WO2007046274A1 - 光学シート支持体ならびにこれを用いた液晶ディスプレイ用バックライト、液晶ディスプレイ - Google Patents
光学シート支持体ならびにこれを用いた液晶ディスプレイ用バックライト、液晶ディスプレイ Download PDFInfo
- Publication number
- WO2007046274A1 WO2007046274A1 PCT/JP2006/320252 JP2006320252W WO2007046274A1 WO 2007046274 A1 WO2007046274 A1 WO 2007046274A1 JP 2006320252 W JP2006320252 W JP 2006320252W WO 2007046274 A1 WO2007046274 A1 WO 2007046274A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fabric
- optical sheet
- support according
- sheet support
- light
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0278—Diffusing elements; Afocal elements characterized by the use used in transmission
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D11/00—Producing optical elements, e.g. lenses or prisms
- B29D11/0074—Production of other optical elements not provided for in B29D11/00009- B29D11/0073
- B29D11/00798—Producing diffusers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0205—Diffusing elements; Afocal elements characterised by the diffusing properties
- G02B5/0236—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
- G02B5/0242—Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/1336—Illuminating devices
- G02F1/133602—Direct backlight
- G02F1/133608—Direct backlight including particular frames or supporting means
Definitions
- the present invention relates to an optical sheet support used for a display and a backlight for a liquid crystal display using the same, and more specifically, an optical sheet support suitable for a backlight for a direct liquid crystal display and the like. It relates to the backlight for liquid crystal displays used.
- LCDs Liquid crystal displays
- LCD in order to irradiate the liquid crystal element sandwiched between polarizing plates uniformly from the back side of the screen, an image is displayed by providing a backlight as a surface light source on the back side of the screen.
- Backlights used in LCDs are broadly classified into two types: (1) Direct type with one or more fluorescent tubes arranged directly under the screen, and (2) Guide made by processing a transparent acrylic plate, etc.
- a light plate the fluorescent tube power beam placed on the side of the light guide plate is incident on the light guide plate, and the light is spread in a plane using the action of scattering dots carved on the light guide plate, and the light is transmitted in the viewing direction.
- the direct type is a type that can easily cope with an increase in size
- the sidelight type is a type that can easily cope with a reduction in size and thickness.
- the knocklight incorporates an optical functional sheet (hereinafter referred to as an optical sheet! /) That includes a light diffusing plate, a prism sheet, or a brightness enhancement sheet (polarization separation sheet). It is
- the light diffusion plate functions as follows.
- the fluorescent tube is disposed directly under the screen.
- luminance unevenness corresponding to the shape of the fluorescent tube appears remarkably as it is. Therefore, a light diffusing plate having a thickness of 2 to 3 mm having light scattering properties is arranged on the upper side of the fluorescent tube to shield the fluorescent tube image and equalize the light emission distribution.
- a transparent resin such as metathalyl resin and a diffusion component such as silicone resin particles are kneaded and mixed using an injection molding method or an extrusion method.
- a molded light diffusion plate or the like is used (see Patent Document 1).
- the light diffusing plate also has a function of supporting optical sheets such as a prism sheet and a brightness enhancement sheet (polarization separation sheet) laminated thereon.
- Patent Document 2 discloses that a light diffusing sheet having a fabric force is supported and fixed by a resin plate having a transparent substrate force.
- the technique described in this document does not solve the above-mentioned problems because the resin board is used, and further, the work of embedding, sandwiching, and sticking the fabric to the resin board without wrinkles or slack. It was necessary and there was an annoyance that the relationship between the refractive index of the fabric and the resin board had to be selected optimally.
- the optical sheet is supported in a state where it is raised by the thickness of the resin board, the optical sheet is far away from the light source by the thickness of the resin board. As the distance from the light source is reduced, the intensity of the light is reduced and the light transmitted through the optical sheet is reduced, so that there is a problem that the screen of the liquid crystal display backlight easily becomes dark.
- Patent Document 3 discloses a light diffusion sheet in which a gap between woven and knitted fabrics is filled with a resin.
- the light diffusing sheet described in this document is also attached to a support such as a film, and further supported by another diffusing plate.
- the technique described in Patent Document 2 is used. Had the same problem.
- Patent Document 1 Japanese Patent Laid-Open No. 6-73296
- Patent Document 2 JP-A-8-160205
- Patent Document 3 JP 2005-189583 Disclosure of the invention
- the present invention has been made in view of the problems of the prior art, and is a support that can support an optical sheet used in a display without using a resin board, and is thin and light.
- An object of the present invention is to provide an optical sheet support that is excellent in compactness, impact resistance, and cost reduction.
- the present invention for solving a problem to be solved is characterized by the following configuration.
- An optical sheet support provided on a display member, which has a fabric made of fibers, and the optical sheet support has a total light transmittance of 25% or more and 90% or less. body.
- optical sheet support according to any one of (1) to (3) V, wherein the optical sheet is at least one of a prism sheet and a polarization separation sheet.
- the average single fiber fineness of the fibers constituting the fabric is 0.001 to 30 dtex.
- the optical sheet support according to any one of the above.
- a backlight for a liquid crystal display comprising the optical sheet support according to any one of (1) to (20) V above.
- a liquid crystal display comprising the liquid crystal display backlight according to (21).
- the optical sheet mounted on the display can be supported at a position closer to the light source without using a resin plate.
- the optical sheet support of the present invention is thin, light and compact, and also has excellent impact resistance, so that the cost can be reduced.
- the fabric when the fabric is stretched and fixed and the optical sheet is supported by the tension of the stretch, the fabric becomes lighter and more compact and has excellent impact resistance. In addition, further cost reduction is possible.
- the support of the present invention is a support for an optical sheet mounted on a display, and is made of a fabric composed of fibers.
- the optical sheet mounted on the display is supported by the cloth instead of the resin board when the display member such as a knocklight is assembled.
- the optical sheet mounted on the display can be supported at a position closer to the light source (including the light guide plate and the reflection sheet).
- it since it is a fabric, it is thin, light and compact, and it does not crack during assembly or transportation, so it has excellent impact resistance and can also reduce costs.
- the fabric constituting the optical sheet support of the present invention needs to sufficiently introduce light having a light source power into the optical sheet. Therefore, the fabric needs to have a total light transmittance of 25% or more and 90% or less. If the total light transmittance is less than 25%, the amount of light transmitted through the fabric is small, the amount of light emitted from the backlight is small, and the display screen becomes dark. If the total light transmittance is greater than 90%, the amount of light transmission is sufficient and the display screen becomes bright, but light diffusion within the supporting fabric is insufficient, and uneven brightness tends to occur on the screen.
- one or more fluorescent tubes are set directly below the screen, but bright on the liquid crystal display screen to reflect the position and shape of the fluorescent tube. A portion and a dark portion are formed, and uneven brightness tends to occur.
- the lower limit of the total light transmittance is preferably 25%, more preferably 30%.
- the upper limit is preferably 70%, more preferably 55%. That is, the total light transmittance is preferably in the range of 25% to 70%, more preferably 30% to 55%.
- the fabric constituting the optical sheet support preferably has a haze of 20% to 100%. If the haze is less than 20%, the light diffusibility of the support fabric is insufficient, and the light from the light source is transmitted almost straightly. As described above, uneven brightness is present on the display screen. It is easy to generate. 100% is the measurement limit.
- the haze is more preferably 50% or more and 100% or less, and most preferably 70% or more and 100% or less.
- the total light transmittance and haze are measured in accordance with method A of JIS-K7105 (1981).
- the outline is as follows. Note that the measuring device is an integrating sphere light transmission that satisfies the optical conditions described in JIS-K7105 (1981), paragraph 5.5.2 (1) (light transmittance and total light reflectance measurement method). A rate measuring device is used.
- Tt T2 ⁇ ⁇ ⁇ (1)
- Td T4— T3 (T2 / 100)... (3)
- the fabric can be composed of the following fibers.
- acrylic fibers such as polymethylmethacrylate and polyacrylonitrile, polyethylene terephthalate, polybutylene terephthalate, polyester fibers such as polytrimethylene terephthalate, polyamide fibers such as nylon 6 and nylon 66, polyurethane fibers, polyethylene and polypropylene
- Polyolefin fibers such as pyrene, polyimide fibers, polyacetal fibers, polyether fibers, polystyrene fibers, polycarbonate fibers, polyester amide fibers, polyphenylene sulfide fibers, polychlorinated bull fibers, polyether ester fibers, polyacetate bull fibers, polyvinyl butyral Fiber, poly (vinylidene fluoride) fiber, ethylene acetate butyl copolymer fiber, fluorinated resin, and styrene-acrylic copolymer fiber, aramid fiber, etc.
- polyester fibers polyphenylene sulfide fibers, fluoro-resin fibers, etc.
- polyester fibers such as general-purpose surfaces are particularly preferred. It can be preferably used.
- the fibers constituting the fabric of the present invention include a fiber having a substantially circular cross section, a deformed cross section such as a substantially triangular shape or a substantially cross shape, a hollow cross section, and a composite cross section depending on the required optical characteristics.
- Cross-section fibers can also be used. In order to improve the optical characteristics, not only the cross-sectional shape is appropriate, but it is also possible to put light scattering particles and light absorption particles in the fiber.
- the fibers constituting the fabric are fibers having a substantially circular cross-sectional shape.
- the fabric needs to sufficiently introduce light of the light source power into the optical sheet.
- the cross-sectional shape of substantially all the fibers constituting the fabric is a substantially circular cross-section, the side surface of the fiber is constituted by a curved surface.
- gaps are likely to occur between single yarns. Therefore, when the fabric is irradiated with light, the light reaches the fabric surface while only passing through the inside of the single yarn, passing through the gaps between the fibers, or being scattered by the curved surface of the fibers.
- the fibers having a substantially circular cross section are more preferably 90 to 100% of the fibers constituting the fabric.
- the measurement of the ratio of fibers having a substantially circular cross-sectional shape is performed as follows. First, when the fabric is a knitted fabric, the fabric is loosened, and a cross section of the fibers constituting the fabric is enlarged and photographed with an optical microscope or a reflection electron microscope so that the fiber diameter is about 1 cm. On the other hand, in the case of non-woven fabric, a 5 mm wide sample is cut out from the fabric (the length depends on the measuring device), and the cross section of the sample is copied to an optical diameter of about 1 cm using an optical microscope or a reflection electron microscope. Enlarge and take a picture.
- the “deformed cross section” refers to a shape other than a substantially circular shape, such as a substantially triangular shape, a substantially rectangular shape, a substantially star shape, a substantially X shape, or a substantially Y shape.
- the ratio of fibers having an irregular cross-sectional shape is calculated in accordance with the above-described method for measuring the ratio of substantially circular cross-sectional fibers, and is calculated from the approximate irregular cross-section number Z total cross-section number X100.
- a method for producing a modified cross-section yarn in addition to a known method of spinning a spinneret in which the discharge hole shape of a spinneret is formed into the above-mentioned shape, after forming a fabric with fibers having a substantially circular cross-sectional force, for example, a method may be used in which the cross-sectional shape of the fibers constituting the fabric is deformed into a deformed cross-section by heat pressing.
- the fiber having the irregular cross-sectional shape is 90 to 100% of the fiber constituting the fabric.
- the fibers constituting the fabric are fibers having a hollow cross-sectional shape.
- refraction at the hollow interface occurs in addition to refraction at the fiber surface, so that the light diffusing effect is enhanced and the rigidity of the fiber is reduced, so that the fiber cross section is easily deformed.
- the hollow cross-sectional shape fiber is 90 to 100% of the fibers constituting the fabric.
- the ratio of the fibers having a hollow cross-sectional shape is calculated according to the method for measuring the ratio of the substantially circular cross-sectional shape fibers described above, and is calculated from the number of hollow cross-sections Z and the total number of cross-sections X100.
- the hollow ratio of the hollow cross-section shaped fiber at this time is preferably 5% to 40%.
- the hollow ratio is 5% or more, the diffusion effect in the hollow structure starts to be exerted. 40% or less Therefore, it is possible to prevent a reduction in diffusion effect due to fiber crushing.
- a photograph is taken in the same manner as the method for calculating the ratio of fibers having a hollow cross-sectional shape. Then, the photograph is further magnified 4 times, and the entire area and hollow area of each fiber cross section are measured, and the hollow ratio is calculated from the area X 100 of the entire hollow area Z.
- the hollow cross-section fiber is two or more porous hollow.
- the diffusion effect can be exhibited at each hollow interface, so that the fabric has excellent diffusibility.
- a more preferable form as a porous hollow is a nanoporous structure.
- the fiber constituting the fabric of the present invention is a composite fiber, it does not matter.
- the composite fiber include a fiber having a core-sheath structure in which polymers having different refractive indexes are arranged in the core component and the sheath component, and a fiber having a bimetal structure in which polymers having different refractive indexes are bonded together.
- the fibers constituting the fabric by using 80-: LOO% of the fibers constituting the fabric as core-sheath fibers or bimetal fibers, the effect of refracting the light transmitted through the fibers appears, and the fabric has an excellent light diffusion effect. It becomes. At this time, in order to further enhance the light diffusion effect, it is preferable to apply a real twist to the yarn.
- the constituent fibers may be false twisted yarns.
- the fibers are swelled, filling the joints of the woven and knitted fabrics, and reducing the light unevenness by suppressing the straight light passing through the fiber gap.
- Examples of the light scattering particles include titanium oxide, calcium carbonate, and ceramics such as alumina and zirconium oxide.
- Examples of the light absorbing particles include metal fine particles such as gold and silver.
- titanium oxide used for improving the gloss of the fiber is particularly preferable. Titanium oxide is commonly used for polyester fibers and nylon fibers, and is easy to handle. is there.
- the light scattering particles and the light absorbing particles are preferably contained in a total range of 0.001 to 0.3 wt% per fiber weight.
- 6 g of the sample is melt-molded into a plate shape, and the light scattering particles and the light absorption particles are measured using a fluorescent X-ray elemental analyzer (MESA-500W, manufactured by Horiba, Ltd.). Obtain the amount of titanium element and obtain the titanium oxide content from the measured value.
- the particle content can be calculated from the amount of elements such as Ca, Al, and Zr.
- the particle effect begins to be exerted. Further, by setting the amount to 0.3 wt% or less, it is possible to increase the amount of light scattered and absorbed by the light scattering particles and the light absorption particles while ensuring the necessary amount of transmitted light. Either one of the light scattering particles and the light absorbing particles may be used, or both of them may be used.
- the elastic fibers may be contained in the fibers constituting the fabric at a ratio of 20% to LOO%.
- the lower limit of the elastic fiber is particularly preferably 40%, more preferably 30%.
- the upper limit of the elastic fiber is particularly preferably 60%, more preferably 80%.
- the elastic fiber ratio is calculated by taking out a 5cm x 5cm test piece from the fabric, disassembling the constituent fibers to a single yarn level, and calculating the ratio of the number of elastic fibers contained in the total number of fibers. Is required.
- the average single yarn fineness of the fibers constituting the fabric is preferably 0.001 to 30 dtex. If the single yarn fineness is less than 0. OOldtex, the single yarn strength is insufficient and it becomes easy to cut and the handleability is poor. On the other hand, if it exceeds 30 dtex, there is no problem in terms of single yarn strength. Since it becomes thicker, fiber gaps are likely to occur and light unevenness is likely to occur, and when multifilaments are used, the thickness of the fabric tends to increase due to the overlap of fibers, and the average brightness tends to decrease, which is not preferable.
- the fibers constituting the fabric of the present invention preferably have an average total fineness of 5 to 450 dtex. By setting the average total fineness within this range, fluff due to fiber damage caused by weaving and knitting In addition, the texture of the finished knitted knitted fabric and the amount of light transmitted through the joint are small.
- T (0. 2 XW) X 10
- ⁇ Average total fineness (dtex) of yarn
- W Mass of 25 samples (mg).
- the fibers constituting the fabric as described above may be produced by any method.
- the fibers described above in the case of fibers containing titanium oxide with a substantially circular cross section, for example, they can be produced as follows. Dimethyl terephthalic acid, ethylene glycol, and tetrabutyl titanate were used as catalysts, and after ester exchange reaction while distilling methanol at 140 ° C to 230 ° C, selenium oxide and ethylene glycol slurry of titanium oxide particles were used. For example, 0.1% by weight is added to the obtained polymer, and further polymerized for 3 hours under the condition of a constant temperature of 285 ° C.
- a polyethylene terephthalate polymer having an intrinsic viscosity [r?] Of 0.65 This polymer is melted at 290 ° C using a known spinning machine, measured with a lightweight pump, discharged from a nozzle with a circular discharge hole diameter of 0.23 mm, discharge hole length of 0.3 mm, and discharge hole number of 36H, and cooled.
- an oil agent is applied and the undrawn yarn is wound up at 1800 mZ.
- This undrawn yarn is drawn 3.2 times using a drawing machine with a first hot roll at 90 ° C and a second hot roll at 130 ° C, and contains titanium oxide in a substantially circular cross section with a total fineness of 84dtex.
- a drawn yarn is obtained.
- the fabric may be woven using the fibers thus obtained as warp and weft.
- the fabric may have any configuration such as a woven fabric, a knitted fabric, a dry nonwoven fabric, and a wet nonwoven fabric.
- a woven fabric having good dimensional stability during handling and small thickness unevenness is preferable.
- the thickness of the part with a lot of fibers (dense part) becomes thicker, and the part with few fibers (rough part) becomes thinner, so the part with more fibers becomes darker with less light transmission.
- the portion with less fiber becomes brighter because the amount of transmitted light increases. for that reason
- the thickness unevenness of the fabric is large, the brightness unevenness is increased.
- the dimensional stability is poor, the fabric itself is deformed and stretched and contracted during stretching and fixing described later.
- the fabric in the present invention is preferably a woven fabric with small thickness unevenness and good dimensional stability.
- the weaving structure of the woven fabric is not particularly limited, and may be any weaving structure such as plain weave, twill weave, satin weave and the like.
- the cover factor of the fabric is preferably 500 or more and 300 or less.
- the cover factor is a factor calculated by the following equation.
- the cover factor is less than 500, the amount of fibers constituting the fabric is too small, so that the diffusion of light in the fabric is reduced, and the brightness unevenness is increased too much.
- the cover factor is larger than 3000, the amount of fibers constituting the fabric is too large to transmit light sufficiently and sufficient brightness cannot be obtained, and the display screen tends to become dark.
- the cover factor is preferably 1000 or more and 2500 or less, particularly 1500 or more and 2000 or less.
- the ratio of the weft density of the warp yarn to the weft yarn is preferably 1: 2 to 2: 1.
- the light diffusing performance required for the fabric may require anisotropic diffusion depending on the performance of the optical sheet that can be placed on top of uniform dispersion. It is important to change the weaving density ratio between yarn and horizontal yarn. However, if the weaving density ratio exceeds 2, the joints of the woven fabric will increase, and the force will go straight.
- the method for measuring the weaving density is based on JIS-L1096 (1999). Take a 2.54cm X 2.54cm test piece at right angle or parallel to the horizontal thread, loosen the warp and horizontal threads from the test piece, and count the number of each. That value is the folding density.
- one of the warp yarn and the weft yarn constituting the woven fabric is composed of a monofilament.
- multifilaments and monofilaments it is possible to obtain a fabric with high optical anisotropy that could not be achieved with the configuration of warp and weft yarns.
- the fabric is preferably heat-treated in the state of the fabric in order to reduce dimensional deformation due to tension at the time of stretching and fixing described later. It is also preferable to use a fabric that has been subjected to heat-setting! /.
- the load of 4.9 NZ5cm is applied, and the elongation after 24 hours (hereinafter referred to as “tape”) should be 10% or less in both the longitudinal and lateral directions of the fabric. Is preferred.
- the support is stored and used for a long time with the weight of the fabric and the weight of the optical sheet added, so if the creep is large, it will gradually expand, resulting in sagging and uneven brightness as described above. . Therefore, the creep is preferably 10% or less. More preferably, it is 5% or less, and further preferably 3% or less.
- the support may be yellowed or deteriorated in strength when exposed to ultraviolet rays contained in the light source while the light source of the display is on. If the support turns yellow, the color tone of the light transmitted through the yellowed support changes, and the color tone of the screen displayed on the display also changes. Therefore, in the present invention, it is preferable to use a fabric that has been subjected to UV resistance treatment.
- UV resistance treatment is treatment using a light stabilizer such as an ultraviolet absorber. Light stabilizers are (1) UV blocking, absorption, (2) non-radical decomposition of hydride, (3) quenching of excited compounds, (4) trace heavy metal capture, (5) radical capture It has one or more functions.
- the light stabilizer examples include triazine compounds, benzotriazole compounds, benzophenone compounds, dibenzophenone compounds, salicylate compounds, cyanoacrylate compounds, oxa-lide compounds, Ultraviolet absorbers mainly having ultraviolet shielding and absorption effects such as formamidine compounds, etc., and phenolic compounds, phosphorus compounds, organocopper complex compounds, hydrazine compounds, etc. And hindered amine light stabilizers having a radical scavenger, radical scavenging ability, hy- peroxide resolution, and metal ion scavenging ability.
- the light stabilizer is not particularly limited to these, and can be selected depending on the type of fiber constituting the cloth and the processing method of the light stabilization treatment. Moreover, one type of light stabilizer may be used, or two or more types may be used in combination.
- the method of applying the light stabilizer may be a method of applying to the surface of the fiber, such as a spray method, a coating method, or a printing method, or may be a method of diffusing the fabric into the fiber.
- a method of diffusing into the cloth or fiber the cloth or fiber is immersed in an aqueous solution containing a light stabilizer and dyed in a bath, or the cloth or fiber is immersed in an aqueous solution containing a light stabilizer. It is possible to employ a pad-curing method in which a dry heat treatment is performed after the amount of adhesion is reduced to a predetermined amount with a mangle.
- the light stabilizer may be applied to the fiber before forming the fabric or may be applied to the fabric. However, the latter is preferable because it increases the stability of the treatment and can reduce the cost. Better! /.
- the amount of the light stabilizer applied is 0.1 to 5.0% by weight, more preferably 0.5 to 3.0%, based on the weight of the fabric. % By weight is good. If the amount is less than 0.1% by weight, the intended UV resistance may not be achieved. If the amount exceeds 5% by weight, the strength of the fiber may be reduced, and the cost may be increased.
- the adhesion amount of an ultraviolet absorber or the like is 0.1 to 10.0 weight relative to the weight of the fabric. %, More preferably 0.5 to 8.0% by weight, still more preferably 0.5 to 5.0% by weight. If the amount is less than 1% by weight, the target UV resistance may not be exhibited in the same manner as in the case of exhaustion. If the amount exceeds 10.0% by weight, light transmission is caused by the attached light stabilizer. In some cases, the brightness is reduced due to obstruction, which may lead to increased costs.
- the bending resistance is more preferably 70 mm or less, more preferably 50 mm or less.
- the bending resistance is obtained as follows. First, five 2 cm x 15 cm test pieces are taken from the sample in the vertical and horizontal directions, and the short side of the test piece is scaled on a smooth horizontal surface with a 45-degree slope at one end. Put it to the standard. Next, slide the test piece gently in the direction of the slope, and read the position of the other end on the scale when the center point of one end of the test piece touches the slope.
- the bending resistance is indicated by the length (mm) that the specimen has moved. In the present invention, it is obtained by measuring the front and back of each of the five sheets and calculating the average values in the vertical and horizontal directions.
- the fabric preferably has a tensile strength of 100 NZ5 cm or more in order to prevent damage to the fabric itself when stretched and fixed as described below.
- a tension of 50NZ5cm for example, is considered sufficient. Therefore, if the tensile strength is set to 100 NZ5 cm or more, problems such as breaking of the fabric during stretching will not occur, leading to process stability.
- luminance unevenness of the fabric is 50 ⁇ 350cd / m 2. Difference in brightness is increased when the brightness unevenness exceeds 350CdZm 2, when a display screen and a problem is visible plaques likely to occur. Further, in the direct type backlight arranging a plurality of fluorescent tubes 50CdZm 2 is the limit.
- a method for measuring the luminance unevenness of the fabric is as follows. First, the fluorescence of the direct type backlight Remove the diffusion plate installed on the tube, place a transparent plastic plate of the same thickness as the diffusion plate, install a fabric on it, and turn on the fluorescent tube for 60 minutes to stabilize the light source. After that, using the luminance measurement device EYSCALE-3 (manufactured by I-System Co., Ltd.) from the measurement sample side, place the attached CCD camera at a point 90 cm from the center of the direct-type backlight emission surface. Install it so that it is in front of the surface and measure the luminance (cdZm 2 ). The measurement location is two brightness points (L) just above the two fluorescent tubes near the center point, and
- the brightness unevenness is also calculated by the following formula force, and the brightness unevenness is better as the value is smaller.
- Brightness unevenness (cdZm 2 ) (average value of L) one (average value of L)
- the weight of the cloth is preferably 10 g / m 2 or more and 300 g / m 2 or less in the present invention.
- the weight is calculated by cutting three samples into 20 cm square, measuring the weight, and calculating the average value (m (g)) of the three. Using the value, the weight per lm 2 (M (g / m 2 )) is calculated by the following formula.
- M (g / m 2 ) m (g) Z (0. 2 (m) X 0.2 (m))
- the fabric weight lightweight is less than LOgZm 2 is excellent, takes rigidity of the fabric is eliminated Ya easier too soft handling, sex is bad I spoon, whereas exceeding 300GZm 2 when the light transmissive property is Akui ⁇ It is not preferable.
- the optical sheet support of the present invention preferably has a member for stretching and fixing the fabric in addition to the fabric as described above.
- the fabric is stretched and fixed in the display, and the optical sheet is supported by the tension due to the stretching and fixing.
- the method of stretching and fixing the optical sheet support is not particularly limited, and examples thereof include the following method using a frame.
- the frame body includes at least a pair of concave portions and convex portions, one of which is fixed to the fabric, and the fabric is fixed by fitting the concave portions and the convex portions. That is, for example, a fabric fixed to a frame body having a convex portion and a housing having a concave portion are prepared, and the concave portion and the convex portion are fitted to fix and stretch the fabric.
- the frame body includes at least a pair of concave portions and convex portions, and the fabric is sandwiched between the concave portions and the convex portions. Fix it. That is, for example, a method of preparing a frame body having a convex portion and a housing having a concave portion, and holding the fabric between the concave portion and the convex portion to stretch and fix.
- the frame may have been originally provided as a display member! /, And may be handled as a separate member! /
- the stretching tension at the time of stretching and fixing is preferably 10 NZ5 cm or more and 100 NZ5 cm or less. That is, it is preferable to stretch and fix while applying a force of ION or more and 100 N or less per 5 cm width of the fabric. If it is less than 10 NZ5 cm, sagging will occur, and if it exceeds 100 N / 5 cm immediately, the fabric will stretch.
- the tension at the time of stretching can be applied by, for example, sandwiching the end portion of the fabric with a flat plate or the like so that the force is applied uniformly and pulling while measuring the tension with a panel meter.
- the amount of deflection at the center of the light emitting surface when an optical sheet such as a prism sheet or a polarization separation sheet is placed is increased.
- the deflection when an optical sheet is placed is preferably 10 mm or less. If the amount of deflection exceeds 10 mm, the difference in the amount of light between the center of the light emitting surface and the end portion is likely to cause uneven light, which is not preferable.
- the optical sheet support of the present invention may be incorporated in a sidelight type backlight.
- FIG. 1 is a schematic diagram of a liquid crystal display including a liquid crystal unit 7 and a direct type backlight 57.
- a direct backlight 57 includes a casing 3, a reflection sheet 4 spread on the inner surface of the casing 3, and a plurality of linear fluorescent tubes 5 ( A light source), a cloth 1 disposed so as to cover an upper portion of the fluorescent tube 5, and a frame 2 for spreading and fixing the cloth are also configured.
- Frame 2 has a shape that fits inside the casing 3
- the fabric 1 is stretched and fixed to the frame body 2 by a method as will be described later so that there is substantially no looseness.
- optical functional sheets such as a prism sheet 20 and a polarization separation sheet 21 are disposed.
- the knocklight for a liquid crystal display of the present invention includes a light source, a fabric, and a frame body that stretches and fixes the fabric.
- the frame 2 is made of metal such as aluminum or stainless steel, acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET). It is possible to combine both metal and resin depending on the use conditions and purpose.
- the material of the frame body 2 is preferably ABS, PC, or PP, which is preferred for grease, because it is light weight and has low moldability.
- the frame body 2 is constituted by a concave portion and a convex portion fitted into the concave portion, and the fabric is fixed by the concave portion and the convex portion.
- a frame 2 having four rods 9 (convex portions) fixed to the fabric 1 and a hollow square frame 58 having grooves 18 (concave portions).
- the fabric 1 is fixed to the frame 2 by fitting the rod 9 into the groove 18 and fitting the both together.
- various fixing methods such as adhesion, fusion, pinching, and stitching are possible.
- the four rods 9 may be in the shape of a square frame connected to each other.
- the distance between the recesses such as the grooves 18 facing each other is set slightly longer than the distance between the protrusions such as the two opposing bars 9 fitted into the recesses.
- the frame body 2 is constituted by a pair of concave portions 2A and convex portions 2B fitted into the concave portions, and the fabric is sandwiched between the concave portions 2A and the convex portions 2B. And may be fixed.
- this fixing method when the convex portion 2B is fitted into the concave portion 2A, the fabric 1 is wound into the concave portion, and tension is applied to the fabric 1. Therefore, the fabric 1 is stretched while suppressing the occurrence of slack and wrinkles. It can be fixed.
- the frame 2 is prepared separately from the knocklight casing 3
- the frame 2 may be constituted by the housing 3. That is, a recess such as a groove 18 is provided directly on the outer peripheral portion 6 of the housing 3, and a convex portion fixed to the fabric is fitted into the groove, or the convex portion is fitted while the fabric is sandwiched between the fabric. May be fixed. By doing so, it becomes possible to reduce the number of components of the knocklight, and it is possible to achieve weight reduction, compactness, and cost reduction.
- the shape of the concave portion and the convex portion can be freely selected such as a square shape, a U shape, an arrow shape, and the shape is not limited.
- an adhesive tape such as a double-sided tape or an adhesive is interposed between the fabric 1 and the frame 2, and the two are They may be fixed to each other.
- a powder or tape-like material made of a low melting point resin is interposed between the fabric 1 and the frame 2 and the low melting point resin is thermally melted by heating them, so that the fabric 1 and the frame 2 are heated. It is also preferable to fuse the two. According to this method, even when both the fabric 1 and the frame 2 are not melted, they can be bonded together.
- At least one of the fabric 1 and the frame 2 is melted, at least a part of the contacted portion is treated with a high-frequency welder or an ultrasonic welder while the fabric 1 and the frame 2 are in contact with each other. Or may be fused by hot pressing.
- a method as shown in FIG. 5 can be applied.
- the frame 2 is placed on the fabric 1, the portion 12 of the fabric 1 protruding from the frame 2 is folded back, the four sides of the frame 2 are wrapped, and the fabric overlaps ( That is, the part 12) protruding from the frame 2 is fixed by a method such as adhesion, stitching, or heat fusion.
- the part where the fabrics overlap each other may be fixed over the entire surface, or only the tip (broken line part) may be fixed to form a cylinder.
- a method of forming the frame 2 by passing a bar or wire and joining both ends of the bar or wire is also possible.
- an elastic body may be used. It is. That is, it is possible to stretch the fabric using the restoring force of the elastic body.
- a rod 9 is provided on at least one side of the fabric 1, and the rod 9 fixed to the fabric 1 and one side of the hollow rectangular frame 2 are connected by at least one elastic body 8. To do.
- the elastic body 8 force S Since the rod 9 and the frame body 2 are connected while being pulled, the fabric can be stretched by the restoring force of the elastic body 8.
- the fixing method may be any fixing method such as adhesion, welding, or suturing with an adhesive.
- the material of the rod 9 may be any metal such as aluminum or stainless steel or ABS, PC, PE, PP, PET, etc. Although it is possible to combine the two, ABS, PC, and PP are preferred because they are lightweight, have good moldability, and are not expensive. However, the rod 9 needs to have a degree of rigidity that hardly deforms even when the restoring force of the elastic body acts to apply tension to the fabric.
- the rod 9 may have any shape as long as it can be fixed to the fabric 1 and connected to the elastic body 8.
- the elastic body 8 can be made of any material such as metal or resin, and can be any type of elastic body.
- the frame body 2 may be configured by the housing 3 without providing the frame body 2 separate from the knocklight housing 3. That is, the fabric may be fixed by directly connecting the elastic body 8 to the outer peripheral portion 6 of the housing 3. By doing so, it becomes possible to reduce the number of components of the knocklight, and it becomes possible to reduce the weight, size and cost.
- FIGS. 7 and 8 show another method of spreading a fabric using an elastic body.
- a frame body is constituted by the knocklight housing 3 and the hollow rectangular frame 10 fixed to the fabric 1, and the elastic body 8 is provided therebetween.
- any fixing method such as adhesion, welding, or stitching with an adhesive or the like is possible.
- the frame 10 has an inner periphery that is larger than the outer periphery 6 of the backlight housing 3 and is shown in FIG. As shown in FIG. 4, the frame 10 is configured to be able to cover the outer peripheral portion 6 of the backlight housing 3.
- At least one elastic body 8 such as a panel is inserted into the gap formed between the frame 10 and the outer peripheral portion 6 of the backlight housing 3, and the frame 10 is moved outward by the restoring force of the elastic body 8.
- the fabric 1 is stretched by spreading. If there is no gap between the frame 10 on which the fabric 1 is fixed and the outer peripheral part 6 of the backlight housing 3, one of the outer peripheral part 6 of the frame 10 and the housing 3 is shown in FIG.
- a hole and groove for inserting the elastic body 8 may be provided, and the elastic body 8 may be inserted.
- the frame 10 used here may be made of any metal such as aluminum or stainless steel or ABS, PC, PE, PP, PET, etc. It is possible to combine both fats, but ABS, PC and PP are preferred because they are light weight and are not too expensive for moldability. However, when the frame 10 is pushed outward by the elastic body 8, the frame 10 must be widened and deformed to the extent that tension is generated in the fabric 1. It does not deform and needs a certain degree of rigidity.
- the elastic body 8 can be made of any material such as metal or resin, and can be any type of elastic body.
- the frame 10 is separated from the outer peripheral part 6 of the casing 3.
- Another frame 59 that can be covered may be provided to spread the fabric 1. That is, the frame 10 to which the fabric 1 is fixed is put on another frame 59, and at least one elastic body 8 such as a panel is inserted into a gap formed between the frames 10 and 59, and the frame 10 is attached to the elastic body 8.
- the fabric 1 is stretched by being pushed outward by a restoring force. If there is no gap between the frames 10 and 59 to which the fabric 1 is fixed, as shown in FIG. 9, a hole groove into which the elastic body 8 can be inserted is provided on one of the frames 10 and 59, and the elastic body 8 If you insert ⁇ .
- Fig. 10 shows another method.
- a screw is used as a means for giving a tension necessary for spreading the fabric 1.
- the screws used here can be any material such as metal or grease.
- a bar 9 is provided on at least one side of the fabric 1 as in the embodiment shown in FIG. Then, each rod 9 fixed to the fabric 1 and each side of the frame body 2 are connected by screws 16 which are not elastic bodies.
- FIG. 10 shows an example in which a nut 17 is used, in which a rod 9 is fixed to each side of the fabric 1 and each is connected to each side of the frame 2 with a screw 16.
- a fixing method it is possible to use any fixing method such as bonding / welding / sewing with an adhesive or the like!
- the rod 9 can have any size and shape as long as it can be fixed to the fabric 1 and connected to the screw 16.
- the material of rod 9 can be any metal such as aluminum or stainless steel, ABS, PC, PE, PP, PET, etc. Although it is possible to reduce the weight, it is lightweight, and its moldability and cost are not high. Therefore, ABS, PC, and PP are preferred. However, the rod 9 needs to have a rigidity that hardly deforms even when a stress is applied to apply tension to the fabric.
- the material of the screw 16 is not particularly limited.
- the frame body 2 may be configured by the force housing 3 in which the frame body 2 is prepared separately from the knocklight housing 3. That is, the rod 9 fixed to the fabric 1 may be directly fixed to the outer peripheral portion 6 of the housing 3 with a screw. By doing so, it becomes possible to reduce the number of components of the knocklight, and it becomes possible to achieve weight reduction, compactness, and cost reduction.
- the frame 2 is made of an elastic body, and the reaction force of the elastic body of the frame 2 is used to make the fabric 1 There is a way to extend.
- FIG. 11 the frame 2 is made of an elastic body. Is a force that is usually a quadrangle indicated by a broken line. If a load is applied simultaneously in the directions of the four arrows, it will deform into a solid line. Therefore, when the frame 2 is loaded and deformed as shown by the solid line in FIG. 11, the fabric 1 is attached to the frame 2 and then the load is removed. As it tries to move, a force is generated to spread outward in the frame.
- the fabric 1 Since this force pulls the fabric 1, the fabric 1 is stretched without causing slack.
- the material of the frame body 2 used in this spreading method is not necessarily an elastic body, the above object can be achieved if the elastic body is included in a part of the frame body 2.
- the method for fixing the fabric 1 to the frame 2 can be any fixing method such as adhesion, welding, or stitching with an adhesive or the like.
- FIG. 12 is a view of the frame body 2 as viewed from the front and a side view thereof.
- the fabric 1 when the fabric 1 is fixed to the frame 2, the fabric 1 is folded back on the side (side B in the figure) that is disposed below in use, and the frame 2 or the housing 3. Or fix it on the outer periphery 6 and make it into a bag (19 in Fig. 12).
- the weight 13 When the weight 13 is inserted into the bag-shaped portion 19, the fabric 1 can be stretched while preventing the occurrence of stagnation due to the load of the weight 13.
- any fixing method such as adhesion, welding, or sewing with an adhesive or the like is also possible.
- the portion (bag-like portion 19) where the weight is arranged is preferably a bag shape so that the weight is not removed, but there is no functional problem even if it is a cylindrical shape. Further, the weight may be directly fixed to the cloth without making the cloth 1 folded. When the weight is fixed to the fabric 1, it is possible to use any fixing method such as bonding, welding, or sewing with an adhesive.
- the materials such as the net 14 and the brace 15 are not particularly limited, such as metal resin or natural fiber.
- a fixing method to the frame 2 such as the net 14 and the brace 15, the casing 3, or the outer peripheral portion 6, any fixing method such as adhesion or welding with an adhesive or sewing can be used.
- the shape is not limited to those shown in FIG. 13 and FIG. 14, and any shape can be used as long as the fabric 1 is prevented from being greatly stiffened.
- the light emitted from the light source must not be reflected or blocked, and it must be thin enough so that no shadows are projected on the LCD screen.
- the thickness of the optical sheet support can be reduced, the optical sheet can be supported at a position closer to the light source, and the light emitted from the light source can be transmitted in a stronger state. Can be brightened.
- it since it is thin, it is excellent in compactness, is light, and has excellent impact resistance, so that it is possible to prevent problems such as cracking and cracking during transportation and display assembly processes. As a result, it is possible to significantly reduce costs.
- the fabric when the fabric is stretched and fixed and the optical sheet is supported by the tension due to the stretching, the fabric becomes lighter and more compact, and has excellent impact resistance, and further cost reduction is possible.
- the measuring device includes an integrating sphere type light beam that satisfies the optical conditions described in Section 5.5.2 (1) of JIS-K7105 (1981) (light transmittance and total light reflectance measurement method). A transmittance measuring device was used. (1) The conditioned sample was cut for 48 hours or more in a dark place with a force temperature of 23 ⁇ 2 ° C and relative humidity of 50 ⁇ 5%. Is 3).
- Td T4— T3 (T2 / 100)... (3)
- the thickness was measured using a thickness gauge (pressing pressure 0.98 N / cm 2 ).
- JIS-L1096 (1999) -8. 12.1 Three specimens were collected for each of the shell, vertical and horizontal directions in the Abe (strip method) rabenoled strip method, from both sides of the width. Remove the thread to a width of 50 mm and use a constant-speed tension type testing machine to pull the grip at 150 mm. The breaking strength when tested at a tension speed of 200 mmZmin was measured, and the average value was calculated for each of the vertical and horizontal directions.
- the diffusion plate installed on the fluorescent tube of the direct type backlight and in the case of fabric, place a transparent plastic plate with the same thickness as the diffusion plate, install the fabric on it,
- the fluorescent tube was turned on for 60 minutes to stabilize the light source.
- the attached CCD camera is placed at a position 90 cm from the center of the light emitting surface of the direct backlight, and the direct backlight It was placed in front of the light surface and the luminance (cdZm 2 ) was measured.
- the measurement location is the luminance between the two force tubes (L) directly above the two fluorescent tubes on the left and right of the center point, and the two measured fluorescent tubes and adjacent fluorescent tubes.
- Brightness unevenness (cdZm 2 ) (average value of L) one (average value of L)
- the amount of deflection at the center of the light emitting surface was measured by passing a non-deflable metal rod directly above the center and measuring the gap between the bottom surface of the metal rod and the optical film with a caliper.
- the visual evaluation was performed by 10 people, and the luminance and luminance unevenness were observed in four stages of A (excellent), B (good), C (possible), and D (impossible), and the highest evaluation was adopted. If you have the same number of people, Adopted.
- the fabric produced by changing the weaving density as described below was subjected to UV resistance treatment, and various properties of the fabric were evaluated as described above. Thereafter, the supportability of the optical sheet and the deflection, luminance, and luminance unevenness of the central portion of the light emitting surface in the backlight were evaluated as described below.
- the optical sheet can be favorably supported, sufficient luminance can be obtained as a backlight, and luminance unevenness is also observed.
- Ultraviolet ray absorbing treatment solution containing 2% by weight of triazine-based ultraviolet absorber (trade name: CIBAFAST P Ciba 'Specialty Chemicals Co., Ltd.) with respect to the weight of the fabric and ammonium sulfate 1. OgZL and the above-mentioned composition
- the treatment conditions were as follows: dyeing in a bath at 130 ° C for 60 minutes, followed by washing with hot water at 60 ° C for 10 minutes and rinsing with running water for 5 minutes. Thereafter, it was dried at 120 ° C. for 3 minutes.
- the adhesion amount of the ultraviolet absorber was 0.8% by weight.
- Fabric 1 is placed on square frame 2 with a convex part (made of polycarbonate, composed of 5mm x 8mm square bars), and 50N per 5cm width in both the vertical and horizontal directions.
- the ultrasonic transmission jig heated to 450 ° C while being stretched by force was pressed for 0.2 seconds to fuse them together.
- the frame body 2 was fitted into the display housing 3 having a concave portion whose inner dimension was 1 mm larger than the inner dimension of the convex portion of the frame.
- a 32-inch prism sheet and a polarization separation sheet were placed on the support as an optical sheet, and the amount of deflection at the center of the light emitting surface was measured.
- the fluorescent lamp 5 was turned on, and the luminance and luminance unevenness of the knocklight were visually evaluated.
- Table 1 shows the evaluation results.
- the milky white plate was allowed to stand on the housing 3 instead of the fabric 1 and the frame 2 in FIG.
- a 32-inch prism sheet and a polarization separation sheet were placed as optical sheets, and the amount of deflection at the center of the light emitting surface was measured.
- the fluorescent lamp 5 was turned on, and the brightness and unevenness of the knocklight were visually evaluated.
- the fabric was subjected to UV resistance treatment in the same manner as in Example 1 except that the following fabric was used, and various properties of the fabric were evaluated.
- the supportability of the optical sheet, the luminance of the deflection at the center of the light emitting surface in the backlight, and the luminance unevenness were evaluated.
- Fabric 1 is stretched on a rectangular frame 2 with a convex part (made of polycarbonate, which also has a square bar force of 5mm x 8mm) with a force of 100N per 5cm width in both the vertical and horizontal directions. Then, the heat-seal tape was sandwiched and the heat plate was pressed for 1 minute at 150 ° CX for fusion.
- the frame body 2 was fitted into the display housing 3 having a concave portion whose inner dimension was 1 mm larger than the inner dimension of the convex portion of the frame. On top of that, a 32-inch prism sheet and a polarization separation sheet were placed as optical sheets, and the amount of deflection at the center of the light emitting surface was measured.
- the fluorescent lamp 5 was turned on, and the brightness and unevenness of the knocklight were visually evaluated.
- the fabric was subjected to UV resistance treatment in the same manner as in Example 1 except that the following fabric was used, and various properties of the fabric were evaluated. Further, as described below, the supportability of the optical sheet and the deflection, luminance, and luminance unevenness of the central portion of the light emitting surface in the backlight were evaluated.
- Table 1 shows the evaluation results.
- the optical sheet could be favorably supported.
- the fluorescent lamp when turned on, it was unsuitable as an optical sheet support, although it had low total light transmittance and little luminance unevenness.
- the fabric is stretched on a rectangular frame 2 (made of polycarbonate, with a square bar force of 5mm x 8mm) with a convex part, with a force of 100N per 5cm width in both the vertical and horizontal directions. Then, the heat-seal tape was sandwiched between them, and the heat plate was pressed for 1 minute at 150 ° CX for fusion.
- the frame body 2 was fitted into the display housing 3 having a concave portion whose inner dimension was 1 mm larger than the inner dimension of the convex portion of the frame body. On top of that, a 32-inch prism sheet and a polarization separation sheet were placed as optical sheets, and the amount of deflection at the center of the light emitting surface was measured.
- the fluorescent lamp 5 was turned on, and the brightness and uneven brightness of the knocklight were visually evaluated.
- the fabric was subjected to UV resistance treatment in the same manner as in Example 1 except that the following fabric was used, and various properties of the fabric were evaluated. Further, as described below, the supportability of the optical sheet and the deflection, luminance, and luminance unevenness of the central portion of the light emitting surface in the backlight were evaluated.
- the optical sheet could be favorably supported.
- the fluorescent lamp when the fluorescent lamp was turned on, although the total light transmittance was high, there were bright portions and dark portions, the luminance unevenness was large, and it could not be used as an optical sheet support.
- the fabric was stretched on a frame 2 (made of polycarbonate, made of 5mm x 8mm square bar) with a convex part with a force of 50N per 5cm width in both the vertical and horizontal directions.
- the ultrasonic wave transmitting jig heated to ° C was pressed for 0.2 seconds for fusion.
- the frame body 2 is inserted into a display housing 3 having a concave portion whose inner dimension is 1 mm larger than the inner dimension of the convex portion of the frame body.
- a 32-inch prism sheet and a polarization separation sheet were placed thereon as an optical sheet, and the amount of deflection at the center of the light emitting surface was measured.
- the fluorescent lamp 5 was turned on, and the luminance and luminance unevenness of the knocklight were visually evaluated.
- the fabric was subjected to UV resistance treatment in the same manner as in Example 1 except that the amount of titanium oxide and the fiber cross-sectional shape were changed, and various properties of the fabric were evaluated.
- the supportability of the optical sheet and the deflection, luminance, and luminance unevenness at the center of the light emitting surface in the backlight were evaluated as described below.
- the optical sheet could be favorably supported. Furthermore, when the fluorescent lamp was turned on, sufficient brightness was obtained as a backlight, and brightness unevenness was also strong.
- the fabric is heated while being stretched with a force of 50 N per 5 cm width in a vertical and horizontal direction on a square frame (made of polycarbonate, made of 5 mm x 8 mm square bars) with convex portions. It was fused by pressing a hot plate at 150 ° CX for 1 minute with the adhesive tape in between.
- This frame was fitted in a display case with a recess with an inner dimension that was lmm larger than the inner dimension of the projection on the frame.
- a 32-inch prism sheet and a polarization separation sheet were placed as optical sheets, and the amount of deflection at the center of the light emitting surface was measured.
- the fluorescent lamp 5 was turned on, and the brightness and uneven brightness of the knocklight were visually evaluated.
- the optical sheet could be favorably supported.
- the fluorescent lamp when it was turned on, it was not suitable as a support for the optical sheet, although it had a low total light transmittance and a small luminance unevenness.
- the fabric is a heat-sealing fabric that is stretched on a frame (made of polycarbonate, made of 5mm x 8mm square bar) with a convex portion with a force of 50N per 5cm width in both the vertical and horizontal directions.
- the hot plate was pressed and fused at 150 ° CX for 1 minute.
- This frame was fitted into a display case with a recess with an inner dimension that was lmm larger than the inner dimension of the projection on the frame.
- a 32-inch prism sheet and a polarization separation sheet were placed thereon as the optical sheet, and the amount of deflection at the center of the light emitting surface was measured.
- the fluorescent lamp 5 was turned on, and the luminance and luminance unevenness of the backlight were visually evaluated.
- the UV-resistant treated fabric produced in Example 1 was placed on a transparent base material of a polyethylene terephthalate (PET) film (“Lumirror” (registered trademark) QT40 film thickness 100 ⁇ m, manufactured by Toray Industries, Inc.) with the following composition 1
- the binder resin was applied with a bar coater (# 6) to form a 9 ⁇ m-thick coating film, and then laminated together.
- PET polyethylene terephthalate
- the light diffusing sheet was evaluated for various properties in the same manner as the fabric. In addition, as described below, the supportability of the optical sheet and the deflection, luminance, and luminance unevenness at the center of the light emitting surface of the backlight were evaluated.
- Table 2 shows the evaluation results.
- the light diffusion sheet is used as a prism sheet in a backlight.
- a fluorescent lamp when turned on, although the total light transmittance is low and luminance unevenness is small, it is suitable as a prism sheet. there were.
- the milky white plate used in Comparative Example 1 was allowed to stand to constitute a 32-inch direct backlight.
- a 32-inch size light diffusion sheet and a 32-inch polarized light separation sheet were placed on it, and the amount of deflection at the center of the light emitting surface was measured.
- the fabric produced as described below was subjected to ultraviolet resistance treatment, and various properties of the fabric were evaluated.
- the supportability of the optical sheet and the deflection, luminance, and luminance unevenness of the central portion of the light emitting surface in the backlight were evaluated.
- the optical sheet could be favorably supported. Furthermore, if you turn on the fluorescent lamp At the same time, sufficient brightness was obtained as a backlight, and the brightness was uneven.
- the treatment conditions were as follows: dyeing in a bath at 130 ° C for 60 minutes, then washing with hot water at 60 ° C for 10 minutes and rinsing with running water for 5 minutes. Thereafter, it was dried at 120 ° C. for 3 minutes.
- the adhesion amount of the ultraviolet absorber was 0.8% by weight.
- a 32-inch direct backlight as shown in Fig. 16 was constructed. Fabric 1 was stretched while being pulled by hand so that no sagging, wrinkles, etc. entered, and was fixed to the four sides (frame 2) of case 3 with double-sided tape. On top of that, a 32-inch prism sheet and a polarization separation sheet were mounted as optical sheets, and the amount of deflection at the center of the light emitting surface was measured.
- the fluorescent lamp 5 was turned on, and the brightness and uneven brightness of the knocklight were visually evaluated.
- the fabric produced as described below was subjected to ultraviolet resistance treatment, and various properties of the fabric were evaluated.
- the supportability of the optical sheet and the deflection, luminance, and luminance unevenness of the central portion of the light emitting surface in the backlight were evaluated.
- Table 3 shows the evaluation results.
- the optical sheet could be favorably supported. Furthermore, when the fluorescent lamp was turned on, sufficient brightness was obtained as a backlight, and brightness unevenness was also strong.
- a benzotriazole ultraviolet absorber (trade name: Antifade 8001, manufactured by Meisei Chemical Industry Co., Ltd.) was adjusted to a concentration of 20 gZl, and the fabric was immersed therein and squeezed once with mangle. The amount of wet pickup was 30% by weight relative to the fabric weight. This fabric was pre-dried at 110 ° C. for 1 minute and then cured at 180 ° C. for 1 minute.
- a 32-inch direct backlight as shown in Fig. 16 was constructed. Fabric 1 was stretched to prevent sagging, wrinkles and the like from entering and fixed to the four sides (frame 2) of case 3 with double-sided tape. On top of that, a 32-inch prism sheet and a polarization separation sheet were placed as optical sheets, and the amount of deflection at the center of the light emitting surface was measured.
- the fluorescent lamp 5 was turned on, and the brightness and uneven brightness of the knocklight were visually evaluated.
- the fabric produced as described below was subjected to ultraviolet resistance treatment, and various properties of the fabric were evaluated.
- the supportability of the optical sheet and the deflection, luminance, and luminance unevenness of the central portion of the light emitting surface in the backlight were evaluated.
- the optical sheet could be favorably supported. Furthermore, when the fluorescent lamp was turned on, sufficient brightness was obtained as a backlight, and brightness unevenness was also strong.
- Table 3 shows the results of characterization.
- the 32-inch backlight shown in Fig. 16 was constructed.
- the fabric 1 was stretched without sagging or wrinkles and fixed to the four sides (frame 2) of the housing 3 with double-sided tape.
- frame 2 On top of that, place a 32-inch prism sheet and a polarization separation sheet as an optical sheet, and measure the amount of deflection at the center of the light-emitting surface.
- the fluorescent lamp 5 was turned on, and the brightness and unevenness of the knocklight were visually evaluated.
- FIG. 1 is a schematic diagram of a liquid crystal display.
- FIG. 2 is a view showing an example of a mode in which a fabric is stretched and fixed, where (a) is a perspective view and (b) is a side view.
- FIG. 3 is a view showing an example of a mode in which a fabric is stretched and fixed, where (a) is a perspective view and (b) is a partially enlarged view.
- FIG. 4 is a view showing an example of a mode in which a fabric is stretched and fixed.
- FIG. 5 is a diagram showing an example of a mode in which a fabric is stretched and fixed.
- FIG. 6 is a view showing an example of a mode in which the fabric is stretched and fixed, where (a) is a side view and (b) is a bottom view.
- FIG. 7 is a view showing an example of a mode in which a fabric is stretched and fixed, where (a) is a perspective view and (b) is a side view.
- FIG. 8 is a diagram showing an example of a mode in which a fabric is stretched and fixed, where (a) is a side view and (b) is a bottom view.
- FIG. 9 is a diagram showing an example of a mode in which fabric is stretched and fixed.
- FIG. 10 is a diagram showing an example of a frame body that stretches and fixes a fabric, where (a) is a side view and (b) is a bottom view.
- FIG. 11 is a view showing an example of a mode in which a fabric is stretched and fixed.
- FIG. 12 is a view showing an example of a mode in which the fabric is stretched and fixed, where (a) is a front view and (b) is a side view.
- FIG. 13 is a diagram showing an example of a net for preventing fabric stagnation.
- FIG. 14 is a diagram showing an example of a bracing that prevents fabric stagnation.
- FIG. 15 is a schematic view of a direct type backlight used in a liquid crystal display, in which (a) is a side view and (b) is a top view.
- FIG. 16 is a schematic view of a direct type backlight used in a liquid crystal display, in which (a) is a side view and (b) is a top view.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nonlinear Science (AREA)
- Dispersion Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Ophthalmology & Optometry (AREA)
- Mechanical Engineering (AREA)
- Mathematical Physics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optical Elements Other Than Lenses (AREA)
- Liquid Crystal (AREA)
Abstract
【課題】 樹脂板を使うことなくディスプレイに用いられる光学シートを支持することが可能な支持体であって、かつ、薄く、軽く、コンパクト性に優れ、さらに、耐衝撃性に優れ、また、コストダウンを図ることも可能な光学シート支持体を提供する。 【解決手段】 繊維により構成された布帛を有し、該布帛の全光線透過率が25%以上90%以下である、ディスプレイの部材に装備される光学シートの支持体であって、前記布帛は展張し、当該展張による張力により前記光学シートを支持する。
Description
明 細 書
光学シート支持体ならびにこれを用いた液晶ディスプレイ用バックライト、 液晶ディスプレイ
技術分野
[0001] 本発明は、ディスプレイに用いられる光学シート支持体ならびにそれを用いた液晶 ディスプレイ用バックライトなどに関し、詳しくは、特に直下型液晶ディスプレイ用バッ クライトに好適な、光学シート支持体およびそれを用いた液晶ディスプレイ用バックラ イトなどに関する。
背景技術
[0002] 近年、携帯機器をはじめ、テレビ、モニター及びノートパソコンなど、あらゆる用途に お!、て様々な原理を応用したディスプレイが用いられて!/ヽる。中でも液晶ディスプレ ィ (LCD)は、携帯機器用の小画面製品から、モニターやテレビなどの大画面製品に 至るまで幅広く用いられている。 LCDでは、偏光板に挟まれた液晶素子に画面裏側 から均一に光を照射するために、面光源であるバックライトを画面裏側に設けることに より画像表示を行っている。
[0003] LCDに用いられるバックライトは大きく 2種類に分類され、(1)画面の真下に直接単 数または複数の蛍光管を並べる直下型と、 (2)透明なアクリル板等を加工した導光板 を用い、その導光板の側面に配置された蛍光管力 光線を導光板に入射し、導光板 に刻まれた散乱ドットの作用を用いて面状に光線を広げつつ、視聴方向に光を取り 出すサイドライト型とがある。それぞれの光源の特徴として、直下型は大型化への対 応が容易なタイプであり、サイドライト型は小型および薄型化への対応が容易なタイ プである。
[0004] これらのバックライトには、単に画面裏側から光を入射するだけでなぐ画面全体を 均一に、しかも明るく光らせることが求められる。このような要求を満たすため、ノ ック ライトには、光拡散板やプリズムシート、又は輝度向上シート (偏光分離シート)などの 光学機能性シート (以下、光学シートと!/、う)が組み込まれて 、る。
[0005] これらのうち、光拡散板は以下のように機能する。たとえば直下型バックライトの場
合、蛍光管は画面真下に配置される。そのため、そのままでは蛍光管の形状に対応 した輝度ムラが顕著に現れる。そこで、光散乱性を有する厚さ 2〜3mmの光拡散板 を蛍光管上側に配置して、蛍光管像を遮蔽し、光線の出射分布を均等化させる。こ の直下型バックライト用の光拡散板には、例えば、メタタリル榭脂などの透明樹脂とシ リコーン榭脂粒子等の拡散成分を、射出成形法や押出成形法を用いて練り混んでシ ート成形した光拡散板等が用いられる (特許文献 1参照)。そして、この光拡散板は、 さらにその上に積層されるプリズムシートや輝度向上シート (偏光分離シート)等の光 学シートを支持する機能も併せ持って 、る。
[0006] し力しながら、厚さ 2〜3mmもある光拡散板を用いることには、次のような問題があ つた。(1)直下型に好適な大型液晶ディスプレイに用いると非常に重くなる、(2)衝撃 が加わると割れやすくヒビゃ亀裂が入ってしまう、 (3)液晶ディスプレイは薄型である のが大きな魅力である力 奥行きが厚くなつてしまうという欠点がある。
[0007] また、特許文献 2には、織物力もなる光拡散シートを透明基体力もなる榭脂板で支 持固定する旨が開示されている。し力しながら、この文献に記載の技術も、榭脂板を 用いるために上記問題点は解決されな 、上に、織物を榭脂板にしわもたるみもなく 埋設、挟持、粘着する作業が必要で、そして織物と榭脂板との屈折率の関係を最適 に選定しなければならないというわずらわしさがあった。さらに、榭脂板の厚み分だけ 底上げされた状態で光学シートが支持されることになるので、榭脂板の厚み分光学 シートは光源力 遠くなつてしまう。光源から遠くなると、光の強さは弱くなり光学シー トを透過する光を弱くなるので液晶ディスプレイバックライトの画面が暗くなり易 、と ヽ う問題もあった。
[0008] また、特許文献 3には、織編物の隙間に榭脂を充填した光拡散シートが開示されて いる。し力しながら、この文献に記載の光拡散シートも、フィルムなどの支持体に貼り 合わせられ、さらにそれを別の拡散板で支持して用いられるものであって、特許文献 2に記載の技術と同様の問題を有するものであった。
特許文献 1:特開平 6 - 73296号公報
特許文献 2 :特開平 8— 160205号公報
特許文献 3 :特開 2005— 189583号公報
発明の開示
発明が解決しょうとする課題
[0009] 本発明は、力かる従来技術の問題点に鑑み、榭脂板を使うことなくディスプレイに 用いられる光学シートを支持することが可能な支持体であって、かつ、薄ぐ軽ぐコ ンパクト性に優れ、さらに、耐衝撃性に優れ、また、コストダウンを図ることも可能な光 学シート支持体を提供することを目的とする。
課題を解決するための手段
[0010] カゝかる課題を解決するための本発明は、次の構成を特徴とするものである。
(1)ディスプレイの部材に装備される光学シートの支持体であって、繊維により構成さ れた布帛を有し、該布帛の全光線透過率が 25%以上 90%以下である光学シート支 持体。
(2)液晶ディスプレイ用バックライトに用いられる、(1)記載の光学シート支持体。
(3)前記布帛は展張され、当該展張による張力により前記光学シートを支持する、 (1 )または (2)記載の光学シート支持体。
(4)前記光学シートがプリズムシートおよび偏光分離シートの少なくとも一方である、 ( 1)〜(3) V、ずれかに記載の光学シート支持体。
(5)前記布帛を構成する繊維の 80〜100%が略円形の断面形状を有する、(1)〜( 4)いずれかに記載の光学シート支持体。
(6)前記布帛を構成する繊維の 80〜100%が異形断面形状を有する、(1)〜(4)い ずれかに記載の光学シート支持体。
( 7)前記布帛を構成する繊維の 80〜 100%が中空断面形状を有する、( 1 )〜 (4)い ずれかに記載の光学シート支持体。
(8)前記繊維が繊維内に光散乱粒子および Zまたは光吸収粒子を含んでいる、 (1) 〜(7)いずれかに記載の光学シート支持体。
(9)前記光散乱粒子が酸化チタンである、 (8)記載の光学シート支持体。
(10)前記繊維は、前記光散乱粒子および Zまたは光吸収粒子を繊維重量当たり 0 . 001-0. 3wt%の範囲で含有している、(8)または(9)記載の光学シート支持体。
(11)前記布帛を構成する繊維の平均の単繊維繊度が 0. 001〜30dtexである、 (1
)〜(10) 、ずれかに記載の光学シート支持体。
( 12)前記布帛を構成する繊維の平均の総繊度が 5〜450dtexである、( 1)〜( 11) V、ずれか記載の光学シート支持体。
(13)前記布帛が織物である、( 1)〜( 12) 、ずれかに記載の光学シート支持体。
(14)前記織物のカバーファクターが 500〜3000である、(13)記載の光学シート支 持体。
(15)前記織物のタテ糸とョコ糸の織り密度の比が 1 : 1〜2: 1である、(13)または(1 4)記載の光学シート支持体。
(16)前記織物を構成するタテ糸およびョコ糸の一方がモノフィラメントである、 (13) 〜(15)いずれかに記載の光学シート支持体。
(17)前記布帛は耐紫外線処理がなされたものである、( 1 )〜( 16) ヽずれかに記載 の光学シート支持体。
(18)前記布帛の引張強度が 1 OONZ5cm以上である、( 1)〜( 17) 、ずれかに記載 の光学シート支持体。
(19)前記布帛のヘイズが 20〜 100%である、( 1)〜( 18) 、ずれか記載の光学シー ト支持体。
(20)前記布帛の輝度ムラが 50〜350cdZm2である、(1)〜(19)いずれかに記載 の光学シート支持体。
(21)前記(1)〜(20) V、ずれかに記載の光学シート支持体を備えてなる液晶ディス プレイ用バックライト。
(22)前記(21)記載の液晶ディスプレイ用バックライトを搭載してなる液晶ディスプレ ィ。
発明の効果
本発明の光学シート支持体を用いることにより、ディスプレイに装備される光学シー トは榭脂板を使うことなく光源により近い位置で支持できる。また、本発明の光学シー ト支持体は、薄くて、軽ぐコンパクト性に優れ、また耐衝撃性にも優れており、コスト ダウンを図ることも可能となる。特に、布帛を展張固定し、当該展張による張力により 光学シートを支持する場合には、さらに軽量、コンパクトになり、かつ耐衝撃性にも優
れ、さらなるコストダウンも可能となる。
[0012] その結果、液晶ディスプレイバックライト、液晶ディスプレイ、背面投射型ディスプレ ィなどとしても、輝度を高めることができ、軽量かつコンパクト、さらに耐衝撃性に優れ 、低価格なものとすることができる。
発明を実施するための最良の形態
[0013] 以下、本発明を実施するための形態を詳細に説明する。
[0014] 本発明の支持体は、ディスプレイに装備される光学シートの支持体であり、繊維に より構成される布帛からなる。すなわち、本発明によれば、ノ ックライトなどディスプレ ィ部材の組み立て時などにぉ 、て、当該ディスプレイに装備される光学シートが榭脂 板ではなく布帛で支持される。その結果、特にディスプレイに装備される光学シートを 光源 (導光板や反射シートなども含む)により近い位置で支持できる。そして、布帛で あるので、薄ぐ軽ぐコンパクト性に優れ、さらに、組み立て時や運搬時に割れること もないので耐衝撃性に優れ、また、コストダウンを図ることも可能となる。
[0015] 本発明の光学シート支持体を構成する布帛は光源力 の光を十分に光学シートに 導入する必要がある。そのため、該布帛は全光線透過率が 25%以上 90%以下であ ることが必要である。全光線透過率が 25%未満であると、布帛を透過する光の量が 少なぐバックライトから放射される光の量が少なくなり、ディスプレイ画面が暗くなつ てしまう。全光線透過率が 90%よりも大きいと、光の透過量が十分でディスプレイ画 面は明るくなるが、該支持布帛内での光拡散が不十分となり画面で輝度ムラが発生 し易い。具体的には、例えば液晶ディスプレイに用いられる直下型バックライトの場合 、 1本以上の蛍光管が画面真下に設定されるが、蛍光管位置や形状を反映するよう に、液晶ディスプレイ画面上に明るい部分と暗い部分ができ輝度ムラが発生し易い。
[0016] 全光線透過率は、下限として 25%が好ましぐ 30%がより好ましい。上限としては 7 0%が好ましぐ 55%がより好ましい。すなわち、全光線透過率は、好ましくは 25%以 上 70%以下、さらに好ましくは 30%以上 55%以下の範囲である。
[0017] また、光学シート支持体を構成する布帛は、ヘイズが 20%以上 100%以下であるこ とが好ましい。ヘイズが 20%未満であると、支持布帛の光拡散性が不十分であり光 源の光がほぼ直進光で透過してしまい、前記の通りディスプレイ画面上に輝度ムラが
発生し易い。 100%は測定限界である。ヘイズはさらに好ましくは 50%以上 100%以 下、最も好ましくは 70%以上 100%以下である。
[0018] なお、全光線透過率およびヘイズは、 JIS—K7105 (1981)の A法に準拠して測定 する。概略は以下の通りである。なお、測定装置には、 JIS— K7105 (1981)の 5. 5 . 2 ( 1)項 (光線透過率及び全光線反射率測定 Α法装置)記載の光学的条件を満足 する積分球式光線透過率測定装置を用いる。
(1)あら力じめ温度 23± 2°C、相対湿度 50± 5%の暗所で 48時間以上、状態調整し た試料を、 50 X 50mmの大きさの試験片にカットする(試験片の数は 3個)。
(2)標準白色板を取り付けて、装置の指示を 100 (T1)に合わせて入射光量を調整 する。
(3)標準白色板を取り付けたままで、試験片を取り付けて全光線透過光量 (T2)を測 定する。
(4)標準白色板及び試験片を取り外し、ライトトラップを取り付けて装置の散乱光量( T3)を測定する。
(5)ライトとラップを取り付けたままで、試験片を取り付けて、装置と試験片による散乱 光量 (T4)を測定する。
(6)以下の式を用いて、全光線透過率 (Tt (%) )とヘイズ (H (%) )を算出する。
[0019] Tt=T2 · · · (1)
H=Td/Tt · · · (2)
ここで、
Td=T4— T3 (T2/100) …(3)
(7)試験片 3個につ ヽて全光線透過率およびヘイズを測定し、それぞれ平均値を求 める(小数点 1桁目を四捨五入する)。これら平均値を、本発明における全光線透過 率およびヘイズとする。
[0020] 本発明において、布帛は次のような繊維で構成することが出来る。すなわち、ポリメ チルメタタリレートやポリアクリロニトリル等のアクリル繊維、ポリエチレンテレフタレート ゃポリブチレンテレフタレート、ポリトリメチレンテレフタレート等のポリエステル繊維、 ナイロン 6やナイロン 66等のポリアミド繊維、ポリウレタン繊維、ポリエチレンやポリプロ
ピレン等のポリオレフイン繊維、ポリイミド繊維、ポリアセタール繊維、ポリエーテル繊 維、ポリスチレン繊維、ポリカーボネート繊維、ポリエステルアミド繊維、ポリフエ-レン サルファイド繊維、ポリ塩化ビュル繊維、ポリエーテルエステル繊維、ポリ酢酸ビュル 繊維、ポリビニルブチラール繊維、ポリフッ化ビ-リデン繊維、エチレン 酢酸ビュル 共重合繊維、フッ素榭脂系繊維、及びスチレン—アクリル共重合繊維、ァラミド繊維 などの 、ずれの合成繊維を含んで 、てもよく、 1種類の合成繊維からなって 、てもよ いし、 2種類以上の合成繊維力も構成されていてもよい。これらの繊維の中で、吸湿 安定性や熱安定性等力もポリエステル繊維やポリフエ-レンサルファイド繊維、フッ素 榭脂系繊維等を好ましく用いることができ、特に、汎用性の面カゝらポリエステル繊維を 好ましく用いることができる。
[0021] 本発明の布帛を構成する繊維としては、要求される光学特性により、略円形断面の 繊維を始め、略三角形、略十字形などの異形断面や中空断面、複合断面などのい 力なる断面の繊維をも使用することが出来る。また、光学特性を改善するためには、 断面形状を適当なものとするだけでなく、繊維中に光散乱粒子や光吸収粒子を入れ ることち可會である。
[0022] 例えば、透過光量が必要とされる場合、布帛を構成する繊維の 80〜100%が略円 形の断面形状を有する繊維であることが好ましい。布帛は光源力 の光を十分に光 学シートに導入する必要があるが、該布帛を構成する実質的全ての繊維の断面形状 が略円形断面の場合は、繊維の側面が曲面で構成されるので単糸間に隙間が生じ やすい。よって、該布帛に光が照射されると、光は単糸内部を透過するだけでなぐ 繊維間の隙間を透過したり、繊維の曲面によって散乱したりしながら布帛表面に届く 。その結果、布帛全体を透過する光の量は多くなる。なお、略円形断面の繊維は、布 帛を構成する繊維の 90〜100%であることがより好ましい。
[0023] なお、略円形の断面形状を有する繊維の比率の測定は、次のようにして行う。まず 、布帛が編み物'織物の場合は、布帛をほぐし、該布帛を構成する繊維の断面を光 学顕微鏡や反射型電子顕微鏡で、繊維径が lcm程度に写るように拡大し写真にとる 。一方、不織布の場合は、布帛から 5mm幅の試料を切り出し (長さは測定装置に依 存)、該試料の断面を光学顕微鏡や反射型電子顕微鏡で、繊維径が lcm程度に写
るように拡大し写真にとる。これらの写真より繊維各断面の内接円と外接円をとり外接 円 Z内接円の比が 1. 1以下であれば略円形断面、 1. 1を越えれば異形断面と判断 する。撮影された全断面において作業を繰り返し、略円形断面数 Z全断面数 X 100 力 比率を計算する。
[0024] また、光拡散性が必要な場合には、布帛を構成する繊維の 80〜100%が異形断 面形状を有する繊維であることが好ましい。本発明において、「異形断面」とは、略三 角形、略四角形、略星形、略 X形、略 Y形など、略円形以外の形状をいう。
[0025] なお、異形断面形状を有する繊維の比率は、上述の略円形断面形状繊維比率の 測定方法に準じて行い、略異形断面数 Z全断面数 X 100から計算する。
[0026] 異形断面糸の製造方法としては、紡糸口金の吐出孔形状を前記形状に形成した 口金力 ポリマーを紡出させる公知の方法の他、略円形断面力 なる繊維で布帛を 形成した後、例えば加熱プレス処理により、布帛を構成する繊維の断面形状を異形 断面に変形させる方法でも良い。異形断面糸で布帛を構成した場合、繊維表面での 光の散乱が増え布帛の光ムラが軽減されるだけでなぐ繊維の側面が直線で構成さ れるので繊維同士が隙間なく配列し易ぐ繊維の隙間を直進する光も減少する。なお 、異形断面形状の繊維は、布帛を構成する繊維の 90〜100%であることがより好ま しい。
[0027] そして、より強い光拡散が必要な場合は、布帛を構成する繊維の 80〜100%を中 空断面形状の繊維とすることが好ましい。繊維内部に中空部を設けることにより、繊 維表面での屈折だけでなぐ中空界面での屈折も起こるためより光拡散効果が高くな るとともに、繊維の剛性が小さくなるため繊維断面が変形しやすく布帛とした場合に 繊維間の空隙が変形により埋まるため直進光が減少する。なお、中空断面形状の繊 維は、布帛を構成する繊維の 90〜100%であることがより好ましい。
[0028] 中空断面形状を有する繊維の比率は、上述の略円形断面形状繊維比率の測定方 法に準じて行い、中空断面数 Z全断面数 X 100から計算する。
[0029] また、このときの中空断面形状繊維の中空率は 5%〜40%であることが好ましい。
この範囲に於いて透過光量と拡散光量のバランスがとりやすい。例えば、中空率を 5 %以上とすることにより中空構造での拡散効果が発揮し始める。一方 40%以下とす
ることにより繊維の潰れによる拡散効果減少を防止することができる。
[0030] なお、中空率の測定にあたっては、まず、中空断面形状を有する繊維の比率の算 出方法と同様に写真を撮影する。その後、その写真をさらに 4倍に拡大し、繊維各断 面の全体の面積と中空部面積を測定し、中空部面積 Z全体の面積 X 100から中空 率を計算する。
[0031] さらに、中空断面繊維が 2つ以上の多孔中空であることが好ましい。多孔中空とす ることで、それぞれの中空界面で拡散効果が発揮できるので拡散性に優れた布帛と なる。多孔中空としてより好ましい形態はナノポーラス構造である。
[0032] 本発明の布帛を構成する繊維は複合繊維であっても力まわない。複合繊維の例と しては、芯成分と鞘成分に屈折率の異なるポリマーを配した芯鞘構造の繊維や、屈 折率の異なるポリマーを貼り合わせたバイメタル構造の繊維を例示できる。たとえば、 布帛を構成する繊維の 80〜: LOO%を、芯鞘構造の繊維やバイメタル構造の繊維と することにより、繊維内部を透過する光を屈折させる効果が現れ、光拡散効果に優れ た布帛となる。このとき、光拡散効果をより高めるためには、糸に実撚りを掛けることが 好ましい。
[0033] また、布帛の織編み目の隙間(目地)を埋めるためには、構成する繊維が仮撚り加 ェ糸であっても良い。仮撚り加工糸とすることにより、繊維にふくらみが生まれ、織り 編みの目地を埋め、繊維間隙を通過する直進光を押さえ光ムラを軽減することが出 来る。
[0034] 一方、繊維断面などの形状によらずに布帛の光学特性を改善するためには、布帛 を構成する繊維の繊維内に光散乱粒子や光吸収粒子を含有させることが好ましい。 繊維内の光散乱粒子または光吸収粒子により、繊維内部を透過する光が散乱、吸収 され直進光が減少する。その結果、布帛の光ムラが改善される。
[0035] 光散乱粒子としては、酸化チタンや炭酸カルシウム、さらにはアルミナ、ジルコユア などのセラミック類を例示でき、また、光吸収粒子としては、例えば金、銀などの金属 微粒子を例示できる。これらの光散乱粒子または光吸収粒子の中でも、特に繊維の 光沢を改善するために使用されている酸ィ匕チタンが好ましい。酸化チタンは、ポリエ ステル系繊維やナイロン繊維などでは一般的に使用されており、取り扱いが容易で
ある。
[0036] 光散乱粒子や光吸収粒子は、繊維重量当たり合計 0. 001-0. 3wt%の範囲で 含有させることが好ましい。光散乱粒子や光吸収粒子の測定方法は、例えば酸化チ タンの場合、試料 6gを板状に溶融成型し、蛍光 X線元素分析装置 (堀場製作所社製 、 MESA— 500W型)によりポリマー中のチタン元素量を求め、その測定値より酸化 チタン含有量を求める。他の粒子でも Ca、 Al、 Zr等の元素量から粒子含有量が計算 できる。
[0037] 光散乱粒子や光吸収粒子の含有量が繊維重量当たり 0. 001wt%以上で粒子の 効果が発揮し始める。また、 0. 3wt%以下とすることにより、必要な透過量光量を確 保しつつ、光散乱粒子、光吸収粒子により散乱 '吸収される光を増やすことが可能と なる。なお、光散乱粒子や光吸収粒子は、いずれか一方であってもよいが、両方を 用いてもよい。
[0038] そして、本発明においては、布帛を構成する繊維に 20%〜: LOO%の割合で弾性体 繊維が含まれていても良い。弾性繊維を含むことにより、後述する展張固定の際の張 力を制御しやすぐまた、長期にわたって安定した張力を得ることが出来る。弾性繊 維の下限は、 30%であることがより好ましぐ 40%であることが特に好ましい。一方、 弾性繊維の上限は、 80%であることがより好ましぐ 60%であることが特に好ましい。
[0039] なお、弾性体繊維の比率は、布帛から 5cm X 5cmの試験片を取り出し、構成する 繊維を単糸レベルまで分解して全本数中に含まれる弾性体繊維の本数の割合を計 算することにより求められる。
[0040] 本発明において、布帛を構成する繊維の平均単糸繊度は 0. 001〜30dtexである ことが好ましい。単糸繊度が 0. OOldtex未満であると、単糸強度が不足し切断しや すくなり取り扱い性が悪ィ匕する、一方 30dtexを超えると、単糸強度面では問題ない 力 単糸繊維径が太くなるため繊維間隙が生じやすく光ムラが生じ易くなるとともに、 マルチフィラメントを使用した場合には繊維の重なりにより布帛の厚みが増しやすく平 均輝度が低くなる傾向であるため好ましくない。
[0041] 本発明の布帛を構成する繊維は、平均総繊度が 5〜450dtexであることが好まし い。平均総繊度をこの範囲とすることで、織り編み加工による繊維の損傷による毛羽
などの発生が少なぐまた、出来上がった織り編み物の風合い、 目地からの透過光量 も少、ない布帛となる。
[0042] 平均総繊度および平均単糸繊度〖お IS— L1096 (1999)に準じ、試料から 20cm
X 20cmの試験片を 3枚採取し、 1枚につき、タテ糸およびョコ糸それぞれ 25本の糸 をほどいてその質量を量り、次の式によって、見かけ繊度を求め、タテ糸およびョコ糸 それぞれ 3回の平均値を算出し平均総繊度とする。さらに、タテ糸およびョコ糸の 1フ イラメント構成本数で除した値を平均単糸繊度とする。
[0043] T= (0. 2 XW) X 10
ここで、 Τ:糸の平均総繊度(dtex)、 W:試料 25本の質量 (mg)である。
[0044] 上記のような布帛を構成する繊維は、いかなる方法によって製造されてもよい。上 述した繊維のうち、略円形断面で酸化チタンを含有する繊維の場合は、例えば次の ようにして製造できる。ジメチルテレフタル酸、エチレングリコールおよびテトラブチル チタネートを触媒として用い、 140°C〜230°Cでメタノールを留出しつつエステル交 換反応を行った後、さら〖こ、酸ィ匕チタン粒子のエチレングリコールスラリーを得られる ポリマーに対して例えば 0. 1重量%添加し、さらに、 285°C温度一定の条件下で 3時 間重合を行い極限粘度 [ r? ]が 0. 65のポリエチレンテレフタレートポリマーを得る。こ のポリマーを公知の紡糸機を用い 290°Cで溶融し、軽量ポンプで計量しつつ円形吐 出孔径 0. 23mm,吐出孔長さ 0. 3mm,吐出孔数 36Hの口金から吐出し、冷却し つつ収束性を上げるため油剤を付与して 1800mZ分で未延伸糸を巻き取る。この 未延伸糸を 90°Cの第 1ホットロールと 130°Cの第 2ホットロールを持つ延伸機を用い て 3. 2倍に延伸し、総繊度 84dtexの略円形断面で酸化チタンを含有する延伸糸が 得られる。布帛は、このようにして得られた繊維を経糸 '緯糸に用いて製織すればよ い。
[0045] 本発明において布帛は、織物、編物、乾式不織布、湿式不織布などいかなる構成 のものであってもよいが、取り扱い時の寸法安定性がよぐかつ、厚みムラも小さな織 物が好ましい。一般的に布帛は繊維の多い部分 (密な部分)の厚みが厚くなり、繊維 が少ない部分 (粗な部分)の厚みが薄くなるため、繊維の多い部分は光の透過量が 少なくなり暗くなり、繊維の少ない部分は光の透過量が多くなり明るくなる。そのため
、布帛の厚みムラが大きいと輝度ムラが大きくなつてしまう。また、寸法安定性が悪い と、後述する展張固定の際に布帛自体が変形して伸び縮みが発生する。そのため、 寸法変化した部分は繊維の量も変化し、変形して 、な 、部分と比べて光の透過量が 変わるため輝度ムラを生じることになる。さらに、支持体の上に光学シートを積層した ときには光学シートの重みで布帛自体が伸びてしまい、たるみが生じ、たるんだ部分 は光源に近くなるので、明るくなるなどしてバックライト画面上に輝度ムラが発生してし まう。よって、本発明における布帛としては、厚みムラが小さぐ寸法安定性が良い織 物が好ましいのである。織物の織り組織は特に限定されるものではなぐ平織り、綾織 り、朱子織り等、いかなる織り組織であってもよい。
[0046] 布帛が織物力も構成される場合、その織物のカバーファクタ一は 500以上 300以 下が好ましい。
[0047] カバーファクターとは、次式で算出される因子である。
カバーファクター
= タテ糸密度 (本 Z2. 54cm) X (タテ糸繊度 (dtex) ) 1/2
+ョコ糸密度 (本 Z2. 54cm) X (ョコ糸繊度 (dtex) ) 1/2
カバーファクターが 500よりも小さいと、布帛を構成する繊維の量が少なすぎるので 、布帛での光の拡散が小さくなつてしまい、輝度ムラが大きくなりすぎる。一方カバー ファクターが 3000よりも大きいと、布帛を構成する繊維の量が多すぎて光が十分に 透過できず十分な輝度が得られずディスプレイ画面が暗くなり易 、。カバーファクタ 一は、さらには 1000以上 2500以下が好ましぐ特に 1500以上 2000以下が好まし い。
[0048] また、本発明の布帛が織物で構成される場合、タテ糸とョコ糸の織り密度の比が 1: 2〜2 : 1であることが好ましい。布帛に要求される光拡散性能は、均一分散だけでな ぐ上にのせる光学シートの性能により異方性の拡散が必要になる場合があり、この 異方性を発現させるためには、タテ糸とョコ糸の織り密度比を変更することが重要で ある。しかし、織り密度比が 2を越えると織物の目地が大きくなりやすぐそこ力 直進 光が通過して光ムラを生じさせやす!/、。
[0049] なお、織り密度の測定方法は、 JIS— L1096 (1999)に準じ、試料からタテ糸およ
びョコ糸に直角または平行に 2. 54cm X 2. 54cmの試験片を取り出し、試験片から タテ糸およびョコ糸をほぐし、それぞれの本数を数える。その値が折り密度となる。
[0050] 布帛の光学異方性をより顕著に発現させるためには、織物を構成するタテ糸および ョコ糸の一方がモノフィラメントで構成されて 、ることが好まし 、。マルチフィラメントと モノフィラメントの組み合わせにより、タテ糸ョコ糸共マルチフィラメントという構成では なしえなかった光学異方性の高 、布帛を得ることが出来る。
[0051] 本発明において、布帛は、後述する展張固定の際の張力による寸法変形を小さく するために、布帛の状態で加熱処理 (heat-treatment)しておくことが好ましい。ヒート セット(heat- setting)等を施した布帛であることも好まし!/、。
[0052] 具体的には、 4. 9NZ5cmの荷重を負荷し 24時間経過後の伸び率(以下、タリー プ、という)が、布帛の縦方向、横方向ともに 10%以下となるようにすることが好ましい 。支持体は、布帛の自重と光学シートの重みが加わった状態で長期間保管 ·使用さ れるので、クリープが大きいと徐々に伸びてしまい、その結果たるみが生じで上記の 通り輝度ムラが発生する。したがって、クリープは 10%以下が好ましい。より好ましく は 5 %以下であり、さらに好ましくは 3 %以下である。
[0053] なお、クリープの測定方法は次の通りである。
[0054] 布帛を長さ 30cm、幅 5cmの試験片(タテ 'ョコ方向おのおの n= 3ずつ)にカットし 、つかみ間隔 20cmで試験片をつかみ、幅方向にほぼ均一に 4. 9NZ5cmの張力 が加わるように荷重をカ卩え、布帛を長さ方向が垂直になるようにつり下げて室温 (約 2 5°C)に維持した状態で静かに 24時間放置する。 24時間後につかみ間隔 (L (cm) ) を測定し、伸び率を下記の式 (4)で算出し、タテ、ョコそれぞれ n= 3の平均値を算出 する。
[0055] (L (cm)—20 (cm) ) /20 (cm) · · · (4)
また、支持体は、ディスプレイの光源が点灯している間は光源中に含まれる紫外線 に暴露され黄変、強度劣化する場合がある。支持体が黄変すると、黄変した支持体 を透過した光の色調が変化してしまいディスプレイで表示される画面の色調も変化し てしまう。よって、本発明においては、耐紫外線処理が施された布帛を用いることが 好ましい。
[0056] 耐紫外線処理とは、紫外線吸収剤等の光安定剤を用いて処理することである。光 安定剤とは、(1)紫外線の遮蔽、吸収、(2)ハイド口ペルォキシドの非ラジカル分解、 (3)励起化合物の消光、(4)微量重金属の捕捉、(5)ラジカル捕捉、のいずれか 1つ 以上の機能を有するものである。具体的な光安定剤としては、例えば、トリアジン系化 合物、ベンゾトリアゾール系化合物、ベンゾフエノン系化合物、ジベンゾフエノン系化 合物、サリチレート系化合物、シァノアクリレート系化合物、ォキサ -リド系化合物、ホ ルムアミジン系化合物等の主に紫外線遮蔽、吸収効果を有する紫外線吸収剤、また 、フ ノール系化合物、リン系化合物、有機銅錯体系化合物、ヒドラジン系化合物等 、主にラジカル捕捉の効果がある酸ィ匕防止剤、ラジカル捕捉能やハイド口パーォキサ イド分解能、金属イオン捕捉能を有するヒンダード'アミン光安定剤等である。光安定 剤は特にこれらに限定されるものではなぐ布帛を構成する繊維の種類や光安定ィ匕 処理の加工方法によって選定することができる。また、光安定剤は 1種類を用いても よいし、 2種類以上を併用してもよい。
[0057] 光安定剤を付与する方法は、スプレー法、コーティング法、プリンティング法等、繊 維の表面に付与する方法であってもよいし、布帛ゃ繊維の内部に拡散させる方法で あってもよい。布帛もしくは繊維内部に拡散する方法としては、光安定剤を含む水溶 液に布帛または繊維を浸漬して加熱する浴中染色法、または、光安定剤を含む水溶 液に布帛または繊維を浸漬してマングルなどで所定の付着量に絞った後、乾熱処理 するパッド'キュア法などを採用できる。なお、光安定剤は、布帛を構成する前の繊維 に付与しても布帛にして力 付与してもよいが、後者の方が処理の安定性が高ぐま たコストを抑えることができるので好まし!/、。
[0058] 光安定剤を布帛もしくは繊維の内部に拡散させる場合、付与する光安定剤の量は 布帛の重量に対し 0. 1〜5. 0重量%、さらに好ましくは 0. 5〜3. 0重量%がよい。 0 . 1重量%よりも少ないと目的とする耐紫外線耐久性が発揮出来ない場合があり、 5 重量%を越えると繊維の強力が低下する場合があり、さらにはコストアップにつながる 場合がある。
[0059] スプレー法やコーティング法、プリンティング法等、繊維表面に光安定剤を付与す る方法の場合、紫外線吸収剤等の付着量は、布帛の重量に対し、 0. 1〜10. 0重量
%、さらに好ましくは 0. 5〜8. 0重量%、さらに好ましくは 0. 5〜5. 0重量%である。 0. 1重量%よりも少ないと吸尽の場合と同様に目的とする耐紫外線耐久性が発揮出 来ない場合があり、 10. 0重量%を越えると、付着した光安定剤によって光の透過が 妨げられて輝度が小さくなつてしまう場合があり、さらにはコストアップにつながる場合 がある。
[0060] また、本発明において、布帛 ίお IS— L1096 (1999) 8. 19剛軟度 A法 (45度カン チレバー法)に準じて測定される剛軟度力 タテ方向およびョコ方向ともに 100mm 以下であることが好ましい。剛軟度が 100mmを越えると、後述する布帛展張時の表 面平滑性を維持するために過大な加工張力が必要となるためである。剛軟度はさら に好ましくは 70mm以下、さらに好ましくは 50mm以下である。
[0061] 具体的に剛軟度は次のようにして求められる。まず、試料から 2cm X 15cmの試験 片をタテ方向およびョコ方向それぞれに 5枚採取し、一端が 45度の斜面を持つ、表 面のなめらかな水平台の上に試験片の短辺をスケール基準に合わせて置く。次に、 試験片を斜面の方向に緩やかに滑らせて、試験片の一端の中央点が斜面と接したと き他端の位置をスケールによって読む。剛軟度は、試験片が移動した長さ (mm)で 示される。なお、本発明においては、それぞれ 5枚の表裏を測り、タテ方向およびョコ 方向それぞれの平均値を算出することにより求められる。
[0062] 本発明において、布帛は、後述するような展張固定時の布帛自体の損傷を防止す るために、引張強力が 100NZ5cm以上であることが好ましい。光学シートを支持す る際には、張力はたとえば 50NZ5cmあれば十分と考えられる。したがって、引張強 力を 100NZ5cm以上とすることにより展張時に布帛が破けるなどの問題が発生しな くなり、工程安定ィ匕につながる。
[0063] さらに、本発明において、光学シート支持体を液晶ディスプレイ用の直下型バックラ イトに用いることを考えると、布帛の輝度ムラは 50〜350cd/m2であることが好ましい 。輝度ムラが 350cdZm2を越えると明暗の差が大きくなり、ディスプレイとしたときに、 画面がまだらに見えるなど問題が発生しやすくなる。また、蛍光管を複数並べる直下 型バックライトでは 50cdZm2が限界である。
[0064] 布帛の輝度ムラの測定方法は以下の通りである。まず、直下型バックライトの蛍光
管の上に設置されている拡散板を取り外し、拡散板と同じ厚さの透明のプラスチック ス板を置き、その上に布帛を設置し、蛍光管を 60分間点灯して光源を安定させる。 その後に、測定サンプル側から輝度測定装置 EYSCALE— 3 ( (株)アイ ·システム社 製)を用い、付属の CCDカメラを直下型バックライト発光面の中心から 90cmの地点 に、直下型バックライトの面に対して正面となるように設置し、輝度 (cdZm2)を測定 する。測定箇所は、中心点付近にある 2本の蛍光管真上の輝度 (L ) 2力所、さらに
max
、測定した 2本の蛍光管および隣接する蛍光管との間の輝度 (L ) 3力所を測定する
min
。輝度ムラは以下の式力も算出され、輝度ムラは値が小さいほど優れる。
[0065] 輝度ムラ(cdZm2) = (L の平均値)一(L の平均値)
max min
作業工程での取り扱!ヽ性ゃ光透過性を勘案すると、本発明にお 、て布帛はその重 量が 10g/m2以上 300g/m2以下が好ましい。このときの重量の計算方法は、試料 を 20cm角に 3枚カットして、重さを測定し、 3枚の平均値 (m(g) )を算出する。その値 を用いて lm2当たりの重さ(M (g/m2) )を下記式により算出する。
[0066] M (g/m2) =m (g) Z (0. 2 (m) X 0. 2 (m) )
布帛重量が lOgZm2未満であると軽量性は優れるものの、布帛の剛性がなくなりや すく柔らかすぎるため取り扱 、性が悪ィ匕する、一方 300gZm2を越えると光透過性が 悪ィ匕するため好ましくない。
[0067] 続いて、本発明の光学シート支持体は、上述したような布帛のほかに、その布帛を 展張固定する部材を有していることが好ましい。その結果、ディスプレイにおいて布 帛は展張固定され、当該展張固定による張力により光学シートが支持されることにな る。
[0068] 光学シート支持体における展張固定の方法は、特に限定されるものではないが、例 えば枠体を用いた以下の方法を挙げることができる。
[0069] (1)枠体が、一方が布帛に固定された少なくとも一対の凹部と凸部とを備え、凹部と 凸部とを嵌合させて布帛を固定する。すなわち、例えば凸部を備えた枠体に固定さ れた布帛と凹部を備えた筐体を準備し、凹部と凸部とを嵌合して布帛を固定 '展張す る。
[0070] (2)枠体が、少なくとも一対の凹部と凸部とを備え、凹部と凸部とで布帛を挟持して
固定する。すなわち、例えば凸部を備えた枠体と凹部を備えた筐体を準備し、凹部と 凸部とで布帛を挟持して展張固定する方法。
[0071] (3)接着剤および Zまたは粘着テープを介在させて布帛を枠体に展張固定する方 法。
[0072] (4)布帛を縫い付けて筐体に展張固定する方法。
[0073] (5)枠体に弾性体部を設け、この弾性力により布帛を展張固定する方法。
[0074] (6)錘によって布帛を枠体上展張固定する方法。
[0075] なお、このとき枠体はもともとディスプレイの部材として装備されてきたものであって もよ!/、し、別部材として取り扱われるものであってもよ!/、。
[0076] 上記、展張固定する際の展張張力は、 10NZ5cm以上 100NZ5cm以下が好ま しい。すなわち、布帛 5cm幅あたり ION以上 100N以下の力を付与しながら展張固 定することが好ましい。 10NZ5cm未満であるとたるみが生じやすぐ 100N/5cm を越えると布帛がのびてしまうため好ましくない。展張時の張力は例えば布帛の端部 を均一に力が力かるように平板等で挟み込み、パネ計りで張力を測定しながら引つ 張ることで付与できる。
[0077] また、適正張力が適正力否かの判断基準としては、プリズムシートや偏光分離シー ト等の光学シートを乗せた場合の発光面中心部のたわみ量が上げられる。光学シー トを乗せた場合のたわみ量は 10mm以下が好ましい。たわみ量が 10mmを越えると 発光面中心部と端部との光量に差が出てしまい光ムラが生じやすくなるため好ましく ない。
[0078] 以下、液晶ディスプレイ用直下型バックライトにおける光学シート支持体の展張固 定方法について、詳述する。なお、本発明はこれらの構成に限られるものではなぐ たとえば本発明の光学シート支持体をサイドライト型バックライトに組み込んでもよい。
[0079] 図 1は、液晶ユニット 7と直下型バックライト 57とからなる液晶ディスプレイの模式図 である。図 1において、直下型バックライト 57は、筐体 3と、筐体 3の内面に敷き詰めら れた反射シート 4と、その反射シートの上方に配置された複数本の線状の蛍光管 5 ( 光源)と、その蛍光管 5の上部を覆うように配設された布帛 1と、布帛を展張固定する 枠体 2など力も構成されている。枠体 2は筐体 3の内周に勘合するような形状となって
おり、布帛 1がその枠体 2に後述するような方法で実質的にシヮゃ弛みがない状態で 展張固定されている。また、布帛 1の上方には、プリズムシート 20や偏光分離シート 2 1等の光学機能性シートが配置されている。このように、本発明の液晶ディスプレイ用 ノ ックライトは、光源と、布帛と、布帛を展張固定する枠体とを含んでいる。
[0080] ここで、枠体 2の材質は、アルミニウムやステンレスなどの金属や、アクリロニトリルブ タジエンスチレン (ABS)、ポリカーボネート(PC)、ポリエチレン(PE)、ポリプロピレン (PP)、ポリエチレンテレフタレート(PET)などいずれの榭脂でもよぐまた、使用条件 や目的によっては金属と榭脂の両方を組合せることも可能である。し力しながら、軽 量で成形性もよぐ低コストであることから、枠体 2の材質は、榭脂が好ましぐ ABS、 PC、 PPが好ましい。
[0081] 布帛 1を枠体 2に展張固定するためには、たとえば枠体 2を凹部とその凹部に嵌合 する凸部とで構成し、これら凹部と凸部とで布帛を固定する。具体的には、図 2、 3に 示すように、布帛 1に固定された 4本の棒 9 (凸部)と、溝 18 (凹部)を有する中空四角 形のフレーム 58を有する枠体 2とで構成し、棒 9を溝 18に嵌合する、両者を嵌め合 わせることで布帛 1を枠体 2に固定する。棒 9の布帛への固定方法としては、接着、融 着、挟み込み、縫合など、様々な固定方法が可能である。
[0082] このとき 4本の棒 9はそれぞれが互いにつながった四角形のフレーム形状でもかま わない。
[0083] また、対向配置された溝 18など凹部同士の距離を、その凹部にはめ込む、対向す る 2辺の棒 9など凸部の距離よりもわずかに長くしておくことによって、凸部を凹部に はめ込む際、布帛 1を引っ張ってはめ込むことができ、シヮゃ橈みの発生を防ぎつつ 布帛 1を展張することができる。
[0084] また、図 4に示すように、枠体 2を、対となる凹部 2Aとその凹部に嵌合する凸部 2Bと で構成し、これら凹部 2Aと凸部 2Bとで布帛を狭持して固定してもよい。この固定方 法によれば、凸部 2Bを凹部 2Aにはめ込む際、布帛 1を凹部に巻き込むことになり、 布帛 1に張力がかかることから、布帛 1を弛みやシヮの発生を抑えて展張固定するこ とがでさる。
[0085] なお、上述した態様は、いずれも、ノ ックライトの筐体 3とは別に枠体 2を用意した態
様であつたが、筐体 3で枠体 2を構成してもよい。すなわち、筐体 3の外周部 6に直接 溝 18など凹部を設け、この溝に、布帛に固定した凸部を嵌め込んだり、布帛を間に 挟みながら凸部を嵌め込んだりすることで、布帛を固定してもよい。このようにすること により、ノ ックライトの構成部材を低減することが可能になり、軽量化、コンパクト化、コ ストダウンを図ることが可能になる。
[0086] 凹部および凸部の形状は、布帛 1を展張固定できれば、四角、 U字、矢印型など自 由に選択でき、形状は限定されない。
[0087] また、布帛 1と枠体 2の固定をより強固にするためには、後述する接着ゃ融着等と組 み合わせることも可能である。
[0088] 布帛 1を枠体 2に展張固定するためには、上記態様以外に、例えば布帛 1と枠体 2 との間に両面テープなどの粘着テープや接着剤などを介在させて、両者を互いに固 定してもよい。また、布帛 1と枠体 2との間に低融点樹脂からなる粉体やテープ状物を 介在させて、これらを加熱することによって低融点榭脂を熱溶融させて、布帛 1と枠体 2とを融着することも好ましい。この方法によれば、布帛 1と枠体 2の双方が溶融しな い場合でも両者を接着することが可能になる。布帛 1および枠体 2の少なくとも一方が 溶融する場合は、布帛 1と枠体 2とを接触させた状態で、接触している部分の少なくと も一部を高周波ウェルダーや超音波ウェルダー等で処理したり熱プレスしたりして、 融着させてもよい。
[0089] 布帛 1を枠体 2に展張固定するためには、たとえば図 5に示すような方法を適用す ることも可能である。この方法は、布帛 1の上に枠体 2を重ねて置き、布帛 1のうちの 枠体 2からはみ出た部分 12を折り返して、枠体 2の四辺を包み、布帛同士が重なつ た部分 (すなわち、枠体 2からはみ出た部分 12)を接着或いは縫合、熱融着等の方 法で固定する。布帛同士が重なった部分は、全面固定でもよいし、先端 (破線部)だ け固定して、筒状にすることも可能である。これと類似の別の方法として、布帛 1の四 辺をおり返して、先端を接着、或いは縫合、熱融着等の方法で固定し、筒状の部分 を四辺に作り、この筒状部に棒や針金を通し、棒や針金の両端を接合して、枠体 2を 形成する方法も可能である。
[0090] さらに、布帛 1を枠体 2に展張固定するにあたっては、弾性体を使用することも可能
である。すなわち、弾性体の復元力を利用して布帛を展張することも可能である。例 えば、図 6に示すように、布帛 1の少なくとも一辺に棒 9を設け、その布帛 1に固定した 棒 9と、中空四角形の枠体 2の 1辺とを少なくとも 1つの弾性体 8で接続する。弾性体 8 力 S引っ張られた状態で棒 9と枠体 2とを接続するので、弾性体 8の復元力により布帛 を展張することができる。なお、図 6は、布帛の各辺にそれぞれ棒 9を設け、枠体 2の 各辺とそれら棒 9とをそれぞれ弾性体 8であるパネで接続した態様であるが、各辺に 棒 9を設けな 、場合は、棒 9を固定して 、な 、辺側の布帛の端部を直接枠体 2に固 定する。その固定方法は、接着剤などによる接着や溶着、縫合などのいかなる固定 方法でも可能である。
[0091] ここで、棒 9の材質は、アルミニウムやステンレスなどの金属や ABS、 PC、 PE、 PP 、 PETなどいずれの榭脂でもよぐまた、使用条件や目的によっては金属と榭脂の両 方を組合せることも可能であるが、軽量であり、成形性もよぐコストも高くないことから 、榭脂が好ましぐ ABS、 PC、 PP力好ましい。ただし、棒 9は、布帛に張力をかけるた めに弾性体の復元力が作用した場合にも、ほとんど変形しな 、程度の剛性が必要で ある。
[0092] また、棒 9は、布帛 1との固定及び弾性体 8との接続ができれば、いかなる形状でも よい。
[0093] 弾性体 8としては、その材質は、金属、榭脂などいずれの材質を使用することができ 、種類もパネゃゴム 、かなる弾性体でも使用することができる。
[0094] そして、本態様においても、ノ ックライトの筐体 3とは別の枠体 2を設けず、筐体 3で 枠体 2を構成してもよい。すなわち、筐体 3の外周部 6に直接弾性体 8を接続して布 帛を固定してもよい。このようにすることにより、ノ ックライトの構成部材を低減すること が可能になり、軽量化、コンパクト化、コストダウンを図ることが可能なになる。
[0095] さらに、弾性体を使用して布帛を展張する別の方法を図 7、 8に示す。この態様では 、ノックライトの筐体 3と布帛 1に固定された中空四角形のフレーム 10とで枠体を構 成し、両者の間に弾性体 8を設けている。ここでフレーム 10の布帛 1への固定方法と しては、接着剤などによる接着や溶着、縫合などのいかなる固定方法でも可能である 。フレーム 10は、その内周をバックライトの筐体 3の外周部 6以上の大きさとして、図 8
に示すように、フレーム 10をバックライトの筐体 3の外周部 6に被せることができるよう に構成されている。そして、フレーム 10とバックライトの筐体 3の外周部 6との間にでき た隙間には、少なくとも 1つのパネなどの弾性体 8を挿入し、フレーム 10を弾性体 8の 復元力によって外側へ押し広げることによって、布帛 1を展張する。なお、布帛 1を固 定したフレーム 10とバックライトの筐体 3の外周部 6との間に隙間がない場合は、図 9 に示すように、フレーム 10および筐体 3の外周部 6の一方に、弾性体 8を挿入できる 孔ゃ溝を設け、弾性体 8を挿入すればよい。
[0096] ここで使用されるフレーム 10の材質は、アルミニウムやステンレスなどの金属や AB S、 PC、 PE、 PP、 PETなどいずれの榭脂でもよぐまた、使用条件や目的によっては 金属と榭脂の両方を組合せることも可能であるが、軽量であり、成形性もよぐコストも 高くないことから、榭脂が好ましぐ ABS、 PC、 PPが好ましい。ただし、フレーム 10は 、弾性体 8により外側へ押し広げられる際、布帛 1に張力が発生する程度には広がつ て変形しなければならな 、が、布帛 1にシヮが発生するほどには変形しな 、程度の剛 性が必要である。
[0097] 弾性体 8としては、その材質は、金属、榭脂などいずれの材質を使用することができ 、種類もパネゃゴム 、かなる弾性体でも使用することができる。
[0098] なお、上述した態様は、ノ ックライトの筐体 3の外周部 6とフレーム 10とで枠体を構 成した態様であるが、筐体 3の外周部 6とは別に、フレーム 10をかぶせることのできる 別のフレーム 59を設けて、布帛 1を展張してもよい。すなわち、布帛 1を固定したフレ ーム 10を別のフレーム 59に被せ、フレーム 10、 59の間にできた隙間に少なくとも 1 つのパネなどの弾性体 8を挿入し、フレーム 10を弾性体 8の復元力によって外側へ 押し広げることによって、布帛 1を展張する。なお、布帛 1を固定したフレーム 10、 59 の間に隙間がない場合は、図 9に示すように、フレーム 10、 59の一方に、弾性体 8を 挿入できる孔ゃ溝を設け、弾性体 8を挿入すればょ ヽ。
[0099] このようにすることにより、バックライトの構成部材は増加するが、布帛を展張するェ 程をバックライトの組み立て工程とは別に行うことができるため、既存のノ ックライトの 組立工程と同じ工程でバックライトを製造することが可能になり、既存のバックライトの 組み立て工程を改造する必要がなくなる。
[0100] さらに別の方法を図 10に示す。図 10に示す態様では、布帛 1の展張に必要な張 力を与える手段として、ネジを使用する。ここで使用されるネジは、金属、榭脂などい ずれの材質のものでも使用することができる。例えば、図 6に示した態様のように、布 帛 1の少なくとも一辺に棒 9を設ける。そして、布帛 1に固定した各棒 9と枠体 2の各辺 とを、弾性体ではなぐそれぞれネジ 16で接続する。ここで、ネジ 16を締め付けること によって棒 9を引張り、布帛 1に張力をかける。このとき、あらかじめ棒 9にネジ穴を開 けておいて、直接棒 9とネジを接続するほか、棒 9にネジ 16が通る穴を開けておいて 、ナット 17を使用して棒 9とネジ 16とを接続してもよい。図 10は、ナット 17を使用した 例であり、布帛 1の各辺に棒 9を固定し、それぞれを枠体 2の各辺にネジ 16で接続し た例である。なお、棒 9を各辺に設けない場合、棒 9を設けていない辺の布帛の端を 直接枠体 2に固定する。ここで固定方法としては、接着剤などによる接着や溶着、縫 合などの!/、かなる固定方法でも可能である。
[0101] ここで、棒 9は、布帛 1との固定及びネジ 16との接続ができれば、いかなる大きさ、 形状でも可能である。
[0102] 棒 9の材質は、アルミニウムやステンレスなどの金属や ABS、 PC、 PE、 PP、 PETな どいずれの榭脂でもよぐまた、使用条件や目的によっては金属と榭脂の両方を組合 せることも可能であるが、軽量であり、成形性もよぐコストも高くないことから、榭脂が 好ましぐ ABS、 PC、 PP力 子ましい。ただし、棒 9は、布帛に張力をかけるために応 力が作用した場合にもほとんど変形しない程度の剛性が必要である。
[0103] また、ネジ 16の材質は、特に限定されることはない。
[0104] なお、上述した態様は、ノ ックライトの筐体 3とは別に枠体 2を用意した態様であつ た力 筐体 3で枠体 2を構成してもよい。すなわち、布帛 1に固定された棒 9を筐体 3の 外周部 6に直接ネジで固定してもよい。このようにすることにより、ノ ックライトの構成 部材を低減することが可能になり、軽量化、コンパクト化、コストダウンを図ることが可 會 になる。
[0105] 布帛 1の展張に必要な張力を与えるさらに別の方法としては、枠体 2の少なくとも一 部を弾性体で構成し、この枠体 2の弾性体の反力を利用して布帛 1を展張する方法 がある。その例を図 11に示す。図 11に示すように、弾性体で構成されている枠体 2
は、通常は破線で示す四角形をしている力 4つの矢印の方向に同時に荷重をかけ ると実線のような形に変形する。そこで、枠体 2に荷重をかけて、図 11の実線のように 変形した状態で、枠体 2に布帛 1を張りつけ、その後荷重を取り除くと枠体 2は、元の 点線で示す四角形に戻ろうとするので、枠の外側方向に広がろうとする力が発生す る。この力が布帛 1を引っ張るので、布帛 1はシヮゃ弛みが発生することなく展張され る。この展張方法で使用される枠体 2の材質は全て弾性体でなくてもよぐ枠体 2の一 部に弾性体が含まれていれば、上記の目的は達成できる。ここで布帛 1を枠体 2に固 定する方法は、接着剤などによる接着や溶着、縫合などのいかなる固定方法でも可 能である。
[0106] 布帛 1の展張に必要な張力を与えるさらに別の方法としては、布帛 1に錘を取り付 けて、錘の荷重で布帛 1に張力を与える方法がある。この例を図 12に示す。図 12は 、枠体 2を立てて、正面方向から見た図と、その側面図である。本実施態様では、布 帛 1を枠体 2に固定する際、使用時において下方に配置される辺(図中辺 B)側にお いて、布帛 1を折り返して枠体 2、または筐体 3もしくはその外周部 6に固定し、袋状に する(図 12の 19)。そして、この袋状の部分 19の中に錘 13を入れると、錘 13の荷重 によってシヮゃ橈みの発生を防 、で布帛 1を展張することができる。
[0107] ここで、布帛 1を枠体に固定する方法としては、接着剤などによる接着や溶着、縫合 などの 、かなる固定方法でも可能である。
[0108] また、錘を配置する部分 (袋状の部分 19)は、錘が外れないよう袋状が好ましいが、 筒状であっても機能的に問題はない。また、布帛 1の折り返しを作らなくても、直接錘 を布帛に固定してもよい。錘を布帛 1に固定する場合は、接着剤などによる接着や溶 着、縫合などの!、かなる固定方法でも可能である。
[0109] さらに、本発明では、枠体 2に展張した布帛 1が、万が一橈んでしまうと、光源である 蛍光管 5から布帛 1までの距離が変わってしまい、光を均一に拡散できなくなってしま う。そこで、本発明のバックライトには、布帛が大きく橈んでしまうことを防止する機構 を取り付けることも好ましい。特に大画面ディスプレイ用のバックライトは、ノ ックライト 自体が巨大になり展張スパンが長くなるので、たわみが生じやすくなるため、布帛が 実質的に橈むことを防ぐ機構を取り付けることは好ましい。
[0110] 布帛が大きく橈むことを防止する具体的な機構としては、図 13に示すネット 14や図 14に示す筋交い 15を、枠体 2や筐体 3もしくはその外周部 6に組み込む。ネット 14や 筋交い 15などの布帛 1を支持する機構を組み込むことにより、布帛 1が大きく下方に 橈むことを防ぐことができる。ネット 14や筋交い 15などの材質は、金属ゃ榭脂、或い は天然繊維など、特に限定されない。ネット 14や筋交い 15などの枠体 2、筐体 3もし くはその外周部 6への固定方法としては、接着剤などによる接着や溶着、縫合などの いかなる固定方法でも可能である。また、形状も図 13や図 14に示されるものに限定 されず、布帛 1が大きく橈むことを防ぐものであれば使用することができる。ただし、光 源より発する光を反射したり、妨げたりしてはならず、液晶ディスプレイの画面に影が 投影されな 、ように十分細くなければならな 、。
[0111] 以上のような本発明によれば、光学シート支持体の厚みを薄くでき、光学シートを 光源により近い位置で支持でき、光源力も発する光をより強い状態で透過でき、ディ スプレイの画面を明るくすることが可能になる。また、薄いのでコンパクト性に優れ、軽 ぐかつ、耐衝撃性にも優れて運搬やディスプレイ組み立て工程で割れたりヒビが入 つたりといった問題が発生することを防ぐことができる。その結果、大幅なコストダウン を図ることも可能である。
特に、布帛を展張固定し、当該展張による張力により光学シートを支持する場合には 、さらに軽量、コンパクトになり、かつ耐衝撃性にも優れ、さらなるコストダウンも可能と なる。
実施例
[0112] 以下、本発明について実施例を挙げて説明するが、本発明は必ずしもこれに限定 されるものではない。
[0113] (特性の測定方法)
A.全光線透過率とヘイズ
JIS— K7105 (1981)の A法に準拠して測定した。概略は以下の通りである。なお 、測定装置には、 JIS— K7105 (1981)の 5. 5. 2 (1)項 (光線透過率及び全光線反 射率測定 Α法装置)記載の光学的条件を満足する積分球式光線透過率測定装置を 用いた。
(1)あら力じめ温度 23± 2°C、相対湿度 50± 5%の暗所で 48時間以上、状態調整し た試料を、 50 X 50mmの大きさの試験片にカットした(試験片の数は 3個)。
(2)標準白色板を取り付けて、装置の指示を ΙΟΟ (ΤΙ)に合わせて入射光量を調整 した。
(3)標準白色板を取り付けたままで、試験片を取り付けて全光線透過光量 (T2)を測
¾し 7こ。
(4)標準白色板及び試験片を取り外し、ライトトラップを取り付けて装置の散乱光量( T3)を測定した。
(5)ライトとラップを取り付けたままで、試験片を取り付けて、装置と試験片による散乱 光量 (T4)を測定した。
(6)以下の式を用いて、全光線透過率 (Tt (%) )とヘイズ (H (%) )を算出した。
[0114] Tt=T2 · · · (1)
H=Td/Tt · · · (2)
ここで、
Td=T4— T3 (T2/100) …(3)
(7)試験片 3個につ ヽて全光線透過率およびヘイズを測定し、それぞれ平均値を求 めた (小数点 1桁目を四捨五入した)。これら平均値を、本発明における全光線透過 率およびヘイズとした。
[0115] B.厚み
シックネスゲージ(押さえ圧 0. 98N/cm2)を用いて測定した。
[0116] C.重さ
試料を 20cm角に 3枚カットして、重さを測定し、 3枚の平均値 (m(g) )を算出した。 その値を用いて lm2当たりの重さ(M (g/m2) )を下記式により算出した。
[0117] M (g/m2) =m (g) / (0. 2 (m) X O. 2 (m) )
D.引張強力
JIS-L1096 (1999) -8. 12. 1 A法 (ストリップ法)のラベノレドストリップ法に貝 、タテ方向及びョコ方向のそれぞれについて、試験片を 3枚ずつ採取し、幅の両側か ら糸を取り除いて幅 50mmとし、定速緊張型の試験機にて、つかみ間隔 150mm、引
張速度 200mmZminで試験したときの破断強力を測定し、タテ方向及びョコ方向の それぞれについて平均値を算出した。
[0118] E.剛軟度
岡 U軟度は、 JIS— L1096 (1999) 8. 19剛軟度 A法(45度カンチレバー法)に準じ て測定した。すなわち、まず、試料から 2cmX 15cmの試験片をタテ方向およびョコ 方向それぞれに 5枚採取し、一端が 45度の斜面を持つ表面のなめらかな水平台の 上に試験片の短辺をスケール基準に合わせて置いた。次に、試験片を斜面の方向 に緩やかに滑らせて、試験片の一端の中央点が斜面と接したとき他端の位置をスケ ールによって読んだ。剛軟度は、試験片が移動した長さ(mm)で示され、それぞれ 5 枚の表裏を測り、タテ方向ョコ方向それぞれの平均値を算出した。
[0119] F.光学シート支持体の輝度ムラ
まず、直下型バックライトの蛍光管の上に設置されている拡散板を取り外し、布帛の 場合は拡散板と同じ厚さの透明のプラスチックス板を置き、その上に布帛を設置し、 また、乳白板の場合は透明のプラスチック板を置かずに設置して、蛍光管を 60分間 点灯して光源を安定させた。その後、測定サンプル側から輝度測定装置 EYSCAL E— 3 ( (株)アイ'システム社製)を用い、付属の CCDカメラを直下型バックライトの発 光面の中心から 90cmの地点に、直下型バックライトの面に対して正面となるように設 置し、輝度 (cdZm2)を測定した。測定箇所は、中心点左右にある 2本の蛍光管真上 2力所 (L )と、さらに測定した 2本の蛍光管および隣接する蛍光管との間の輝度 3力 max
所 (L )とした。輝度ムラは以下の式力も算出され、輝度ムラは値が小さいほど優れ min
る。
[0120] 輝度ムラ(cdZm2) = (L の平均値)一(L の平均値)
max min
G. ノ ックライトにおける発光面中心部のたわみ量
発光面中心部のたわみ量は、たわみのない金属棒を中心部の直上に差し渡し金 属棒下面と光学フィルムの隙間をノギスで測定した。
[0121] H. ノ ックライトの輝度および輝度ムラの目視評価
目視評価は 10名で行い、 A (優)、 B (良)、 C (可)、 D (不可)の 4段階で輝度及び 輝度ムラを観察し、一番多い評価を採択した。なお、同人数の場合は上位の評価を
採択した。
[0122] <実施例 1〜4>
下記のとおり織り密度を変更して作製した布帛に耐紫外線処理を施し、上記のとお り布帛の各種特性を評価した。その後、下記のとおり光学シートの支持性およびバッ クライトにおける発光面中心部のたわみ、輝度、輝度ムラを評価した。
[0123] 評価結果を表 1に示す。
[0124] 何れの実施例においても、光学シートを良好に支持でき、また、バックライトとしても 十分な輝度が得られ、輝度ムラもなカゝつた。
[0125] (布帛構成)
1.使用糸:タテ、ョコ糸 84dtex— 36フィラメント、ポリエステル 100%、酸化チタン 無し、丸断面
2.織り組織:平織り
3.織り密度:表 1に示すように変更した。
[0126] (耐紫外線処理)
トリアジン系紫外線吸収剤(商品名: CIBAFAST P チバ 'スペシャルティ ·ケミカ ルズ (株)社製)を布帛重量対比 2重量%と硫酸アンモ-ゥム 1. OgZLとを含む紫外 線吸収処理溶液と上記構成の布帛とを、体積比が布帛:水溶液 = 1: 20で浴中染色 加工した。処理条件は、 130°Cで 60分浴中染色処理した後に、 60°Cのお湯で 10分 間湯洗いし、流水で 5分間すすいだ。その後、 120°Cで 3分間乾燥処理した。紫外線 吸収剤の付着量は 0. 8重量%であった。
[0127] (光学シートの支持性およびバックライトにおける発光面中心部のたわみ、輝度、輝 度ムラ)
図 15に示す 32インチの直下型バックライトを構成した。
[0128] 布帛 1は、凸部を備えた四角形の枠体 2の上(ポリカーボネート製、 5mm X 8mmの 角棒から構成される)に配置し、タテ方向およびョコ方向共に 5cm幅あたり 50Nの力 で展張しつつ 450°Cに加熱された超音波発信治具を 0. 2秒間押し当てて、両者を 融着させた。この枠体 2を枠体凸部の内寸よりタテョコ共に lmm大きい内寸の凹部を 備えたディスプレイ筐体 3にはめ込んだ。
[0129] 続いて、支持体の上に光学シートとして、 32インチのプリズムシートと偏光分離シー トをのせ、発光面中心部のたわみ量を測定した。
[0130] さらに、蛍光灯 5を点灯し、ノ ックライトの輝度および輝度ムラを目視評価した。
[0131] <比較例 1 >
メタアクリル榭脂 100重量部に平均粒径 2 μ mのシリコーン榭脂粒子(トスパール 12 0、 GE東芝シリコーン (株)社製)を 3重量部添加し、押し出し機を用いて溶融押し出 しして、 2mm厚の乳白板を得、この乳白板について上記の各種特性を評価した。ま た、下記のとおり光学シートの支持性およびバックライトにおける発光面中心部のた わみ、輝度、輝度ムラを評価した。
[0132] 評価結果を表 1に示す。
[0133] この態様にぉ 、ては、光学シート (プリズムシートと偏光分離シート)を支持できたも のの、乳白板が重ぐ作業性が悪力つた。また、乳白板が硬く脆ぐ運搬時の衝撃で 欠けるなどの問題もあった。
[0134] (光学シートの支持性およびバックライトにおける発光面中心部のたわみ、輝度、輝 度ムラ)
32インチのバックライトを構成するにあたり、図 15における布帛 1と枠体 2の代わり に上記乳白板を筐体 3上に静置した。その上に光学シートとして、 32インチのプリズ ムシートと偏光分離シートをのせ、発光面中心のたわみ量を測定した。
[0135] さらに、蛍光灯 5を点灯し、ノ ックライトの輝度および輝度ムラを目視評価した。
[0136] <比較例 2>
下記の織物を用 、た以外は実施例 1と同様に布帛に耐紫外線処理を施し、布帛の 各種特性を評価した。また、下記のとおり光学シートの支持性およびバックライトにお ける発光面中心部のたわみの輝度、輝度ムラを評価した。
[0137] 評価結果を表 1に示す。
[0138] この態様においては、光学シートを良好に支持できた力 蛍光灯 5を点灯したところ 、全光透過率が低ぐ輝度ムラは少ないものの光学シート支持体としては適さない物 であった。
[0139] (布帛構成)
1.使用糸
タテ糸 1670dtex— 108フィラメント、ポリエステノレ 100%、酸化チタン無し、丸断面 ョコ糸 1670dtex— 192フィラメント、ポリエステノレ 100%、酸化チタン無し、丸断面
2.織り組織:平織り
3.織り密度:タテ 25本 Zin、ョコ 25本 Zin
(光学シートの支持性およびバックライトにおける発光面中心部のたわみ、輝度、輝 度ムラ)
図 15に示す 32インチの直下型バックライトを構成した。
[0140] 布帛 1は、凸部を備えた四角形の枠体 2 (ポリカーボネート製、 5mm X 8mmの角棒 力も構成される)に、タテ方向およびョコ方向共に 5cm幅あたり 100Nの力で展張し つつ、熱融着テープを挟み 150°C X 1分間熱板を押し当てて融着させた。この枠体 2 を枠体凸部の内寸よりタテョコ共に lmm大きい内寸の凹部を備えたディスプレイ筐 体 3にはめ込んだ。その上に光学シートとして、 32インチのプリズムシートと偏光分離 シートをのせ、発光面中心のたわみ量を測定した。
[0141] さらに、蛍光灯 5を点灯し、ノ ックライトの輝度および輝度ムラを目視評価した。
[0142] <比較例 3 >
下記の織物を用 、た以外は実施例 1と同様に布帛に耐紫外線処理を施し、布帛の 各種特性を評価した。また、下記のとおり光学シートの支持性およびバックライトにお ける発光面中心部のたわみ、輝度、輝度ムラを評価した。
[0143] 評価結果を表 1に示す。
[0144] この態様にぉ 、ては、光学シートを良好に支持できた。しかし、蛍光灯を点灯したと ころ、全光透過率が低ぐ輝度ムラが少ないものの光学シート支持体としては適さな い物であった。
[0145] (布帛構成)
1.使用糸
タテ糸
l lOOdtex— 72フィラメント、ポリエステノレ 100%、酸化チタン無し、丸断面 ョコ糸 l lOOdtex— 72フィラメント、ポリエステノレ 100%、酸化チタン無し、丸断面
2.織り組織:平織り
3.織り密度:タテ 30本 Zin、ョコ 30本 Zin
(光学シートの支持性およびバックライトにおける発光面中心部のたわみ、輝度、輝 度ムラ)
図 15に示す 32インチの直下型バックライトを構成した。
[0146] 布帛は、凸部を備えた四角形の枠体 2 (ポリカーボネート製、 5mm X 8mmの角棒 力も構成される)に、タテ方向およびョコ方向共に 5cm幅あたり 100Nの力で展張し つつ、熱融着テープを挟み 150°C X 1分間熱板を押し当てて融着させた。この枠体 2 を、枠体凸部の内寸よりタテョコ共に lmm大きい内寸の凹部を備えたディスプレイ筐 体 3にはめ込んだ。その上に光学シートとして、 32インチのプリズムシートと偏光分離 シートをのせ、発光面中心のたわみ量を測定した。
[0147] さらに、蛍光灯 5を点灯し、ノ ックライトの輝度および輝度ムラを目視評価した。
[0148] <比較例 4 >
下記の織物を用 、た以外は実施例 1と同様に布帛に耐紫外線処理を施し、布帛の 各種特性を評価した。また、下記のとおり光学シートの支持性およびバックライトにお ける発光面中心部のたわみ、輝度、輝度ムラを評価した。
[0149] 評価結果を表 1に示す。
[0150] この態様にぉ 、ては、光学シートを良好に支持できた。しかし、蛍光灯を点灯したと ころ、全光透過率は高いものの、明部と暗部があり輝度ムラが大きく光学シート支持 体としては使用できな 、物であった。
[0151] (布帛構成)
1.使用糸
タテ糸 56dtex— 18フィラメント、ポリエステノレ 100%、酸化チタン無し、丸断面 ョコ糸 56dtex— 18フィラメント、ポリエステノレ 100%、酸化チタン無し、丸断面
2.織り組織:平織り
3.織り密度:タテ 20本 Zin、ョコ 20本 Zin
(光学シートの支持性およびバックライトにおける発光面中心部のたわみ、輝度、輝 度ムラ)
図 15に示す 32インチの直下型バックライトを構成した。
[0152] 布帛は、凸部を備えた枠体 2 (ポリカーボネート製、 5mm X 8mmの角棒から構成さ れる)に、タテ方向およびョコ方向共に 5cm幅あたり 50Nの力で展張しつつ、 450°C に加熱された超音波発信治具を 0. 2秒間押し当てて融着させた。この枠体 2を枠体 凸部の内寸よりタテョコ共に lmm大きい内寸の凹部を備えたディスプレイ筐体 3には め込ん 7こ。
[0153] その上に光学シートとして、 32インチのプリズムシートと偏光分離シートをのせ、発 光面中心のたわみ量を測定した。
[0154] さらに、蛍光灯 5を点灯し、ノ ックライトの輝度および輝度ムラを目視評価した。
[0155] <実施例 5〜9 >
表 2に示すように、酸化チタン量、繊維断面形状を変更した以外は実施例 1と同様 に布帛に耐紫外線処理を施し、布帛の各種特性を評価した。また、下記のとおり光 学シートの支持性およびバックライトにおける発光面中心部のたわみ、輝度、輝度ム ラを評価した。
[0156] 評価結果を表 2に示す。
[0157] この態様においては、光学シートを良好に支持できた。さらに、蛍光灯を点灯したと ころ、バックライトとして十分な輝度が得られ、輝度ムラもな力つた。
[0158] (光学シートの支持性およびバックライトにおける発光面中心部のたわみ、輝度、輝 度ムラ)
図 15に示す 32インチの直下型バックライトを構成した。
[0159] 布帛は、凸部を備えた四角形の枠体 (ポリカーボネート製、 5mm X 8mmの角棒か ら構成される)にタテ方向およびョコ方向共に 5cm幅あたり 50Nの力で展張しつつ熱 融着テープを挟み 150°C X 1分間熱板を押し当てて融着させた。この枠体を枠体凸 部の内寸よりタテョコ共に lmm大きい内寸の凹部を備えたディスプレイ筐体にはめ 込んだ。その上に光学シートとして、 32インチのプリズムシートと偏光分離シートをの せ、発光面中心のたわみ量を測定した。
[0160] さらに、蛍光灯 5を点灯し、ノ ックライトの輝度および輝度ムラを目視評価した。
[0161] <比較例 5 >
下記の織物を用 、た以外は実施例 1と同様に布帛に耐紫外線処理を施し、布帛 の各種特性を評価した。また、下記のとおり光学シートの支持性およびバックライトに おける発光面中心部のたわみ、輝度、輝度ムラを評価した。
[0162] 評価結果を表 2に示す。
[0163] この態様にぉ 、ては、光学シートを良好に支持できた。しかし、蛍光灯を点灯したと ころ、全光透過率が低ぐ輝度ムラは少ないものの光学シート支持体としては適さな い物であった。
[0164] (布帛構成)
1.使用糸
タテ糸 56dtex— 18フィラメント、ポリエステノレ 100%、酸化チタン 5wt%、丸断面 ョコ糸 56dtex— 18フィラメント、ポリエステノレ 100%、酸化チタン 5wt%、丸断面
2.織り組織:平織り
3.織り密度:タテ 110本 Zin、ョコ 90本 Zin
(光学シートの支持性およびバックライトにおける発光面中心部のたわみ、輝度、輝 度ムラ)
図 15に示す 32インチの直下型バックライトを構成した。
[0165] 布帛は、凸部を備えた枠体 (ポリカーボネート製、 5mm X 8mmの角棒から構成さ れる)にタテ方向およびョコ方向共に 5cm幅あたり 50Nの力で展張しつつ熱融着テ ープを挟み 150°C X 1分間熱板を押し当てて融着させた。この枠体を枠体凸部の内 寸よりタテョコ共に lmm大きい内寸の凹部を備えたディスプレイ筐体にはめ込んだ。
[0166] その上に光学シートとして、 32インチのプリズムシートと偏光分離シートをのせ、発 光面中心のたわみ量を測定した。
[0167] さらに、蛍光灯 5を点灯し、バックライトの輝度および輝度ムラを目視評価した。
[0168] <比較例 6 >
実施例 1で作製した耐紫外線処理済み布帛を、ポリエチレンテレフタレート(PET) フィルム (東レ (株)製"ルミラー"(登録商標) QT40膜厚 100 μ m)の透明基材上に、 下記組成物 1のバインダー榭脂をバーコ一ター( # 6)で塗布し、厚み 9 μ mの塗膜を 形成後、重ねて貼り合わせた。
[0169] (組成物 1)
カチオン重合性榭脂
"アデカオブトマー"(登録商標) KRM— 2199 (旭電ィ匕工業 (株)製) 10重量部 "ァロンォキセタン"(登録商標) OXT- 221 (東亞合成 (株)製) 1重量部 カチオン系光重合開始剤
"アデカオブトマー"(登録商標) SP— 172 (旭電ィ匕工業 (株)製) 1重量部 次に、上記のように布帛を貼り合わせたものに対して、超高圧水銀灯を用いて 400 mj/cm2で露光し、組成物 1を硬化させることで、光拡散シートを作製した。
[0170] この光拡散シートについて上記布帛と同様に各種特性を評価した。また、下記のと おり光学シートの支持性およびバックライトにおける発光面中心部のたわみ、輝度、 輝度ムラを評価した。
[0171] 評価結果を表 2に示す。
[0172] この態様においては、上記光拡散シートをバックライトにおけるプリズムシートとして 使用したが、蛍光灯を点灯したところ、全光透過率が低ぐ輝度ムラは少ないものの プリズムシートとして適さな 、ものであった。
[0173] (光学シートの支持性およびバックライトにおける発光面中心部のたわみ、の輝度、 輝度ムラ)
比較例 1と同様に図 15における布帛 1と枠体 2の代わりに比較例 1で使用した乳白 板を静置して 32インチの直下型バックライトを構成した。その上に作製した 32インチ サイズの上記光拡散シートと 32インチの偏光分離シートをのせ、発光面中心のたわ み量を測定した。
[0174] さらに、蛍光灯 5を点灯し、ノ ックライトの輝度および輝度ムラを目視評価した。 <実 施例 10 >
下記のとおり作製した布帛に耐紫外線処理を施し、布帛の各種特性を評価した。ま た、下記のとおり光学シートの支持性およびバックライトにおける発光面中心部のた わみ、輝度、輝度ムラを評価した。
[0175] 評価結果を表 3に示す。
[0176] この態様においては、光学シートを良好に支持できた。さらに、蛍光灯を点灯したと
ころ、バックライトとして十分な輝度が得られ、輝度ムラもな力つた。
[0177] (布帛構成)
1.使用糸:タテ、ョコ糸 84dtex— 72フィラメント、ポリエステル 100%フィラメントャ ーン
2.織り組織:平織り
3.織り密度:タテ織り密度 110本 Z2. 54cm、ョコ織り密度 90本 Z2. 54cm (耐紫外線処理)
トリアジン系紫外線吸収剤(商品名: CIBAFAST P チバ 'スペシャルティ ·ケミカ ルズ (株)社製)を布帛重量対比 2重量%と硫酸アンモニゥム 1. OgZlとを含む紫外 線吸収処理溶液と上記構成の布帛とを、体積比が布帛:水溶液 = 1: 20で浴中染色 加工した。処理条件は、 130°Cで 60分浴中染色処理した後に、 60°Cのお湯で 10分 間湯洗いし、流水で 5分間すすいだ。その後、 120°Cで 3分間乾燥処理した。紫外線 吸収剤の付着量は 0. 8重量%であった。
[0178] (光学シートの支持性およびバックライトにおける発光面中心部のたわみ、輝度、輝 度ムラ)
図 16に示す 32インチの直下型バックライトを構成した。布帛 1は、たるみ、しわ等 が入らな!/、ように手で引っ張りながら展張して筐体 3の四辺部分 (枠体 2)に両面テー プにて固定した。その上に光学シートとして、 32インチのプリズムシートと偏光分離シ ートをのせ、発光面中心のたわみ量を測定した。
[0179] さらに、蛍光灯 5を点灯し、ノ ックライトの輝度および輝度ムラを目視評価した。
[0180] <実施例 11 >
下記のとおり作製した布帛に耐紫外線処理を施し、布帛の各種特性を評価した。ま た、下記のとおり光学シートの支持性およびバックライトにおける発光面中心部のた わみ、輝度、輝度ムラを評価した。
[0181] 評価結果を表 3に示す。
[0182] この態様においては、光学シートを良好に支持できた。さらに、蛍光灯を点灯したと ころ、バックライトとして十分な輝度が得られ、輝度ムラもな力つた。
[0183] (布帛構成)
1.使用糸:タテ、ョコ糸 56dtex— 36フィラメント、ポリエステル 100%フィラメントャ ーン
2.織り組織:平織り
3.織り密度:タテ織り密度 170本 Z2. 54cm、ョコ織り密度 120本 Z2. 54cm (耐紫外線処理)
ベンゾトリアゾール系紫外線吸収剤(商品名:アンチフェード 8001、明成化学工業 (株)社製)を濃度 20gZlに調整し、その中に布帛を浸漬し、マングルで 1度絞った。 ウエットピックアップ量は、布帛重量対比 30重量%だつた。この布帛を、 110°C X 1分 間の予備乾燥処理した後、 180°C X 1分のキュア処理をした。
[0184] (光学シートの支持性およびバックライトにおける発光面中心部のたわみ、輝度、輝 度ムラ)
図 16に示す 32インチの直下型バックライトを構成した。布帛 1は、たるみ、しわ等が 入らないように展張して筐体 3の四辺部分 (枠体 2)に両面テープにて固定した。その 上に光学シートとして、 32インチのプリズムシートと偏光分離シートをのせ、発光面中 心のたわみ量を測定した。
[0185] さらに、蛍光灯 5を点灯し、ノ ックライトの輝度および輝度ムラを目視評価した。
[0186] <実施例 12>
下記のとおり作製した布帛に耐紫外線処理を施し、布帛の各種特性を評価した。ま た、下記のとおり光学シートの支持性およびバックライトにおける発光面中心部のた わみ、輝度、輝度ムラを評価した。
[0187] 評価結果を表 3に示す。
[0188] この態様においては、光学シートを良好に支持できた。さらに、蛍光灯を点灯したと ころ、バックライトとして十分な輝度が得られ、輝度ムラもな力つた。
[0189] (布帛構成)
1.使用糸:タテ、ョコ糸 22dtex— 15フィラメント、ポリエステル 100%フィラメントャ ーン
2.織り組織:平織り
3.織り密度:タテ織り密度 150本 Z2. 54cm、ョコ織り密度 140本 Z2. 54cm
(耐紫外線処理)
実施例 10と同様
特性評価結果を表 3に示す。
[0190] (光学シートの支持性およびバックライトにおける発光面中心部のたわみ、輝度、輝 度ムラ)
図 16に示す 32インチのバックライトを構成した。布帛 1は、たるみ、しわ等なく展張 して筐体 3の四辺部分 (枠体 2)に両面テープにて固定した。その上に光学シートとし て、 32インチのプリズムシートと偏光分離シートをのせ、発光面中心のたわみ量を測 し 7こ。
[0191] さらに、蛍光灯 5を点灯し、ノ ックライトの輝度および輝度ムラを目視評価した。
[0192] [表 1]
^〔〕〔」01943
〔〕^
実施例 1 0 実施例 1 1 実施例 1 2 布帛組織 平織り 平織り 平織り タテ糸断面 丸 丸 丸 ョコ糸断面 丸 丸 丸 タテ糸酸化チタン量 t 0 0 0.2 ョコ糸酸化チタン量 wt% 0 0 0.2 タテ糸総繊度 dtex 84 56 22 ョコ糸総繊度 dtex 84 56 22 タテ糸単糸繊度 dtex 1.2 1.6 1.5 ョコ糸単糸繊度 dtex 1.2 1.6 1.5 タテ密度 本 Zin 1 10 170 150 ョコ密度 本 Zin 90 120 140 密度比 タテ:ョコ 1.22 : 1.00 1.42 1.00 1.07 : 1.00 カバ一ファクタ一 1833 2170 1360 耐候剤 wt 0.8 0.8 0.8 タテ引張強力 N/5cm 546 586 201 ョコ引張強力 N/5cm 458 404 194 重さ g/m 75.0 64.0 53.0 厚み mm 0.1 1 0.08 0.07 タテ剛軟度 mm 38 42 33 ョコ剛軟度 mm 28 33 25 全光線透過率 % 51 60 69 ヘイズ % 90 88 84 輝度ムラ cd/ cm2 143 132 157 たわみ量 mm 1.20 1.20 1.10 バックライト輝度 B A A バックライト輝度ムラ B B C 図面の簡単な説明
[図 1]液晶ディスプレイの概略模式図である。
[図 2]布帛を展張固定する態様の一例を示す図であり、(a)が斜視図、(b)が側面図 である。
[図 3]布帛を展張固定する態様の一例を示す図であり、(a)が斜視図、(b)が部分拡 大図である。
[図 4]布帛を展張固定する態様の一例を示す図である。
[図 5]布帛を展張固定する態様の一例を示す図である。
[図 6]布帛を展張固定する態様の一例を示す図であり、(a)が側面図、(b)が下面図 である。
[図 7]布帛を展張固定する態様の一例を示す図であり、(a)が斜視図、(b)が側面図 である。
[図 8]布帛を展張固定する態様の一例を示す図であり、(a)が側面図、(b)が下面図 である。
[図 9]布帛を展張固定する態様の一例を示す図である。
[図 10]布帛を展張固定する枠体の一例を示す図であり、(a)が側面図、(b)が下面図 である。
[図 11]布帛を展張固定する態様の一例を示す図である。
[図 12]布帛を展張固定する態様の一例を示す図であり、(a)が正面図、(b)が側面図 である。
[図 13]布帛の橈みを防ぐネットの一例を示す図である。
[図 14]布帛の橈みを防ぐ筋交いの一例を示す図である。
[図 15]液晶ディスプレイに用いられる直下型バックライトの模式図であり、 (a)が側面 図、(b)が上面図である。
[図 16]液晶ディスプレイに用いられる直下型バックライトの模式図であり、 (a)が側面 図、(b)が上面図である。
符号の説明
1 布帛
2 枠体
2A 凹部
2B 凸部
3 筐体
4 反射シート
5 蛍光管
6 筐体 3の外周部
7 液晶ユニット
8 弾性体
9 棒
10 フレーム
12 布帛 1のうち枠体 2からはみ出た部分
ネット
筋交い
ネジ
ナット
溝
布帛 1の袋状の部分 プリズムシート 偏光分離シート 直下型バックライト フレーム フレーム
Claims
請求の範囲
[I] ディスプレイの部材に装備される光学シートの支持体であって、繊維により構成され た布帛を有し、該布帛の全光線透過率が 25%以上 90%以下である光学シート支持 体。
[2] 液晶ディスプレイ用バックライトに用いられる、請求項 1記載の光学シート支持体。
[3] 前記布帛は展張され、当該展張による張力により前記光学シートを支持する、請求 項 1または 2記載の光学シート支持体。
[4] 前記光学シートがプリズムシートおよび偏光分離シートの少なくとも一方である、請 求項 1〜3いずれかに記載の光学シート支持体。
[5] 前記布帛を構成する繊維の 80〜100%が略円形の断面形状を有する、請求項 1
〜4いずれかに記載の光学シート支持体。
[6] 前記布帛を構成する繊維の 80〜100%が異形断面形状を有する、請求項 1〜4い ずれかに記載の光学シート支持体。
[7] 前記布帛を構成する繊維の 80〜100%が中空断面形状を有する、請求項 1〜4い ずれかに記載の光学シート支持体。
[8] 前記繊維が繊維内に光散乱粒子および Zまたは光吸収粒子を含んで ヽる、請求 項 1〜7いずれかに記載の光学シート支持体。
[9] 前記光散乱粒子が酸化チタンである、請求項 8記載の光学シート支持体。
[10] 前記繊維は、前記光散乱粒子および Zまたは光吸収粒子を繊維重量当たり 0. 00
1〜0. 3wt%の範囲で含有している、請求項 8または 9記載の光学シート支持体。
[II] 前記布帛を構成する繊維の平均の単繊維繊度が 0. 001〜30dtexである、請求項 1〜: L 0 、ずれかに記載の光学シート支持体。
[12] 前記布帛を構成する繊維の平均の総繊度が 5〜450dtexである、請求項 1〜: L 1い ずれか記載の光学シート支持体。
[13] 前記布帛が織物である、請求項 1〜12いずれかに記載の光学シート支持体。
[14] 前記織物のカバーファクターが 500〜3000である、請求項 13記載の光学シート支 持体。
[15] 前記織物のタテ糸とョコ糸の織り密度の比が 1 : 1〜2 : 1である、請求項 13または 14
記載の光学シート支持体。
[16] 前記織物を構成するタテ糸およびョコ糸の一方がモノフィラメントである、請求項 13
〜15いずれかに記載の光学シート支持体。
[17] 前記布帛は耐紫外線処理がなされたものである、請求項 1〜16いずれかに記載の 光学シート支持体。
[18] 前記布帛の引張強度が 100NZ5cm以上である、請求項 1〜17いずれかに記載 の光学シート支持体。
[19] 前記布帛のヘイズが 20〜100%である、請求項 1〜18いずれか記載の光学シート 支持体。
[20] 前記布帛の輝度ムラが 50〜350cdZm2である、請求項 1〜19いずれかに記載の 光学シート支持体。
[21] 請求項 1〜20 、ずれかに記載の光学シート支持体を備えてなる液晶ディスプレイ 用バックライト。
[22] 請求項 21記載の液晶ディスプレイ用バックライトを搭載してなる液晶ディスプレイ。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-302721 | 2005-10-18 | ||
JP2005302721A JP2007115425A (ja) | 2005-10-18 | 2005-10-18 | 液晶ディスプレイ用バックライト |
JP2005-302720 | 2005-10-18 | ||
JP2005302720 | 2005-10-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007046274A1 true WO2007046274A1 (ja) | 2007-04-26 |
Family
ID=37962370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/320252 WO2007046274A1 (ja) | 2005-10-18 | 2006-10-11 | 光学シート支持体ならびにこれを用いた液晶ディスプレイ用バックライト、液晶ディスプレイ |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW200727024A (ja) |
WO (1) | WO2007046274A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2722708A3 (en) * | 2012-10-22 | 2014-08-06 | LG Display Co., Ltd. | Wire mesh type diffuser plate and method of fabricating the same, and liquid crystal display device having the wire mesh type diffuser plate |
EP3495855A4 (en) * | 2016-07-27 | 2020-08-19 | Boe Technology Group Co. Ltd. | DIFFUSION ELEMENT AND ITS MANUFACTURING PROCESS, BACKLIGHT MODULE AND DISPLAY DEVICE |
WO2020180922A1 (en) * | 2019-03-04 | 2020-09-10 | The Trustees Of The University Of Pennsylvania | Programming emergent symmetries with saddle-splay elasticity |
US11338543B2 (en) * | 2017-09-01 | 2022-05-24 | Benecke-Kaliko Ag | Light-permeable multi-layer composite film |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08338990A (ja) * | 1995-06-12 | 1996-12-24 | Omron Corp | 表示素子及びその製造方法並びに液晶表示装置 |
JPH09304602A (ja) * | 1996-05-14 | 1997-11-28 | Kuraray Co Ltd | 光拡散シ−ト |
JP2004219926A (ja) * | 2003-01-17 | 2004-08-05 | Three M Innovative Properties Co | 光学フィルム構造体、照明装置及び液晶表示装置 |
JP2005189583A (ja) * | 2003-12-26 | 2005-07-14 | Toray Ind Inc | 光拡散シートおよびこれを用いたディスプレイ |
-
2006
- 2006-10-11 WO PCT/JP2006/320252 patent/WO2007046274A1/ja active Application Filing
- 2006-10-17 TW TW095138204A patent/TW200727024A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08338990A (ja) * | 1995-06-12 | 1996-12-24 | Omron Corp | 表示素子及びその製造方法並びに液晶表示装置 |
JPH09304602A (ja) * | 1996-05-14 | 1997-11-28 | Kuraray Co Ltd | 光拡散シ−ト |
JP2004219926A (ja) * | 2003-01-17 | 2004-08-05 | Three M Innovative Properties Co | 光学フィルム構造体、照明装置及び液晶表示装置 |
JP2005189583A (ja) * | 2003-12-26 | 2005-07-14 | Toray Ind Inc | 光拡散シートおよびこれを用いたディスプレイ |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2722708A3 (en) * | 2012-10-22 | 2014-08-06 | LG Display Co., Ltd. | Wire mesh type diffuser plate and method of fabricating the same, and liquid crystal display device having the wire mesh type diffuser plate |
US9298031B2 (en) | 2012-10-22 | 2016-03-29 | Lg Display Co., Ltd. | Wire mesh type diffuser plate and method of fabricating the same, and liquid crystal display device having the wire mesh type diffuser plate |
EP3495855A4 (en) * | 2016-07-27 | 2020-08-19 | Boe Technology Group Co. Ltd. | DIFFUSION ELEMENT AND ITS MANUFACTURING PROCESS, BACKLIGHT MODULE AND DISPLAY DEVICE |
US11338543B2 (en) * | 2017-09-01 | 2022-05-24 | Benecke-Kaliko Ag | Light-permeable multi-layer composite film |
WO2020180922A1 (en) * | 2019-03-04 | 2020-09-10 | The Trustees Of The University Of Pennsylvania | Programming emergent symmetries with saddle-splay elasticity |
US12038667B2 (en) | 2019-03-04 | 2024-07-16 | The Trustees Of The University Of Pennsylvania | Programming emergent symmetries with saddle-splay elasticity |
Also Published As
Publication number | Publication date |
---|---|
TW200727024A (en) | 2007-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080151372A1 (en) | Reinforced reflective polarizer films | |
JP4805959B2 (ja) | ポリマー繊維を含む反射偏光子 | |
US20070153162A1 (en) | Reinforced reflective polarizer films | |
US20070229950A1 (en) | Reinforced optical films | |
CN101506698B (zh) | 包括双折射聚合物纤维的光学装置 | |
TWI432793B (zh) | 擴散片及使用它之背光單元 | |
TW201003207A (en) | Suspended optical film | |
US20130312155A1 (en) | Woven fabric excellent in transparency, and down jacket | |
WO2007046274A1 (ja) | 光学シート支持体ならびにこれを用いた液晶ディスプレイ用バックライト、液晶ディスプレイ | |
US9494817B2 (en) | Display with nonwoven diffuser | |
JP2010506223A (ja) | リアプロジェクション用布帛、リアプロジェクションスクリーンおよびリアプロジェクションシステム | |
TW200902321A (en) | Optical element and display with transparent tensioned supporting films | |
JP2007140495A (ja) | 光学シート支持体ならびにこれを用いた液晶ディスプレイ用バックライト、液晶ディスプレイおよび背面投射型ディスプレイ | |
JP5109346B2 (ja) | 光拡散フィルムおよびそれを用いた直下型面光源 | |
JP2005189583A (ja) | 光拡散シートおよびこれを用いたディスプレイ | |
EP3064970B1 (en) | Illumination plastic optical fiber and method of manufacturing same | |
KR100955474B1 (ko) | 휘도강화필름의 제조방법 | |
WO2005116518A1 (ja) | 液晶表示装置及びバックライト装置 | |
WO2007029606A1 (ja) | 光拡散フィルムおよびそれを用いた面光源 | |
JP5193426B2 (ja) | スクリーン | |
JP2008112025A (ja) | 光学シート支持体ならびにこれを用いた液晶ディスプレイ用バックライト、液晶ディスプレイおよび背面投射型ディスプレイ | |
JP5292559B2 (ja) | 光拡散シート | |
WO2009134024A2 (en) | Optical modulated object | |
JP2007140499A (ja) | 光拡散部材およびそれを用いた面光源 | |
JP2007298604A (ja) | 光学シート支持体ならびにこれを用いた液晶ディスプレイ用バックライト、液晶ディスプレイおよび背面投射型ディスプレイ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06811559 Country of ref document: EP Kind code of ref document: A1 |