cyclohexyl, or menthyl.
  • R 12 to R 15 an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, halogen, carbon Halogenated alkyl group having 1 to 20 atoms, alkoxy group having 1 to 20 carbon atoms, alkoxyalkyl group having 2 to 20 carbon atoms, alkoxycarbonyl group having 2 to 20 carbon atoms, carbon An aryloxycarbonyl group having 6 to 20 atoms, a hydroxyl group, a hydroxyalkyl group having 1 to 20 carbon atoms, an acid anhydride or a cyano group, a cyclic olefin having a selected substituent, X 1 is — 0—, — S—, -NR 1 From 6 —, —PR 16 —, and —CR 16 — (R 16 is hydrogen, an alkyl having 1 to 20 carbon atoms.
  • a methylene group (one CH—) of the bicycloheptenes is a methylene group (one CH—) of the bicycloheptenes.
  • 7-phosphabicycloheptenes 7-methyl 7-phosphabicycloheptenes and the like can be exemplified in place of tilphospha (1P (methyl) 1).
  • R 12 to R 15 may be bonded to each other to form a ring structure.
  • a cyclic anolenoquine structure that forms a cyclohexenole ring 1, 4, 4a, 5, 6, 7, 8, 8a- old Kutahi draw 1, 4, etc. meth no naphthalene and the like
  • an annular ester le structure capable of forming a Rataton ring for example, 4-Okisa one tricyclo [5.2.2 1.0 2 ' 6 ] —8 Decene-3-one or 4,10 Dioxatritricyclo [5. 2. 1.
  • phenylmaleimide ring is a cyclic imide structure
  • tetracyclododecenes, hexacycloheptadecenes, or octacyclodokocenes can be substituted with, for example, methylene of these X 1 methylmethylene ((one CH (methyl) one)
  • methyltetracyclododecenes, methylhexacyclopentacenes, or methyloctacyclodocosenes methylene instead of oxa (-0-), oxatetracyclododecenes, oxahexacyclo Putadecenes, or oxaoctacyclodocosenes, thiatetracyclododecenes, thiahexacycloheptadecenes, or thiaoctacyclodocosenes, replacing methylene with thia (1 S-)
  • R 17 to R 18 in the general formula (3) include the following.
  • R 17 to R 18 examples include hydrogen.
  • alkyl group having 1 to 20 carbon atoms examples include methyl, ethyl, propyl, isopropyl, n-butyl, tert-butyl, cyclohexyl, menthyl and the like.
  • aryl groups having 6 to 20 carbon atoms include phenyl, naphthyl, and alkyl-substituted aryls such as methyl.
  • halogen examples include a chlorine atom, a bromine atom, an iodine atom, and a fluorine atom.
  • halogenoalkyl group having 1 to 20 carbon atoms include fluoromethylenole, chloromethylenole, bromomethinole, difunoleolomethylenore, dichloromethinole, dibu-mochimochinole, trifluoromethyl, trichloromethyl, tribromomethyl and the like.
  • examples of the alkoxy group having 1 to 20 carbon atoms include methoxy, ethoxy, isopropoxy, n-butoxy, tert-butoxy, and menthoxy.
  • alkoxyalkyl group having 2 to 20 carbon atoms examples include alkoxy sugars such as methoxymethyl, methoxyethyl, tert-butoxymethyl, tert-butoxytyl, methoxymenthol, and methylglucose.
  • alkoxycarbonyl group having 2 to 20 carbon atoms examples include, for example, methoxycarboninole, ethoxycanoleboninole, n-propoxynoleboninole, isopropoxycanoleboninole, n-butoxycarbonyl, tert-butoxycarbonyl, 1-methylcyclopentyl Oxycanoreboninole, 1-etinorecyclopentinorexoxynoreboninole, 1-etinorenoreboninoleo Xyloxycarbonyl, 1-ethyladamantyloxycarbonyl, cyclohexyloxycarbonyl, tetrahydropyran 2-yloxycarbonyl, tetrahydrofuran 2-yloxycarbonyl, 1 ethoxyethoxycarbonyl, 1 butoxyethoxycarbonyl Etc.
  • Examples of the aryloxycarbonyl group having 6 to 20 carbon atoms include phenoxycarbol.
  • hydroxyalkyl group having 1 to 20 carbon atoms examples include hydroxymethyl, hydroxyethyl, hydroxypropyl, hydroxybutyl, hydroxyhexyl, menthol and the like, and hydroxyalkyl groups containing sugars such as glucose.
  • examples of the acid anhydride include carboxylic anhydride.
  • cyan group examples include a cyan group having 1 to 20 carbon atoms, such as nitrile, cyanomethyl, or cyanoethyl.
  • group containing a silicon for example, 3 carbon atoms such as trimethylsilyl, triethylsilyl, tripropylsilyl, triisopropylpropylsilyl, tributylsilyl, triisobutylsilyl, tri-tert-butylsilyl, tripentylsilyl, trihexylsilyl, etc. More than 20 trialkylsilyl groups;
  • R 17 to R 18 may be bonded to each other to form a ring structure.
  • a cyclic alkyl structure capable of forming a cyclohexyl ring or a cyclic ester structure capable of forming a rataton ring.
  • a cyclic imide structure capable of forming a phenylmaleimide ring and an acid anhydride structure capable of forming a carboxylic anhydride.
  • X 2 is further selected from 1 O, 1 S, 1 NR 19 , 1 PR 19 , and CR 19 —force.
  • R 19 is hydrogen, an alkyl having 1 to 20 carbon atoms.
  • q is 0 or an integer from 1 to 3, preferably 0 or 1, and when q is an integer from 1 to 3, X 2 may be the same or different.
  • NR 19 —, -PR 19 one, or — CR 19 — R 19 is, for example, hydrogen or a methyl group having 1 to 20 carbon atoms.
  • alkyl groups such as ru, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, cyclohexyl or menthyl.
  • X 2 is preferably —O—, —S or —CH 1.
  • R 17 to R 18 hydrogen, carbon atom number of 1 to 20 alkyl group, 20 following Ariru group having 6 or more carbon atoms, halogen, A halogenated alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, an alkoxycarbonyl group having 2 to 20 carbon atoms, C 6 to 20 carbon atom arylcarbonyl group, hydroxy group, hydroxyalkyl group having 1 to 20 carbon atoms, acid anhydride or cyano group Cyclic olefin having a selected substituent Yes, from X 2 — O—, — S—, — NR 19 —, —PR 19 —, and — CR 19 — (R 19 is hydrogen, 1 to 20 carbon atoms
  • phospha (1PH) and methylphospha (1P (methyl) 1) 2 can be exemplified by 7-phosphacyclocyclobutadienes, 7-methyl-7-phosphacyclocyclobutadienes, and the like.
  • R 17 to R 18 may be bonded to each other to form a ring structure.
  • a cyclic alkyl structure capable of forming a cyclohexyl ring 1, 4, 5, 6, 7 , 8 Hexahydro 1, 4 methanonaphthalene and the like
  • cyclic ester structures capable of forming a rataton ring include, for example, 4-oxatritricyclo [5. 2. 1. 0 2 ' 6 ] — 2, 8 decadien 3-one or 4, 10 dioxertricyclo [5. 2. 1.
  • tetracyclododecadiene, hexacycloheptadecadiene, or octacyclodocadiene is similar to bicyclobutadiene, for example, these X 2 methylenes are converted to methylmethylene ((1CH (methyl )-) Instead of methyltetracyclododecadiene, methylhexacycloheptadecadiene, or methyloctacyclodococadiene, methylene instead of oxa (1 O), oxatetracyclododecadiene, oxahexa Cycloheptadedecadiene or oxaoctacyclodococadiene, thiatetracyclododecadiene, methylenehexacycloheptadecadiene or thiaoctacyclodococadiene instead of thia (-S-), Instead of aza (one NH) or methylaza
  • cycloolefins such as dicyclopentagen, cyclopropene, cyclobutene, cyclopentene, cycloheptene, and cyclotene;
  • Cyclohexers such as cyclohexer 1,4-gen, cyclohexer 1,3-gen, cycloocta 1,5-gen, cycloocta 1,4-gen, cycloocta 1,3-gen; Examples include cyclotrienes such as 3,5-trien and cyclochota 1,3,6-trien.
  • the ring-opening metathesis polymer includes at least one of the above general formula (2), the above general formula (3), and cyclic olefins such as cycloolefins, cyclogens, and cyclotrienes. It may be one obtained by polymerizing one kind of cyclic olefin, or one obtained by copolymerizing with at least two kinds of cyclic olefins.
  • acetylene, a derivative thereof, and a diacetylene derivative may be used alone or copolymerized with cyclic olefin as monomers other than cyclic olefin.
  • a metathesis catalyst such as a combination of the above organic transition metal complex as a precursor of a metathesis catalyst and a Lewis acid as a cocatalyst can be used.
  • the molar ratio of cyclic olefin to metathesis catalyst is tantalum, vanadium, molybdenum, tungsten, rhenium, ruthenium, and osmium.
  • the molar ratio of cyclic olefin is 2 or more, preferably 10 or more, per 1 mol of the catalyst.
  • the molar ratio of cyclic olefin to metathesis catalyst is, for example, 30,000 or less, preferably 20,000 or less, with respect to 1 mole of the catalyst.
  • the above organic transition metal complex as a precursor of a metathesis catalyst and a promoter
  • the molar ratio of cyclic olefins is, for example, 2 or more, preferably 10 or more, with respect to 1 mol of the organic transition metal complex.
  • the molar ratio of cyclic olefin to one mole of the organic transition metal complex is, for example, 10,000 or less, and preferably ⁇ is 5,000 or less.
  • the organometallic compound as a co-catalyst is, for example, 0.01 or more, preferably 0.1 or more, more preferably 1 or more in a molar ratio with respect to 1 mol of the organic transition metal complex. Further, the organometallic compound as a co-catalyst is 100 or less, preferably 10 or less, more preferably 5 or less with respect to 1 mol of the organic transition metal complex.
  • the polymerization of cyclic olefins with a metathesis catalyst may be performed without using a solvent or with a solvent.
  • a solvent to be used ethers such as tetrahydrofuran, jetyl ether, dibutyl ether, dimethoxyethane, or dioxane;
  • Aromatic hydrocarbons such as benzene, toluene, xylene or ethylbenzene; aliphatic hydrocarbons such as pentane, hexane or heptane;
  • An aliphatic cyclic hydrocarbon such as cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane or decalin;
  • halogenated hydrocarbons such as methylene dichloride, dichloroethane, dichloroethylene, tetrachloroethane, chlorobenzene, and trichlorobenzene, etc. may be mentioned, and two or more of these may be used in combination.
  • olefins and genes can be used as chain transfer agents. Polymerization can be carried out in the presence of a kind.
  • olefins used as chain transfer agents include a-olefins such as ethylene, propylene, butene-1, pentene 1, hexene 1, and otaten 1, and further include vinyltrimethylsilane, aryltrimethylsilane, Examples include kale-containing olefins such as allyltriethylsilane and aryltriisopropylsilane, and examples of genes include 1,4 pentagene, 1,5 hexagen, and 1,6 non-conjugated gen such as butadiene. It is done. In addition, these olefins or gens can be used alone or in combination of two or more. May be used in combination.
  • the amount of olefin or gen used in the present invention is, for example, 0.001 or more, preferably 0.01 or more in a molar ratio with respect to 1 mol of cyclic olefin. Further, the molar ratio is, for example, 1000 or less, preferably 100 or less, per mole of olefin or gen-force cyclic olefin.
  • olefin or gen is, for example, 10,000 equivalents or less, preferably 1000 equivalents or less, more preferably 500 equivalents or less with respect to 1 equivalent of the metathesis catalyst.
  • the solvent polymerization concentration of cyclic olefins is preferably in the range of about 0.1 to 100 mol ZL, although it depends on the reactivity of cyclic olefins and the solubility in polymer solvents.
  • a deactivator such as aldehydes such as butyraldehyde, ketones such as acetone, and alcohols such as methanol.
  • a ring-opening metathesis polymer solution can be obtained.
  • the repeating unit of the ring-opening metathesis polymer obtained by polymerizing the cyclic olefin represented by the general formula (2) or the general formula (3) is represented by the following general formula (4) or the following general formula (5). expressed.
  • R ′′ to R 15 are independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, halogen, and the number of carbon atoms. 1 More than 20 halogenoalkyl groups, alkoxy groups having 1 to 20 carbon atoms, alkoxyalkyl groups having 2 to 20 carbon atoms, alkoxycarbonyl groups having 2 to 20 carbon atoms, 6 carbon atoms More than 20 aryloxycarbonyl group, hydroxyl group, hydroxyalkyl group having 1 to 20 carbon atoms, acid anhydride, cyano group, and key group containing key group are selected.
  • R 12 to R 15 may be bonded to each other to form a ring structure.
  • X 1 is one O—, one S—, one NR 16 —, —PR 16 —, and one CR 16 —force, and may be the same or different.
  • R 16 is hydrogen and has 1 or more carbon atoms
  • the upper 20 or less alkyl groups are represented.
  • p represents 0 or an integer of 1 to 3.
  • R 17 to R 18 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, halogen, A halogenated alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, an alkoxycarbonyl group having 2 to 20 carbon atoms, A group force consisting of an aryloxycarbonyl group having 6 to 20 carbon atoms, a hydroxy group, a hydroxyalkyl group having 1 to 20 carbon atoms, an acid anhydride, a cyano group, and a silicon-containing group force.
  • R 17 to R 18 may be bonded to each other to form a ring structure
  • X 2 represents —0—, —S—, —NR 19 —, —PR 19 —, and —CR 19 from (R 19 represents hydrogen, an alkyl group having 1 to 20 carbon atoms) selected
  • q represents 0 or an integer of 1 to 3.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by (Gel Permeation Chromatography: GPC) is, for example, 2,000 or more, preferably 5,000 or more.
  • M w is, for example, 1, OOO, 000 or less, preferably 300,000 or less.
  • the ring-opening metathesis polymer of the present invention does not contain an alkali metal salt in the metathesis catalyst, the polymerization reaction solution can be directly used in the ring-opening metathesis polymer without performing a process operation for removing the alkali metal.
  • Hydrogenation to the main chain double bond is possible.
  • the hydrogenation rate (percentage of the ratio of the number of double bonds contained in the polymer to the number of hydrogenated double bonds) is preferably 50% or more and 100% or less. Hydrogen is preferably added at a rate of 80% to 100%.
  • the light transmittance of the hydrogenated product with respect to the wavelength in the ultraviolet region can be controlled by adding the main chain double bond of the ring-opening metathesis polymer with hydrogen to form a saturated bond at an arbitrary ratio.
  • hydrogenation increases stability against acid and salt, and by reducing these double-chain double bonds depending on the application, weather resistance and thermal stability are improved, and ring-opening metathesis polymers are practically used. Can be used more neatly.
  • R "to R lb are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, halogen, A halogenated alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, an alkoxycarbonyl group having 2 to 20 carbon atoms, An aryloxycarbonyl group having 6 to 20 carbon atoms, A droxy group, a hydroxyalkyl group having 1 to 20 carbon atoms, an acid anhydride, a cyano group, and a silicon-containing basic group are selected groups, and R 12 to R 15 are bonded to each other to form a ring structure May be formed.
  • X 1 is selected from one O—, one S—, one NR 16 —, —PR 16 —, and one CR 16 (wherein R 16 represents hydrogen, an alkyl group having 1 to 20 carbon
  • p represents 0 or an integer of 1 to 3.
  • R 1 R 1S independently represents hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, halogen, carbon.
  • Halogenated alkyl group having 1 to 20 atoms, alkoxy group having 1 to 20 carbon atoms, alkoxyalkyl group having 2 to 20 carbon atoms, alkoxycarbonyl group having 2 to 20 carbon atoms, carbon Alkyloxycarbonyl group, hydroxyl group having 6 to 20 atoms, hydroxyalkyl group having 1 to 20 carbon atoms, acid anhydride, cyano group, and key group containing key group group selected R 17 to R 18 may be bonded to each other to form a ring structure
  • X 2 represents one 0—, one S—, one NR 19 —, —PR 19 —, and one CR 19 (R 19 represents hydrogen, an alkyl group having 1 to 20 carbon atoms)
  • q represents 0 or an integer of 1 to 3.
  • the weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) of the hydrogenated ring-opening metathesis polymer in the present invention is preferably 2,000 or more. Preferably it is 5,000 or more.
  • the above Mw is preferably
  • the weight average molecular weight (Mw) and number average molecular weight of the hydrogenated ring-opening metathesis polymer The molecular weight distribution (MwZMn), which is a ratio to (Mn), is preferably 1.0 or more. Further, (MwZMn) is preferably 5.0 or less.
  • a heterogeneous catalyst is a metal such as radium, platinum, nickel, rhodium, ruthenium, carbon, silica, alumina. And supported metal catalysts supported on a carrier such as titanium, magnesia, diatomaceous earth, and synthetic zeolite.
  • nickel naphthenate / triethylaluminum nickel acetylacetonate / triisobutylaluminum, cobalt oxalate Zn-butyllithium, titanocene dichloride Z-deethylaluminum chloride, rhodium acetate, dichlorobis (triphenyl) -Luphosphine) paradium, chlorotris (triphenylphosphine) rhodium, dihydridotetrakis (triphenylphosphine) ruthenium, and the like.
  • homogeneous catalysts include dichlorobis (triphenylphosphine) nickel, dichlorobis (triphenylphosphine) palladium, dichlorobis (triphenylphosphine) platinum, chlorotris (triphenylphosphine) rhodium, dichloromethane.
  • these homogeneous catalysts and amine compounds may be used in combination.
  • amine compounds include primary amine compounds such as methylamine, ethylamine, ⁇ -line, ethylenediamine, 1,3-diaminocyclobutane;
  • Secondary amine compounds such as dimethylamine, methylisopropylamine, and N-methylamine
  • tertiary amine compounds such as trimethylamine, triethylamine, triphenylamine, N, N-dimethylaniline, pyridine, and ⁇ -picoline Examples include compounds. Of these, tertiary amine compounds are preferably used, and particularly when triethylamine is used, the hydrogenation rate is remarkably improved. Two or more of these homogeneous catalysts or amine compounds can be used in combination at any ratio.
  • the amount of the ring-opening metathesis polymer and the hydrogenation catalyst used is the same as that of the known hydrogenation catalyst.
  • the known hydrogenation catalyst is, for example, 50, OOOppm or less, preferably 1, OOOppm or less, relative to the ring-opening metathesis polymer.
  • the homogeneous catalyst is, for example, 5 ppm or more, preferably 10 ppm or more, particularly preferably 50 ppm, relative to the ring-opening metathesis polymer. That's it.
  • the homogeneous catalyst is, for example, 50, OOOppm or less, preferably 10, OOOppm or less, particularly preferably 1, OOOppm or less, relative to the ring-opening metathesis polymer.
  • the amine compound is, for example, not less than 0.1 equivalent, preferably not less than 0.5 equivalent, particularly preferably not less than 1 equivalent, relative to 1 equivalent of the homogeneous catalyst used. Further, the amine compound is, for example, 1,000 equivalents or less, preferably 500 equivalents or less, particularly preferably 100 equivalents or less, with respect to 1 equivalent of the homogeneous catalyst used.
  • the hydrogenation catalyst having a homogeneous catalyst and an amine compound it is possible to use a catalyst obtained by previously contacting a homogeneous catalyst and an amine compound. Each may be added directly to the reaction system without prior contact treatment.
  • the solvent used in the hydrogenation reaction of the ring-opening metathesis polymer may be any solvent as long as it dissolves the ring-opening metathesis polymer and the solvent itself is not hydrogenated.
  • Etherols such as til ether, dibutyl ether, dimethoxyethane;
  • Aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene;
  • Aliphatic hydrocarbons such as pentane, hexane, heptane;
  • Aliphatic cyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, decalin;
  • halogenated hydrocarbons such as methylene dichloride, dichloroethane, dichloroethylene, tetrachloroethane, chronobenzene, trichlorobenzene, etc. These should be used in combination of two or more.
  • the hydrogen pressure is usually normal pressure or higher, preferably 0.5 MPa or higher, particularly preferably 2 MPa or higher.
  • the hydrogen pressure is usually 30 MPa or less, preferably 20 MPa or less, particularly preferably 15 MPa or less.
  • the reaction temperature of the hydrogenation reaction is usually 0 ° C or higher, room temperature or higher, particularly preferably 50 ° C or higher.
  • the reaction temperature is usually 300 ° C or lower, preferably 250 ° C or lower, particularly preferably 200 ° C or lower.
  • these conditions and reaction time can be set according to the desired hydrogenation rate.
  • the ring-opening metathesis catalyst or hydrogenation catalyst remaining in the polymer can be removed by a known method.
  • the ring-opening metathesis polymer hydrogenated product solution strength The method for recovering the polymer hydrogenated product is not particularly limited, and a known method can be used.
  • the reaction solution is discharged into a poor solvent under stirring, the polymer hydrogenated product is solidified, and collected by filtration, centrifugation, decantation, or the like, or the polymer is obtained by blowing steam into the reaction solution.
  • a steam stripping method for precipitating the hydrogenated product and a method for directly removing the solvent from the reaction solution by heating, etc. I can get lost.
  • the metathesis catalyst of the present invention is used as a reaction catalyst for organic synthesis reactions such as ring-closing metathesis reactions and cross-metathesis reactions of organic compounds having alkyne polymerization of acetylenes, double bonds or triple bonds in addition to the polymerization of cyclic olefins.
  • the metathesis reaction can be performed without causing a side reaction as in the polymerization reaction.
  • These metathesis reactions may be suspension polymerization or solution polymerization in a solvent-free or organic solvent, and the reaction conditions such as temperature, pressure, time and concentration are not particularly limited.
  • the organic transition metal complex compound can be produced industrially and economically efficiently.
  • the organic transition metal complex compound in the present invention can be used as, for example, an alkylidene complex compound, an alkylidine complex compound, a Fischer-type carbene complex compound, a metaguchisen complex compound, and a post-metallocene complex compound. It can also be used as a catalyst for organic synthesis reactions.
  • the metathesis catalyst obtained by synthesis by the method for producing an organic transition metal complex compound of the present invention can reduce the content of alkali metal, for example, the content of alkali metal is set to lOppm or less.
  • the ring-opening metathesis polymer such as cyclic olefins polymerized using the catalyst can be subjected to a hydrogenation reaction without removing the alkali metal in advance, and the ring-opening metathesis polymer or hydrogenated product.
  • it can be suitably used for electronic material applications that are severely limited in alkali metal content and are extremely valuable industrially.
  • the alkali metal content was determined by inductively coupled plasma mass spectrometry (ICP-MS).
  • the detection limit for alkali metals is lOppb.
  • the molecular weight of the polymer or polymer hydrogenated product is detected by dissolving the ring-opening metathesis polymer obtained by polymerization and the hydrogenated powder in tetrahydrofuran using gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the instrument was 830-RI manufactured by JASCO Corporation, and Shodexk-804, 803, 802.5 was used as the column, and the molecular weight was calibrated with polystyrene standards.
  • the glass transition temperature (Tg) of the polymer was measured using DSC-50 manufactured by Shimadzu Corporation at a temperature increase rate of 10 ° C. Z under nitrogen.
  • Example 1 Purified perfluoro-tert-butoxylithium (0.64 g) synthesized from perfluoro-tert-butyl alcohol (5.0 g) and n-butyllithium (1.6 M hexane solution 13.2 ml) under nitrogen in Example 1
  • triethylenoamine (0.27 g) and perfluoro-tert-butyl alcohol (0.63 g) were used.
  • the resulting solid was darkened, and the starting molybdenum complex and decomposition products were mixed.
  • 230 ppm of lithium was detected from the obtained solid. Further, even after the obtained solid was washed twice with 5 ml of pentane cooled to ⁇ 30 ° C., lithium was detected in an amount of lOOppm or more.
  • Example 2 The same procedure as in Example 1 was performed except that triethylamine was used in Example 1.
  • the resulting solid was decomposed to eliminate the starting molybdenum complex and alkylidene. It was a mixture of products. Also, the obtained solid force was strong enough to detect no alkali metal.
  • Example 2 1, 1, 1, 1, 3, 3, 3-hexafluoro-2-methyl-2-propanol (5. Og) and n-butyllithium (1. 6M hexane solution 18.9 ml) force synthesis under nitrogen And purified 1,1,1,1,3,3,3-hexafluoro-2-methylpropoxylithium (0.5 Og) with triethylamine (0.27 g) and 1,1,1,1,3,3,3— Except that it was used in place of hexafluoro-2-methyl-2-propanol (0.48 g), the same procedure as in Example 2 was performed to obtain 0.74 g of a yellow solid.
  • Example 3 2-Methyl-2-propanethiol (5. Og) and hydrogenation power under nitrogen in Example 3 Synthesized and purified 2-methyl-2 potassium potassium (0.34 g) was used instead of triethylamine (0.27 g) and 2-methyl-2 propanethiol (0.24 g). The procedure was similar to that of Example 3 except for the above. The obtained solid was a mixture of the starting molybdenum complex and decomposition products. In addition, 300 ppm of potassium was detected from the solid powder obtained.
  • Ad represents an adamantyl group.
  • Triethylamine (0.30 g) was added. Then, the mixture was cooled to 30 ° C, and 3,3'-di-tert-butyl 5, 5 ', 6, 6'-tetramethyl-1,2,2'-dihydroxybiphenyl (0.51 g) was stirred. It was dripped while stirring. After 3 hours, the solvent was removed, extracted with pentane, filtered, and dried under reduced pressure to obtain 1.OOg as a yellow solid. From the NMR spectrum of this solid, formation of a compound represented by the following chemical formula (8) was confirmed. Also, no alkali metal was detected from the obtained solid.
  • the ring-opening metathesis polymer had a weight average molecular weight (Mw) of 23,300 and a molecular weight distribution (MwZMn) of 1.70 as measured by GPC.
  • Example 13 instead of the reaction solution synthesized in Example 12, the reaction solution synthesized in Comparative Example 5 was used, except that the reaction solution was used.
  • the ring-opening metathesis polymer hydrogen additive solution is added to methanol to precipitate the ring-opening metathesis polymer hydrogenate, and it is separated by filtration and vacuum-dried.
  • Example 2 The same procedure as in Example 1 was carried out except that pyridine (0.22 g) was used instead of triethylamine (0.27 g) in Example 1, to obtain 1.07 g of a yellow solid.
  • pyridine (0.22 g) was used instead of triethylamine (0.27 g) in Example 1, to obtain 1.07 g of a yellow solid.
  • the obtained solid force was not detected by alkali metal.
  • the ring-opening metathesis polymer had a weight average molecular weight (Mw) measured by GPC of 14500, a molecular weight distribution (Mw / Mn) of 1.68, and a Tg of 155 ° C.
  • Luamine (lmg) was added and hydrogenation reaction was carried out for 7 hours at a hydrogen pressure of 10 MPa and 125 ° C. Then, the temperature was returned to room temperature, and then hydrogen gas was released.
  • This ring-opening metathesis polymer hydrogenated product solution is added to methanol to precipitate the ring-opening metathesis polymer hydrogenated product, followed by filtration and separation, followed by vacuum drying, whereby powdered ring-opening metathesis polymer hydrogenated product 12 Obtained 0g.
  • the hydrogenation rate calculated from 1 H-NMR of the obtained hydrogenated ring-opening metathesis polymer showed no peak attributed to the proton of the main chain olefin, and its hydrogenation The rate was 100%, the weight average molecular weight (Mw) measured by GPC was 20200, the molecular weight distribution (Mw / Mn) was 1.75, and Tg was 125 ° C.
  • Example 20 After 50.0 g of the reaction solution synthesized in Example 20 was subjected to hydrogenation reaction with palladium carbon at 160 ° C. and hydrogen pressure lOMPa, the temperature was returned to room temperature, and then hydrogen gas was released. This ring-opening metathesis polymer hydrogenated solution was added to methanol to obtain a powdered ring-opening metathesis polymer hydrogenated product.
  • the obtained polymer had a hydrogenation rate of 100%, a weight average molecular weight (Mw) of 53,000, a molecular weight distribution (MwZMn) of 2.64, and a Tg of 107. C.
  • the reaction solution 50 Og synthesized in Example 23 was hydrogenated with palladium carbon at 130 ° C. and a hydrogen pressure of 9.5 MPa, the temperature was returned to room temperature, and then hydrogen gas was released.
  • This ring-opening metathesis polymer hydrogenated solution was added to methanol to obtain a powdered ring-opening metathesis polymer hydrogenated product.
  • the resulting polymer is hydrogenated in both the main chain double bond and the ring internal double bond, the hydrogenation rate is 100%, the weight average molecular weight (Mw) is 190000, the molecular weight distribution (MwZMn) is 1.21, Tg Was 38 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Catalysts (AREA)
  • Polymerization Catalysts (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

 プロトン供与性を有する化合物を金属塩とすることなく、電子供与性の原子団を有する有機遷移金属錯体化合物を工業的または経済的に有利に合成する製造方法およびその方法で製造されるメタセシス触媒を提供する。塩基性化合物の存在下で、電子吸引性の原子団を有する有機遷移金属錯体化合物にプロトン供与性を有する化合物を接触させることによって、電子吸引性の原子団を、より電子供与性の強い原子団に変換する有機遷移金属錯体化合物の製造方法および、該製造方法で合成して得られる、アルカリ金属の含有量が低減されたメタセシス触媒を提供する。

Description

明 細 書
有機遷移金属錯体化合物の製造方法、その方法で製造されるメタセシス 触媒、それによる開環メタセシス重合体および重合体の製造方法
技術分野
[0001] 本発明は、有機遷移金属錯体化合物の製造方法およびその方法で製造されるメタ セシス触媒ならびに該メタセシス触媒を用いて重合して得られる開環メタセシス重合 体およびその重合体の製造方法に関する。
背景技術
[0002] 一般的に、有機遷移金属錯体化合物は、酸素、水、プロトン供与性を有する化合 物の影響を受け易い。有機遷移金属錯体化合物の種類によっては、酸素、水、プロ トン供与性を有する化合物と接触すると、酸化分解、加水分解や脱離分解などによつ て分解する。
[0003] シクロペンタジェ -ル、アルコキシ、カルボキシル等の電子供与性の強い原子団を 有する有機遷移金属錯体化合物を合成するためには、プロトン供与性を有する化合 物を、プロトン供与性を持たないアルキルアルカリ金属塩に変換して、より電子供与 性の強い原子団の反応試薬として用いることが多い。しかし、この方法で有機遷移金 属錯体化合物を製造すると、アルカリ金属の強いカチオン性のため、有機遷移金属 錯体化合物の所望の部位と反応せずに有機遷移金属錯体化合物を分解させたり、 副反応が起こったりして、所望の有機遷移金属錯体化合物が得られな!/ヽ場合がある 。また、アルカリ金属イオンと対ァ-オン原子団の種類によって配位子交換の反応性 が異なるため、製造できる有機遷移金属錯体化合物が制限され、これらの理由から、 分解反応や副反応を起こさない有機遷移金属錯体化合物の製造方法の改良が望ま れている。
[0004] 一方、シクロペンタジェ-ルなどの炭化水素系の配位子を有する有機遷移金属メタ 口セン錯体ィ匕合物にぉ 、ては、 Jordanらによって、従来の方法で用いられて ヽたシ クロペンタジェンとブチルリチウムなどの有機金属化合物や水素化アルカリ金属化合 物を反応させて得られるシクロペンタジェニル金属塩と遷移金属塩ィ匕物との合成反 応を行うことなぐ特定のプロトン供与性のシクロペンタジェンと遷移金属ジメチルアミ ド化合物を接触することによってアルカリ金属塩を使わずに有機遷移金属メタ口セン 錯体化合物を合成する方法が報告されて 、る。この合成方法ではアルカリ金属塩に よる有機遷移金属メタ口セン錯体ィ匕合物合成時の副反応を抑えることができるが、高 温で長時間の反応条件を必要とし、製造コストが高い (特許文献 1、 2および非特許 文献 1参照)。
[0005] 近年、タングステンあるいはモリブデンを中心金属とするメタセシス触媒を用いること で開環メタセシス重合を始めとする各種メタセシス反応が進行することを Schrockら が報告している(非特許文献 2、 3および 4参照)。これらのメタセシス触媒はアルコキ シ等の、より電子供与性の強!、原子団を有する有機遷移金属アルキリデン錯体化合 物であり、アルコール等のプロトン供与性を有する化合物とナトリウム、リチウム、力リウ ムまたはそれらの水素化金属化合物、さらにブチルリチウムなどの有機金属化合物と 接触させて得られるアルキルアルカリ金属塩を、電子吸引性原子団であるハロゲンま たはトリフラートを配位子として有する有機遷移金属錯体ィ匕合物に接触させ、より電 子供与性の強いアルコキシ等に交換して合成しており、この際、副生物としてはハロ ゲンィ匕アルカリ金属またはトリフラートアルカリ金属塩が生成する。
[0006] 従って、製造されたメタセシス触媒には反応試薬である過剰なアルキルアルカリ金 属塩が残留することになり、これらの副生物や反応試薬が残留したメタセシス触媒を 用いてメタセシス反応を行うと、副生物や反応試薬の強いイオン性のため、副生物や 反応試薬がァニオン重合の重合開始剤となって反応基質を重合したり、メタセシス反 応の活性種と配位子交換反応を起こしてメタセシス触媒を変質したり、分解したりす ることがある。また、メタセシス反応によって製造された製品中に金属が残留すると、 製品の物性や色調に悪影響を与える場合がある。
[0007] メタセシス重合反応では重合後に主鎖に形成される不飽和結合を水素添加反応に より飽和結合に変換することが一般的である。この際、生成物中にメタセシス触媒合 成反応由来のアルカリ金属塩、すなわち、副生物や反応試薬が混入していると、副 生物や反応試薬が水素添加反応触媒と反応して変質したり分解したりして正常な水 素添加反応を阻害する場合がある。 [0008] 従来のメタセシス触媒の合成法ではイオン性の高 、アルカリ金属を用いるために種 々の問題点が存在しており、アルカリ金属を用いな ヽメタセシス触媒製造法の開発が 望まれている。
特許文献 1:国際公開第 95Z32979号パンフレット
特許文献 2:米国特許 5597935号明細書
非特許文献 1: Gary M. Diamond他 1名、「Synthesis of Group 4 Metal rac- (EBI)M(NR 2)2 Complexes by Amine Elimination. Scope and Limitations」、 Organometallics、 15、 4030〜4037 (1996)
非特許文献 2: Richard R. Schrock、「Living Ring-Opening Metathesis Polymerization Catalyzed by Well-Characterized Transition-Metal Alkylidene Complexes」、 Acc.C hem.Res.、 23、 158 (1990)
非特許文献 3 : R. R. Schrock他 13名、「Further Studies of Imido Alkylidene Complex es of Tungsten, Well-Characterized Olefin Metathesis Catalysts with ControllableJ 、 Organometallicsゝ 9、 2262 (1990)
非特許文献 4 : Richard R. Schrock他 5名、「Synthesis of Molybdenum Imido Alkyiden e Complexes and Some Reactions Involving Acyclic 01efins」、 J.Am.し hem.Soc.、 112, 3875 (1990)
発明の開示
[0009] 本発明は、プロトン供与性を有する化合物を金属塩とすることなぐ塩基性化合物 の存在下で電子供与性の原子団を有する有機遷移金属錯体化合物を工業的また は経済的に有利に合成する製造方法およびその方法で製造されるメタセシス触媒、 さらに、該メタセシス触媒を用いて重合して得られる開環メタセシス重合体とその重合 体の製造方法を提供するものである。
[0010] 本発明者は、前述の課題を解決するため鋭意検討した結果、任意の塩基性化合 物の存在下において、任意の電子吸引性原子団を有する有機遷移金属錯体ィ匕合 物に任意のプロトン供与性を有する化合物を接触させることによって、任意の電子吸 引性原子団を有する有機遷移金属錯体化合物中の電子吸引性原子団を、任意の プロトン供与性を有する化合物に由来する、より電子供与性の強い電子吸引性原子 団に変換する新規な有機遷移金属錯体化合物の製造方法および、その方法で製造 して得られるアルカリ金属の含有量が低減されたメタセシス触媒、さらに、該メタセシ ス触媒を用いて環状ォレフィンを重合して得られる開環メタセシス重合体とその重合 体の製造方法を見出し、本発明を完成するに至った。
[0011] すなわち本発明は、
[1]塩基性化合物の存在下で、(A)電子吸引性の原子団を有する有機遷移金属錯 体化合物に、(B)プロトン供与性を有する化合物を接触させることによって、前記 (A )電子吸引性の原子団を有する有機遷移金属錯体化合物中の電子吸引性の原子 団を、前記 (B)プロトン供与性を有する化合物に由来する電子吸引性の原子団に変 換する工程を含む、(C)有機遷移金属錯体化合物の製造方法;
[2]前記 (B)プロトン供与性を有する化合物力 アルコールおよびチオール力 選ば れる少なくとも 1種以上である、 [1]に記載の有機遷移金属錯体化合物の製造方法; [3]前記 (A)電子吸引性の原子団を有する有機遷移金属錯体ィ匕合物が、メタルアル キリデンまたはメタルアルキリジンを有する有機遷移金属錯体ィ匕合物である、 [1]また は [2]に記載の有機遷移金属錯体化合物の製造方法;
[4] [ 1 ]乃至 [3] ヽずれかに記載の有機遷移金属錯体化合物の製造方法で合成し て得られる、下記一般式(1)で表されるメタセシス触媒;
[0012] [化 1]
Figure imgf000005_0001
(上記一般式(1)中、 R1は、アルキル、ァリール、置換ァリール力 選ばれる。 R2およ び R3は、それぞれ独立に、水素、アルキル、ァリール、置換ァリール、アルキルシリル 、ァルケ-ルカも選ばれ、これらは同じであっても異なっていてもよい。 R4はアルキル 、ハロゲン化アルキル、ァリール、置換ァリール力 選ばれる。 Nは窒素原子であり、 Qは酸素または硫黄原子である。 Eは配位性の分子であり、エーテル、アルキルホス フィン、ァリールホスフィン、アルコキシホスフィン、ピリジン、アルキルァミン、アルキリ デンァミンから選ばれる。 Mは周期律表第 3族〜第 12族から選ばれる遷移金属原子 である。 mは 1以上 3以下の整数であり、 mが 2または 3の場合、 R4は互いに結合して もよい。また、 nは 0以上 2以下の整数である。 )
[5]前記一般式(1)で表わされるメタセシス触媒において、周期律表第 3族〜第 12 族から選ばれる前記遷移金属原子 Mが、タンタリウム、バナジウム、モリブデン、タン ダステン、レニウム、ルテニウムおよびオスミウムからなる群力 選ばれる 1種であって
、 mが 1または 2であり、 nが 0または 1である、 [4]に記載のメタセシス触媒;
[6]アルカリ金属の含有量が lOppm以下である、 [4]または [5]に記載のメタセシス 触媒;
[7]下記一般式(1)で表され、アルカリ金属の含有量が lOppm以下である、メタセシ ス触媒;
[0014] [化 2]
Figure imgf000006_0001
[0015] (上記一般式(1)中、 R1は、アルキル、ァリール、置換ァリール力 選ばれる。 R2およ び R3は、それぞれ独立に、水素、アルキル、ァリール、置換ァリール、アルキルシリル 、ァルケ-ルカも選ばれ、これらは同じであっても異なっていてもよい。 R4はアルキル 、ハロゲン化アルキル、ァリール、置換ァリール力 選ばれる。 Nは窒素原子であり、 Qは酸素または硫黄原子である。 Eは配位性の分子であり、エーテル、アルキルホス フィン、ァリールホスフィン、アルコキシホスフィン、ピリジン、アルキルァミン、アルキリ デンァミンから選ばれる。 Mは周期律表第 3族〜第 12族から選ばれる遷移金属原子 である。 mは 1以上 3以下の整数であり、 mが 2または 3の場合、 R4は互いに結合して もよい。また、 nは 0以上 2以下の整数である。 )
[8] [1]乃至 [3]いずれかに記載の有機遷移金属錯体ィ匕合物の製造方法を用いる、 メタセシス触媒の製造方法;
[9] [4]乃至 [7]いずれかに記載のメタセシス触媒の存在下に、環状ォレフィンを重 合して得られる、開環メタセシス重合体;および
[10] [4]乃至 [7]いずれかに記載のメタセシス触媒の存在下に、環状ォレフィンを重 合する工程を含む、開環メタセシス重合体の製造方法である。
[0016] 本発明の有機遷移金属錯体化合物の製造方法により、該有機遷移金属錯体化合 物の製造を工業的にかつ経済的に効率よく行うことが可能である。
また、本発明の有機遷移金属錯体化合物の製造方法で合成して得られるメタセシ ス触媒は、アルカリ金属の含有量が低減されるため、該触媒を用いて重合された開 環メタセシス重合体は、事前にアルカリ金属を除去することなく水素添加反応を行な うことができる。
さらに、その開環メタセシス重合体またはその水素添加物は、たとえばアルカリ金属 の含有量に厳しい制限のある電子材料などの用途にも好適に使用することができ、 工業的に極めて価値がある。
図面の簡単な説明
[0017] 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実 施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
[図 1]実施例で得られた有機遷移金属錯体化合物の1 H— NMRスペクトルを示す図 である。
発明を実施するための最良の形態
[0018] 以下、本発明に係る有機遷移金属錯体化合物の製造方法およびその方法によつ て製造して得られるメタセシス触媒、さらに、該メタセシス触媒を用いて環状ォレフィ ンを重合して得られる開環メタセシス重合体とその重合体の製造方法に関して具体 的に説明する。
[0019] 本発明に係る有機遷移金属錯体化合物の製造方法は、
塩基性化合物の存在下で、 (A)電子吸引性の原子団を有する有機遷移金属錯体化合物に、
(B)プロトン供与性を有する化合物を接触させることによって、
(A)電子吸引性の原子団を有する有機遷移金属錯体化合物中の電子吸引性の原 子団を、(B)プロトン供与性を有する化合物に由来する電子吸引性の原子団に変換 すること〖こより、(C)有機遷移金属錯体ィ匕合物を得る工程を含む。任意の塩基性ィ匕 合物の存在下において、任意の電子吸引性原子団を有する有機遷移金属錯体ィ匕 合物に任意のプロトン供与性を有する化合物を接触させることによって、任意の電子 吸引性原子団を、より電子供与性の強い原子団に変換することができる。
[0020] 以下、本発明で用いられる各成分について、具体例を用いて説明するが、本発明 は以下の例示化合物に限定されるものではない。また、本発明において、各成分に ついて、例示化合物を単独で用いてもよいし、複数組み合わせて用いてもよい。
[0021] また、本明細書において、特に断りのない場合、 Meはメチル基、 は iso—プロピ ル基、 ¾ιιは tert—ブチル基、 Phはフエ-ル基、 Adはァダマンチル基を示す。また、 PMeはトリメチルホスフィン、 P (OMe) はトリメトキシホスフィンを示す。また、 dmeは
3 3
1, 2—ジメトキシェタンを示し、 thfはテトラヒドロフランを示す。
[0022] 本発明にお 、て、塩基性ィ匕合物とは、配位する非共有電子対をもった分子または プロトン受容体であり、たとえば、塩基性有機化合物である。また、塩基性化合物が、 アルカリ金属を含まな 、ことが好まし!/、。
有機塩基性化合物の具体例として、アンモニア、メチルァミン等の一級アミン類; ジフエ-ルァミン等の二級アミン類;
トリェチルァミン、ェチルジイソプロピルァミン、等の三級アミン類;および
1, 4ージァザビシクロ [2, 2, 2]オクタン、ピリジン、ルチジン等の含窒素複素環類; 等の窒素含有塩基性有機化合物;ならびに
ホスフィン等のリン含有塩基性有機化合物が挙げられる。
[0023] これらの中で、特にトリェチルァミン、ェチルジイソプロピルァミン、ピリジン、ルチジ ンおよび 1, 4ージァザビシクロ [2, 2, 2]オクタンが好ましい。さらに、これらの塩基性 化合物は、 2種類以上を任意の割合で使用してもよい。
[0024] また、電子吸引性とは、電気陰性が強いことである。また、電子吸引性の原子団と は、電気陰性が強い原子団であり、ハロゲン、ハロゲンを含有するアルキルまたはァ リールスルホナート、アルキルまたはァリールスルホナート、ハロゲンを含有するホス フェート、ハロゲンを含有するアルキルまたはァリールカルボキシレートおよび、アル キルまたはァリールカルボキシレート等が挙げられる。電子吸引性の原子団として、さ らに具体的には、フッ素、塩素、臭素、ヨウ素、トリフルォロメタンスルホナートすなわ ちトリフラート、トルエンスルホナート、へキサフルォロホスフェートおよびトリフルォロ アセテート等を例示することができ、これらの中で、特に、塩素、トリフルォロメタンス ルホナートおよびトルエンスルホナートが好ましい。また、これらを 2種類以上混在さ せて用いてもよい。
[0025] 本発明における (A)電子吸引性の原子団を有する有機遷移金属錯体化合物は、 ( A)電子吸引性の原子団を有する有機遷移金属錯体化合物中の電子吸引性の原子 団より電子供与性の強い、(B)プロトン供与性を有する化合物に由来する電子吸引 性の原子団で置換することができる電子吸引性の原子団を、少なくとも 1つ以上有す る化合物である。さらに、(A)電子吸引性の原子団を有する有機遷移金属錯体化合 物は、電子吸引性の原子団にカ卩えて、いかなる配位子を有していてもよぐ単原子ま たは多原子の中性、陽イオン性、または陰イオン性の原子団を含有する配位子が挙 げられる。
[0026] また、 (A)電子吸引性の原子団を有する有機遷移金属錯体化合物は、メタルアル キリデンまたはメタルアルキリジンを有する有機遷移金属錯体ィ匕合物またはその前駆 体であることが好ましい。
[0027] メタルアルキリデンまたはメタルアルキリジンを有する有機遷移金属錯体ィ匕合物とは 、電子吸引性原子団を有する有機遷移金属錯体化合物が、遷移中心金属原子と α 位の炭素との間で 2価または 3価の遊離原子価をもつ 2重結合または 3重結合を形成 して結合して 、るメタルアルキリデンまたはメタルカルベン、または遷移金属—炭素 間に 3重結合をもつメタルアルキリジンまたはメタルカルバインを有する有機遷移金 属錯体化合物である。
[0028] また、メタルアルキリデンまたはメタルアルキリジンを有する有機遷移金属錯体ィ匕合 物の前駆体とは、そのものは遷移中心金属原子と α位の炭素との間で 2価または 3 価の遊離原子価をもつ 2重結合または 3重結合を形成して 、な 、が、触媒としてアル キルィ匕などの処理を施した後、加熱や有機金属試薬と接触させることによって、メタ ルアルキリデンゃメタルアルキリジンを形成させられる有機金属錯体ィ匕合物である。
[0029] メタルアルキリデンまたはメタルアルキリジンを有する有機遷移金属錯体ィ匕合物とし て、たとえば、 W( = CHtBu) ( = N-2, 6— Me C H ) (dme)Cl、 W( = CHtBu) (
2 6 3 2
=N-2, 6— iprCH)Cl (dme)、 W( = CHCH = CPh ) (O)Cl (thf)、W( = CH
2 6 3 2 2 2
CH=CPh) (=N-2, 6— iprCH)Cl (PMe )ゝ W( = CHCH = CPh ) (=N—
2 2 6 3 2 3 2
2, 6— C H )C1 [P(OMe) ] , W ( = CHCH = CMePh) ( = N— 2, 6— Me C
2 6 3 2 3 2 6
H )C1 (PMe )、 Mo( = CHCMe Ph) (=N— 2, 6-¾ C H ) (OSO CF ) (dm
3 2 3 2 2 2 6 3 2 3 2 e)、 Mo( = CHCMe Ph) ( = N— 2, 6— Me C H ) (OSO CF ) (dme)、Mo( = C
2 2 6 3 2 3 2
HlBu) ( = N-2, 6— MeCH) (OSOCF) (dme)、 Mo ( = CHCMe ) ( = N— 2
2 6 3 2 3 2 3
, 6-ClCH) (OSO CF) (dme)、 Mo( = CHSiMe ) (=N—Ad) (OSO CF )
2 6 3 2 3 2 3 2 3 2
(dme)、 Ta ( = CHCMe ) CI [OCMe (CH PPh ) ]、 Mo ( = CHSiMe ) ( = N— 2
3 2 2 2 2 3
, 6-Me C H ) (OCMe CF ) (PMe ) , W(≡CtBu) (O'Bu) (OSO CF ) (dme
2 6 3 2 3 2 3 2 2 3 2
)^ W(≡CtBu) (dme) CI、 W(NH— 2, 6— 'Pr C H ) ^C'Bu) (dme) CI、 Re(≡
3 2 6 3 2
C'Bu) ( = CHMe) (OCMe CF ) (dme) , W (≡ C'Bu) (O'BU)などが挙げられる。
2 3 2 3
[0030] メタルアルキリデンまたはメタルアルキリジンを有する有機遷移金属錯体ィ匕合物の 前駆体として、 W( = N-2, 6— Me C H )C1、 [Et N][W(≡CtBu)Cl ]、 W( = N
2 6 3 4 4 4
-2, 6-Me C H ) (CH lBu) CI (thf)、Mo(=N— 2, 6-iPrCH)Cl (thf)、
2 6 3 2 2 2 2 2 6 3 4 2
Os(=N-2, 6」Pr C H ) (CH lBu) CI、 Os(=N— 2, 6」Pr C H )C1、 V(=
2 6 3 2 2 2 2 6 3 4
N-2, 6-Me C H )Cし V( = N— 2, 6— Me C H ) (NR)C1等が挙げられる。
2 6 3 3 2 6 3 2 2
[0031] 本発明において、(B)プロトン供与性を有する化合物は、プロトンを供与できる化合 物であればいずれでもよいが、(A)電子吸引性の原子団を有する有機遷移金属錯 体ィ匕合物に塩基性ィ匕合物の存在下で接触させることによって、そのプロトンを脱離さ せ、(A)電子吸引性の原子団を有する有機遷移金属錯体化合物中の電子吸引性 原子団を、(B)プロトン供与性を有する化合物に由来する、より強い電子供与性を有 する原子団に置換することができる化合物である。すなわち、(B)プロトン供与性を有 する化合物に由来する電子吸引性の原子団の電子供与性は、(A)電子吸引性の原 子団を有する有機遷移金属化合物中の、電子吸引性の原子団の電子供与性より強 い。
[0032] なお、本発明において、(B)プロトン供与性を有する化合物は、塩基性化合物と同 じィ匕合物であってもよ 、し、異なる化合物であってもよ 、。
(B)プロトン供与性を有する化合物として、具体的には、 tert ブチルアルコール( 2—メチノレ一 2 プロノ ノーノレ)、 1, 1, 1, 3, 3, 3 へキサフノレ才ロ一 2—メチノレ一 2 プロパノール、パーフルオロー tert ブチルアルコール、フエノール、 2, 6 ジイソ プロピルフエノール、 2, 6 ジクロ口フエノール、 2, 2' ビフエノール、 3, 3' ジ te rtーブチルー 5, 5', 6, 6'—テトラメチルー 2, 2' ジヒドロキシビフエニル等のアルコ 一ノレ;
カルボン酸;
スノレホン酸;
一級ァミン、ジメチルァミン等の二級アミン等のァミン;および
2—メチルー 2 プロパンチオール、ベンゾチオール、 4 tert—ブチルチオフエノー ノレ等のチォーノレ;
等が挙げられる。このうち、(B)プロトン供与性を有する化合物がアルコールおよびチ オール力 選ばれる少なくとも 1種以上であるであることが好ましい。アルコールは、 アルコール性水酸基を含むものであってもフ ノール性水酸基を含むものであっても よい。
[0033] また、(B)プロトン供与性を有する化合物がアルコールおよびチオール力 選ばれ る少なくとも 1種以上であって、(A)電子吸引性の原子団を有する有機遷移金属錯 体ィ匕合物力 メタルアルキリデンまたはメタルアルキリジンを有する有機遷移金属錯 体ィ匕合物であってもよい。
[0034] また、(B)プロトン供与性を有する化合物は、 1プロトンでも 2プロトン以上の多官能 性であってもよぐこれらの化合物は、ハロゲン、ケィ素、シァ入エーテル、エステル 等を共に含有してもよい。また、これらの化合物は、単独で使用しても 2種類以上を 併用してちょい。
[0035] 本発明における (C)有機遷移金属錯体化合物は、周期律表 (長周期型)第 3族か ら第 12族までの遷移金属原子を中心金属とする有機遷移金属錯体化合物であり、 好ましくは、第 4族から第 9族までの遷移金属原子からなる有機遷移金属錯体化合物 である。このような遷移金属原子として、たとえば、チタン、バナジウム、二オビゥム、タ ンタリウム、モリブデン、タングステン、レニウム、ルテニウム、オスミウムおよび、ロジゥ ムなどが挙げられ、好ましくは、タンタリウム、バナジウム、モリブデン、タングステン、 レニウム、ルテニウムおよびオスミウムであり、さらに好ましくは、モリブデンまたはタン ダステンである。
[0036] (C)有機遷移金属錯体化合物として、たとえば、アルキリデン錯体ィ匕合物、アルキリ ジン錯体ィ匕合物、フィッシャー型カルベン錯体ィ匕合物、メタ口セン錯体ィ匕合物および ポストメタ口セン錯体ィ匕合物等が挙げられる。
[0037] さらに、(A)電子吸引性の原子団を有する有機遷移金属錯体化合物が、特にメタ ルアルキリデンまたはメタルアルキリジンを有する有機遷移金属錯体ィ匕合物である場 合、(C)有機遷移金属錯体ィ匕合物は、メタセシス重合、開環メタセシス反応、閉環メ タセシス反応または交叉メタセシス反応などの触媒または触媒の前駆体として好適に 使用することができる。
[0038] 本発明において、塩基性化合物の存在下で、(A)電子吸引性の原子団を有する 有機遷移金属錯体化合物に (B)プロトン供与性を有する化合物を接触させる時の各 成分の使用量は、たとえば以下のようにする。
まず、 (A)電子吸引性の原子団を有する有機遷移金属錯体化合物 1モルに対する (B)プロトン供与性を有する化合物の使用量を、たとえば 0. 1モル以上、好ましくは 0 . 2モル以上とする。また、(A)電子吸引性の原子団を有する有機遷移金属錯体ィ匕 合物 1モルに対する(B)プロトン供与性を有する化合物の使用量を、たとえば 100モ ル以下、好ましくは 10モル以下とする。
また、 (B)プロトン供与性を有する化合物 1モルに対する塩基性化合物の使用量は 、たとえば 0. 1モル以上、好ましくは 0. 2モル以上とする。また、(B)プロトン供与性 を有する化合物 1モルに対する塩基性ィ匕合物の使用量は、たとえば 100モル以下、 好ましくは 10モル以下とする。ただし、塩基性ィ匕合物が溶媒を兼ねる場合はこの限り ではない。 [0039] さらに、(A)電子吸引性原子団を有する有機遷移金属錯体化合物と (B)プロトン供 与性を有する化合物との接触形態に特に制限はなぐ無溶媒での接触、有機溶媒中 での懸濁接触、これらの媒体中での均一溶液接触および、気相中での接触等のい ずれであってもよい。
有機溶媒を使用する場合、その具体例として、ペンタン、へキサン、トルエン、キシ レンなどの炭ィ匕水素;
ジェチルエーテル、テトラヒドロフラン、ジ才キサン、ジメトキシェタンなどのエーテル; ジクロロメタン、ジクロロェタン、クロ口ホルム、クロルベンゼン等のハロゲン化炭化水 素;および
ピリジン、ピぺリジン等の塩基性ィ匕合物が挙げられる。これらは、単独あるいは 2種類 以上を混合して使用してもょ ヽ。
[0040] さらに、これらを接触させる温度は、たとえば 100°C以上、好ましくは 80°C以上 である。また、接触温度は、たとえば 200°C以下、好ましくは 100°C以下である。 また、接触は、窒素、アルゴンなどの不活性ガス雰囲気下で行ってもよぐ接触させ る圧力は、たとえば常圧以上である。また、接触させる圧力は、たとえば lOMPa以下
、好ましくは 1. OMPa以下である。
また、接触させる時間は、たとえば 0. 1時間以上、好ましくは 0. 5時間以上、さらに 好ましくは 1時間以上とする。接触時間は、たとえば 1ヶ月以下、好ましくは 200時間 以下、さらに好ましくは 50時間以下とする。
[0041] また、本発明の製造方法により得られる (C)有機遷移金属錯体化合物は、必要に 応じて単離または分離して精製してもよい。この精製は、一般的な蒸留、抽出、分液
、濃縮、析出、再結晶、ろ過、洗浄または乾燥などの公知の方法力 適宜、組合せて 行うことができる。また、これらの操作温度は— 100〜300°C程度であり、圧力は I X
10— 6〜: LOMPa程度であり、それぞれの方法に適した条件を選択することができる。
[0042] 本発明の製造方法は、たとえば、下記一般式(1)で示されるメタセシス触媒の製造 方法として好適に用いられる。また、本発明において、(C)有機遷移金属錯体化合 物力 メタセシス触媒であってもよい。
[0043] [化 3]
Figure imgf000014_0001
[0044] 上記一般式(1)において、 Rは、アルキル、ァリール、置換ァリール力 選ばれ、特 に炭素原子数 4以上 30以下、さらに炭素原子数 4以上 20以下のアルキル、ァリール 、置換ァリールが好ましい。具体的には、 tert—ブチル、フエ-ル、 4— tert—ブチル フエニル、 2, 6 ジメチルフエニル、 2, 6 ジイソプロピルメチル、 1 ナフチル、 2, 6 —ジクロ口フエニル、 4 フルオロー 2, 6 ジメチルフエ-ル、ァダマンチル等が好ま しく例示される。
[0045] また、上記一般式(1)にお!/、て、 R2および R3は、水素、アルキル、ァリール、置換ァ リール、アルキルシリル、ァルケ-ルカも選ばれ、これらは同じであっても異なってい てもよく、特に、水素および炭素原子数 4以上 20以下のアルキル、ァリール、置換ァ リール、アルキルシリル、ァルケ-ルが好ましぐ具体的には、水素、メチル、ェチル、 イソプロピル、 tert—ブチル、 2—フエ二ルー 2—プロピル、フエニル、 1 ナフチル、ト リメチルシリル、 2, 2—ジメチルビ-ル、 2—メチルー 2—フエ-ルビ-ル、 2, 2—ジフ ェニルビニル等が好ましく例示される。
[0046] また、上記一般式(1)にお!/、て、 R4は、アルキル、ハロゲン化アルキル、ァリール、 置換ァリール力も選ばれ、特に、炭素原子数 4以上 20以下のアルキル、ハロゲンィ匕 アルキル、ァリール、置換ァリールが好ましぐ具体的には、イソプロピル、パーフルォ 口プロピル、 tert ブチル、パーフルオロー n ブチル、 1, 1, 1 トリフルオロー 2— メチノレ一 2 プロピノレ、 1, 1, 1, 3, 3, 3 へキサフノレ才ロ一 2—メチノレ一 2 プロピ ル、パーフルオロー tert—ブチル、フエニル、 1 ナフチル、 2, 6 ジイソプロピルフ ェ -ル、 2, 6 ジメチルフエ-ル、 2, 6 ジクロロフエ-ル、 2, 2'—ビフエ-ル等が好 ましく例示される。
[0047] また、上記一般式(1)において、 Nは窒素原子であり、 Qは酸素または硫黄原子で ある。
また、 Eは、エーテル、アルキルホスフィン、ァリールホスフィン、アルコキシホスフィ ン、ピリジン、アルキルァミン、アルキリデンァミン力も選ばれる配位性の分子である。 Eとして、具体的には、ジメチルエーテル、テトラヒドロフラン、トリメチルホスフィン、トリ フエニルホスフィン、トリメトキシホスフィン、ピリジン、ルチジン、トリエチルァミン、プロ ピリデンァミン等が好ましく例示される。
[0048] 上記一般式(1)において、 Mは、周期律表 (長周期型)第 3族力も第 12族までから 選ばれる遷移金属原子であり、好ましくは、第 4族力 第 9族までの遷移金属原子で ある。遷移金属原子として、たとえば、チタン、バナジウム、二オビゥム、タンタリウム、 モリブデン、タングステン、ルテニウム、オスミウムおよび、ロジウムなどが挙げられ、好 ましくは、タンタリウム、バナジウム、モリブデン、タングステン、レニウム、ノレテ-ゥムぉ よびオスミウム、さらに好ましくはモリブデンおよびタングステンである。また、 M力 タ ンタリウム、バナジウム、モリブデン、タングステン、レニウム、ルテニウムおよびォスミ ゥムカもなる群力 選ばれる 1種であって、 mが 1または 2であり、 nが 0または 1であつ てもよい。
[0049] また、上記一般式(1)において、 mは 1以上 3以下の整数、好ましくは 1または 2であ り、 mが 2または 3の場合、 R4は互いに結合してもよぐ具体的には、 3, 3'—ジ—tert —ブチル一 5, 5', 6, 6'—テトラメチル一 2, 2'—ビフエニル等が例示される。また、 n は 0以上 2以下の整数であり、好ましくは 0または 1である。
[0050] 上記一般式(1)のメタセシス触媒として、メタセシス反応および重合を行うことができ る触媒であれば限定はされないが、たとえば、 W(=N- 2, 6— C H ) ( = ΟΗιΒ
2 6 3 u) (O'Bu) 、 W(=N- 2, 6」Pr C H ) ( = ΟΗ¾ιι) (OCMe CF ) 、 W(=N— 2,
2 2 6 3 2 3 2
6— C H ) ( = ΟΗ¾ιι) [OCMe (CF ) ]、 W( = N— 2, 6-¾ C H ) ( = ΟΗιΒ
2 6 3 3 2 2 2 6 3 u) [OC (CF ) ]などを含む W( = N— 2, 6-R5R6C H ) ( = CHR7) (OR8) 、 W(=
3 3 2 6 3 2
N- 2, 6— C H ) ( = ΟΗ¾ιι) (S'Bu)などを含む W(=N— 2, 6— R5R6C H ) (
2 6 3 2 6 3
= CHR7) (SR9)、 W( = N-R10) ( = CHR7) (OR8)、 W( = N-R10) ( = CHR7) (S
2 2
R9) 、W( = N— 2, 6— R5R6C H ) ( = CHR7) (OR8) P (RU) 、W( = N— 2, 6— R5
2 6 3 2 3
R6C H ) ( = CHR7) (SR9) P (RU)、 W( = N-R10) ( = CHR7) (OR8) P (RU)、 W( = N-R10) ( = CHR7) (SR9) P(RU) 、 W( = CHCMe Ph) ( = N— 2, 6~Ρν C H
2 3 2 2 6 3
) (0-2, 6— CI C H ) (Py)などを含む W(=N 2, 6— R5R6C H ) ( = CHR7) (O
2 6 3 2 6 3
R8) Pyゝ W( = N-2, 6— R5R6C H ) ( = CHR7) (SR9) Pyゝ W( = N-R10) ( = CH
2 6 3 2
R7) (OR8) Pyゝ W( = N-R10) ( = CHR7) (SR9) Py (ただし、 R5、 R6は、 H、 Me
2 2
、 ¾ιιなどのアルキル基、 OMeなどのアルコキシ基またはハロゲン、 R7は ¾ιι、 CMe
2
Ph、 CH = CMe、 CH = CMePh、 CH = CPh、 Ph、 SiMeなどのアルキル基、ァリ
2 2 3
ール基、ケィ素残基、 R8は ¾ιιゝ CMe CF、 CMe(CF ) 、 C(CF )、 C H、 2~Bu
2 3 3 2 3 3 6 5
C H、 2 ιι 4, 5— Me C H、 2, 6— CI C Hなどのアルキル基、ハロゲン化ァ
6 4 2 6 2 6 3
ルキル基、ァリール基、 R9は ¾ιιゝ CMe CF、 CMe(CF ) 、 C(CF ) 、 Ph、 2~Bu
2 3 3 2 3 3
C H、 2 ιι 4, 5— Me C Hなどのアルキル基、ハロゲン化アルキル基、ァリー
6 4 2 6
ル基、 R1Qは ¾ιι、ァダマンチルなどのアルキル基、 R11は、 H、 Meなどのアルキル基、 OMeなどのアルコキシ基または Phなどのァリール基であり、 Pyは、ピリジン、ルチジ ンなどのピリジン誘導体またはトリェチルァミン、プロピリデンァミンなどのアミン誘導 体、 Meはメチル基、 'Prは iso プロピル基、 ¾ιιは tert ブチル基、 OMeはメトキシ 基、 Phはフエ-ル基を示す。)等のタングステン系アルキリデン触媒;
Mo(=N-2, 6-1PrCH) ( = CHtBu) (O'Bu) 、MO(=N 2, 6—1 PrCH) (
2 6 3 2 2 6 3
= ΟΗ ιι) (OCMe CF ) 、 Mo( = N— 2, 6」Pr C H ) ( = ΟΗ¾ιι) [OCMe(CF
2 3 2 2 6 3 3
) ] 、Mo( = N— 2, 6— iprCH) ( = CHtBu)[OC(CF) ] 、 Mo( = N— 2, 6— M
2 2 2 6 3 3 3 2
e C H ) ( = ΟΗ¾ιι) [OC(CF ) ] 、 Mo ( = CHCMe Ph) ( = N— 2, 6— MeCH
2 6 3 3 3 2 2 2 6 3
) [OC(CF ) ] ,Mo(=N-2, 6-iPrCH) ( = CHtBu) (S'Bu) 、MO( = CHCM
3 3 2 2 6 3 2
e Ph) ( = N-2, 6— iprCH)[OC(CF) ]などを含む Mo ( = N— 2, 6— R5R6C
H ) ( = CHR7) (OR8) 、 Mo( = CHCMe Ph) ( = N— 2, 6~Ρν C H ) (S'Bu)など
3 2 2 2 6 3 2 を含む Mo( = N— 2, 6— R5R6CH ) ( = CHR7) (SR9) 、 Mo ( = CHSiMe ) ( = N
6 3 2 3
-Ad) (0-2, 6— C H )などを含む Mo ( = N— R10) ( = CHR7) (OR8) 、 Mo(
2 6 3 2 2
= N-R10) ( = CHR7) (SR9) 、 Mo( = N-2, 6— R5R6C H ) ( = CHR7) (OR8) P(
2 6 3 2
R11) 、 Mo( = N-2, 6— R5R6C H ) ( = CHR7) (SR9) P(RU) 、 Mo( = N— R10) (
3 6 3 2 3
= CHR7) (OR8) P(RU) 、 Mo( = N-R10) ( = CHR7) (SR9) P(RU) 、 Mo( = N—
2 3 2 3
2, 6— R5R6C H ) ( = CHR7) (OR8) Pyゝ Mo( = N 2, 6— R5R6C H ) ( = CHR7) (SR9) Pyゝ Mo( = N-R10) ( = CHR7) (OR8) Pyゝ Mo( = N-R10) ( = CHR7) (SR9
2 2
) Py (ただし、 R5、 R6は、 H、 ipr、 Me、 などのアルキル基、 OMeなどのアルコキシ
2
基またはハロゲン、 R7は ¾ιι、 CMe Ph、 CH = CMe、 CH = CMePh、 CH = CPh
2 2 2
、 Ph、 SiMeなどのアルキル基、ァリール基、ケィ素残基、 R8は ¾ιι、 CMe CF、 CM
3 2 3 e(CF )、 C(CF ) 、 C H、 2-lBuC H、 2— ιι— 4, 5— Me C Hなどのァノレキ
3 2 3 3 6 5 6 4 2 6 2
ル基、ハロゲン化アルキル基、ァリール基であり、二つの R8が互いに結合していても よい。 R9は ιιゝ CMe CF、 CMe(CF )、 C(CF ) 、 Ph、 2-lBuC H、 2— ιι 4
2 3 3 2 3 3 6 4
, 5-Me C Hなどのアルキル基、ハロゲン化アルキル基、ァリール基であり、二つの
2 6 2
R9が互いに結合していてもよい。 R1Qは ¾11、ァダマンチルなどのアルキル基、 R11は、 H、 Meなどのアルキル基、 OMeなどのアルコキシ基または Phなどのァリール基であ り、 Pyは、ピリジン、ルチジンなどのピリジン誘導体またはトリェチルァミン、プロピリデ ンァミンなどのアミン誘導体、 Meはメチル基、 'Prは iso プロピル基、 ¾ιιは tert—ブ チル基、 OMeはメトキシ基、 Phはフエ二ル基を示す。)等のモリブデン系アルキリデ ン触媒;
V( = N-2, 6-R5R6CH ) ( = CHR7) (OR8)、 V( = N— 2, 6— R5R6CH ) ( = CH
6 3 6 3
R7) (SR9)、 V( = N— R10) ( = CHR7) (OR8)、 V( = N— R10) ( = CHR7) (SR9), V(
2
= N-2, 6-R5R6CH)( = CHR7) (OR8)P(RU) 、V( = N— 2, 6—R5R6CH)(
6 3 3 6 3
= CHR7) (SR9)P(RU) 、 V( = N-R10) ( = CHR7) (OR8)P(RU) 、 V( = N-R10) (
3 3
= CHR7) (SR9)P(RU) 、 V( = N-2, 6— R5R6C H ) ( = CHR7) (OR8)Pyゝ V(=
3 6 3
N-2, 6— R5R6C H ) ( = CHR7) (SR9) Pyゝ V( = N-R10) ( = CHR7) (OR8)Py、
6 3 2
V( = N-R10) ( = CHR7) (SR9) Py (ただし、 R5、 R6は、 H、 Me、 などのアル
2
キル基、 OMeなどのアルコキシ基またはハロゲン、 R7は ¾ιι、 CMe Ph、 CH = CMe
2 2
、 CH = CMePh、 CH = CPh、 Ph、 SiMeなどのアルキル基、ァリール基、ケィ素残
2 3
基、 R8は ¾ιιゝ CMe CF、 CMe(CF )、 C(CF )、 C H、 2-lBuC H、 2— ιι— 4
2 3 3 2 3 3 6 5 6 4
, 5-Me C Hなどのアルキル基、ハロゲン化アルキル基、ァリール基、 R9は ¾ιι、 C
2 6
Me CF、 CMe (CF ) 、 C(CF ) 、 Ph、 2-lBuC H、 2— ιι— 4, 5— Me C Hな
2 3 3 2 3 3 6 4 2 6 どのアルキル基、ハロゲン化アルキル基、ァリール基、 R1Qは ¾ιι、ァダマンチルなど のアルキル基、 R11は、 H、 Meなどのアルキル基、 OMeなどのアルコキシ基または Ph などのァリール基であり、 Pyは、ピリジン、ルチジンなどのピリジン誘導体またはトリエ チルァミン、プロピリデンァミンなどのアミン誘導体、 Meはメチル基、 ^ι:は iso—プロ ピル基、 ¾ιιは tert—ブチル基、 OMeはメトキシ基、 Phはフエ-ル基を示す。)等の バナジウム系アルキリデン触媒;
Os( = N— 2, 6-MeCH) (CH lBu) (O'Bu)等を含む Os( = N— 2, 6— R5R6C
2 6 3 2 2 2 6
H ) ( = CHR7) (OR8) 、 Os( = N-2, 6— R5R6C H ) ( = CHR7) (SR9) 、 Os( = N
3 2 6 3 2
-R10) ( = CHR7) (OR8) 、 Mo( = N-R10) ( = CHR7) (SR9) 、 Os( = N— 2, 6— R5
2 2
R6C H ) ( = CHR7) (OR8) P(RU)、 Os( = N— 2, 6— R5R6C H ) ( = CHR7) (SR9
6 3 2 3 6 3
) P(RU) 、 Os( = N-R10) ( = CHR7) (OR8) P(RU)、 Os( = N-R10) ( = CHR7) (
2 3 2 3
SR9) P(RU)、 Os( = N-2, 6— R5R6C H ) ( = CHR7) (OR8) Py、 Os( = N— 2, 6
2 3 6 3 2
— R5R6C H ) ( = CHR7) (SR9) Py、 Os( = N— R6) ( = CHR7) (OR8) Py、 Os( = N
6 3 2 2
-R10) ( = CHR7) (SR9) Py (ただし、 R5、 R6は、 H、 'Pr, Me、 などのアルキル基
2
、 OMeなどのアルコキシ基またはハロゲン、 R7は ¾ιι、 CMe Ph、 CH = CMe、 CH
2 2
= CMePh、 CH = CPh、 Ph、 SiMeなどのアルキル基、ァリール基、ケィ素残基、 R
2 3
8は 11ゝ CMe CF、 CMe(CF ) 、 C(CF ) 、 C H、 2-lBuC H、 2— ιι— 4, 5—
2 3 3 2 3 3 6 5 6 4
Me C Hなどのアルキル基、ハロゲン化アルキル基、ァリール基、 R9は ¾ιι、 CMe C
2 6 2
F、 CMe(CF )、 C(CF )、 Ph、 2-lBuC H、 2— ιι— 4, 5— Me C Hなどのァ
3 3 2 3 3 6 4 2 6
ルキル基、ハロゲン化アルキル基、ァリール基、 R1Qは ¾ιι、ァダマンチルなどのアル キル基、 R11は、 H、 Meなどのアルキル基、 OMeなどのアルコキシ基または Phなどの ァリール基であり、 Pyは、ピリジン、ルチジンなどのピリジン誘導体またはトリェチルァ ミン、プロピリデンァミンなどのアミン誘導体、 Meはメチル基、 ^ι:は iso—プロピル基、 ¾11は tert—ブチル基、 OMeはメトキシ基、 Phはフエ-ル基を示す。)等のオスミウム 系アルキリデン触媒;および
Ru( = CHCH = CPh ) (PPh ) CI (但し、式中の Phはフエ-ル基を示す。)等のル
2 3 2 2
テ-ゥム系アルキリデン触媒を挙げることができる。
また、(C)有機遷移金属錯体化合物として、メタセシス触媒の前駆体としての有機 遷移金属錯体と助触媒としてのルイス酸との組み合せカゝらなるメタセシス触媒も挙げ られる。たとえば、 W( = N-2, 6-Me CH ) (O'Bu) CIなどを含む W( = N— 2, 6 Me C H ) (thf) (O'Bu) X、 Mo ( = N— 2, 6」Pr C H ) (thf) (O'Bu) X、 V(
2 6 3 2 2 2 6 3 2 2
= N- 2, 6— Me C H ) [OC (CF ) ]C1などを含む V( = N— 2, 6— Me C H ) (θ'
2 6 3 3 3 2 2 6 3
Bu)X、 Os ( = N- 2, 6」Pr C H ) (O'Bu) X、 W( = N— 2, 6— Me C H ) (thf)
2 2 6 3 2 2 2 6 3
(O'Bu) R、Mo (=N— 2, 6」Pr C H ) (thf) (O'Bu) R、V (=N— 2, 6— Me C
2 2 2 6 3 2 2 2
H ) (PR ) (O'B^R、 Os (=N—2, 6— C H ) (O'Bu) R等の有機遷移金属
6 3 3 2 2 6 3 2 2
錯体化合物とトリメチルアルミニウム、ジェチルアルミニウムクロリド、メチルアルミノキ サン等の有機アルミニウム化合物、テトラメチル錫等の有機錫化合物等の助触媒が 挙げられる。ただし、上記式中の ^ι:は iso プロピル基を示し、 ¾ιιは tert—ブチル 基を示し、 Rはアルキル基、 Xはハロゲン、 thfはテトラヒドロフランを示す。さらに、これ らの開環メタセシス重合触媒は、単独または、二種以上を組み合わせて用いてもよい
[0052] また、本発明の (C)有機遷移金属錯体化合物の製造方法にお!ヽては、塩基性ィ匕 合物および (B)プロトン供与性を有する化合物を用いて (A)電子吸引性原子団を有 する有機遷移金属錯体化合物の電子吸引性原子団を、より電子供与性の強い原子 団に変換することができる。この方法では、プロトン供与性を有する化合物をアルカリ 金属塩とする必要がないため、アルカリ金属を含む化合物を用いずに (C)有機遷移 金属錯体ィ匕合物を得ることができる。このため、(C)有機遷移金属錯体化合物中の アルカリ金属の濃度を低減させることができる。
[0053] たとえば上記一般式(1)で表わされるメタセシス触媒において、アルカリ金属の含 有量が、たとえば lOppm以下、好ましくは 5ppm以下、さらに好ましくは 2ppm以下で あってもよい。
[0054] また、メタセシス触媒中のアルカリ金属の含有量は、たとえば Oppm以上とする。ま た、アルカリ金属の含有量は、アルカリ金属の影響による副反応の発生をさらに確実 に抑制する観点で、少ない方が好ましぐ本発明の目的を損なわない範囲で含まれ ていてもよいが、たとえば 0. 00 lppm程度含まれていてもよい。
[0055] ここで、従来の製造方法で得られるメタセシス触媒にお!、ては、メタセシス触媒中の アルカリ金属はアルカリ金属塩として含有されて 、るため、アルカリ金属の含有量が 多すぎると、上述したように、メタセシス重合反応時に反応基質と副反応がおこり、生 成するポリマー物性に影響を与える可能性が高くなる。また、アルカリ金属含有量が 多すぎるメタセシス触媒を用いて生成したポリマーの水素添加反応を行うと、ポリマー 中に残留するアルカリ金属塩が水素添加触媒と反応して変質したり分解したりして正 常な水素添加反応を阻害する可能性が高くなる。
[0056] メタセシス触媒中のアルカリ金属濃度を上記範囲とすることにより、メタセシス重合 反応時や、その後の水素添加時における生成物の品質の低下をさらに確実に抑制 することができる。
[0057] なお、本発明において、アルカリ金属とは、リチウム、ナトリウムおよびカリウムのこと であり、アルカリ金属の含有量とは、メタセシス触媒中の上記アルカリ金属の合計量 である。
[0058] また、アルカリ金属を含む化合物を用いずに上記一般式(1)で表わされるメタセシ ス触媒を得ることができるため、メタセシス触媒中に、不可避的に含まれるものを除き アルカリ金属が実質的に含まれないようにすることも可能となる。具体的には、メタセ シス触媒中のアルカリ金属濃度を誘導結合プラズマ質量分析法 (ICP— MS)におけ る検出限界未満、さらに具体的には lOppb未満とすることができる。これにより、メタ セシス重合反応時や、その後の水素添加時における生成物の品質の低下をより一 層確実に防ぐことができる。
[0059] 次に、上記一般式(1)に示したメタセシス触媒を用いるメタセシス重合体およびそ の製造方法にっ 、て説明する。
本発明において、開環メタセシス重合体は、上記一般式(1)に示したメタセシス触 媒の存在下において、環状ォレフィンを重合して得られる。
また、本発明における開環メタセシス重合体の製造方法は、上記一般式(1)に示し たメタセシス触媒の存在下にお ヽて、環状ォレフィンを重合する工程を含む。
[0060] たとえば、本発明にお 、て、上記一般式(1)に示したメタセシス触媒を用いて下記 一般式(2)または下記一般式(3)で表される環状ォレフィンを重合し、開環メタセシ ス重合体を得ることができる。また、メタセシス触媒の前駆体としての上記の有機遷移 金属錯体と助触媒としてのルイス酸との組み合せ力 なるメタセシス触媒を用いること ちでさる。 [0061] [化 4]
Figure imgf000021_0001
[0062] (上記一般式 (2)中、 R"〜R15は、それぞれ独立に、水素、炭素原子数 1以上 20以 下のアルキル基、炭素原子数 6以上 20以下のァリール基、ハロゲン、炭素原子数 1 以上 20以下のハロゲンィ匕アルキル基、炭素原子数 1以上 20以下のアルコキシ基、 炭素原子数 2以上 20以下のアルコキシアルキル基、炭素原子数 2以上 20以下のァ ルコキシカルボニル基、炭素原子数 6以上 20以下のァリールォキシカルボニル基、ヒ ドロキシ基、炭素原子数 1以上 20以下のヒドロキシアルキル基、酸無水物、シァノ基、 およびケィ素含有基力 なる群力 選択される基であり、 R12〜R15が互いに結合して 環構造を形成していてもよい。 X1は、— O—、— S―、— NR16—、 -PR16- ,および -CR16—から (R16は水素、炭素原子数 1以上 20以下のアルキル基を表す。)選ば
2
れ、同一でも異なってもよい。 pは 0または 1以上 3以下の整数を表す。 )
[0063] [化 5]
Figure imgf000021_0002
[0064] (上記一般式 (3)中、 R1 R1Sは、それぞれ独立に、水素、炭素原子数 1以上 20以 下のアルキル基、炭素原子数 6以上 20以下のァリール基、ハロゲン、炭素原子数 1 以上 20以下のハロゲンィ匕アルキル基、炭素原子数 1以上 20以下のアルコキシ基、 炭素原子数 2以上 20以下のアルコキシアルキル基、炭素原子数 2以上 20以下のァ ルコキシカルボニル基、炭素原子数 6以上 20以下のァリールォキシカルボニル基、ヒ ドロキシ基、炭素原子数 1以上 20以下のヒドロキシアルキル基、酸無水物、シァノ基、 およびケィ素含有基力 なる群力 選択される基であり、 R17〜R18が互いに結合して 環構造を形成していてもよい。 X2は、 O 、 一 S 、 一 NR19—、 -PR19- ,および -CR19—から (R19は水素、炭素原子数 1以上 20以下のアルキル基を表す。)選ば
2
れ、同一でも異なってもよい。 qは 0または 1以上 3以下の整数を表す。 )
[0065] 本発明にお 、て、メタセシス触媒を用いて重合される上記一般式(2)または上記一 般式(3)で表される環状ォレフィンとして、 pまたは qが 0であるビシクロヘプトェンの誘 導体、 pまたは qが 1であるテトラシクロドデセンの誘導体、 pまたは qが 2であるへキサ シクロへプタデセンの誘導体、 pまたは qが 3であるォクタシクロドコセンの誘導体等が 挙げられる。
[0066] 以下、上記一般式 (2)および (3)をさらに具体的に説明する。
まず、上記一般式 (2)を説明する。
[0067] 上記一般式(2)における R12〜R15として、さらに具体的には、以下のものが挙げら れる。
R12〜R15として、たとえば水素が挙げられる。
また、炭素原子数 1以上 20以下のアルキル基として、メチル、ェチル、プロピル、ィ ソプロピル、 n—ブチル、 tert ブチル、シクロへキシル、メンチルなどが挙げられる。 炭素原子数 6以上 20以下のァリール基として、フエ-ル、ナフチル、メチルなどのァ ルキル置換ァリールが挙げられる。
ハロゲンとして、塩素原子、臭素原子、沃素原子、フッ素原子などが挙げられる。 炭素原子数 1以上 20以下のハロゲンィ匕アルキル基として、フルォロメチル、クロロメ チル、ブロモメチル、ジフルォロメチル、ジクロロメチル、ジブロモメチル、トリフルォロ メチル、トリクロロメチル、トリブロモメチルなどが挙げられる。
さらに、炭素原子数 1以上 20以下のアルコキシ基として、メトキシ、エトキシ、イソプ ロポキシ、 n ブトキシ、 tert ブトキシ、メントキシ等が挙げられる。
炭素原子数 2以上 20以下のアルコキシアルキル基として、メトキシメチル、メトキシ ェチル、 tert ブトキシメチル、 tert ブトキシェチル、メトキシメントール、メチルグル コース等のアルコキシ糖類等が挙げられる。 炭素原子数 2以上 20以下のアルコキシカルボニル基として、メトキシカルボニル、 エトキシカルボニル、 n プロポキシカルボニル、イソプロポキシカノレボニノレ、 n ブト キシカルボニル、 tert ブトキシカルボニル、 1ーメチルシクロペンチルォキシカルボ 二ノレ、 1ーェチノレシクロペンチノレォキシカノレボニノレ、 1ーェチノレノノレボニノレオキシカノレ ボ -ル、 1ーェチルァダマンチルォキシカルボ-ル、シクロへキシルォキシカルボ- ル、テトラヒドロピラン 2—ィルォキシカルボニル、テトラヒドロフラン 2—ィルォキシ カルボニル、 1 エトキシエトキシカルボニル、 1 ブトキシエトキシカルボニル等が挙 げられる。
炭素原子数 6以上 20以下のァリールォキシカルボニル基として、フエノキシカルボ -ル等が挙げられる。
また、ヒドロキシ基が挙げられる。
炭素原子数 1以上 20以下のヒドロキシアルキル基として、ヒドロキシメチル、ヒドロキ シェチル、ヒドロキシプロピル、ヒドロキシブチル、ヒドロキシへキシル、メントールや、 グルコース等の糖類を含むヒドロキシアルキル基等が挙げられる。
酸無水物として、無水カルボン酸等が挙げられる。
シァノ基として、二トリル、シァノメチルまたはシァノエチル等の炭素原子数 1以上 20 以下のシァノ基等が挙げられる。
また、ケィ素含有基として、トリメチルシリル、トリェチルシリル、トリプロビルシリル、ト リイソプロビルシリル、トリブチルシリル、トリイソブチルシリル、トリー tert—ブチルシリ ル、トリペンチルシリル、トリへキシルシリル等の炭素原子数 3以上 20以下のトリアル キルシリル基;
トリメチルシリルォキシ、トリェチルシリルォキシ、トリプロビルシリルォキシ、トリイソプロ ビルシリルォキシ、トリブチルシリルォキシ、トリイソブチルシリルォキシ、トリー tert— ブチルシリルォキシ、トリペンチルシリルォキシ、トリへキシルシリルォキシ等の炭素原 子数 3以上 20以下のトリアルキルシリルォキシ基;
トリメチルシリルォキシカルボニル、トリェチルシリルォキシカルボニル、トリプロビルシ リルォキシカルボニル、トリブチルシリルォキシカルボニル、トリイソブチルシリルォキ シカルボニル、トリー tert—ブチルシリルォキシカルボニル、トリペンチルシリルォキシ カルボニル、トリへキシルシリルォキシカルボ-ル等の炭素原子数 3以上 20以下のト リアルキルシリルォキシカルボ-ル基等が挙げられる。
[0068] また、上記一般式(2)において、 R12〜R15が互いに結合して環構造を形成していて もよぐたとえば、シクロへキシル環を形成できる環状のアルキル構造、ラタトン環を形 成できる環状のエステル構造やフエニルマレイミド環を形成できる環状のイミド構造、 無水カルボン酸を形成できる酸無水物構造などが挙げられる。
[0069] 上記一般式(2)において、さらに、 X1は一 O 、 一 S 、 一 NR16—、 一 PR16—、お よび CR16—力 選ばれる。ただし、 R16は水素、炭素原子数 1以上 20以下のアル
2
キル基を表す。 pは 0または 1以上 3以下の整数であり、好ましくは 0または 1である。ま た pが 1以上 3以下の整数の場合、 X1は同一でも異なってもよい。 NR16—、 -PR16 一、および CR16—の R16として、水素、炭素原子数 1以上 20以下のメチル、ェチル
2
、 n—プロピル、イソプロピル、 n—ブチル、 tert—ブチル、シクロへキシル、またはメン チルのアルキル基が具体例として挙げられる。
[0070] 本発明における上記一般式(2)の具体例として、ビシクロ [2. 2. 1]ヘプトー 2 ェ ンを基本骨格としてのビシクロヘプトェン類;
テトラシクロ [4. 4. 0. I2'5. 1"°]— 3 ドデセンを基本骨格としてのテトラシクロドデセ ン類;
へキサシクロ [4. 4. 0. I2'5. 17'1(>]—4一へプタデセンを基本骨格としてのへキサシク 口へプタデセン類;
ォクタシクロ [8. 8. 0. I2'9. I4'7. I11'18. I13'16. O3'8. 012'17]— 5—ドコセンを基本骨格と してのォクタシクロドコセン類の環状ォレフィンが挙げられる。
[0071] また、上記一般式 (2)に記載の R12〜R15の置換基として、炭素原子数 1以上 20以 下のアルキル基、炭素原子数 6以上 20以下のァリール基、ハロゲン、炭素原子数 1 以上 20以下のハロゲンィ匕アルキル基、炭素原子数 1以上 20以下のアルコキシ基、 炭素原子数 2以上 20以下のアルコキシアルキル基、炭素原子数 2以上 20以下のァ ルコキシカルボニル基、炭素原子数 6以上 20以下のァリールォキシカルボニル基、ヒ ドロキシ基、炭素原子数 1以上 20以下のヒドロキシアルキル基、酸無水物またはシァ ノ基力 選ばれた置換基を有する環状ォレフィンであり、 X1が— 0—、— S―、 -NR1 6—、—PR16—、および—CR16—から (R16は水素、炭素原子数 1以上 20以下のアル
2
キル基を表す)選ばれ、上記のうち、ビシクロヘプトェン類のメチレン(一 CH—)をメ
2 チルメチレン(一 CH (メチル)一)に代えた 7—メチルビシクロヘプトェン類、メチレン( -CH一)を 7—ォキサに代えた 7—ォキサビシクロヘプトェン類、メチレン(一CH—
2 2
)をチア(一 S )に代えて 7—チアビシクロヘプトェン類、メチレン(一 CH )をァザ(
2
NH )、メチルァザ(一 N (メチル)一)に代えて 7—ァザビシクロヘプトェン類、 7— メチル 7—ァザビシクロヘプトェン類、メチレン(一 CH—)をホスファ(一PH )、メ
2
チルホスファ(一P (メチル)一)に代えて 7—ホスフアビシクロヘプトェン類、 7—メチル 7—ホスフアビシクロヘプトェン類などが例示できる。
[0072] また、 R12〜R15が互いに結合して環構造を形成していてもよぐたとえば、シクロへキ シノレ環を形成でさる環状のァノレキノレ構造として、 1, 4, 4a, 5, 6, 7, 8, 8a—才クタヒ ドロー 1, 4 メタノーナフタレンなどが挙げられ、ラタトン環を形成できる環状のエステ ル構造として、たとえば、 4—ォキサ一トリシクロ [5. 2. 1. 02'6]— 8 デセン一 3—ォ ンまたは 4, 10 ジォキサ一トリシクロ [5. 2. 1. 02'6]— 8 デセン一 3—オンなどが 挙げられ、フエニルマレイミド環を環状のイミド構造として、たとえば、 4ーシクロへキシ ル一 4 ァザ一トリシクロ [5. 2. 1. 02'6]— 8 デセン一 3, 5 ジオン、 4 シクロへキ シルー 4 ァザ— 10—ォキサ—トリシクロ [5. 2. 1. 02'6]— 8 デセン— 3, 5 ジォ ンなどが挙げられ、さらに、無水カルボン酸を形成できる酸無水物構造として、たとえ ば、 4—ォキサートリシクロ [5. 2. 1. 02'6]— 8 デセン一 3, 5 ジオンまたは 4, 10 —ジォキサ一トリシクロ [5. 2. 1. 02'6]— 8 デセン一 3, 5 ジオン、 4—ォキサ 10 —チア一トリシクロ [5. 2. 1. 02'6]— 8 デセン一 3, 5 ジオンなどが挙げられる。
[0073] さらに、テトラシクロドデセン類、へキサシクロへプタデセン類、またはォクタシクロド コセン類もビシクロヘプトェン類と同様に、たとえば、これらの X1のメチレンをメチルメ チレン((一CH (メチル)一)に代えてメチルテトラシクロドデセン類、メチルへキサシク 口へプタデセン類、またはメチルォクタシクロドコセン類、メチレンをォキサ(ー0—)に 代えてォキサテトラシクロドデセン類、ォキサへキサシクロへプタデセン類、またはォ キサォクタシクロドコセン類、メチレンをチア(一 S—)に代えてチアテトラシクロドデセ ン類、チアへキサシクロへプタデセン類、またはチアォクタシクロドコセン類、ァザ(一 NH-)またはメチルァザ(-N (メチル) -)に代えてァザテトラシクロドデセン類また はメチルァザテトラシクロドデセン類、ァザへキサシクロへプタデセン類またはメチル ァザへキサシクロへプタデセン類、ァザへキサシクロへプタデセン類またはメチルァ ザへキサシクロへプタデセン類、さらに、ホスファ(一PH—)、またはメチルホスファ( — P (メチル)一)に代えてホスファテトラシクロドデセン類、メチルホスファテトラシクロ ドデセン類を挙げることができ、 X1は同一でも異なってもよい。
次に、上記一般式 (3)をさらに具体的に説明する。
上記一般式(3)における R17〜R18として、さらに具体的には、以下のものが挙げら れる。
R17〜R18として、たとえば水素が挙げられる。
また、炭素原子数 1以上 20以下のアルキル基として、たとえば、メチル、ェチル、プ 口ピル、イソプロピル、 n—ブチル、 tert—ブチル、シクロへキシル、メンチルなどが挙 げられる。
炭素原子数 6以上 20以下のァリール基として、たとえば、フエニル、ナフチル、また はメチルなどのアルキル置換ァリールなどが挙げられる。
ハロゲンとして、塩素原子、臭素原子、沃素原子、フッ素原子などが挙げられる。 炭素原子数 1以上 20以下のハロゲンィ匕アルキル基として、たとえば、フルォロメチ ノレ、クロロメチノレ、ブロモメチノレ、ジフノレオロメチノレ、ジクロロメチノレ、ジブ口モメチノレ、 ト リフルォロメチル、トリクロロメチル、トリブロモメチルなどが挙げられる。
さらに、炭素原子数 1以上 20以下のアルコキシ基として、たとえば、メトキシ、ェトキ シ、イソプロポキシ、 n—ブトキシ、 tert—ブトキシ、メントキシなどが挙げられる。
炭素原子数 2以上 20以下のアルコキシアルキル基として、たとえば、メトキシメチル 、メトキシェチル、 tert—ブトキシメチル、 tert—ブトキシェチル、メトキシメントール、メ チルグルコース等のアルコキシ糖類などが挙げられる。
炭素原子数 2以上 20以下のアルコキシカルボニル基として、たとえば、メトキシカル ボニノレ、エトキシカノレボニノレ、 n—プロポキシカノレボニノレ、イソプロポキシカノレボニノレ、 n—ブトキシカルボニル、 tert—ブトキシカルボニル、 1ーメチルシクロペンチルォキシ カノレボニノレ、 1ーェチノレシクロペンチノレォキシカノレボニノレ、 1ーェチノレノノレボニノレオ キシカルボ-ル、 1ーェチルァダマンチルォキシカルボ-ル、シクロへキシルォキシ カルボニル、テトラヒドロピラン 2—ィルォキシカルボニル、テトラヒドロフラン 2—ィ ルォキシカルボニル、 1 エトキシエトキシカルボニル、 1 ブトキシエトキシカルボ二 ルなどが挙げられる。
炭素原子数 6以上 20以下のァリールォキシカルボニル基として、たとえば、フエノキ シカルボ-ルなどが挙げられる。
また、ヒドロキシ基が挙げられる。
炭素原子数 1以上 20以下のヒドロキシアルキル基として、たとえば、ヒドロキシメチル 、ヒドロキシェチル、ヒドロキシプロピル、ヒドロキシブチル、ヒドロキシへキシルまたはメ ントール等や、グルコース等の糖類を含むヒドロキシアルキル基が挙げられる。
さらに、酸無水物として、たとえば、無水カルボン酸などが挙げられる。
シァノ基として、たとえば、二トリル、シァノメチルまたはシァノエチル等の炭素原子 数 1以上 20以下のシァノ基が挙げられる。
また、ケィ素含有基として、たとえば、トリメチルシリル、トリェチルシリル、トリプロピル シリル、トリイソプロビルシリル、トリブチルシリル、トリイソブチルシリル、トリ— tert—ブ チルシリル、トリペンチルシリル、トリへキシルシリル等の炭素原子数 3以上 20以下の トリアルキルシリル基;
トリメチルシリルォキシ、トリェチルシリルォキシ、トリプロビルシリルォキシ、トリイソプロ ビルシリルォキシ、トリブチルシリルォキシ、トリイソブチルシリルォキシ、トリー tert— ブチルシリルォキシ、トリペンチルシリルォキシ、トリへキシルシリルォキシ等の炭素原 子数 3以上 20以下のトリアルキルシリルォキシ基;
トリメチルシリルォキシカルボニル、トリェチルシリルォキシカルボニル、トリプロビルシ リルォキシカルボニル、トリブチルシリルォキシカルボニル、トリイソブチルシリルォキ シカルボニル、トリー tert—ブチルシリルォキシカルボニル、トリペンチルシリルォキシ カルボニル、トリへキシルシリルォキシカルボ-ル等の炭素原子数 3以上 20以下のト リアルキルシリルォキシカルボ-ル基が挙げられる。
また、 R17〜R18が互いに結合して環構造を形成していてもよぐたとえば、シクロへキ シル環を形成できる環状のアルキル構造、ラタトン環を形成できる環状のエステル構 造やフエニルマレイミド環を形成できる環状のイミド構造、無水カルボン酸を形成でき る酸無水物構造などが挙げられる。
[0076] 上記一般式(3)において、さらに、 X2は一 O 、 一 S 、 一 NR19 、 一 PR19 、お よび CR19—力 選ばれる。ただし、 R19は水素、炭素原子数 1以上 20以下のアル
2
キル基を表す。 qは 0または 1以上 3以下の整数であり、好ましくは 0または 1であり、ま た qが 1以上 3以下の整数の場合、 X2は同一でも異なってもよい。 NR19—、 -PR19 一、または— CR19—の R19として、たとえば、水素、炭素原子数 1以上 20以下のメチ
2
ル、ェチル、 n—プロピル、イソプロピル、 n—ブチル、 tert—ブチル、シクロへキシル 、またはメンチルのアルキル基が挙げられる。 X2は、好ましくは— O—、— S または -CH一である。
2
[0077] 本発明における上記一般式(3)の具体例として、ビシクロ [2. 2. 1]ヘプター 2, 5 ジェンを基本骨格としてのビシクロへブタジエン類;
テトラシクロ [4. 4. 0. I2'5. 17,1°] - 3, 7 ドデカジエンを基本骨格としてのテトラシク ロドデセジェン類;
へキサシクロ [4. 4. 0. I2'5. 17,1°] -4, 11—ヘプタデカジエンを基本骨格としてのへ キサシクロへプタデカジエン類;
ォクタシクロ [8. 8. 0. I2'9. I4'7. I11'18. I13'16. O3'8. 012'17]— 5, 14 ドコセジェンを基 本骨格としてのォクタシクロドコカジエン類の環状ォレフィンが挙げられる。
[0078] また、上記一般式 (3)に記載の R17〜R18の置換基として、水素、炭素原子数 1以上 20以下のアルキル基、炭素原子数 6以上 20以下のァリール基、ハロゲン、炭素原子 数 1以上 20以下のハロゲンィ匕アルキル基、炭素原子数 1以上 20以下のアルコキシ 基、炭素原子数 2以上 20以下のアルコキシアルキル基、炭素原子数 2以上 20以下 のアルコキシカルボ-ル基、炭素原子数 6以上 20以下のァリールォキシカルボ-ル 基、ヒドロキシ基、炭素原子数 1以上 20以下のヒドロキシアルキル基、酸無水物また はシァノ基力 選ばれた置換基を有する環状ォレフィンであり、 X2が— O—、— S—、 — NR19—、 -PR19- ,および— CR19—から (R19は水素、炭素原子数 1以上 20以下
2
のアルキル基を表す)選ばれ、上記のうち、ビシクロへブタジエン類のメチレン(一 CH )をメチルメチレン( CH (メチル) )に代えた 7—メチルビシクロへブタジエン類 、メチレン(一CH—)を 7—ォキサに代えた 7—ォキサビシクロへブタジエン類、メチ
2
レン( CH )をチア( S )に代えて 7—チアビシクロへブタジエン類、メチレン(
2
-CH一)をァザ( NH )、メチルァザ(—N (メチル)一)に代えて 7—ァザビシクロ
2
へブタジエン類、 7—メチルー 7—ァザビシクロへブタジエン類、メチレン(一CH—)
2 をホスファ(一PH )、メチルホスファ(一P (メチル)一)に代えて 7—ホスフアビシクロ へブタジエン類、 7—メチルー 7—ホスフアビシクロへブタジエン類などが例示できる。
[0079] また、 R17〜R18が互いに結合して環構造を形成していてもよぐたとえば、シクロへキ シル環を形成できる環状のアルキル構造として、 1, 4, 5, 6, 7, 8 へキサヒドロー 1 , 4 メタノーナフタレンなどが挙げられ、ラタトン環を形成できる環状のエステル構造 として、たとえば、 4—ォキサ一トリシクロ [5. 2. 1. 02'6]— 2, 8 デカジエン一 3—ォ ンまたは 4, 10 ジォキサートリシクロ [5. 2. 1. 02'6]— 2, 8 デカジエン一 3—オン などが挙げられ、フエ-ルマレイミド環を環状のイミド構造として、たとえば、 4ーシクロ へキシル 4 ァザ一トリシクロ [5. 2. 1. 02'6]— 2, 8 デカジエン一 3, 5 ジオン、 4 シクロへキシル 4 ァザ一 10—ォキサ一トリシクロ [5. 2. 1. 02'6]— 2, 8 デ カジエンー 3, 5—ジオンなどが挙げられ、さらに、無水カルボン酸を形成できる酸無 水物構造として、たとえば、 4—ォキサートリシクロ [5. 2. 1. 02,6] - 2, 8 デカジエ ン一 3, 5 ジオンまたは 4, 10 ジォキサ一トリシクロ [5. 2. 1. 02'6]— 2, 8 デカジ ェン一 3, 5 ジオン、 4—ォキサ 10 チア一トリシクロ [5. 2. 1. 02'6]— 2, 8 デ カジエンー 3, 5—ジオンなどが挙げられる。
[0080] さらに、テトラシクロドデカジエン類、へキサシクロへプタデカジエン類、またはォクタ シクロドコカジエン類もビシクロへブタジエン類と同様に、たとえば、これらの X2のメチ レンをメチルメチレン((一CH (メチル) -)に代えてメチルテトラシクロドデカジエン類 、メチルへキサシクロへプタデカジエン類、またはメチルォクタシクロドコカジエン類、 メチレンをォキサ(一 O )に代えてォキサテトラシクロドデカジエン類、ォキサへキサ シクロへプタデカジエン類、またはォキサォクタシクロドコカジエン類、メチレンをチア (-S -)に代えてチアテトラシクロドデカジエン類、チアへキサシクロへプタデカジエ ン類、またはチアォクタシクロドコカジエン類、ァザ(一 NH )またはメチルァザ(一N (メチル)一)に代えてァザテトラシクロドデカジエン類またはメチルァザテトラシクロド デカジエン類、ァザへキサシクロへプタデカジエン類またはメチルァザへキサシクロ ヘプタデカジエン類、ァザへキサシクロへプタデカジエン類またはメチルァザへキサ シクロへプタデカジエン類、さらに、ホスファ(一PH— )、またはメチルホスファ(一P ( メチル)一)に代えてホスファテトラシクロドデカジエン類、メチルホスファテトラシクロド デカジエン類を挙げることができ、 X2は同一でも異なってもよい。
[0081] さらに、重合に用いられるその他の環状ォレフィンとして、たとえば、ジシクロペンタ ジェン、シクロプロペン、シクロブテン、シクロペンテン、シクロヘプテン、シクロ才クテ ン等のシクロォレフィン類;
シクロへキサー 1, 4ージェン、シクロへキサー 1, 3—ジェン、シクロオタター 1, 5—ジ ェン、シクロォクタ一 1, 4—ジェン、シクロォクタ一 1, 3—ジェン等のシクロジェン類; シクロォクタ一 1, 3, 5—トリェン、シクロォクタ一 1, 3, 6—トリェン等のシクロトリェン 類等が挙げられる。
[0082] 本発明にお 、て、開環メタセシス重合体は、上記一般式(2)、上記一般式(3)およ びシクロォレフィン類、シクロジェン類、またはシクロトリェン類などの環状ォレフィン のうち、少なくとも 1種類の環状ォレフィンを重合したもの、または、これらのうち少なく とも 2種類の環状ォレフィンと共重合したものであってもよい。
[0083] また、上記一般式(1)で表されるメタセシス触媒を用いる重合において環状ォレフィ ン以外のモノマーとして、アセチレンとその誘導体およびジアセチレン誘導体を単独 または環状ォレフィンと共重合してもよぐさらに、メタセシス触媒の前駆体としての上 記の有機遷移金属錯体と助触媒としてのルイス酸との組み合せカゝらなるメタセシス触 媒を用いることちできる。
[0084] 本発明の上記一般式(1)で表されるメタセシス触媒を用いた重合において、環状ォ レフインとメタセシス触媒のモル比は、タンタリウム、バナジウム、モリブデン、タングス テン、レニウム、ルテニウムおよびオスミウムの触媒 1モルに対して、環状ォレフィンが モル比でたとえば 2以上、好ましくは 10以上である。また、環状ォレフィンとメタセシス 触媒のモル比は、上記触媒 1モルに対して、たとえば 30, 000以下、好ましくは 20, 000以下である。
[0085] また、メタセシス触媒の前駆体としての上記の有機遷移金属錯体と助触媒としての ルイス酸との組み合せカゝらなるメタセシス触媒を用いた重合にぉ ヽて、有機遷移金属 錯体 1モルに対して環状ォレフィンがモル比でたとえば 2以上、好ましくは 10以上で ある。また、有機遷移金属錯体 1モルに対して環状ォレフィンがモル比でたとえば 10 , 000以下、好まし <は 5, 000以下である。
また、助触媒としての有機金属化合物が、有機遷移金属錯体 1モルに対して、モル 比でたとえば 0. 01以上、好ましくは 0. 1以上、より好ましくは 1以上である。また、助 触媒としての有機金属化合物が、有機遷移金属錯体 1モルに対して、モル比でたと えば 100以下であり、好ましくは 10以下、より好ましくは 5以下である。
[0086] また、本発明にお 、てメタセシス触媒による環状ォレフィンの重合は無溶媒でも溶 媒を使用して重合を行ってもよい。このとき、使用する溶媒として、テトラヒドロフラン、 ジェチルエーテル、ジブチルエーテル、ジメトキシェタンまたはジォキサン等のエー テノレ類;
ベンゼン、トルエン、キシレンまたはェチルベンゼン等の芳香族炭化水素; ペンタン、へキサンまたはヘプタン等の脂肪族炭化水素;
シクロペンタン、シクロへキサン、メチルシクロへキサン、ジメチルシクロへキサンまた はデカリン等の脂肪族環状炭化水素;
またはメチレンジクロライド、ジクロロエタン、ジクロロエチレン、テトラクロロェタン、クロ 口ベンゼンまたはトリクロ口ベンゼン等のハロゲン化炭化水素等が挙げられ、これらの 2種類以上を併用してもよい。
[0087] さらに、本発明において触媒効率を高めたり、環状ォレフィンと触媒のモル比を制 御することによって所望の分子量、分子量分布の重合体を得るために連鎖移動剤と してォレフィン類やジェン類の共存下で重合することができる。
連鎖移動剤として用いられるォレフィンとして、たとえば、エチレン、プロピレン、ブテ ンー 1、ペンテン 1、へキセン 1、オタテン 1等の aーォレフインが挙げられ、さ らに、ビニルトリメチルシラン、ァリルトリメチルシラン、ァリルトリェチルシラン、ァリルト リイソプロビルシラン等のケィ素含有ォレフィンが挙げられ、また、ジェンとして、 1、 4 ペンタジェン、 1、 5 へキサジェン、 1、 6 へブタジエン等の非共役系ジェンが 挙げられる。さらに、これらォレフィンまたはジェンはそれぞれ単独または 2種類以上 を併用してもよい。
[0088] 本発明において共存させるォレフィンまたはジェンの使用量については、ォレフィ ンまたはジェンが、環状ォレフィン 1モルに対してモル比で、たとえば 0. 001以上、 好ましくは 0. 01以上である。また、ォレフィンまたはジェン力 環状ォレフィン 1モル に対してモル比で、たとえば 1000以下、好ましくは 100以下である。
また、ォレフィンまたはジェン力 メタセシス触媒の 1当量に対して、たとえば 0. 01 当量以上、好ましくは 0. 1当量以上、より好ましくは 1当量以上である。また、ォレフィ ンまたはジェンが、メタセシス触媒の 1当量に対して、たとえば 10, 000当量以下、好 ましくは 1000当量以下、より好ましくは 500当量以下である。
[0089] メタセシス触媒による環状ォレフィンの重合では、環状ォレフィンの反応性および重 合溶媒への溶解性によっても異なるが、環状ォレフィンの溶媒重合濃度は 0. 1〜10 0モル ZL程度の範囲が好ましぐ通常— 30〜150°C程度の反応温度で 1分〜 10時 間程度反応させ、ブチルアルデヒド等のアルデヒド類、アセトン等のケトン類、メタノー ル等のアルコール類等の失活剤で反応を停止し、開環メタセシス重合体溶液を得る ことができる。
[0090] 次に、環状ォレフィンを重合して得られる開環メタセシス重合体の具体例を示す。
上記一般式(2)または上記一般式(3)で表される環状ォレフィンを重合して得られ る開環メタセシス重合体の繰り返し単位は、下記一般式 (4)または下記一般式 (5)で 表される。
[0091] [化 6]
Figure imgf000032_0001
(上記一般式 (4)中、 R"〜R15は、それぞれ独立に、水素、炭素原子数 1以上 20以 下のアルキル基、炭素原子数 6以上 20以下のァリール基、ハロゲン、炭素原子数 1 以上 20以下のハロゲンィ匕アルキル基、炭素原子数 1以上 20以下のアルコキシ基、 炭素原子数 2以上 20以下のアルコキシアルキル基、炭素原子数 2以上 20以下のァ ルコキシカルボニル基、炭素原子数 6以上 20以下のァリールォキシカルボニル基、ヒ ドロキシ基、炭素原子数 1以上 20以下のヒドロキシアルキル基、酸無水物、シァノ基、 およびケィ素含有基力 なる群力 選択される基であり、 R12〜R15が互いに結合して 環構造を形成していてもよい。 X1は一 O—、 一 S—、 一 NR16—、 -PR16- ,および一 CR16—力 選ばれ、同一でも異なってもよい。ただし、 R16は水素、炭素原子数 1以
2
上 20以下のアルキル基を表す。 pは 0または 1以上 3以下の整数を表す。 )
[0093] [ィ匕 7]
Figure imgf000033_0001
[0094] (上記一般式 (5)中、 R17〜R18は、それぞれ独立に、水素、炭素原子数 1以上 20以 下のアルキル基、炭素原子数 6以上 20以下のァリール基、ハロゲン、炭素原子数 1 以上 20以下のハロゲンィ匕アルキル基、炭素原子数 1以上 20以下のアルコキシ基、 炭素原子数 2以上 20以下のアルコキシアルキル基、炭素原子数 2以上 20以下のァ ルコキシカルボニル基、炭素原子数 6以上 20以下のァリールォキシカルボニル基、ヒ ドロキシ基、炭素原子数 1以上 20以下のヒドロキシアルキル基、酸無水物、シァノ基、 およびケィ素含有基力 なる群力 選択される基であり、 R17〜R18が互いに結合して 環構造を形成していてもよい。 X2は— 0—、— S―、— NR19—、 -PR19- ,および— CR19一から (R19は水素、炭素原子数 1以上 20以下のアルキル基を表す)選ばれ、
2
同一でも異なってもよい。 qは 0または 1以上 3以下の整数を表す。 )
[0095] 本発明における開環メタセシス重合体の、ゲルパーミュエーシヨンクロマトグラフィー
(Gel Permeation Chromatography : GPC)で測定したポリスチレン換算の重量平均分 子量(Mw)は、たとえば 2, 000以上、好ましくは 5, 000以上である。また、上述の M wは、たとえば 1, OOO, 000以下、好ましくは 300, 000以下である。
[0096] また、重量平均分子量 (Mw)と数平均分子量 (Mn)との比である分子量分布(Mw ZMn)は、好ましくは 1. 0以上 5. 0以下である。
[0097] さらに、本発明の開環メタセシス重合体は、メタセシス触媒にアルカリ金属塩が含ま れないため、アルカリ金属を除去する工程操作を行わずに重合反応液を直接、開環 メタセシス重合体の主鎖二重結合に水素添加できる。このとき、水素添加触媒の存 在下で、水素添加率 (ポリマーに含まれる二重結合の数と水素添加した二重結合の 数との比の百分率)が好ましくは 50%以上 100%以下、より好ましくは 80%以上 100 %以下となる割合で、水素を添加する。
[0098] この水素添加物の紫外線領域の波長に対する光透過性は、開環メタセシス重合体 の主鎖二重結合を水素で添加し、任意の割合で飽和結合にすることで制御すること ができる。また、水素添加することによって酸ィ匕に対する安定性が増し、用途に応じ てこれらの主鎖二重結合を減らすことにより、耐候性、熱安定性を向上し開環メタセ シス重合体を実用上より使用しゃすくすることができる。
[0099] 上記一般式 (4)または上記一般式(5)で表される開環メタセシス重合体の水素添 加物は、下記一般式 (6)または一般式(7)で表される。
[0100] [化 8]
Figure imgf000034_0001
[0101] (上記一般式 (6)中、 R"〜Rlbは、それぞれ独立に、水素、炭素原子数 1以上 20以 下のアルキル基、炭素原子数 6以上 20以下のァリール基、ハロゲン、炭素原子数 1 以上 20以下のハロゲンィ匕アルキル基、炭素原子数 1以上 20以下のアルコキシ基、 炭素原子数 2以上 20以下のアルコキシアルキル基、炭素原子数 2以上 20以下のァ ルコキシカルボニル基、炭素原子数 6以上 20以下のァリールォキシカルボニル基、ヒ ドロキシ基、炭素原子数 1以上 20以下のヒドロキシアルキル基、酸無水物、シァノ基、 およびケィ素含有基力 なる群力 選択される基であり、 R12〜R15が互いに結合して 環構造を形成していてもよい。 X1は一 O—、 一 S—、 一 NR16—、 -PR16- ,および一 CR16一から (R16は水素、炭素原子数 1以上 20以下のアルキル基を表す)選ばれ、
2
同一でも異なってもよい。 pは 0または 1以上 3以下の整数を表す。 )
または、
[0102] [化 9]
Figure imgf000035_0001
[0103] (上記一般式 (7)中、 R1 R1Sは、それぞれ独立に、水素、炭素原子数 1以上 20以 下のアルキル基、炭素原子数 6以上 20以下のァリール基、ハロゲン、炭素原子数 1 以上 20以下のハロゲンィ匕アルキル基、炭素原子数 1以上 20以下のアルコキシ基、 炭素原子数 2以上 20以下のアルコキシアルキル基、炭素原子数 2以上 20以下のァ ルコキシカルボニル基、炭素原子数 6以上 20以下のァリールォキシカルボニル基、ヒ ドロキシ基、炭素原子数 1以上 20以下のヒドロキシアルキル基、酸無水物、シァノ基、 およびケィ素含有基力 なる群力 選択される基であり、 R17〜R18が互いに結合して 環構造を形成していてもよい。 X2は一 0—、 一 S—、 一 NR19—、 -PR19- ,および一 CR19一から (R19は水素、炭素原子数 1以上 20以下のアルキル基を表す)選ばれ、
2
同一でも異なってもよい。 qは 0または 1以上 3以下の整数を表す。 )
[0104] 本発明における開環メタセシス重合体水素添加物の、ゲルパーミュエーシヨンクロ マトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量 (Mw)は、好ま しくは 2, 000以上、より好ましくは 5, 000以上である。また上述の Mwは、好ましくは
1, 000, 000以下、より好まし <は 300, 000以下である。
[0105] また、開環メタセシス重合体水素添加物の重量平均分子量 (Mw)と数平均分子量 (Mn)との比である分子量分布(MwZMn)は、好ましくは 1. 0以上である。また、( MwZMn)は、好ましくは 5. 0以下である。
[0106] 本発明の開環メタセシス重合体の水素添加反応には、公知の水素添加触媒を使 用することができる。
開環メタセシス重合体の主鎖二重結合部分を水素添加する水素添加触媒の具体 例として、不均一系触媒では、ノ《ラジウム、白金、ニッケル、ロジウム、ルテニウム等の 金属をカーボン、シリカ、アルミナ、チタ-ァ、マグネシア、ケイソゥ土、合成ゼォライト 等の担体に担持させた担持型金属触媒等が挙げられる。また、均一系触媒では、ナ フテン酸ニッケル/トリェチルアルミニウム、ニッケルァセチルァセトナート/トリイソブ チルアルミニウム、オタテン酸コバルト Zn—ブチルリチウム、チタノセンジクロリド Zジ ェチルアルミニウムクロリド、酢酸ロジウム、ジクロロビス(トリフエ-ルホスフィン)パラジ ゥム、クロロトリス(トリフエ-ルホスフィン)ロジウム、ジヒドリドテトラキス(トリフエ-ルホ スフイン)ルテニウム等が挙げられる。
[0107] さらに、均一系触媒の具体例として、ジクロロビス(トリフエ-ルホスフィン)ニッケル、 ジクロロビス(トリフエ-ルホスフィン)パラジウム、ジクロロビス(トリフエ-ルホスフィン) 白金、クロロトリス(トリフエ-ルホスフィン)ロジウム、ジクロロトリス(トリフエ-ルホスフィ ン)オスミウム、ジクロロヒドリドビス(トリフエニルホスフィン)イリジウム、ジクロロトリス(ト リフエ-ルホスフィン)ルテニウム、ジクロロテトラキス(トリフエ-ルホスフィン)ルテ-ゥ ム、トリクロ口-トロシルビス(トリフエ-ルホスフィン)ルテニウム、ジクロロビス(ァセトニ トリル)ビス(トリフエ-ルホスフィン)ルテニウム、ジクロロビス(テトラヒドロフラン)ビス(ト リフエ-ルホスフィン)ルテニウム、クロロヒドリド(トルエン)トリス(トリフエニルホスフィン )ルテニウム、クロロヒドリドカルボ-ルトリス(トリフエ-ルホスフィン)ルテニウム、クロ口 ヒドリドカルボ-ルトリス(ジェチルフエ-ルホスフィン)ルテニウム、クロロヒドリドニトロ シルトリス(トリフエ-ルホスフィン)ルテニウム、ジクロロトリス(トリメチルホスフィン)ルテ ユウム、ジクロロトリス(トリェチルホスフィン)ルテニウム、ジクロロトリス(トリシクロへキシ ルホスフィン)ルテニウム、ジクロロトリス(トリフエ-ルホスフィン)ルテニウム、ジクロロト リス(トリメチルジフエ-ルホスフィン)ルテニウム、ジクロロトリス(トリジメチルフエ-ルホ スフイン)ルテニウム、ジクロロトリス(トリ o—トリルホスフィン)ルテニウム、ジクロロトリス( ジクロロェチルホスフィン)ルテニウム、ジクロロトリス(ジクロ口フエ-ルホスフィン)ルテ ユウム、ジクロロトリス(トリメチルホスフイト)ルテニウム、ジクロロトリス(トリフエ-ルホス フイト)ルテニウム等が挙げられる。
[0108] また、これら均一系触媒とアミンィ匕合物を併用してもよい。
ァミン化合物の具体例として、メチルァミン、ェチルァミン、ァ-リン、エチレンジアミ ン、 1, 3—ジアミノシクロブタン等の一級アミン化合物;
ジメチルァミン、メチルイソプロピルァミン、 N—メチルァ-リン等の二級アミン化合物; トリメチルァミン、トリエチルァミン、トリフエ-ルァミン、 N, N—ジメチルァニリン、ピリジ ン、 γ —ピコリン等の三級アミンィ匕合物等を挙げることができる。このうち、好ましくは 三級アミン化合物が用いられ、特にトリェチルァミンを用いた場合が水素添加率の向 上が著しい。また、これらの均一系触媒またはアミンィ匕合物は、それぞれ 2種以上任 意の割合で併用することもできる。
[0109] 本発明における開環メタセシス重合体を水素添加する上記公知の水素添加触媒を 使用する場合、開環メタセシス重合体と水素添加触媒の使用量は、公知の水素添加 触媒が、開環メタセシス重合体に対して、たとえば 5ppm以上、好ましくは lOOppm以 上である。また、公知の水素添加触媒が、開環メタセシス重合体に対して、たとえば 5 0, OOOppm以下、好ましくは 1, OOOppm以下である。
[0110] また、均一系触媒とアミンィ匕合物力もなる水素添加触媒を使用する場合は、均一系 触媒が開環メタセシス重合体に対して、たとえば 5ppm以上、好ましくは lOppm以上 、特に好ましくは 50ppm以上である。また、均一系触媒が開環メタセシス重合体に対 して、たとえば、 50, OOOppm以下、好ましくは 10, OOOppm以下、特に好ましくは 1, OOOppm以下である。
[0111] また、ァミン化合物は、使用する均一系触媒 1当量に対して、たとえば 0. 1当量以 上、好ましくは 0. 5当量以上、特に好ましくは 1当量以上である。また、アミンィ匕合物 は、使用する均一系触媒 1当量に対して、たとえば 1, 000当量以下、好ましくは 500 当量以下、特に好ましくは 100当量以下である。
[0112] 均一系触媒とアミンィ匕合物力もなる水素添加触媒は、予め均一系触媒とアミンィ匕合 物とを接触処理したものを用いることも可能であるが、均一系触媒とァミン化合物とを 予め接触処理することなく、それぞれ直接反応系に添加してもよ ヽ。
[0113] 開環メタセシス重合体の水素添加反応において用いられる溶媒として開環メタセシ ス重合体を溶解し溶媒自体が水素添加されな ヽものであればどのようなものでもよく 、たとえば、テトラヒドロフラン、ジェチルエーテル、ジブチルエーテル、ジメトキシエタ ンなどのエーテノレ類;
ベンゼン、トルエン、キシレン、ェチルベンゼンなどの芳香族炭化水素;
ペンタン、へキサン、ヘプタンなどの脂肪族炭化水素;
シクロペンタン、シクロへキサン、メチルシクロへキサン、ジメチルシクロへキサン、デ カリンなどの脂肪族環状炭化水素;
メチレンジクロリド、ジクロロエタン、ジクロロエチレン、テトラクロロェタン、クロノレべンゼ ン、トリクロルベンゼンなどのハロゲンィ匕炭化水素等が挙げられ、これらは 2種以上を 併用してちょい。
[0114] 開環メタセシス重合体の水素添加反応において、水素圧力は、通常、常圧以上、 好ましくは 0. 5MPa以上、特に好ましくは 2MPa以上とする。また、水素圧力は、通 常 30MPa以下、好ましくは 20MPa以下、特に好ましくは 15MPa以下の範囲で行わ れる。
水素添加反応の反応温度は、通常 0°C以上、室温以上、特に好ましくは 50°C以上 とする。また、反応温度は、通常 300°C以下、好ましくは 250°C以下、特に好ましくは 200°C以下とする。
また、望まれる水素添加率によってこれらの条件や反応時間を設定することができ る。
[0115] 開環メタセシス重合体の水素添加反応の終了後、公知の方法により重合体に残存 する開環メタセシス触媒または水素添加触媒を除去することができる。また、開環メタ セシス重合体水素添加物溶液力 重合体水素添加物の回収法は特に限定されず、 公知の方法を用いることができる。たとえば、撹拌下の貧溶媒中に反応溶液を排出し 重合体水素添加物を凝固させ濾過法、遠心分離法、デカンテーシヨン法等により回 収する方法、反応溶液中にスチームを吹き込んで重合体水素添加物を析出させるス チームストリツビング法、反応溶液から溶媒を加熱等により直接除去する方法等が挙 げられる。
[0116] 本発明のメタセシス触媒は環状ォレフィンの重合以外にアセチレン類のアルキン重 合や二重結合や三重結合を有する有機化合物の閉環メタセシス反応、クロスメタセ シス反応等の有機合成反応の反応触媒として用いる場合も、重合反応と同様に副反 応を起こすことなくメタセシス反応を行うことができる。これらのメタセシス反応は、無 溶媒または有機溶媒中での懸濁重合または溶液重合であってもよぐまた、温度、圧 力、時間および濃度などの反応条件に特に制限はない。
[0117] 本発明の有機遷移金属錯体化合物の製造方法によれば、該有機遷移金属錯体化 合物を工業的にかつ経済的に効率よく製造することが可能である。本発明における 有機遷移金属錯体化合物は、たとえば、アルキリデン錯体化合物、アルキリジン錯体 化合物、フィッシャー型カルベン錯体ィ匕合物、メタ口セン錯体ィ匕合物および、ポストメ タロセン錯体化合物等として使用可能であり、さらに有機合成反応の触媒としても使 用することができる。
[0118] また、本発明の有機遷移金属錯体化合物の製造方法で合成して得られるメタセシ ス触媒は、アルカリ金属の含有量を低減させることができ、たとえば、アルカリ金属の 含有量を lOppm以下とすることもできる。該触媒を用いて重合された環状ォレフィン 等の開環メタセシス重合体は、たとえば事前にアルカリ金属を除去することなく水素 添加反応を行なうことができ、さらに、その開環メタセシス重合体または水素添加物は 、たとえばアルカリ金属含有量に厳 、制限のある電子材料用途などにも好適に使 用することができ、工業的に極めて価値がある。
実施例
[0119] 以下に実施例を示してさらに本発明を説明するが、本発明はこれら実施例に制限 されるものではない。
[0120] なお、以下の実施例および比較例にお!、て、得られた有機遷移金属錯体化合物 は、重水素化ベンゼンに溶解し、 270MHzまたは 500MHzの1 H— NMRを用いて 分析した。
また、アルカリ金属の含有量は誘導結合プラズマ質量分析法 (ICP— MS)により定 量した。なお、アルカリ金属の検出限界は lOppbである。 重合体または重合体水素添加物の分子量は、ゲルパーミエーシヨンクロマトグラフィ 一 (GPC)を用いて、重合して得られた開環メタセシス重合体およびその水素添加物 の粉末をテトラヒドロフランに溶解し、検出器として、 日本分光製 830— RI、カラムとし て、 Shodexk— 804, 803, 802. 5を使用し、ポリスチレンスタンダードによって分子 量を較正した。
また、重合体のガラス転移温度 (Tg)は島津製作所社製 DSC— 50を用い、測定試 料を窒素下で 10°CZ分の昇温速度で測定を行った。
[0121] [実施例 1]
窒素下で 50mlのナス型フラスコに Mo ( = CHCMe Ph) (=N— 2, 6-¾ C H )
2 2 6 3
(OSO CF ) (dme) (1. OOg)を入れ、ジェチルエーテルに懸濁させて、室温、撹拌
2 3 2
下でトリェチルァミン (0. 27g)を入れた。その後、— 30°Cに冷却し、パーフルォ口— tert—ブチルアルコール (0. 63g)を撹拌しながら滴下した。 3時間後、溶媒を除去し 、ペンタンで抽出した後、ろ過、減圧乾固することで、黄色の固体 1. 09gを得た。こ の固体の NMR ^ベクトルから、 Mo ( = CHCMe Ph) ( = N— 2, 6—' Pr C H ) [OC
2 2 6 3
(CF ) ] の生成を確認した。また、得られた固体力もアルカリ金属は検出されなかつ
3 3 2
た。
[0122] [比較例 1]
実施例 1において窒素下でパーフルオロー tert—ブチルアルコール(5. 0g)と n— ブチルリチウム(1. 6Mへキサン溶液 13. 2ml)から合成し、精製したパーフルォロ— tert—ブトキシリチウム(0. 64g)をトリエチノレアミン(0. 27g)とパーフルオロー tert— ブチルアルコール (0. 63g)の代わりに用いたこと以外は実施例 1に準じて行った。 得られた固体は黒ずんで ヽて、出発物質のモリブデン錯体と分解生成物が混合して いた。また、得られた固体から、リチウムが 230ppm検出された。さらに、得られた固 体を— 30°Cに冷却したペンタン 5mlで 2回洗浄した後も、リチウムが lOOppm以上検 出された。
[0123] [比較例 2]
実施例 1にお ヽてトリエチルァミンを用いな力つたこと以外は実施例 1に準じて行つ た。得られた固体は出発原料のモリブデン錯体とアルキリデンを消失した分解生成 物の混合物であった。また、得られた固体力もアルカリ金属は検出されな力つた。
[0124] [実施例 2]
実施例 1においてパーフルオロー tert—ブチルアルコールに代えて 1 , 1 , 1 , 3, 3 , 3—へキサフルオロー 2—メチルー 2—プロパノール(0. 48g)を用いたこと以外は 実施例 1に準じて行い、黄色の固体を 0. 95g得た。この固体の NMRスペクトルから 、 Mo ( = CHCMe Ph) ( = N— 2, 6 ~ Ρν C Η ) [OCMe (CF ) ]の生成を確認し
2 2 6 3 3 2 2
た。また、得られた固体力もアルカリ金属は検出されなかった。
[0125] [比較例 3]
実施例 2において窒素下で 1 , 1 , 1 , 3, 3, 3—へキサフルオロー 2—メチルー 2— プロパノール(5. Og)と n—ブチルリチウム(1. 6Mへキサン溶液 18. 9ml)力 合成 し、精製した 1 , 1 , 1 , 3, 3, 3—へキサフルォロ— 2—メチルプロポキシリチウム(0. 5 Og)をトリェチルァミン(0. 27g)と 1 , 1 , 1 , 3, 3, 3—へキサフルォロ— 2—メチル— 2—プロパノール (0. 48g)の代わりに用いたこと以外は実施例 2に準じて行い、黄色 の固体 0. 74gを得た。
[0126] この固体の NMR ^ベクトルから、 Mo ( = CHCMe Ph) ( = N— 2, 6—1 Pr C H ) [
2 2 6 3
OCMe (CF ) ]の生成を確認した。また、得られた固体からリチウムが 200ppm検出
3 2 2
された。
[0127] [実施例 3]
窒素下で 50mlのナス型フラスコに Mo ( = CHCMe Ph) ( =N— 2, 6 -¾ C H )
2 2 6 3
(OSO CF ) (dme) ( 1. OOg)を入れ、約 10mlのジェチルエーテルに懸濁させて、
2 3 2
室温、撹拌下でトリェチルァミン (0. 27g)を入れた。その後、— 30°Cに冷却し、 2 - メチル—2—プロパンチオール (0. 24g)を撹拌しながら滴下した。室温で 3時間撹拌 後、溶媒を除去し、ペンタンで抽出した後、ろ過、減圧乾固することで赤褐色の固体 を得た。この固体の NMR ^ベクトルから Mo ( = CHCMe Ph) ( = Ν— 2, 6 ~ Ρν C
2 2 6
H ) (S'Bu)の生成を確認した。また、得られた固体の1 H— NMRスペクトルを図 1に
3 2
示す。また、得られた固体カゝらアルカリ金属は検出されなカゝつた。
[0128] [比較例 4]
実施例 3において窒素下で 2—メチルー 2—プロパンチオール(5. Og)と水素化力 リウム(2. 2g)力も合成し、精製した 2—メチル—2 プロポチォキシカリウム (0. 34g )をトリェチルァミン(0. 27g)と 2—メチル—2 プロパンチオール(0. 24g)の代わり に用いたこと以外は実施例 3に準じて行った。得られた固体は出発原料のモリブデン 錯体と分解生成物の混合物であった。また、得られた固体カゝらカリウムが 300ppm検 出された。
[0129] [実施例 4]
窒素下で 50mlのナス型フラスコに Μο ( = ΟΗ ιι) (=N— 2, 6— Me C H ) (OS
2 6 3
O CF ) (dme) (1. OOg)を入れ、ジェチルエーテルに懸濁させて、室温、撹拌下で
2 3 2
トリェチルァミン(0. 32g)を入れた。その後、 30°Cに冷却し、 2—メチルー 2 プロ ノ V—ル (0. 23g)を撹拌しながら滴下した。 3時間後、溶媒を除去し、ペンタンで抽 出した後、ろ過、減圧乾固することで黄色の固体 0. 65gを得た。この固体の NMRス ベクトルから、 Mo ( = CHCMe ) ( = N— 2, 6— Me C H ) (O'Bu)の生成を確認し
3 2 6 3 2
た。また、得られた固体力もアルカリ金属は検出されなかった。
[0130] [実施例 5]
窒素下で 50mlのナス型フラスコに Mo ( = CHCMe Ph) (=N— 2, 6— Me C H )
2 2 6 3
(OSO CF ) (dme) (1. OOg)を入れ、ジェチルエーテルに懸濁させて、室温、撹拌
2 3 2
下でトリェチルァミン (0. 30g)を入れた。その後、 30°Cに冷却し、パーフルォ口— tert—ブチルアルコール (0. 67g)を撹拌しながら滴下した。 16時間後、溶媒を除去 し、ペンタンで抽出した後、ろ過、減圧乾固することで黄色の固体 1. 02gを得た。こ の固体の NMR ^ベクトルから、 Mo ( = CHCMe Ph) ( = N— 2, 6— Me C H ) [OC
2 2 6 3
(CF ) ]の生成を確認した。また、得られた固体力 アルカリ金属は検出されなかつ
3 3 2
た。
[0131] [実施例 6]
窒素下で 50mlのナス型フラスコに Mo ( = CHSiMe ) (=N— Ad) (OSO CF ) (d
3 2 3 2 me) (1. OOg)を入れ、ジェチルエーテルに懸濁させて、室温、撹拌下でトリェチル ァミン(0. 29g)を入れた。その後、 30°Cに冷却し、 2, 6 ジイソプロピルフエノー ル (0. 50g)を撹拌しながら滴下した。 3時間後、溶媒を除去し、ペンタンで抽出した 後、ろ過、減圧乾固することで黄色の固体 0. 91gを得た。この固体の NMR^ぺクト ルカ、ら、 Mo ( = CHSiMe ) (=N— Ad) (O— 2, 6—1 Pr C H )の生成を確認した。
3 2 6 3 2
また、得られた固体力もアルカリ金属は検出されな力つた。なお、 Adはァダマンチル 基を示す。
[0132] [実施例 7]
窒素下で 50mlのナス型フラスコに Mo ( = CHCMe ) (=N— 2, 6— CI C H ) (O
3 2 6 3
SO CF ) (dme) (1. OOg)を入れ、ジェチルエーテルに懸濁させて、室温、撹拌下
2 3 2
でトリエチルァミン(0. 30g)を入れた。その後、 30°C〖こ冷却し、 3, 3'—ジ一 tert— ブチル 5, 5', 6, 6'—テトラメチル一 2, 2'—ジヒドロキシビフエ-ル(0. 51g)を撹 拌しながら滴下した。 3時間後、溶媒を除去し、ペンタンで抽出した後、ろ過、減圧乾 固することで黄色の固体 1. OOgを得た。この固体の NMRスペクトルから、下記化学 式 (8)で表わされる化合物の生成を確認した。また、得られた固体からアルカリ金属 は検出されなかった。
[0133] [化 10]
Figure imgf000043_0001
[実施例 8]
窒素下で50mlのナス型フラスコにW( = CHCH = CMePh) (=N— 2, 6— Me C
2 6
H ) C1 (PMe ) (1. OOg)を入れ、約 10mlのジェチルエーテルに懸濁させて、室温
3 2 3 2
、撹拌下でトリェチルァミン (0. 37g)を入れた。その後、 30°Cに冷却し、 2 メチル 2 プロパノール (0. 26g)を撹拌しながら滴下した。室温で 3時間撹拌後、溶媒を 除去し、ペンタンで抽出した後、ろ過、減圧乾固することで黄褐色の固体 0. 90gを得 た。この固体の NMRスペクトルから、 W ( = CHCH = CMePh) ( = N— 2, 6— Me C
2
H ) (O'Bu) PMeの生成を確認した。また、得られた固体からアルカリ金属は検出 されなかった。
[0135] [実施例 9]
窒素下で 50mlのナス型フラスコに W ( = CHtBu) ( =N 2, 6 ~ Ρν C H ) C1 (dm
2 6 3 2 e) (1. OOg)を入れ、約 10mlのジェチルエーテルに懸濁させて、室温、撹拌下でトリ ェチルァミン(0. 36g)を入れた。その後、 30。Cに冷却し、 1, 1, 1, 3, 3, 3 へキ サフルオロー 2—メチルー 2 プロパノール(0. 63g)を撹拌しながら滴下した。室温 で 3時間撹拌後、溶媒を除去し、ペンタンで抽出した後、ろ過、減圧乾固することで 黄色の固体 0. 88gを得た。この固体の NMR ^ベクトルから、 W ( = CHtBu) ( = N— 2, 6— C H ) [OCMe (CF ) ]の生成を確認した。また、得られた固体からアル
2 6 3 3 2 2
カリ金属は検出されな力つた。
[0136] [実施例 10]
窒素下で 50mlのナス型フラスコに W ( =N— 2, 6— Me C H ) C1 (thf) (1. OOg)
2 6 3 4
を入れ、約 10mlのジェチルエーテルに懸濁させて、室温、撹拌下でトリェチルァミン (0. 40g)を入れた。その後、 30°Cに冷却し、 2—メチル 2 プロパノール(0. 30 g)を撹拌しながら滴下した。室温で 3時間撹拌後、溶媒を除去し、ペンタンで抽出し た後、ろ過、減圧乾固することで黄色の固体 0. 95gを得た。この固体の NMRスぺク トルカ、ら、 W ( = N- 2, 6 -Me C H ) (O'Bu) CIの生成を確認した。また、得られた
2 6 3 2 2
固体力もアルカリ金属は検出されな力つた。
[0137] [実施例 11]
窒素下で 50mlのナス型フラスコに [Et N][W (≡CtBu) Cl ] (l . 00g)を入れ、約 1
4 4
0mlのジェチルエーテルに懸濁させて、室温、撹拌下でトリェチルァミン(0. 40g)を 入れた。その後、 30°Cに冷却し、 2—メチル—2 プロパノール (0. 29g)を撹拌し ながら滴下した。室温で 3時間撹拌後、溶媒を除去し、ペンタンで抽出した後、ろ過、 減圧乾固することで黄白色の固体を得た。この固体の NMRスペクトルから、 W (≡Cl Bu) (O'Bu)の生成を確認した。また、得られた固体からアルカリ金属は検出されな
3
かった。
[0138] [実施例 12]
窒素下でテトラシクロ [4. 4. 0. I2'5. I7·10]— 3 ドデセン(10. 00g)と 1, 5 へキサ ジェン(50mg)を乾燥テトラヒドロフラン (60ml)に溶解し、室温で撹拌した。そこに、 実施例 2で合成した Mo ( = CHCMe Ph) ( = N— 2, 6 ~ Ρν C H ) [OCMe (CF )
2 2 6 3 3 2
] (47mg)を乾燥テトラヒドロフラン(2ml)に溶解させた溶液を加え、室温で撹拌した
2
。 1時間後にノルマルブチルアルデヒド(18. 5mg、0. 25mmol)を乾燥テトラヒドロフ ランに溶解させた溶液を加え、反応を停止した。反応溶液を 0. lgとり、 iH—NMRに て反応率を測定したところ、重合反応は 100%進行していた。さらに反応溶液を lgと り、メタノールに加えて開環メタセシス重合体を沈殿させ、ろ別分離後真空乾燥を行う ことにより白色粉末状の開環メタセシス重合体を得た。この開環メタセシス重合体の G PCで測定した重量平均分子量(Mw)は 20100、分子量分布(MwZMn)は 1. 52 であった。
[0139] [比較例 5]
実施例 12において、実施例 2で合成した Mo ( = CHCMe Ph) ( =N— 2, 6 -¾
2 2
C Η ) [OCMe (CF ) ] のかわりに、比較例 3で合成した Mo ( = CHCMe Ph) ( = N
6 3 3 2 2 2
- 2, 6— C H ) [OCMe (CF ) ]を用いた以外は実施例 12に準じて行った。反
2 6 3 3 2 2
応停止後の反応溶液を 0. lgとり、 — NMRにて反応率を測定したところ、重合反 応は 98%であった。さらに反応溶液を lgとり、メタノールに加えて開環メタセシス重 合体を沈殿させ、ろ別分離後真空乾燥を行うことにより白色粉末状の開環メタセシス 重合体を得た。この開環メタセシス重合体の GPCで測定した重量平均分子量 (Mw) は 23300、分子量分布(MwZMn)は 1. 70であった。
[0140] [実施例 13]
実施例 12で合成した反応溶液 50. Ogに Ru (PPh ) CI (5mg)とトリェチルアミン(
3 4 2
lmg)をカ卩え、水素圧 10MPa、 125°Cで 7時間水素添加反応を行った後、温度を室 温まで戻し、ついで水素ガスを放出した。この開環メタセシス重合体水素添加物溶液 をメタノールに加えて開環メタセシス重合体水素添加物を沈殿させ、ろ別分離後真 空乾燥を行うことにより白色粉末状の開環メタセシス重合体水素添加物 7. 7gを得た 。得られた開環メタセシス重合体水素添加物の1 H—NMRから算出した水素添加率 は主鎖のォレフィンのプロトンに帰属するピークが認められず、その水素添加率は 10 0%であり、 GPCで測定した重量平均分子量(Mw)は 29200、分子量分布(MwZ Mn)は 1. 60であった。
[0141] [比較例 6]
実施例 13にお ヽて、実施例 12で合成した反応溶液のかわりに、比較例 5で合成し た反応溶液を用いた以外は実施例 13に準じて行った。開環メタセシス重合体水素 添加物溶液をメタノールに加えて開環メタセシス重合体水素添加物を沈殿させ、ろ 別分離後真空乾燥を行うことにより白色粉末状の開環メタセシス重合体水素添加物
6. 9gを得た。得られた開環メタセシス重合体水素添加物の1 H— NMRから算出した 水素添加率は主鎖のォレフィンのプロトンに帰属するピークが認められ、その水素添 加率は 80%であり、 GPCで測定した重量平均分子量 (Mw)は 32600、分子量分布 (MwZMn)は 2. 01であった。
[0142] [実施例 14]
実施例 1におけるトリェチルァミン (0. 27g)に代えてピリジン (0. 22g)を使用したこ と以外は実施例 1に準じて行い、黄色の固体 1. 07gを得た。この固体の NMR^ぺク トルカ、ら、 Mo ( = CHCMe Ph) ( = N— 2, 6 -¾ C Η ) [OC (CF ) ] の生成を確
2 2 6 3 3 3 2
認した。また、得られた固体力もアルカリ金属は検出されな力つた。
[0143] [実施例 15]
実施例 1におけるトリェチルァミン (0. 27g)に代えて 2, 6—ジメチルビリジン (0. 29 g)を使用したこと以外は実施例 1に準じて行い、黄色の固体 1. 08gを得た。この固 体の NMR ^ベクトルから、 Mo ( = CHCMe Ph) ( = N— 2, 6— 'Pr C H ) [OC (CF
2 2 6 3 3
) ] の生成を確認した。また、得られた固体力もアルカリ金属は検出されな力つた。
3 2
[0144] [実施例 16]
窒素下で 50mlのナス型フラスコに Os ( =N— 2, 6 ~ Ρν C H ) (CH lBu) CI (1.
2 6 3 2 2 2
00g)を入れ、約 10mlのジェチルエーテルに懸濁させて、室温、撹拌下でトリェチル ァミン(0. 37g)を入れた。その後、— 30°Cに冷却し、 2—メチル—2—プロパノール( 0. 27g)を撹拌しながら滴下した。室温で 3時間撹拌後、溶媒を除去し、ペンタンで 抽出した後、ろ過、減圧乾固することで黄色の固体 0. 84gを得た。この固体の NMR スペクトルから、 Os ( =N- 2, 6— C H ) (CH lBu) (O'Bu) の生成を確認した。
2 6 3 2 2 2
また、得られた固体力もアルカリ金属は検出されな力つた。 [0145] [実施例 17]
窒素下で 50mlのナス型フラスコに V(=N— 2, 6— Me C H ) Cl (1. 00g)を入れ
2 6 3 3
、約 10mlのジェチルエーテルに懸濁させて、室温、撹拌下でトリェチルァミン(0. 3 7g)を入れた。その後、 30°Cに冷却し、パーフルオロー tert ブチルアルコール( 0. 86g)を撹拌しながら滴下した。室温で 3時間撹拌後、溶媒を除去し、ペンタンで 抽出した後、ろ過、減圧乾固することで黄色の固体 1. 08gを得た。この固体の NMR スペクトルから、 V ( = N- 2, 6— Me C H ) [OC (CF ) ]C1の生成を確認した。また
2 6 3 3 3 2
、得られた固体力もアルカリ金属は検出されな力つた。
[0146] [実施例 18]
窒素雰囲気下で 8—tert ブチルォキシカルボ-ルーテトラシクロ [4. 4. 0. I2'5. I7'10]— 3 ドデセン(15g)と 4—ォキサ一トリシクロ [5. 2. 1. 02'6]— 8 デセン一 3,
5 ジオン(8. 8g)を乾燥テトラヒドロフラン 100mlに溶解し、 1, 5 へキサジェンを 3 OOmgカロえ、攪拌し、実施例 5で合成した Mo ( = CHCMe Ph) ( = N— 2, 6— Me C
2 2
H ) [OC (CF ) ] (30mg)を乾燥テトラヒドロフラン(2ml)に溶解させた溶液を加え
6 3 3 3 2
、室温で撹拌した。その後、ブチルアルデヒド(7mg)を加え 30分間攪拌した。反応 溶液を 0. lgとり、 NMRにて反応率を測定したところ、重合反応は 100%進行 していた。さらに反応溶液を lgとり、水に加えて開環メタセシス重合体を沈殿させ、ろ 別分離後真空乾燥を行うことにより白色粉末状の開環メタセシス重合体を得た。この 開環メタセシス重合体の GPCで測定した重量平均分子量 (Mw)は 14500、分子量 分布(Mw/Mn)は 1. 68であり、 Tgは 155°Cであった。
[0147] [実施例 19]
実施例 18で合成した反応溶液 50. Ogに Ru (H) (CO) (PPh ) Cl (4mg)とトリェチ
3 3
ルァミン(lmg)をカ卩え、水素圧 10MPa、 125°Cで 7時間水素添加反応を行った後、 温度を室温まで戻し、ついで水素ガスを放出した。この開環メタセシス重合体水素添 加物溶液をメタノールに加えて開環メタセシス重合体水素添加物を沈殿させ、ろ別 分離後真空乾燥を行うことにより粉末状の開環メタセシス重合体水素添加物 12. 0g を得た。得られた開環メタセシス重合体水素添加物の1 H— NMRから算出した水素 添加率は主鎖のォレフィンのプロトンに帰属するピークが認められず、その水素添加 率は 100%であり、 GPCで測定した重量平均分子量(Mw)は 20200、分子量分布( Mw/Mn)は 1. 75、 Tgは 125°Cであった。
[0148] [実施例 20]
窒素雰囲気下で 5, 5, 6—トリフルオロー 6—(トリフルォロメチル)ビシクロ [2. 2. 1 ]ヘプトー 2—ェン(28. 22g)と 1 , 5—へキサジェン(80mg)の酢酸ェチル(60ml) 溶液に、実施例 2で合成した Mo ( = CHCMe Ph) ( = Ν— 2, 6 ~ Ρν C Η ) [OCM
2 2 6 3 e (CF ) ] (20mg)の酢酸ェチル溶液(2ml)に溶解した溶液を加え、 50°Cで撹拌し
3 2 2
た。 36時間後にブチルアルデヒド(7mg)を溶液に加え、反応を停止した。反応溶液 を 0. lgとり、 NMRにて反応率を測定したところ、重合反応は 100%進行してい た。さらに反応溶液を lgとり、メタノールにカ卩えて開環メタセシス重合体を沈殿させ、 ろ別分離後真空乾燥を行うことにより粉末状の開環メタセシス重合体を得た。この開 環メタセシス重合体の GPCで測定した重量平均分子量 (Mw)は 49300、分子量分 布(MwZMn)は 2. 42、 Tgは 138°Cであった。
[0149] [実施例 21]
実施例 20で合成した反応溶液 50. 0gをパラジウムカーボンによって 160°C、水素 圧 lOMPaで水素添加反応を行った後、温度を室温まで戻し、ついで水素ガスを放 出した。この開環メタセシス重合体水素添加物溶液をメタノールに加えることで、粉体 状の開環メタセシス重合体水素添加物を得た。得られたポリマーの水素添加率は 10 0%、重量平均分子量(Mw)は 53000、分子量分布(MwZMn)は、 2. 64、 Tgは 1 07。Cであった。
[0150] [実施例 22]
窒素下で 1 , 5—シクロォクタジェン(5. 22g)の THF (20ml)溶液に、実施例 2で 合成した Mo ( = CHCMe Ph) ( =Ν—2, 6 ~ Ρν C Η ) [OCMe (CF ) ] (360mg
2 2 6 3 3 2 2
)の THF溶液(5ml)に溶解した溶液を加え、室温で撹拌した。 3時間後にプチルァ ルデヒド(120mg)を溶液に加え、反応を停止した。反応溶液を 0. lgとり、 'Η -ΝΜ Rにて反応率を測定したところ、重合反応は 100%進行していた。さらに反応溶液を lgとり、メタノールに加えて開環メタセシス重合体を沈殿させ、ろ別分離後真空乾燥 を行うことにより粉末状の開環メタセシス重合体を得た。この開環メタセシス重合体の GPCで測定した重量平均分子量(Mw)は 74300、分子量分布(MwZMn)は 1. 5 4、 Tgは—100°Cであった。
[0151] [実施例 23]
窒素雰囲気下で 2, 3 ビストリフルォロメチル— 7—ォキサ—ビシクロ [2. 2. 1]へ プター 2, 5 ジェン(7. 4g)の THF (60ml)溶液に、実施例 2で合成した Mo ( = C HCMe Ph) ( =N - 2, 6 ~ Ρν C H ) [OCMe (CF ) ] (40mg)の THF (2ml)に溶
2 2 6 3 3 2 2
解した溶液を加え、室温で撹拌した。 40時間後にブチルアルデヒド(15mg)を溶液 に加え、反応を停止した。反応溶液を 0. lgとり、 — NMRにて反応率を測定したと ころ、重合反応は 100%進行していた。さらに反応溶液を lgとり、メタノールにカ卩えて 開環メタセシス重合体を沈殿させ、ろ別分離後真空乾燥を行うことにより粉末状の開 環メタセシス重合体を得た。この開環メタセシス重合体の GPCで測定した重量平均 分子量(Mw)は 176000、分子量分布(MwZMn)は 1. 13、 Tgは 91°Cであった。
[0152] [実施例 24]
実施例 23で合成した反応溶液 50. Ogをパラジウムカーボンによって 130°C、水素 圧 9. 5MPaで水素添加反応を行った後、温度を室温まで戻し、ついで水素ガスを放 出した。この開環メタセシス重合体水素添加物溶液をメタノールに加えることで、粉体 状の開環メタセシス重合体水素添加物を得た。得られたポリマーは主鎖二重結合と 環内部二重結合とも水素添加されており、その水素添加率 100%、重量平均分子量 (Mw)は 190000、分子量分布(MwZMn)は 1. 21、 Tgは 38°Cであった。
[0153] [実施例 25]
窒素下で 50mlのナス型フラスコに Mo ( = CHCMe Ph) ( =N— 2, 6 ~ Ρν C H )
2 2 6 3
(OSO CF ) (dme) ( 1. OOg)を入れ、ジェチルエーテルに懸濁させて、室温、撹拌
2 3 2
下でピリジン(Py)を 0. 33g入れた。その後、 30°Cに冷却し、 2, 6 ジクロロフエノ ール(2, 6 - C1 C H OH) 0. 43gを撹拌しながら加えた。 3時間後、溶媒を除去し、
2 6 3
ペンタンで抽出した後、ろ過、減圧乾固することで、黄色の固体 0. 46gを得た。この 固体の NMR ^ベクトルから、 Mo ( = CHCMe Ph) ( = N— 2, 6 -¾ C Η ) (Ο— 2
2 2 6 3
, 6 - C1 C Η ) (Py)の生成を確認した。また、得られた固体力 アルカリ金属は検
2 6 3 2
出されなかった。

Claims

請求の範囲
[1] 塩基性化合物の存在下で、(A)電子吸引性の原子団を有する有機遷移金属錯体 化合物に、(B)プロトン供与性を有する化合物を接触させることによって、前記 (A) 電子吸引性の原子団を有する有機遷移金属錯体化合物中の電子吸引性の原子団 を、前記 (B)プロトン供与性を有する化合物に由来する電子吸弓 I性の原子団に変換 する工程を含む、(C)有機遷移金属錯体化合物の製造方法。
[2] 前記 (B)プロトン供与性を有する化合物力 アルコールおよびチオールから選ばれ る少なくとも 1種以上である、請求項 1に記載の有機遷移金属錯体ィ匕合物の製造方 法。
[3] 前記 (A)電子吸引性の原子団を有する有機遷移金属錯体化合物が、メタルアルキ リデンまたはメタルアルキリジンを有する有機遷移金属錯体ィ匕合物である、請求項 1 または 2に記載の有機遷移金属錯体化合物の製造方法。
[4] 請求項 1乃至 3 ヽずれかに記載の有機遷移金属錯体化合物の製造方法で合成し て得られる、下記一般式(1)で表されるメタセシス触媒。
[化 1]
Figure imgf000050_0001
(上記一般式(1)中、 R1は、アルキル、ァリール、置換ァリール力 選ばれる。 R2およ び R3は、それぞれ独立に、水素、アルキル、ァリール、置換ァリール、アルキルシリル 、ァルケ-ルカも選ばれ、これらは同じであっても異なっていてもよい。 R4はアルキル 、ハロゲン化アルキル、ァリール、置換ァリール力 選ばれる。 Nは窒素原子であり、 Qは酸素または硫黄原子である。 Eは配位性の分子であり、エーテル、アルキルホス フィン、ァリールホスフィン、アルコキシホスフィン、ピリジン、アルキルァミン、アルキリ デンァミンから選ばれる。 Mは周期律表第 3族〜第 12族から選ばれる遷移金属原子 である。 mは 1以上 3以下の整数であり、 mが 2または 3の場合、 R4は互いに結合して もよい。また、 nは 0以上 2以下の整数である。 )
[5] 前記一般式(1)で表わされるメタセシス触媒において、周期律表第 3族〜第 12族 から選ばれる前記遷移金属原子 Mが、タンタリウム、バナジウム、モリブデン、タンダ ステン、レニウム、ルテニウムおよびオスミウムからなる群力 選ばれる 1種であって、 mが 1または 2であり、 n力 ^または 1である、請求項 4に記載のメタセシス触媒。
[6] アルカリ金属の含有量が lOppm以下である、請求項 4または 5に記載のメタセシス 触媒。
[7] 下記一般式(1)で表され、アルカリ金属の含有量が lOppm以下である、メタセシス 触媒。
[化 2]
Figure imgf000051_0001
(上記一般式(1)中、 R1は、アルキル、ァリール、置換ァリール力 選ばれる。 R2およ び R3は、それぞれ独立に、水素、アルキル、ァリール、置換ァリール、アルキルシリル 、ァルケ-ルカも選ばれ、これらは同じであっても異なっていてもよい。 R4はアルキル 、ハロゲン化アルキル、ァリール、置換ァリール力 選ばれる。 Nは窒素原子であり、 Qは酸素または硫黄原子である。 Eは配位性の分子であり、エーテル、アルキルホス フィン、ァリールホスフィン、アルコキシホスフィン、ピリジン、アルキルァミン、アルキリ デンァミンから選ばれる。 Mは周期律表第 3族〜第 12族から選ばれる遷移金属原子 である。 mは 1以上 3以下の整数であり、 mが 2または 3の場合、 R4は互いに結合して もよい。また、 nは 0以上 2以下の整数である。 )
請求項 1乃至 3いずれかに記載の有機遷移金属錯体ィ匕合物の製造方法を用いる、 メタセシス触媒の製造方法。 請求項 4乃至 7 、ずれかに記載のメタセシス触媒の存在下に、環状ォレフィンを重 合して得られる、開環メタセシス重合体。
請求項 4乃至 7 、ずれかに記載のメタセシス触媒の存在下に、環状ォレフィンを重 合する工程を含む、開環メタセシス重合体の製造方法。
PCT/JP2006/320613 2005-10-20 2006-10-17 有機遷移金属錯体化合物の製造方法、その方法で製造されるメタセシス触媒、それによる開環メタセシス重合体および重合体の製造方法 WO2007046352A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800386903A CN101291944B (zh) 2005-10-20 2006-10-17 有机过渡金属配位化合物的制造方法、通过该方法制造的复分解催化剂、由其得到的开环复分解聚合物以及聚合物的制造方法
US12/090,830 US8143429B2 (en) 2005-10-20 2006-10-17 Process for producing organic transition metal complex compound, metathesis catalyst produced by using the same, ring-opening metathesis polymer obtainable with the metathesis catalyst, and process for producing the polymer
JP2007540971A JP4944787B2 (ja) 2005-10-20 2006-10-17 有機遷移金属錯体化合物およびメタセシス触媒の製造方法
EP06811868.6A EP1950216B1 (en) 2005-10-20 2006-10-17 Process for producing organic transition metal complex compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005306026 2005-10-20
JP2005-306026 2005-10-20

Publications (1)

Publication Number Publication Date
WO2007046352A1 true WO2007046352A1 (ja) 2007-04-26

Family

ID=37962445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320613 WO2007046352A1 (ja) 2005-10-20 2006-10-17 有機遷移金属錯体化合物の製造方法、その方法で製造されるメタセシス触媒、それによる開環メタセシス重合体および重合体の製造方法

Country Status (7)

Country Link
US (1) US8143429B2 (ja)
EP (1) EP1950216B1 (ja)
JP (1) JP4944787B2 (ja)
KR (1) KR100989242B1 (ja)
CN (1) CN101291944B (ja)
TW (1) TW200722429A (ja)
WO (1) WO2007046352A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285546A (ja) * 2007-05-16 2008-11-27 Okayama Univ 開環メタセシス重合触媒および開環メタセシス重合体の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7932397B2 (en) * 2006-11-22 2011-04-26 Massachusetts Institute Of Technology Olefin metathesis catalysts and related methods
PL3008078T3 (pl) 2013-06-12 2019-06-28 Trustees Of Boston College Katalizatory do wydajnej, Z-selektywnej metatezy
US11780864B2 (en) 2021-07-07 2023-10-10 The Hong Kong University Of Science And Technology Rhenium(V) alkylidyne complexes and methods of use and preparation thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258390A (ja) * 1993-12-29 1995-10-09 Teijin Meton Kk メタセシス反応用触媒組成物、その活性化方法および成形方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4727215A (en) * 1985-09-25 1988-02-23 Massachusetts Institute Of Technology Catalyst composition for effecting metathesis of olefins
US5597935A (en) 1994-06-01 1997-01-28 University Of Iowa Research Foundation Synthesis of ansa-metallocene catalysts
CA2199567C (en) * 1996-03-20 2003-01-14 Volker Rheinberger Functionalized and polymerizable polymer
US5917071A (en) * 1996-11-15 1999-06-29 California Institute Of Technology Synthesis of ruthenium or osmium metathesis catalysts
CN100537495C (zh) * 2001-03-30 2009-09-09 加利福尼亚技术学院 环烯烃的选择性开环交叉置换
JP4643091B2 (ja) * 2001-08-24 2011-03-02 カリフォルニア インスティテュート オブ テクノロジー 6配位ルテニウムまたはオスミウム金属カルベンメタセシス触媒
US7081501B2 (en) * 2003-12-01 2006-07-25 Mitsui Chemicals, Inc. Hydrogenated ring-opening metathesis polymer and process for producing the same
JP2005187380A (ja) * 2003-12-25 2005-07-14 Hitachi Chem Co Ltd ルテニウムカルベン錯体の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07258390A (ja) * 1993-12-29 1995-10-09 Teijin Meton Kk メタセシス反応用触媒組成物、その活性化方法および成形方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LOPEZ L.P.H. ET AL.: "Formation of Dimers That Contain Unbridged W(IV)/W(IV) Double Bonds", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 126, no. 31, 2004, pages 9526 - 9527, XP003012134 *
SCHOETTEL G. ET AL.: "A simple route to molybdenum-carbene catalysts for alkene metathesis", JOURNAL OF THE CHEMICAL SOCIETY, CHEMICAL COMMUNICATIONS, no. 15, 1989, pages 1062 - 1063, XP001194658 *
See also references of EP1950216A4 *
SINHA A. ET AL.: "Reactions of Mo(NAr)(CH-t-Bu)(CH2-t-Bu)2 with Alcohols To Give Metathesis Catalysts of the Type Mo(NAr)(CH-t-Bu)(CH2-t-Bu)(OR)", ORGANOMETALLICS, vol. 23, no. 8, 2004, pages 1643 - 1645, XP003012133 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285546A (ja) * 2007-05-16 2008-11-27 Okayama Univ 開環メタセシス重合触媒および開環メタセシス重合体の製造方法

Also Published As

Publication number Publication date
EP1950216B1 (en) 2018-08-29
JPWO2007046352A1 (ja) 2009-04-23
JP4944787B2 (ja) 2012-06-06
CN101291944B (zh) 2012-07-04
US8143429B2 (en) 2012-03-27
TW200722429A (en) 2007-06-16
US20090124772A1 (en) 2009-05-14
KR20080063409A (ko) 2008-07-03
KR100989242B1 (ko) 2010-10-20
EP1950216A4 (en) 2011-02-16
CN101291944A (zh) 2008-10-22
TWI324605B (ja) 2010-05-11
EP1950216A1 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
US9562116B2 (en) Method for preparation of ruthenium-based metathesis catalysts with chelating alkylidene ligands
JP6389307B2 (ja) アルミニウム触媒の製造方法
US6225488B1 (en) Ruthenium or osmium catalysts for olefin metathesis reactions
US8633280B2 (en) Methods of modifying polymers with highly active and selective metathesis catalysts
WO2007046352A1 (ja) 有機遷移金属錯体化合物の製造方法、その方法で製造されるメタセシス触媒、それによる開環メタセシス重合体および重合体の製造方法
Ho et al. Synthesis and structures of titanaoxacyclobutanes
US4690992A (en) Polymerization of difunctional ring compounds
JP5380867B2 (ja) エポキシ基含有ノルボルネン化合物及びその(共)重合体の製造方法
Lehtonen et al. Synthesis and ROMP activity of aminophenol-substituted tungsten (VI) and molybdenum (VI) complexes
JP4118508B2 (ja) ルテニウム錯体の製造
US4607112A (en) Cp2 TiCH2 -containing catalyst for polymerization of difunctional ring compounds
JP5206068B2 (ja) ルテニウム錯体化合物の製造方法
EP1884519B1 (en) Metal hydride complex, method of hydrogenating ring-opening polymerization polymer of cycloolefin, and process for producing product of hydrogenation of ring-opening polymerization polymer of cycloolefin
JP4115799B2 (ja) オレフィンメタセシス触媒系
KR101601493B1 (ko) 환상올레핀계 고분자 화합물의 개환중합용 촉매 및 이를 이용한 환상올레핀계 고분자 화합물의 제조방법
US7435859B2 (en) Sumanene and method for manufacturing the same
US7378474B2 (en) Olefin polymerization catalyst
JP4233838B2 (ja) エーテル類の製造方法
KR20140018660A (ko) 신규 텅스텐 착화합물 및 이를 이용한 환상올레핀계 고분자 화합물의 제조방법
JP2004250613A (ja) ノルボルネンホスホン酸エステル、その製造方法、その重合体及び重合方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680038690.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007540971

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12090830

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006811868

Country of ref document: EP