WO2007046244A1 - スパッタリング装置 - Google Patents

スパッタリング装置 Download PDF

Info

Publication number
WO2007046244A1
WO2007046244A1 PCT/JP2006/319963 JP2006319963W WO2007046244A1 WO 2007046244 A1 WO2007046244 A1 WO 2007046244A1 JP 2006319963 W JP2006319963 W JP 2006319963W WO 2007046244 A1 WO2007046244 A1 WO 2007046244A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
ring
targets
magnet
magnetic pole
Prior art date
Application number
PCT/JP2006/319963
Other languages
English (en)
French (fr)
Inventor
Satoru Takasawa
Sadayuki Ukishima
Noriaki Tani
Satoru Ishibashi
Original Assignee
Ulvac, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac, Inc. filed Critical Ulvac, Inc.
Priority to EP06811301.8A priority Critical patent/EP1939322A4/en
Priority to CN2006800190349A priority patent/CN101184864B/zh
Priority to JP2007540918A priority patent/JP4717887B2/ja
Publication of WO2007046244A1 publication Critical patent/WO2007046244A1/ja
Priority to US11/987,934 priority patent/US8679306B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3417Arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/347Thickness uniformity of coated layers or desired profile of target erosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3476Testing and control
    • H01J37/3482Detecting or avoiding eroding through
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to a sputtering apparatus.
  • organic EL elements have attracted attention as display elements.
  • FIG. 12 is a schematic cross-sectional view for explaining the structure of the organic EL element 201.
  • a lower electrode 214, organic layers 217 and 218, and an upper electrode 219 are laminated in this order on a substrate 211, and a voltage is applied between the upper electrode 219 and the lower electrode 214.
  • a voltage is applied between the upper electrode 219 and the lower electrode 214.
  • the upper electrode 219 is formed of a transparent conductive film such as an ITO film (indium stannate film), emitted light passes through the upper electrode 219 and is emitted to the outside.
  • the particles emitted by sublimation or evaporation are vapors of neutral low energy (several eV), so when forming a protective film for the upper electrode 219 or organic EL device, There is an advantage that a good interface can be formed without damaging the organic films 217 and 218.
  • the film formed by the vapor deposition method has poor adhesion to the organic film, there is a problem that a dark spot is generated or the electrode is peeled off by long-term driving.
  • the viewpoint of productivity is a point evaporation source, which makes it difficult to obtain a film thickness distribution over a large area, and the deterioration of the evaporation boat and the continuous supply of evaporation material are difficult, leading to a short maintenance cycle. There's a problem.
  • a sputtering method is conceivable as a method for solving the above problems.
  • the parallel plate sputtering method in which the object to be deposited is opposed to the surface of the target, when the upper electrode of aluminum is formed on the organic layer, the light emission starting voltage is remarkably increased in the drive test of the organic EL device. Or the problem of not emitting light occurs. This is because in sputtering, charged particles in the plasma (Ar ions, secondary electrons, recoil Ar) and spatters with high kinetic energy. This is because the particles are incident on the organic film, destroying the interface of the organic film and making it impossible to inject electrons.
  • the sputtering apparatus 110 includes a vacuum chamber 111, and two targets 121a and 121b are attached to the backing plates 122a and 122b on the back side in the vacuum chamber 111.
  • the surfaces are arranged in parallel and spaced apart from each other by a certain distance.
  • the back surface of the backing plates 122a and 122b is provided with the magnetic field forming means 115a and 115b.
  • Magnetic field forming means 115a and 115bi, yokes 129a and 129b, and ring-shaped magnets 123a and 123b are attached.
  • Each magnet 123a, 123b is arranged with one magnetic pole facing the targets 121a, 121b and the other magnetic pole facing away from the target, and the two magnets 123a, 123b The magnetic poles of different polarities are directed to the targets 121a and 121b.
  • the sputtering gas is introduced from the gas introduction system 117, and the voltage is applied to the targets 121a and 121b, the sputtering is performed in the space between the targets 121a and 121b. Gas plasma is generated, and the surfaces of the targets 121a and 121b are sputtered.
  • a film formation target 113 is disposed on the side of the space between the targets 121a and 121b.
  • the film formation target 113 is obliquely ejected from the targets 121a and 121b and is released by the sputtering particles released into the vacuum chamber 111.
  • a thin film is formed on the surface of the film formation target 113.
  • this sputtering apparatus 110 a space where the targets 121a and 121b face each other is surrounded by cylindrical magnetic lines 131 formed between two magnets 123a and 123b, and the plasma is confined by the magnetic lines 131. Therefore, plasma does not leak to the film formation target 113 side. Therefore, the film formation target 113 is not exposed to charged particles in the plasma, The organic thin film exposed on the surface of the film formation target 113 is not damaged.
  • the target 121a, 121b force S becomes deeper when the back side packing plates 122a, 122b are exposed, and abnormal discharge occurs.
  • the targets 121a and 121b must be replaced even if the film thickness reduction in other parts is small.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-162652
  • Patent Document 2 JP 2005-0332618
  • the present invention has been made to solve the above-described problems, and an object thereof is to increase the use efficiency of the target.
  • the intensity of the component horizontal to the target surface out of the intensity of the magnetic field formed on the target surface is 100 gauss or more +100 It was found that the target is sputtered uniformly if it is less than Gauss or if the difference between the upper limit and lower limit of the intensity of the component perpendicular to the target surface is less than 100 Gauss.
  • the present invention made on the basis of such knowledge includes a vacuum chamber, plate-like first and second targets, and a ring-shaped first and second magnets magnetized in the thickness direction of the ring.
  • the first and second targets are arranged in the vacuum chamber at a predetermined interval in a state in which the surfaces are oriented parallel to each other, and the first and second targets
  • the ring magnet is arranged at the back surface position of the first and second targets, and when one of the S pole and the N pole is the first magnetic pole and the other is the second magnetic pole, the first ring magnet
  • the first magnetic pole is directed to the back side of the first target, and the second ring magnet has the second magnetic pole
  • a sputtering apparatus configured to emit sputtered particles toward a surface of a film-forming target from an opening in a space between the first and second targets.
  • a first magnet member having the first magnetic pole directed to the back surface of the first target is disposed inside the ring of the one ring magnet, and inside the ring of the second ring magnet.
  • a second magnet member having the second magnetic pole directed to the back surface of the second target is disposed, and the first,
  • the intensity of the horizontal magnetic field component parallel to the second target surface is a sputtering device with an absolute value of 100 gauss or less.
  • the present invention comprises a vacuum chamber, plate-like first and second targets, and ring-shaped first and second ring magnets magnetized in the thickness direction of the J
  • the first and second targets are arranged at a predetermined interval in the vacuum chamber with their surfaces oriented parallel to each other, and the first and second ring magnets are When the first magnetic pole is the first magnetic pole and the other is the second magnetic pole, the first magnetic pole of the first ring magnet is the first magnetic pole.
  • the second ring magnet is directed to the back surface side of the second target, and the second magnetic pole is directed to the back surface side of the second target to generate an opening force between the first and second targets.
  • This is a sputtering device configured to emit the shot particles toward the surface of the film object.
  • a first magnet member having the first magnetic pole directed to the back surface of the first target is disposed inside the ring of the first ring magnet, and the ring of the second ring magnet
  • the second magnet member having the second magnetic pole directed to the back surface of the second target is disposed on the inner side of the second target.
  • the intensity of the vertical magnetic field component perpendicular to the first and second target surfaces is a sputtering apparatus in which the difference between the upper limit value and the lower limit value is 100 gauss or less.
  • the present invention provides the sputtering apparatus according to any one of claims 1 and 2, wherein the first and second ring magnets and the first and second magnet members are the first, The sputtering apparatus is fixed relative to the second target.
  • the present invention is configured as described above, and since the horizontal magnetic field strength formed on the first and second target surfaces is 100 gauss or less in absolute value, the first and second targets Each part is sputtered uniformly. Therefore, even when the first and second magnet members are stationary with respect to the first and second targets, the erosion region is widened.
  • the sputtering apparatus of the present invention does not move the first and second magnet members and has a wide erosion region even if it remains stationary relative to the first and second targets.
  • the structure of the apparatus that does not require a mechanism or means for moving the second magnet member is simplified. If 100 gauss is converted to SI (T (tesla)), it becomes 10mT.
  • the first and second targets used in the present application are plate-like, and their surfaces are flat at least before being subjected to the spottering.
  • recesses are formed in the portions eroded by sputtering.
  • the target surface is a flat surface before being shot. Therefore, the horizontal magnetic field component is a magnetic field component parallel to the flat surface before sputtering, and the vertical magnetic field component is a magnetic field component perpendicular to the flat surface before sputtering. It is.
  • the intensity distribution of the horizontal magnetic field components formed on the first and second target surfaces has a narrow absolute value of 100 gauss or less, so that the first and second target surfaces are sputtered uniformly. Therefore, since the film thickness of each part of the first and second targets is reduced uniformly, the usage efficiency of the first and second targets is high.
  • FIG. 1 is a cross-sectional view of the sputtering apparatus of the present invention.
  • FIG. 2 is a plan view illustrating the positional relationship between the first and second ring magnets and the first and second magnet members.
  • FIG. 4 (a) to (c): plan views for explaining other examples of the first and second magnet members.
  • FIG. 5 is a plan view showing the measurement position of the example.
  • FIG. 7 (a) to (c): graphs showing the magnetic field strength distribution of the examples.
  • FIG. 9 (a) to (c): Erosion after sputtering the target with the sputtering apparatus of the present application. Distribution
  • FIG. 11 is a plan view showing a target after sputtering with a sputtering apparatus of a comparative example
  • FIG. 12 Cross-sectional view explaining an organic EL device
  • FIG. 13 is a cross-sectional view illustrating a conventional sputtering apparatus
  • FIG. 14 is a cross-sectional view illustrating magnetic field components of a conventional sputtering apparatus
  • Reference numeral 1 in FIG. 1 represents a sputtering apparatus as an example of the present invention.
  • This sputtering apparatus 1 is a vertical inter-back apparatus, and has a vacuum chamber 11.
  • the vacuum chamber 11 has a transfer chamber 9 and a sputtering chamber 16 connected to the transfer chamber 9.
  • two backing plates 22a, 22b are disposed apart from each other, and the first and second targets 21a, 21b are attached to the surfaces thereof, respectively. .
  • Each of the first and second targets 21a and 21b is plate-shaped, and the surfaces thereof are parallel to each other with a predetermined interval.
  • the surfaces of the first and second targets 21a and 21b face each other, and a sputter space is formed by the space between the surface of the first target 21a and the surface of the second target 21b.
  • a vacuum exhaust system 19 and a gas supply system 18 are connected to the vacuum chamber 11, and the vacuum exhaust system 19 evacuates the vacuum chamber 11 to form a vacuum atmosphere in the vacuum chamber 11, and then the gas.
  • a sputtering gas is introduced from the supply system 18 to form a film-forming atmosphere at a predetermined pressure in the sputtering space.
  • a power supply 25 is arranged outside the vacuum chamber 11, and the power supply 25 is a backing plate 22a. 22b, but not connected to the vacuum chamber 11, and the knocking plate 22a is connected from the power source 25 with the vacuum chamber 11 kept at the ground potential while maintaining the film formation atmosphere.
  • the first and second targets 21a, 21b are rectangular, and one of the two long sides is directed to the transfer chamber 9, and the other long side is opposite to the transfer chamber 9.
  • the two long sides directed toward the transfer chamber 9 are located in the same plane, and an opening 39 of the sputtering space is formed between the long sides.
  • the transfer chamber 9 is provided with a linear transfer path 14, the gate valve 41 is opened, the film formation object 5 is transferred from the L ZUL chamber 3 into the transfer chamber 9, and the film is formed on the carrier 13.
  • the film formation object 5 moves along the conveyance path 14.
  • the conveyance path 14 is parallel to the opening 39, and extends in a direction perpendicular to the surfaces of the first and second targets 21a and 21b. From the opening 39, the downstream side and the upstream side of the conveyance path 14 are provided. Sputtered particles are released evenly
  • the transfer path 14 is extended so that the film formation object 5 passes through the position facing the opening 39 in parallel with the opening 39, and the film formation object 5 moves from the upstream side to the downstream side along the transfer path 14. When moved, the sputtered particles emitted from the opening 39 reach the film formation target 5 evenly.
  • the sputter angle is small. Only the particles are emitted from the opening 39 and reach the surface of the film formation target 5
  • Sputtered particles with a small jump angle have a small amount of energy, so do not be damaged by the particles exposed on the surface of the film formation target 5 (eg organic film)!
  • First and second magnetic field forming means 15a and 15b are arranged on the back surface positions of the first and second targets 21a and 21b outside the vacuum chamber 11, and the first and second magnetic field formations are performed.
  • the means 15a, 15b have first and second ring magnets 23a, 23b and first and second magnet members 24a, 24b.
  • the first and second ring magnets 23a and 23b are formed into thin ring shapes, and the first and second magnet members 24a and 24b are approximately the same thickness as the first and second ring magnets 23a and 23b. It is made into a thin plate.
  • Plate-shaped yokes 29a and 29b are arranged on the back surfaces of the first and second targets 21a and 21b outside the vacuum chamber 11, with the surfaces facing the first and second targets 21a and 21b,
  • the first and second ring magnets 23a, 23b are arranged with their front surfaces facing the back surfaces of the first and second targets 21a, 21b and the back surfaces in close contact with the surfaces of the yokes 29a, 29b.
  • the first and second magnet members 24a, 24b are made smaller than the ring inner circumference of the first and second ring magnets 23a, 23b, and the first and second magnet members 24a, 24b are the first, Inside the rings of the second ring magnets 23a and 23b, the front surfaces are arranged so as to face the first and second targets 21a and 21b, and the back surfaces are arranged in close contact with the yokes 29a and 29b.
  • the first and second ring magnets 23a, 23b and the first and second magnet members 24a, 24b are magnetized in the thickness direction, and the magnetic poles of the magnets 23a, 23b, 24a, 24b are respectively.
  • the first and second targets 21a and 21b are formed on the front surface facing the back surface and on the back surface in close contact with the yokes 29a and 29b.
  • the first ring magnet 23a and the first magnet portion if the magnetic poles located on the surfaces facing the back surfaces of the first and second targets 21a and 21b are the target-side magnetic poles, the first ring magnet 23a and the first magnet portion Similarly, the target side magnetic pole of the material 24a has the same magnetism, and similarly, the second ring magnet 23b and the target magnet of the second magnet member 24b have the same magnetic force.
  • First ring magnet 23a And the magnetism of the target side magnetic pole of the first magnet member 24a and the magnetism of the target side magnetic pole of the second ring magnet 23b and the second magnet member 24b are different.
  • the same magnetic pole is directed to the back surfaces of the first and second targets 21a and 21b inside the first magnetic field forming means 15a and the second magnetic field forming means 15b.
  • the target side magnetic pole of the means 15a and the target side magnetic pole of the second magnetic field forming means 15b are different from each other.
  • the target side magnetic pole of the first magnetic field forming means 15a may be the first magnetic pole.
  • the target-side magnetic pole of the second magnetic field forming means 15b becomes the second magnetic pole.
  • the first and second ring magnets 23a, 23b have the same shape, and the size of the first and second ring magnets 23a, 23b is larger than that of the first and second targets 21a, 21b. Are protruded from the edges of the first and second targets 21a and 21b, and the outer peripheral forces of the first and second targets 21a and 21b are also separated by a certain distance (FIG. 2).
  • first and second ring magnets 23a and 23b face each other with the wall of the vacuum chamber 11 therebetween, and a cylindrical shape is interposed between the first and second ring magnets 23a and 23b.
  • Magnetic field lines M are formed, and the first and second targets 21a and 21b are located inside the cylindrical magnetic field lines M (FIG. 3).
  • the first thin film is formed on the surface of the film formation target 5 without damaging a substance (for example, an organic film) exposed on the surface of the film formation target 5.
  • the first and second magnet members 24a and 24b have the same shape, and the first and second magnet members 24a and 24b sandwich the vacuum chamber 11 and the first and second targets 21a and 21b. Located so as to face each other.
  • a component parallel to the surface is defined as a horizontal magnetic field component
  • a component perpendicular to the surface is defined as a vertical magnetic field component.
  • each magnet 23a, 23b, 24a, 24b, the ring radius of the first and second ring magnets 23a, 23b, the width of the ring of the first and second ring magnets 23a, 23b, First and second magnet members The widths of 24a and 24b and the distances from the magnetic poles on the first and second targets 2la and 21b side of the first and second magnetic field forming means 15a and 15b to the first and second targets 21a and 21b are
  • the horizontal magnetic field component has a magnetic field intensity distributed over the range of -100 gauss + 100 gauss, and the difference between the upper limit and lower limit of the vertical magnetic field component is set to 100 gauss or less.
  • the second targets 21a and 21b are sputtered uniformly.
  • a third target 21c attached to the packing plate 22c is disposed on the downstream side of the transfer path 14 with respect to the portion of the transfer chamber 9 to which the sputter chamber 16 is connected.
  • the third magnetic field forming means 15c is arranged on the back surface side of the third target 21c, and the third magnetic field forming means 15c is parallel to the surface of the third target 21c.
  • the surface of the third target 21c is sputtered with high efficiency by the parallel magnetic field lines. Is done.
  • the surface of the third target 21c is directed to the transfer path 14, and the film formation target 5 is configured to pass through a position facing the third target 21c. Sputtered particles jumping out from the target 21c of the target reaches the film formation target 5.
  • the first thin film is formed by the first and second targets 21a and 21b on the surface of the film formation target 5, and the sputtered particles of the third target 21c are the first thin film.
  • the second thin film is formed without damaging the underlying thin film of the first thin film.
  • the sputtered particles that form the second thin film are particles in which the surface of the third target 21c also protrudes vertically, and the amount of sputtered particles incident from the first and second targets 21a and 21b.
  • the amount of the second thin film is higher than that of the first thin film.
  • the first to third targets 21a to 21c are transparent conductive materials such as ITO, and the first and second thin films are thin films of transparent conductive materials, respectively, A one-layer transparent conductive film composed of the first and second thin films is formed.
  • the constituent material of the third target 21c is different from that of the first and second targets 21a and 21c. If it is configured, a thin film having a two-layer structure is formed on the surface of the film formation target 5.
  • the shape and arrangement of the first and second ring magnets 23a and 23b and the shape and arrangement of the first and second magnet members 24a and 24b are not particularly limited, but an example thereof is shown in FIG.
  • the ring shape of the first and second ring magnets 23a, 23b is an elongated ellipse or an elongated square shape
  • the first and second magnet members 24a, 24b are the first and second ring magnets 23a
  • It has an elongated shape having the same width as that of the ring of 23b, and is arranged so that the entire outer periphery is separated from the inner peripheral edges of the first and second ring magnets 23a, 23b.
  • first and second magnet members 24a and 24b are arranged along the longitudinal direction of the ring of the first and second ring magnets 23a and 23b, the first and second ring magnets 23a and 23b In the wide area along the longitudinal direction, the strength of the horizontal magnetic field component can be made close to zero and the strength distribution of the vertical magnetic field component can be narrowed.
  • the present invention is not limited to this, and for example, FIG.
  • the longitudinal ends (here, both ends) of the first and second magnet members 44a and 44b are the edges of the inner circumferences of the first and second ring magnets 23a and 23b. May be contacted.
  • first and second magnet members 54a and 54b are divided into a plurality of parts, and the divided portions of the first and second magnet members 54a and 54b are divided.
  • the first and second ring magnets 23a and 23b may be arranged along the longitudinal direction of the ring.
  • the width of the first and second magnet members 64a and 64b in the direction perpendicular to the arrangement direction may be longer than the length in the arrangement direction.
  • first and second magnet members 24a, 24b, 44a, 44b, 54a, 54b, 64a, 64b are respectively in the longitudinal direction of the rings of the first and second ring magnets 23a, 23b.
  • the ends in the direction that is parallel and orthogonal to the longitudinal direction are separated from the inner peripheral edges of the rings of the first and second ring magnets 23a and 23b.
  • Transparent conductive thin films that can be formed by the present invention include ITO thin films, SnO thin films, and ZnO thin films.
  • thin films of various transparent conductive materials such as IZO thin films.
  • the constituent material of the target is not limited to the transparent conductive material.
  • a metal film is formed on the surface of the film formation target 5 using a target mainly composed of a metal material, or an acid key.
  • a protective film can also be formed on the surface of the film formation target using a target whose main component is an insulating material such as silicon nitride.
  • sputtering is performed using a substance having high reactivity with the constituent material of the target, such as oxygen gas, hydrogen gas, water, etc., as the reactive gas, and the target constituent material and reactive gas are formed on the surface of the film formation target 5. It is also possible to form a reaction product film.
  • the type of sputtering gas is not particularly limited, and a commonly used sputtering gas such as Ar, Ne, Kr, or the like can be used.
  • the first to third targets 21a to 21c may be of the same type, or may be made of different materials. If the first and second targets 21a and 21b are made of different materials, the first thin film becomes a composite film made of two or more materials, and the third target 21c If a different one from the first sputtering chamber 16 is used, a laminated film in which a second thin film having a composition different from that of the first thin film is formed on the first thin film can be obtained.
  • the first and second targets 21a and 21b may be applied with a DC voltage, an AC voltage, or a voltage superposed thereof.
  • the arrangement location of the first and second magnetic field forming means 15a, 15b is not particularly limited, and may be arranged outside the vacuum chamber 11 as described above, or arranged inside the vacuum chamber 11. Also good.
  • the first and second magnetic field forming means 15a and 15b are arranged outside the vacuum chamber 11, at least a portion of the vacuum chamber 11 sandwiched between the first and second magnetic field forming means 15a and 15b is made of a magnetically permeable material. It is desirable to configure.
  • the magnetic field forming means 15 in which the magnet member 24 is arranged inside the ring magnet 23, the N pole of the ring magnet 23 and the N pole of the magnet member 24 on the back surface of the target The magnetic field formed on the target surface was measured to measure the strength of the vertical magnetic field component perpendicular to the target surface and the horizontal magnetic field component parallel to the target surface.
  • the vertical magnetic field component and the horizontal magnetic field component are measured at positions 50 mm inside (A—A, C—C) from the outer edges of both short sides of the ring magnet 23 and the center position in the longitudinal direction ( Measurements were made every 1 Omm along the width direction of the ring magnet 23 at three locations B—B) (FIG. 5).
  • the ring magnet 23 had a rectangular shape with an outer periphery of 90 mm wide and 340 mm long, a ring width of 10 mm, and a ring thickness of 20 mm. Magnet member 24 is 10mm wide and 2mm thick The intensity of the magnetic field generated by the ring magnet 23 and the magnet member 24 was the same. The distance between the target and the magnetic field forming means 15 was 30 mm.
  • FIGS. 7A to 7C and FIGS. 8A to 8C described later indicate the distance from the center in the width direction of the target surface.
  • the same position as in the above-described embodiment is also applicable to the case where only the ring magnet 23 is arranged on the back surface of the target without arranging the magnet member inside the ring magnet 23 as shown in FIG.
  • the horizontal magnetic field component and the vertical magnetic field component were measured.
  • the magnet member 24 is arranged inside the ring of the ring magnet 23.
  • the intensity of the horizontal magnetic field component is in the range of 100 gauss to 100 gauss in each part, and the difference between the maximum value (330 gauss) and minimum value (247 gauss) of the vertical magnetic field component is 100 gauss or less. Became.
  • the strength of the horizontal magnetic field component can be increased. It can be seen that the absolute value can be made less than 100 gauss and the difference between the maximum and minimum values of the vertical magnetic field component can be made less than 100 gauss.
  • the in-process product of the organic EL element is used as the film formation target.
  • the process of manufacturing the in-process product is as follows. O plasma cleaning and organic EL layers are sequentially formed by vapor deposition. Membrane object 5 was designated.
  • NP B 4,4, -bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • Alq3 a light-emitting layer containing an 8-oxyquinolino aluminum complex
  • LiF was further formed to a thickness of 5 nm by vapor deposition as a cathode buffer layer.
  • the film formation object 5 was transported into a nitrogen-substituted glove box attached to the organic EL manufacturing apparatus, the film formation object 5 was put into the sealed container, and the sealed container was taken out into the atmosphere. . After that, sealed in the N glove box attached to the sputtering device 1
  • the container was charged, the sealed container was opened, the film formation target 5 was taken out, and the film formation target 5 was set on the carrier 13 attached to the LZUL chamber 3.
  • a mask for forming an ITO electrode was mounted on the surface (film formation surface) of the film formation object 5 on which the buffer layer was formed, and the film was evacuated.
  • the gate valve 41 was opened, and the film formation object 5 was transferred into the vacuum chamber 11 together with the carrier 13.
  • the first and second magnetic field forming means 15a and 15b described above are arranged on the back surfaces of the first and second targets 21a and 21b, and sputtering is performed.
  • a first thin film made of an ITO film with a thickness of 20 nm is formed by passing the side of the target 2 la, 21b, and then passed over the third target 21c to a thickness of 80 nm on the first thin film.
  • An organic EL element was obtained in which an upper electrode composed of first and second thin films was formed on the surface of the noffer layer of the object 5 to be deposited.
  • the film formation conditions of the first and second thin films are as follows.
  • the opposing force swords (first and second targets 21a and 21b) have a film formation pressure of 0.667 Pa and a sputtering gas (Ar gas) of 200 SCCM.
  • the force sword (third target 21c) has a deposition pressure of 0.667 Pa, a sputtering gas (Ar gas) of 200 SCCM, and a reactive gas (oxygen) of 2.0 SCCM.
  • the input power is the DC power supply 1000W (2. lWZcm 2 Zcathode) for the counter force sword, and the DC power supply 620W (lWZcm 2 ) for the parallel plate force sword.
  • the dynamic rate was the opposing sword force S2nmZ, and the parallel plate force sword 8nmZ.
  • the conveyance speed of the film formation target object 5 is 0.1 lmZ.
  • the first and second targets 21a and 21b were rectangles having a width of 70 mm and a length of 330 mm.
  • the first and second targets 21a and 21b are taken out, and the locations indicated by the A—A, B—B, and C—C cutting lines in FIG. Measure the erosion depth of the first and second targets 21a and 21b at one end in the width direction to the other end.
  • FIGS. 9 (a) to 9 (c) The measured values are shown in Table 3 below, and graphs of the measurement results are shown in Figs. 9 (a) to (c), respectively.
  • the horizontal axes (measurement points) in FIGS. 9 (a) to 9 (c) and FIGS. 10 (a) to 10 (c) described later indicate the distance of the center force in the width direction of the target surface, and the vertical axis (erosion depth). ) Shows the amount of film thickness reduction of the target.
  • FIG. 11 shows the surfaces of the first and second targets 21a and 21b after sputtering with only the first and second ring magnets 23a and 23b arranged.
  • Reference numeral 31 in the figure denotes the erosion depth.
  • the reference numeral 32 indicates a portion where the erosion depth is shallow.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 ターゲットの使用効率が高いスパッタリング装置を提供する。  本発明のスパッタリング装置1は、第一、第二のリング磁石23a、23bと、第一、第二のリング磁石23a、23bのリングの内側に配置された第一、第二の磁石部材24a、24bを有しており、第一、第二のリング磁石23a、23bと第一、第二の磁石部材24a、24bは同じ磁性の磁極が第一、第二のターゲット21a、21b裏面に向けられている。従って、第一、第二のターゲット21a、21bの裏面には同じ極性の磁極が隣接配置されたことになり、第一、第二のターゲット21a、21bの表面に形成される水平磁場成分の強度は絶対値が小さく、かつ、その強度分布が狭く、垂直磁場成分の強度は均一になるので、第一、第二のターゲット21a、21bに非エロージョン部分が生じない。

Description

明 細 書
スパッタリング装置
技術分野
[0001] 本発明はスパッタリング装置に関する。
背景技術
[0002] 有機 EL素子は表示素子として近年着目されて ヽる。
図 12は、有機 EL素子 201の構造を説明するための模式的な断面図である。
この有機 EL素子 201は、基板 211上に、下部電極 214と、有機層 217、 218と上 部電極 219とがこの順序で積層されており、上部電極 219と下部電極 214の間に電 圧を印加すると、有機層 217、 218の内部又は界面で発光する。上部電極 219を IT O膜 (インジウム錫酸ィ匕物膜)等の透明導電膜で構成させると、発光光は上部電極 21 9を透過し、外部に放出される。
[0003] 上記のような上部電極 219の形成方法は主に蒸着法が用いられている。
蒸着法では、蒸着源力 昇華または蒸発によって放出される粒子は、中性の低ェ ネルギー (数 eV程度)粒子であるので、上部電極 219や有機 EL素子の保護膜を形 成する場合は、有機膜 217、 218にダメージを与えず、良好な界面を形成できるとい つたメリットがある。
[0004] しかし、蒸着法で形成される膜は有機膜との密着性が悪いため、ダークスポットが 発生したり長期駆動により電極が剥離してしまうといった不具合が生じている。また、 生産性の観点力もは、点蒸発源のため大面積では膜厚分布がとりづらいといった問 題や、蒸発ボートの劣化や蒸発材料の連続供給が困難なため、メンテナンスサイク ルが短いなどの問題がある。
[0005] 上記の問題を解決する手法としてスパッタ法が考えられる。しかし、成膜対象物をタ 一ゲットの表面に対向させる平行平板型のスパッタ法では、有機層上にアルミニウム の上部電極を形成した場合、有機 ELデバイスの駆動テストで発光開始電圧が著しく 高くなつたり、発光しないという不具合が生じている。これはスパッタ法ではプラズマ 中の荷電粒子 (Arイオン、 2次電子、反跳 Ar)や高い運動エネルギーを持ったスパッ タ粒子が有機膜上へ入射するために、有機膜の界面を破壊して、電子の注入がうま く出来なくなるからである。
[0006] そこで従来技術でも対策が模索されており、図 13に示すようなスパッタリング装置 1
10が提案されている。
このスパッタリング装置 110は、真空槽 111を有しており、該真空槽 111内には、二 台のターゲット 121a、 121bが裏面をバッキングプレート 122a、 122bに取りつけられ
、表面は互いに一定距離だけ離間して平行に対向配置されている。
[0007] バッキングプレート 122a、 122bの裏面〖こは、磁界形成手段 115a、 115bが配置さ れて ヽる。磁界形成手段 115a、 115biま、ヨーク 129a、 129b【こリング状の磁石 123 a、 123bが取りつけられて構成されている。
[0008] 各磁石 123a、 123bは、それぞれ一方の磁極をターゲット 121a、 121bに向け、他 方の磁極をターゲットとは反対方向に向けて配置されており、且つ、二個の磁石 123 a、 123bは、異なる極性の磁極がターゲット 121a、 121bに向けられている。
[0009] 要するに、一方の磁石 123aが、ターゲット 121aに N極を向けている場合、他方の 磁石 123bは、ターゲット 121bに S極を向けているので、二個の磁石 123a、 123bの 間に磁力線 131が生じる。磁石 123a、 123bはリング状であるので、磁石 123a、 123 bの間に生じる磁力線は筒状になる(図 14)。
[0010] 真空排気系 116によって真空槽 111内を真空排気し、ガス導入系 117からスパッタ ガスを導入し、ターゲット 121a、 121bに電圧を印カロすると、ターゲット 121a、 121b で挟まれた空間にスパッタガスのプラズマが発生し、ターゲット 121a、 121bの表面 がスパッタされる。
[0011] ターゲット 121a、 121bで挟まれた空間の側方には、成膜対象物 113が配置されて おり、ターゲット 121a、 121bから斜めに飛び出し、真空槽 111内に放出されたスパッ タ粒子によって、成膜対象物 113表面に薄膜が形成される。
[0012] このスパッタリング装置 110では、二個の磁石 123a、 123bの間に形成される筒状 の磁力線 131により、ターゲット 121a、 121bが向かい合う空間が取り囲まれており、 プラズマはその磁力線 131によって閉じこめられるため、成膜対象物 113側にプラズ マが漏れ出さない。従って、成膜対象物 113はプラズマ中の荷電粒子に曝されず、 成膜対象物 113表面に露出する有機薄膜がダメージを受けない。
し力し、上記スパッタリング装置 110では、スパッタによってターゲット 121a、 121b の中央部分が縁部分よりも深く掘れるという現象が生じる。
[0013] 裏面側のパッキングプレート 122a、 122bが露出する程ターゲット 121a、 121b力 S 深く掘れると異常放電が起こるため、ターゲット 121a、 121bはバッキングプレート 12
2a、 122bが露出する前に交換される。
ターゲット 121a、 121bの一部分だけが深く掘れると、他の部分の膜厚減少量が少 なくても、ターゲット 121a、 121bを交換しなければならず、従来のスパッタリング装置
110ではターゲットの使用効率が悪かった。
特許文献 1:特開平 11― 162652号公報
特許文献 2 :特開 2005— 032618号公報
発明の開示
発明が解決しょうとする課題
[0014] 本発明は上記課題を解決するためになされたもので、その目的はターゲットの使用 効率を高めることである。
課題を解決するための手段
[0015] 本発明者等がターゲットの使用効率を高めるために検討を行った結果、ターゲット 表面に形成される磁場の強度のうち、ターゲット表面に対して水平な成分の強度が 100ガウス以上 + 100ガウス以下であるか、ターゲット表面に対して垂直な成分の 強度の上限値と下限値の差が 100ガウス以下であれば、ターゲットが均一にスパッタ されることを見出した。
[0016] 係る知見に基づいて成された本発明は、真空槽と、板状の第一、第二のターゲット と、リング形状であって、そのリングの厚み方向に磁化された第一、第二のリング磁石 とを有し、前記第一、第二のターゲットは表面が互いに平行になるよう向けられた状 態で前記真空槽内に所定間隔を空けて配置され、前記第一、第二のリング磁石は、 前記第一、第二のターゲットの裏面位置に配置され、 S極と N極のいずれか一方を第 一の磁極、他方を第二の磁極とすると、前記第一のリング磁石は第一の磁極が第一 のターゲットの裏面側に向けられ、前記第二のリング磁石は第二の磁極が前記第二 のターゲットの裏面側に向けられ、前記第一、第二のターゲット間の空間の開口から 成膜対象物の表面に向けてスパッタ粒子が放出されるよう構成されたスパッタリング 装置であって、前記第一のリング磁石のリングの内側には、前記第一のターゲットの 裏面に前記第一の磁極が向けられた第一の磁石部材が配置され、前記第二のリン グ磁石のリングの内側には、前記第二のターゲットの裏面に前記第二の磁極が向け られた第二の磁石部材が配置され、前記第一、第二のターゲット表面に形成される 磁場の強度のうち、前記第一、第二のターゲット表面に対して平行な水平磁場成分 の強度は、絶対値が 100ガウス以下にされたスパッタリング装置である。
本発明は、真空槽と、板状の第一、第二のターゲットと、リング形状であって、その、 J ングの厚み方向に磁化された第一、第二のリング磁石とを有し、前記第一、第二のタ 一ゲットは表面が互いに平行になるよう向けられた状態で前記真空槽内に所定間隔 を空けて配置され、前記第一、第二のリング磁石は、前記第一、第二のターゲットの 裏面位置に配置され、 S極と N極のいずれか一方を第一の磁極、他方を第二の磁極 とすると、前記第一のリング磁石は第一の磁極が第一のターゲットの裏面側に向けら れ、前記第二のリング磁石は第二の磁極が前記第二のターゲットの裏面側に向けら れ、前記第一、第二のターゲット間の空間の開口力 成膜対象物の表面に向けてス ノ ッタ粒子が放出されるよう構成されたスパッタリング装置であって、前記第一のリン グ磁石のリングの内側には、前記第一のターゲットの裏面に前記第一の磁極が向け られた第一の磁石部材が配置され、前記第二のリング磁石のリングの内側には、前 記第二のターゲットの裏面に前記第二の磁極が向けられた第二の磁石部材が配置 され、前記第一、第二のターゲット表面に形成される磁場の強度のうち、前記第一、 第二のターゲット表面に対して垂直な垂直磁場成分の強度は、上限値と下限値の差 が 100ガウス以下にされたスパッタリング装置である。
本発明は、請求項 1又は請求項 2のいずれか 1項記載のスパッタリング装置であつ て、前記第一、第二のリング磁石と、前記第一、第二の磁石部材は、前記第一、第二 のターゲットに対して相対的に固定されたスパッタリング装置である。
本発明は上記のように構成されており、第一、第二のターゲット表面に形成される 水平磁場強度は絶対値が 100ガウス以下にされているので、第一、第二のターゲット の各部分が均一にスパッタされる。従って、第一、第二の磁石部材を第一、第二のタ 一ゲットに対して静止させた状態であっても、エロージョン領域が広くなる。
[0018] 本発明のスパッタリング装置は第一、第二の磁石部材を移動させず、第一、第二の ターゲットに対して相対的に静止したままであってもエロージョン領域が広いので、第 一、第二の磁石部材を移動させる機構や手段が必要が無ぐ装置の構造が簡易に なる。尚、 100ガウスを SI単位である T (テスラ)に換算すると、 10mTになる。
尚、本願に用いる第一、第二のターゲットは板状であり、その表面は、少なくともス ノ ッタリングされる前は平坦になっている。第一、第二のターゲットはスパッタリングに よってエロージョンされた部分に凹部が形成されるが、本発明でターゲット表面とはス ノ ッタされる前の平坦な表面である。従って、水平磁場成分とは、スパッタリングされ る前の平坦な表面に対して平行な磁場成分のことであり、垂直磁場成分とは、スパッ タリング前の平坦な表面に対して垂直な磁場成分のことである。
発明の効果
[0019] 第一、第二のターゲット表面に形成される水平磁場成分の強度分布は、絶対値が 1 00ガウス以下と狭いので、第一、第二のターゲット表面が均一にスパッタされる。従つ て、第一、第二のターゲットの各部分は均一に膜厚が減少するので、第一、第二のタ 一ゲットの使用効率が高い。
図面の簡単な説明
[0020] [図 1]本発明のスパッタリング装置の断面図
[図 2]第一、第二のリング磁石と、第一、第二の磁石部材の位置関係を説明する平面 図
[図 3]磁場成分を説明するための断面図
[図 4] (a)〜(c):第一、第二の磁石部材の他の例を説明する平面図
[図 5]実施例の測定位置を示す平面図
[図 6]比較例の測定位置を示す平面図
[図 7] (a)〜 (c):実施例の磁場強度の分布を示すグラフ
[図 8] (a)〜 (c):比較例の磁場強度の分布を示すグラフ
[図 9] (a)〜(c):本願のスパッタリング装置でターゲットをスパッタした後のエロージョ ン分布
[図 10] (a)〜(c):比較例のスパッタリング装置でターゲットをスパッタした後のエロー ジョン分布
[図 11]比較例のスパッタリング装置でスパッタした後のターゲットを示す平面図
[図 12]有機 EL素子を説明する断面図
[図 13]従来技術のスパッタリング装置を説明する断面図
[図 14]従来技術のスパッタリング装置の磁場成分を説明する断面図
符号の説明
[0021] 1……スパッタリング装置 5……成膜対象物 14……搬送経路 21a、 21b "-…第一、第二のターゲット 23a、 23b……第一、第二のリング磁石 24a、 24b ……第一、第二の磁石部材
発明を実施するための最良の形態
[0022] 図 1の符号 1は、本発明の一例のスパッタリング装置を示している。
このスパッタリング装置 1は、縦型のインターバック式の装置であり、真空槽 11を有 して 、る。真空槽 11は搬送室 9と該搬送室 9に接続されたスパッタ室 16とを有して ヽ る。
[0023] スパッタ室 16の内部には 2枚のバッキングプレート 22a、 22bが互いに離間して配 置されており、その表面には第一、第二のターゲット 21a、 21bがそれぞれ取り付けら れている。
[0024] 第一、第二のターゲット 21a、 21bはそれぞれ板状であって、表面が所定間隔を空 けて互 、に平行にされて 、る。
第一、第二のターゲット 21a、 21bは表面が互いに向き合っており、第一のターゲッ ト 21aの表面と第二のターゲット 21bの表面の間の空間でスパッタ空間が構成される
[0025] 真空槽 11には真空排気系 19と、ガス供給系 18が接続されており、真空排気系 19 で真空槽 11内を排気して真空槽 11内に真空雰囲気を形成した後、ガス供給系 18 からスパッタガスを導入してスパッタ空間に所定圧力の成膜雰囲気を形成する。 真空槽 11の外部には電源 25が配置されており、電源 25はバッキングプレート 22a 、 22bに接続されているが、真空槽 11には接続されておらず、成膜雰囲気を維持し たまま、真空槽 11を接地電位に置いた状態で、電源 25から、ノ ッキングプレート 22a 、 22bに電圧印加すると、スパッタ空間にプラズマが生成され、第一、第二のターゲッ ト 21a、 21がスパッタされて第一、第二のターゲット 21a、 21b表面力らスパッタ空間 にスパッタ粒子が放出される。
[0026] 第一、第二のターゲット 21a、 21bは長方形であって、その二長辺のうち、一長辺が 搬送室 9に向けられ、他の一長辺が搬送室 9とは反対側に向けられており、搬送室 9 側に向けられた二長辺は同じ平面内に位置し、その長辺と長辺の間の部分でスパッ タ空間の開口 39が構成される。
[0027] 搬送室 9には直線状の搬送経路 14が設けられており、ゲートバルブ 41を開け、 L ZUL室 3から成膜対象物 5を搬送室 9内に搬入し、キャリア 13に成膜対象物 5を保 持させ、搬送機構 12でキャリア 13を搬送すると、成膜対象物 5が搬送経路 14に沿つ て移動する。
[0028] 搬送経路 14は開口 39と平行であって、第一、第二のターゲット 21a、 21b表面とは 垂直方向に延設されており、開口 39からは搬送経路 14の下流側と上流側に均等に スパッタ粒子が放出される
搬送経路 14は成膜対象物 5が開口 39と正対する位置を開口 39と平行に通過する ように延設されており、成膜対象物 5が搬送経路 14に沿って上流側から下流側に移 動すると開口 39から放出されたスパッタ粒子が成膜対象物 5に均等に到達する。
[0029] 開口 39を構成する二辺の間隔は狭ぐ第一、第二のターゲット 21a、 21b表面と、 該表面から飛び出す時の方向とが成す角度を飛び出し角度とすると、飛び出し角度 が小さいスパッタ粒子だけが開口 39から放出され、成膜対象物 5の表面に到達する
。飛び出し角度が小さいスパッタ粒子はエネルギー量が小さいので、成膜対象物 5表 面に露出する物質 (例えば有機膜等)カ^パッタ粒子でダメージを受けな!/、。
[0030] 真空槽 11外部の第一、第二のターゲット 21a、 21bの裏面位置には、第一、第二の 磁界形成手段 15a、 15bが配置されており、第一、第二の磁界形成手段 15a、 15b は、第一、第二のリング磁石 23a、 23bと、第一、第二の磁石部材 24a、 24bとを有し ている。 [0031] 第一、第二のリング磁石 23a、 23bは薄板のリング形状にされ、第一、第二の磁石 部材 24a、 24bは第一、第二のリング磁石 23a、 23bと同程度の厚さの薄板状にされ ている。
[0032] 真空槽 11外部の第一、第二のターゲット 21a、 21b裏面位置には板状のヨーク 29a 、 29bが表面を第一、第二のターゲット 21a、 21bに向けて配置されており、第一、第 二のリング磁石 23a、 23bは表面を第一、第二のターゲット 21a、 21bの裏面に向け、 裏面をヨーク 29a、 29bの表面に密着して配置されて!、る。
[0033] 第一、第二の磁石部材 24a、 24bは第一、第二のリング磁石 23a、 23bのリング内 周よりも小さくされ、第一、第二の磁石部材 24a、 24bは第一、第二のリング磁石 23a 、 23bのリング内側で、表面を第一、第二のターゲット 21a、 21bに向け、裏面をョー ク 29a、 29bに密着して配置されている。
[0034] 第一、第二のリング磁石 23a、 23bと第一、第二の磁石部材 24a、 24bはそれぞれ 厚み方向に磁化されており、各磁石 23a、 23b、 24a、 24bの磁極はそれぞれ、第一 、第二のターゲット 21a、 21b裏面に向けられた表面と、ヨーク 29a、 29bに密着した 裏面に形成されている。
[0035] 形成されたその磁極のうち、第一、第二のターゲット 21a、 21b裏面に向けられた面 に位置する磁極をターゲット側磁極とすると、第一のリング磁石 23aと第一の磁石部 材 24aのターゲット側磁極とは互いに同じ磁性であり、同様に、第二のリング磁石 23 bと第二の磁石部材 24bのターゲット側磁極とは互いに同じ磁性である力 第一のリ ング磁石 23aと第一の磁石部材 24aのターゲット側磁極の磁性と、第二のリング磁石 23bと第二の磁石部材 24bのターゲット側磁極の磁性は異なる。
[0036] 従って、第一の磁界形成手段 15aと第二の磁界形成手段 15bの内部では同一の 磁極が第一、第二のターゲット 21a、 21b裏面に向けられているが、第一の磁界形成 手段 15aのターゲット側磁極と、第二の磁界形成手段 15bのターゲット側磁極は互い に異なる磁極にされている。
[0037] S極と N極のうち、 V、ずれか一方を第一の磁極、他方を第二の磁極とした時に、第 一の磁界形成手段 15aのターゲット側磁極が第一の磁極であれば、第二の磁界形 成手段 15bのターゲット側磁極は第二の磁極となる。 [0038] 第一、第二のリング磁石 23a、 23bは同じ形状であって、その大きさは第一、第二の ターゲット 21a、 21bよりも大きぐ第一、第二のリング磁石 23a、 23bを構成する辺は 、第一、第二のターゲット 21a、 21bの縁からはみだし、第一、第二のターゲット 21a、 21bの外周力も一定距離だけ離間されている(図 2)。
[0039] 従って、第一、第二のリング磁石 23a、 23bは真空槽 11の壁を間に挟んで互いに 向き合っており、第一、第二のリング磁石 23a、 23bの間には筒状の磁力線 Mが形成 され、第一、第二のターゲット 21a、 21bはこの筒状の磁力線 Mの内部に位置する( 図 3)。
[0040] 上記スパッタ空間に生成されるプラズマは筒状の磁力線 M内に閉じ込められるの で、成膜対象物 5にはプラズマ中の荷電粒子が到達しない。従って、成膜対象物 5の 表面に露出する物質 (例えば有機膜)がダメージを受けることなぐ成膜対象物 5表面 に第一の薄膜が形成される。
また、第一、第二の磁石部材 24a、 24bも互いに同じ形状であって、第一、第二の 磁石部材 24a、 24bは真空槽 11と第一、第二のターゲット 21a、 21bを挟んで互いに 対向するように位置して 、る。
[0041] 第一、第二のターゲット 21a、 21b表面に形成される磁場成分のうち、当該表面に 対して平行な成分を水平磁場成分とし、当該表面に対して垂直な成分を垂直磁場 成分とすると、図 14に示した従来例のように、第一、第二のリング磁石 23a、 23bのリ ング内側に第一、第二の磁石部材 24a、 24bを配置しない場合、後述する図 8のよう に水平磁場成分の強度は不均一になるだけでなぐ垂直磁場成分の強度はターゲッ トの中心付近が小さぐターゲットの端部で大きくなり、その上限値と下限値の差が大 きい。
[0042] これに対し、本願発明では、図 3に示すように第一、第二のリング磁石 23a、 23bの リングの内側に第一、第二の磁石部材 24a、 24bを配置することで、後述する図 7に 示したように、水平磁場成分の強度がゼロに近い値になり、垂直磁場成分の強度の 上限値と下限値の差が小さくなる。
[0043] 各磁石 23a、 23b、 24a、 24bの強さと、第一、第二のリング磁石 23a、 23bのリング の半径と、第一、第二のリング磁石 23a、 23bのリングの幅と、第一、第二の磁石部材 24a、 24bの幅と、第一、第二の磁界形成手段 15a、 15bの第一、第二のターゲット 2 la、 21b側の磁極から、第一、第二のターゲット 21a、 21bまでの距離は、水平磁場 成分の磁場強度が— 100ガウス以上 + 100ガウス以下の範囲に分布し、垂直磁場 成分の上限値と下限値の差が 100ガウス以下になるように設定されており、その結果 第一、第二のターゲット 21a、 21bが均一にスパッタされる。
[0044] 搬送室 9内のスパッタ室 16が接続された部分よりも搬送経路 14の下流側には、パ ッキングプレート 22cに取り付けられた第三のターゲット 21cが配置されている。
[0045] 第三のターゲット 21cの裏面側には、第三の磁界形成手段 15cが配置されており、 第三の磁界形成手段 15cは第三のターゲット 21 cの表面に、当該表面に平行な磁力 線を形成し、真空槽 11を接地電位に置いた状態で、電源 45から第三のターゲット 2 lcに電圧を印加すると、上記平行な磁力線によって第三のターゲット 21cの表面が 高効率でスパッタされる。
[0046] 第三のターゲット 21cの表面は搬送経路 14に向けられており、成膜対象物 5が第 三のターゲット 21cと正対する位置を通過するように構成されており、これにより、第 三のターゲット 21cから垂直に飛び出したスパッタリング粒子が成膜対象物 5に到達 する。
[0047] このとき、成膜対象物 5の表面には第一、第二のターゲット 21a、 21bによって第一 の薄膜が形成されており、第三のターゲット 21cのスパッタリング粒子は、第一の薄膜 の表面に入射し、第一の薄膜の下層の薄膜にダメージを与えることなく第二の薄膜 が形成される。
[0048] 第二の薄膜を形成するスパッタリング粒子は、第三のターゲット 21cの表面カも垂 直に飛び出した粒子であり、第一、第二のターゲット 21a、 21bから入射するスパッタ リング粒子の量に比べて多量であり、第一の薄膜に比べると第二の薄膜の成膜速度 は速い。
[0049] 例えば、第一〜第三のターゲット 21a〜21cは ITOのような透明導電材料であり、 第一、第二の薄膜はそれぞれ透明導電材料の薄膜であり、成膜対象物 5表面には 第一、第二の薄膜からなる 1層の透明導電膜が形成される。
[0050] また、第三のターゲット 21cの構成材料を第一、第二のターゲット 21a、 21cと異なる もので構成すれば、成膜対象物 5表面には 2層構造の薄膜が形成される。
[0051] 第一、第二のリング磁石 23a、 23bの形状や配置、第一、第二の磁石部材 24a、 24 bの形状と配置も特に限定されないが、その一例を述べると図 2に示すように、第一、 第二のリング磁石 23a、 23bのリング形状は細長の楕円又は長四角形状であり、第一 、第二の磁石部材 24a、 24bは第一、第二のリング磁石 23a、 23bのリングの幅と同じ 幅を持つ細長形状であって、全外周が第一、第二のリング磁石 23a、 23bの内周の 縁と離間するように配置される。
[0052] 第一、第二の磁石部材 24a、 24bを第一、第二のリング磁石 23a、 23bのリングの長 手方向に沿って配置すれば、第一、第二のリング磁石 23a、 23bの長手方向に沿つ た広い領域で、水平磁場成分の強度をゼロに近づけ、垂直磁場成分の強度分布を 狭くすることができる。
[0053] 以上は、第一、第二の磁石部材 24a、 24bが第一、第二のリング磁石 23a、 23bと 接触しない場合について説明したが、本発明はこれに限定されず、例えば図 4 (a)に 示したように、第一、第二の磁石部材 44a、 44bの長手方向の端部(ここでは両端部) を第一、第二のリング磁石 23a、 23bのリング内周の縁と接触させてもよい。
[0054] また、図 4 (b)に示したように、第一、第二の磁石部材 54a、 54bを複数に分割し、 第一、第二の磁石部材 54a、 54bの分割された部分を、第一、第二のリング磁石 23a 、 23bのリングの長手方向に沿って列設させてもょ 、。
更に、図 4 (c)に示したように、第一、第二の磁石部材 64a、 64bの列設方向と直交 する方向の幅を、列設方向の長さよりも長くしてもよい。
[0055] いずれの場合も、第一、第二の磁石部材 24a、 24b、 44a, 44b、 54a, 54b、 64a、 64bは、第一、第二のリング磁石 23a、 23bのリングの長手方向と平行であって、その 長手方向と直交する方向の端部は、第一、第二のリング磁石 23a、 23bのリング内周 側縁から離間されている。
[0056] 本発明によって形成できる透明導電性薄膜は、 ITO薄膜、 SnO薄膜、 ZnO薄膜
2
、 IZO薄膜等の種々の透明導電材料の薄膜が含まれる。
[0057] また、ターゲットの構成材料は透明導電材料に限定されず、例えば金属材料を主 成分とするターゲットを用いて、成膜対象物 5の表面に金属膜を形成したり、酸ィ匕ケィ 素ゃ窒化ケィ素等の絶縁材料を主成分とするターゲットを用いて、成膜対象物の表 面に保護膜を形成することもできる。
[0058] 更に、反応ガスにターゲットの構成材料と反応性の高 、物質、例えば酸素ガス、水 素ガス、水等を用いてスパッタし、成膜対象物 5表面にターゲットの構成材料と反応 ガスの反応物の膜を形成することもできる。スパッタガスの種類も特に限定されず、一 般に用いられるスパッタガス、例えば、 Ar、 Ne、 Kr等を用いることができる。
[0059] 第一〜第三のターゲット 21a〜21cは同じ種類のものを用いてもよいし、別々の材 料で構成されたものを用いてもよい。第一、第二のターゲット 21a、 21bに、別々の材 料で構成されたものを用いると、第一の薄膜は 2種類以上の材料で構成された複合 膜になり、第三のターゲット 21cに第一のスパッタ室 16と異なるものを用いれば、第一 の薄膜の上に、第一の薄膜とは異なる組成の第二の薄膜が形成された積層膜が得 られる。
[0060] 第一、第二のターゲット 21a、 21bには、直流電圧を印加しても交流電圧を印加し ても、それらを重畳した電圧を印カロしてもよい。また、第一、第二の磁界形成手段 15 a、 15bの配置場所も特に限定されず、上述したように真空槽 11の外部に配置しても よいし、真空槽 11の内部に配置してもよい。第一、第二の磁界形成手段 15a、 15bを 真空槽 11外部に配置する場合は、真空槽 11の、少なくとも第一、第二の磁界形成 手段 15a、 15bで挟まれる部分を透磁性材料で構成することが望ましい。
実施例
[0061] 上記図 5に示したように、リング磁石 23の内側に磁石部材 24が配置された磁界形 成手段 15を、リング磁石 23の N極と磁石部材 24の N極がターゲットの裏面に向くよう 配置し、ターゲット表面に形成される磁場のうち、ターゲット表面に対して垂直な垂直 磁場成分と、ターゲット表面に対して平行な水平磁場成分の強度を測定した。
[0062] 垂直磁場成分と水平磁場成分の測定箇所は、リング磁石 23の両短辺の外周側の 縁からそれぞれ 50mm内側の位置 (A—A、 C— C)と、長手方向の中央位置(B— B )の 3箇所で、リング磁石 23の幅方向に沿つて 1 Omm毎に測定した(図 5)。
[0063] 尚、リング磁石 23はリングの外周が横 90mm、縦 340mmの長方形であり、リングの 幅は 10mm、リングの厚みは 20mmであった。磁石部材 24の幅は 10mm、厚みは 2 Ommであり、リング磁石 23と磁石部材 24が発生させる磁場の強度は同じであった。 ターゲットと磁界形成手段 15との間の距離は 30mmであった。
その測定結果を下記表 1と図 7 (a)〜 (c)に示す。
[表 1]
:磁石部材を設置した場合の水平磁場
Figure imgf000015_0001
[0065] 尚、上記図 7 (a)〜(c)と、後述する図 8 (a)〜(c)の横軸 (測定点)は、ターゲット表 面の幅方向中心からの距離を示す。
[0066] また比較例として、図 6に示したようにリング磁石 23の内側に磁石部材を配置せず に、リング磁石 23だけをターゲットの裏面に配置した場合についても、上記実施例と 同じ位置で水平磁場成分と垂直磁場成分を測定した。
その測定結果を下記表 2と図 8 (a)〜(c)に示す。
[0067] [表 2]
表 2 : リング磁石だけ設置した場合の水平磁場
Figure imgf000016_0001
[0068] 上記表 1、 2と、図 7 (a)〜(c)、図 8 (a)〜(c)を見ると明らかなように、リング磁石 23 のリング内側に磁石部材 24を配置した場合には、水平磁場成分の強度が各部分で — 100ガウス以上 100ガウス以下の範囲にあり、しかも垂直磁場成分は最大値(330 ガウス)と、最小値(247ガウス)の差が 100ガウス以下になった。
[0069] これに対し、磁石部材を設置しな!ヽリング磁石 23では、水平磁場、垂直磁場共に 強度のばらつきが大きぐ水平磁場成分の強度の絶対値が 200ガウスを超える場所 があり、し力もターゲットの幅方向の端部と幅方向の中心とでは垂直磁場成分の強度 に約 400ガウスもの差が生じた。
[0070] 以上のことから、リング磁石 23の内側に磁石部材 24を配置し、リング磁石 23と磁石 部材 24のターゲット側の表面に同じ磁性の磁極を配置することで、水平磁場成分の 強度の絶対値を 100ガウス以下にし、垂直磁場成分の強度の最大値と最小値の差 を 100ガウス以下にできることがわかる。
[0071] 次に、第一、第二のリング磁石 23a、 23bのリング内側に第一、第二の磁石部材 24 a、 24bを配置したスパッタリング装置 1を用いて、下記に示す成膜条件で成膜対象 物 5の表面に ITO膜を成膜した。
[0072] 成膜対象物は有機 EL素子の仕掛品を用い、その仕掛品の製造方法は、先ず有機 EL製造装置(ULVAC製 SATELLA)にて、 AgZlTO電極がパターユングされた ガラス基板の表面を Oプラズマ洗浄し、有機 ELの各層を順次蒸着法で形成して成 膜対象物 5とした。
[0073] 例えば 4, 4,—ビス [N— (1—ナフチル)—N—フエ-ルァミノ]ビフエ-ル(以下 NP Bと略す)を正孔輸送層として 35nmの厚さで形成し、更に例えば 8—ォキシキノリノア ルミ-ゥム錯体 (以下 Alq3と略す)を含む発光層を 50nmの厚さで形成し、更に陰極 バッファ層として LiFを蒸着により 5nmの厚さで形成した。
[0074] 有機 EL製造装置に取り付けられて 、る窒素置換のグローブボックス内へ成膜対象 物 5を搬送して、密閉容器内へ成膜対象物 5を入れて密閉容器を大気中に取り出し た。その後、上記スパッタリング装置 1に取り付けられた Nグローブボックス中へ密閉
2
容器を仕込み、その中で密閉容器を開封して成膜対象物 5を取り出し、 LZUL室 3 に取り付けられたキャリア 13上へ成膜対象物 5をセットした。
[0075] 更に、その成膜対象物 5のバッファ層が形成された面 (成膜面)上に ITO電極を形 成するためのマスクを装着して、真空排気した。所定の圧力になったところでゲートバ ルブ 41を開け、成膜対象物 5をキャリア 13と一緒に真空槽 11内へ搬送した。
[0076] 第一、第二のターゲット 21a、 21bの裏面に、上述した第一、第二の磁界形成手段 15a、 15bを配置してスパッタリングを行い、成膜対象物 5を第一、第二のターゲット 2 la、 21bの側方を通過させて膜厚 20nmの ITO膜からなる第一の薄膜を成膜し、第 三のターゲット 21c上を通過させて、第一の薄膜上に膜厚 80nmの ITO膜を形成し、 成膜対象物 5のノ ッファ層表面に第一、第二の薄膜からなる上部電極が形成された 有機 EL素子を得た。
[0077] 第一、第二の薄膜の成膜条件は対向力ソード (第一、第二のターゲット 21a、 21b) が成膜圧力 0. 67Pa、スパッタガス(Arガス) 200SCCMであり、平行平板力ソード( 第三のターゲット 21c)が成膜圧力 0. 67Pa、スパッタガス(Arガス) 200SCCM、反 応ガス(酸素) 2. 0SCCMである。
[0078] 投入パワーは対向力ソードが DC電源 1000W(2. lWZcm2Zcathode)で、平行 平板力ソードが DC電源 620W(lWZcm2)である。ダイナミックレートは対向力ソード 力 S2nmZ分、平行平板力ソードが 8nmZ分であった。成膜対象物 5の搬送速度は 0 . lmZ分である。
[0079] 第一、第二のターゲット 21a、 21bは横 70mm、縦 330mmの長方形であった。第 一、第二の磁界形成手段 15a、 15bは、上記磁場強度の測定と同じものを用いた。
[0080] 所定時間スパッタリングを行った後、スパッタリングを停止し、第一、第二のターゲッ ト 21a、 21bを取り出し、図 5の A— A、 B— B、 C— C切断線で示した箇所について、 第一、第二のターゲット 21a、 21bの幅方向一端力も他端まで、エロージョン深さを測 し 7こ。
[0081] 測定された値を下記表 3に記載し、その測定結果をグラフ化したものを図 9 (a)〜(c )にそれぞれ記載した。尚、図 9 (a)〜(c)と、後述する図 10 (a)〜(c)の横軸 (測定点 )は、ターゲット表面の幅方向中心力もの距離を示し、縦軸(エロージョン深さ)はター ゲットの膜厚減少量を示して 、る。
[0082] [表 3] 表 3 :エロージョン深さの測定
Figure imgf000018_0001
更に、第一、第二のリング磁石 23a、 23bのリングの内側に第一、第二の磁石部材 2 4a、 24bを配置しない以外は上記と同様の条件でスパッタリングを行い、スパッタ後 のエロージョン深さを測定した。その値を、上記表 3に記載し、グラフ化したものを図 1 0 (a)〜(c)に示す。
[0084] 上記表 3と、図 9 (a)〜(c)、図 10 (a)〜 (c)を見ると明らかなように、第一、第二のリ ング磁石 23a、 23bのリング内側に第一、第二の磁石部材 24a、 24bを配置した本願 のスパッタリング装置 1ではエロージョン深さが均一であった。
[0085] これに対し、第一、第二のリング磁石 23a、 23bだけを配置した時には、第一、第二 のターゲット 21a、 21bの縁部分に比べ中央部分のエロージョン深さが深ぐェロージ ヨン深さが不均一であった。図 11は第一、第二のリング磁石 23a、 23bだけを配置し てスパッタリングを行った後の第一、第二のターゲット 21a、 21bの表面を示しており、 同図の符号 31はエロージョン深さが深い部分を、符号 32はエロージョン深さが浅い 部分を示している。以上の結果から、本願のスパッタリング装置 1は第一、第二のター ゲット 21a、 21bの使用効率が高いことがわ力る。

Claims

請求の範囲
[1] 真空槽と、
板状の第一、第二のターゲットと、
リング形状であって、そのリングの厚み方向に磁化された第一、第二のリング磁石と を有し、
前記第一、第二のターゲットは表面が互いに平行になるよう向けられた状態で前記 真空槽内に所定間隔を空けて配置され、
前記第一、第二のリング磁石は、前記第一、第二のターゲットの裏面位置に配置さ れ、
S極と N極の 、ずれか一方を第一の磁極、他方を第二の磁極とすると、 前記第一のリング磁石は第一の磁極が第一のターゲットの裏面側に向けられ、前 記第二のリング磁石は第二の磁極が前記第二のターゲットの裏面側に向けられ、 前記第一、第二のターゲット間の空間の開口力 成膜対象物の表面に向けてスパ ッタ粒子が放出されるよう構成されたスパッタリング装置であって、
前記第一のリング磁石のリングの内側には、前記第一のターゲットの裏面に前記第 一の磁極が向けられた第一の磁石部材が配置され、
前記第二のリング磁石のリングの内側には、前記第二のターゲットの裏面に前記第 二の磁極が向けられた第二の磁石部材が配置され、
前記第一、第二のターゲット表面に形成される磁場の強度のうち、前記第一、第二 のターゲット表面に対して平行な水平磁場成分の強度は、絶対値が 100ガウス以下 にされたスパッタリング装置。
[2] 真空槽と、
板状の第一、第二のターゲットと、
リング形状であって、そのリングの厚み方向に磁化された第一、第二のリング磁石と を有し、
前記第一、第二のターゲットは表面が互いに平行になるよう向けられた状態で前記 真空槽内に所定間隔を空けて配置され、
前記第一、第二のリング磁石は、前記第一、第二のターゲットの裏面位置に配置さ れ、
S極と N極の 、ずれか一方を第一の磁極、他方を第二の磁極とすると、 前記第一のリング磁石は第一の磁極が第一のターゲットの裏面側に向けられ、前 記第二のリング磁石は第二の磁極が前記第二のターゲットの裏面側に向けられ、 前記第一、第二のターゲット間の空間の開口力 成膜対象物の表面に向けてスパ ッタ粒子が放出されるよう構成されたスパッタリング装置であって、
前記第一のリング磁石のリングの内側には、前記第一のターゲットの裏面に前記第 一の磁極が向けられた第一の磁石部材が配置され、
前記第二のリング磁石のリングの内側には、前記第二のターゲットの裏面に前記第 二の磁極が向けられた第二の磁石部材が配置され、
前記第一、第二のターゲット表面に形成される磁場の強度のうち、前記第一、第二 のターゲット表面に対して垂直な垂直磁場成分の強度は、上限値と下限値の差が 10 0ガウス以下にされたスパッタリング装置。
[3] 前記第一、第二のリング磁石と、前記第一、第二の磁石部材は、前記第一、第二の ターゲットに対して相対的に固定された請求項 1記載のスパッタリング装置。
[4] 前記第一、第二のリング磁石と、前記第一、第二の磁石部材は、前記第一、第二の ターゲットに対して相対的に固定された請求項 2記載のスパッタリング装置。
PCT/JP2006/319963 2005-10-18 2006-10-05 スパッタリング装置 WO2007046244A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06811301.8A EP1939322A4 (en) 2005-10-18 2006-10-05 SPRAY APPARATUS
CN2006800190349A CN101184864B (zh) 2005-10-18 2006-10-05 溅射装置
JP2007540918A JP4717887B2 (ja) 2005-10-18 2006-10-05 スパッタリング装置
US11/987,934 US8679306B2 (en) 2005-10-18 2007-12-06 Sputtering apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-303491 2005-10-18
JP2005303491 2005-10-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/987,934 Continuation US8679306B2 (en) 2005-10-18 2007-12-06 Sputtering apparatus

Publications (1)

Publication Number Publication Date
WO2007046244A1 true WO2007046244A1 (ja) 2007-04-26

Family

ID=37962340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319963 WO2007046244A1 (ja) 2005-10-18 2006-10-05 スパッタリング装置

Country Status (7)

Country Link
US (1) US8679306B2 (ja)
EP (1) EP1939322A4 (ja)
JP (1) JP4717887B2 (ja)
KR (1) KR20080002978A (ja)
CN (1) CN101184864B (ja)
TW (1) TWI361840B (ja)
WO (1) WO2007046244A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013724A (ja) * 2008-07-07 2010-01-21 Ulvac Japan Ltd ペニング型スパッタリング装置
JP2012052191A (ja) * 2010-09-01 2012-03-15 Ulvac Japan Ltd スパッタ装置
JP2014109052A (ja) * 2012-11-30 2014-06-12 Ulvac Japan Ltd 無機酸化物膜の形成装置、及び、igzo膜の形成方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101097329B1 (ko) * 2010-01-11 2011-12-23 삼성모바일디스플레이주식회사 스퍼터링 장치
CN102234766A (zh) * 2010-04-30 2011-11-09 鸿富锦精密工业(深圳)有限公司 溅镀装置及溅镀洗靶方法
CN110055500A (zh) * 2019-04-10 2019-07-26 深圳市华星光电技术有限公司 磁控溅射装置及磁控溅射方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183466A (ja) * 1985-02-12 1986-08-16 Teijin Ltd 対向タ−ゲツト式スパツタ装置
JPS61243168A (ja) * 1985-04-19 1986-10-29 Hitachi Ltd 対向タ−ゲツト方式スパツタ装置
JPS62211374A (ja) * 1986-03-12 1987-09-17 Fujitsu Ltd スパツタリング装置
JPS63277756A (ja) * 1987-05-09 1988-11-15 Canon Inc 対向タ−ゲット式スパッタ装置
JPS6455379A (en) * 1987-08-25 1989-03-02 Canon Kk Deposited film forming device by bias sputtering
JPH11162652A (ja) 1997-12-02 1999-06-18 Idemitsu Kosan Co Ltd 有機el素子およびその製造方法
JP2005032618A (ja) 2003-07-08 2005-02-03 Denso Corp 有機el素子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4666788A (en) * 1982-02-16 1987-05-19 Teijin Limited Perpendicular magnetic recording medium, method for producing the same, and sputtering device
JPH04218905A (ja) * 1990-03-23 1992-08-10 Unitika Ltd 薄膜状磁性材料及びその製造方法
CN1067118C (zh) * 1994-07-08 2001-06-13 松下电器产业株式会社 磁控管溅射装置
JP3505459B2 (ja) * 2000-02-10 2004-03-08 豊明 平田 ミラートロンスパッタ装置
JP2005179716A (ja) * 2003-12-17 2005-07-07 Sony Corp スパッタリング装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183466A (ja) * 1985-02-12 1986-08-16 Teijin Ltd 対向タ−ゲツト式スパツタ装置
JPS61243168A (ja) * 1985-04-19 1986-10-29 Hitachi Ltd 対向タ−ゲツト方式スパツタ装置
JPS62211374A (ja) * 1986-03-12 1987-09-17 Fujitsu Ltd スパツタリング装置
JPS63277756A (ja) * 1987-05-09 1988-11-15 Canon Inc 対向タ−ゲット式スパッタ装置
JPS6455379A (en) * 1987-08-25 1989-03-02 Canon Kk Deposited film forming device by bias sputtering
JPH11162652A (ja) 1997-12-02 1999-06-18 Idemitsu Kosan Co Ltd 有機el素子およびその製造方法
JP2005032618A (ja) 2003-07-08 2005-02-03 Denso Corp 有機el素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1939322A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010013724A (ja) * 2008-07-07 2010-01-21 Ulvac Japan Ltd ペニング型スパッタリング装置
JP2012052191A (ja) * 2010-09-01 2012-03-15 Ulvac Japan Ltd スパッタ装置
JP2014109052A (ja) * 2012-11-30 2014-06-12 Ulvac Japan Ltd 無機酸化物膜の形成装置、及び、igzo膜の形成方法

Also Published As

Publication number Publication date
US20080210556A1 (en) 2008-09-04
KR20080002978A (ko) 2008-01-04
JP4717887B2 (ja) 2011-07-06
EP1939322A4 (en) 2015-12-09
EP1939322A1 (en) 2008-07-02
CN101184864A (zh) 2008-05-21
CN101184864B (zh) 2011-09-14
TW200722548A (en) 2007-06-16
US8679306B2 (en) 2014-03-25
JPWO2007046244A1 (ja) 2009-04-23
TWI361840B (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5026087B2 (ja) スパッタリング装置、透明導電膜の製造方法
TWI427170B (zh) Film forming method and thin film forming apparatus
JP4763711B2 (ja) スパッタリング装置及び成膜方法
KR101747291B1 (ko) 스퍼터링 방법
KR101050121B1 (ko) 스퍼터링 장치 및 스퍼터링 방법
WO2007046244A1 (ja) スパッタリング装置
JP4789535B2 (ja) スパッタリング装置、成膜方法
WO2007086276A1 (ja) スパッタリング装置及び成膜方法
JP2004124171A (ja) プラズマ処理装置及び方法
JP2023086573A (ja) スパッタリング装置、及び膜付き基板の製造方法
KR20080012657A (ko) 대향 타깃형 스퍼터링 장치
KR20140126512A (ko) 스퍼터링 장치 및 이를 포함하는 증착장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680019034.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007540918

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077026831

Country of ref document: KR

REEP Request for entry into the european phase

Ref document number: 2006811301

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006811301

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE