WO2007046167A1 - 赤外線センサ及びその駆動方法 - Google Patents

赤外線センサ及びその駆動方法 Download PDF

Info

Publication number
WO2007046167A1
WO2007046167A1 PCT/JP2006/311617 JP2006311617W WO2007046167A1 WO 2007046167 A1 WO2007046167 A1 WO 2007046167A1 JP 2006311617 W JP2006311617 W JP 2006311617W WO 2007046167 A1 WO2007046167 A1 WO 2007046167A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitive element
infrared
potential
infrared detection
output line
Prior art date
Application number
PCT/JP2006/311617
Other languages
English (en)
French (fr)
Inventor
Takahiko Murata
Takumi Yamaguchi
Shigetaka Kasuga
Takayoshi Yamada
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to CN2006800011480A priority Critical patent/CN101052862B/zh
Publication of WO2007046167A1 publication Critical patent/WO2007046167A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1443Devices controlled by radiation with at least one potential jump or surface barrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/20Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming only infrared radiation into image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • G01J2005/345Arrays

Definitions

  • the present invention relates to an infrared sensor that detects infrared rays emitted from an object and a human body, and a driving method thereof.
  • FIG. 12 shows a signal readout circuit of a conventional dielectric porometer type infrared sensor.
  • a series capacitive element 201 and an infrared detection capacitive element 202 are connected in series via a connection point 210.
  • the infrared detection capacitive element 202 has a characteristic that the capacitance changes in accordance with the intensity of infrared rays incident on the element. In the case where infrared rays are incident, the infrared detection capacitive element 202 and the series capacitive element 201 The capacitance values of are set to be equal.
  • an AC power source 204 and an AC power source 205 for driving are connected to the series capacitive element 201 and the infrared detection capacitive element 202, respectively, and the amplitudes of the AC power source 204 and the AC power source 205 are the same. The phase is reversed.
  • connection point 210 is connected to the output terminal 206 via the transistor 203.
  • the connection point 210 is connected to the output terminal 206.
  • the position can be taken out.
  • connection point 210 is determined by the capacitance values of the series capacitive element 201 and the infrared detection capacitive element 202 and the voltages (amplitudes) of the AC power supply 204 and the AC power supply 205. Therefore, the figure As shown in FIG. 19, when infrared rays are incident on the infrared detection capacitive element 202 and the capacitance value of the infrared detection capacitive element 202 increases, an output curve as shown in A of FIG. 19 is obtained. In FIG. 19,! /, Curve C and curve D indicate the output voltages of the AC power supply 204 and the AC power supply 205, respectively.
  • Patent Document 1 JP 2002-365130
  • the aperture ratio which is the ratio of the infrared detection capacitive element in the pixel.
  • the aperture ratio is greatly reduced because the area of the pixel is greatly limited.
  • An object of the present invention is to solve the conventional problems and to realize an infrared sensor having high measurement accuracy without reducing the aperture ratio.
  • an infrared sensor has a configuration in which a plurality of infrared detection capacitive elements are connected to a common series capacitive element and a reference capacitive element.
  • the infrared sensor according to the present invention is arranged in a matrix, each of which includes an output line, a reference capacitive element connected via a switch element between the output line and the ground, and a reference capacitive element. And a plurality of infrared detection capacitive elements showing capacitance values according to the intensity of incident infrared rays.
  • a plurality of reference pixel units, and a plurality of series capacitor elements each provided corresponding to each reference pixel unit and connected between an output line and a power source.
  • the infrared sensor of the present invention since the series capacitive element is provided corresponding to each reference pixel unit including the infrared detection capacitive element, the area occupied by the serial capacitive element with respect to the infrared detection capacitive element is kept small. be able to. Therefore, the aperture ratio can be improved.
  • the reference pixel unit includes a reference capacitor element, the use of the reference capacitor element can reduce the influence of offset and improve the measurement accuracy.
  • there is one reference capacitive element for a plurality of infrared detection capacitive elements it is possible to suppress a decrease in aperture ratio due to the reference capacitive element.
  • the capacitance value of the reference capacitive element, the capacitance value of the series capacitive element, and the capacitance value of the infrared detection capacitive element in the case where infrared rays are incident are equal.
  • the influence of offset can be reliably reduced.
  • the reference capacitive element and the infrared detection capacitive element are arranged in a one-dimensional manner in a reference pixel unit.
  • the reference capacitive element and the infrared detection capacitive element are two-dimensionally arranged in a reference pixel unit.
  • each series capacitive element is provided in a region outside the pixel area where infrared rays are incident.
  • each series capacitive element and each reference capacitive element are provided in a region outside the pixel area where infrared rays are incident. With such a configuration, it is possible to reliably avoid a decrease in aperture ratio due to the series capacitive element and the reference capacitive element.
  • the plurality of reference capacitor elements are respectively formed in the first reference capacitor element formation region or the second reference capacitor element formation region provided on both sides of the pixel area.
  • Each infrared detection capacitive element included in the same reference pixel unit as the reference capacitive element formed in the first reference capacitive element forming region is formed on the first reference capacitive element forming region side of the pixel area.
  • Each of the infrared detection capacitive elements included in the same reference pixel unit as the reference capacitive element formed in the second reference capacitive element formation region is The pixel area is preferably formed on the second reference capacitor element formation region side.
  • each series capacitive element is preferably formed on the same side as the reference capacitive element corresponding to each series capacitive element in the region outside the pixel area.
  • the infrared sensor of the present invention when a switch connected between the reference capacitive element and the output line is turned on and a predetermined voltage is applied between the series capacitive element and the reference capacitive element
  • the potential of the output line is set as a reference potential
  • the switch connected between the predetermined infrared detection capacitive element and the output line is turned on, and a predetermined voltage is applied between the series capacitive element and the predetermined infrared detection capacitive element.
  • the potential of the output line at the time of marking is set as the detection potential
  • the potential difference between the reference potential and the detection potential is output as an output signal indicating the intensity of the infrared light incident on the predetermined infrared detection capacitance element.
  • the infrared sensor of the present invention when a switch connected between the reference capacitive element and the output line is turned on and a predetermined voltage is applied between the series capacitive element and the reference capacitive element
  • the potential of the output line is set as a reference potential
  • the switch connected between the predetermined infrared detection capacitive element and the output line is turned on, and a predetermined voltage is applied between the series capacitive element and the predetermined infrared detection capacitive element.
  • the potential of the output line at the time of marking is set as the detection potential, and the potential difference between the reference potential and the detection potential is output as an output signal indicating the intensity of infrared light incident on the predetermined infrared detection capacitive element, It is preferable to calculate the intensity of the infrared light incident on the portion where the reference capacitor element is disposed using the output signals of the plurality of infrared detection capacitor elements included in the same reference pixel unit as the reference capacitor element. . By adopting such a configuration, data loss can be suppressed, so that a clear infrared image can be obtained.
  • the driving method of the infrared sensor according to the present invention depends on the output line, the reference capacitor element connected via the switch element between the output line and the ground, and the intensity of the incident infrared ray.
  • Driving an infrared sensor comprising a reference pixel unit including a plurality of infrared detection capacitive elements whose capacitance values change, and a series capacitive element connected between an output line and a power supply
  • the step (a) sequentially outputs the intensity of the infrared rays incident on each infrared detection capacitive element included in the reference pixel unit, and the step (a) turns on the switch element connected to the reference capacitive element.
  • a predetermined voltage is applied between the reference capacitive element and the series capacitive element to read the reference potential to the output line (al) and After step (al), the switch element connected to one of the plurality of infrared detection capacitors is turned on, and the one infrared detection capacitor is electrically connected to the output line.
  • the driving method of the infrared sensor of the present invention in the infrared sensor in which one reference capacitive element is provided for a plurality of infrared ray detection capacitive elements in order to improve the aperture ratio, It is possible to reduce the influence of offset and measure the intensity of infrared rays accurately.
  • the reference capacitive element and the infrared detecting capacitive element are formed in a pixel area where infrared rays are incident, and the driving method is performed after a plurality of infrared rays after step (a). Based on the value of infrared intensity incident on the infrared capacitive element disposed adjacent to the reference capacitive element among the detection capacitive elements, the value of infrared intensity incident on the portion where the reference capacitive element is disposed in the pixel area.
  • the method further comprises the step (b) of calculating
  • step (b) is a step for obtaining an average value of the intensity values of the infrared rays incident on the infrared capacitive element arranged adjacent to the reference capacitive element. I like it! /
  • FIG. 1 is a layout diagram showing an infrared sensor according to a first embodiment of the present invention.
  • FIG. 3 is a timing chart showing the operation of the infrared sensor according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a method for calculating the infrared ray intensity of the reference capacitive element portion of the infrared sensor according to the first embodiment of the present invention.
  • FIG. 5 is a layout diagram showing an infrared sensor according to a second embodiment of the present invention.
  • FIG. 6 is a circuit diagram showing a reference pixel unit and a peripheral circuit portion of an infrared sensor according to a second embodiment of the present invention.
  • FIG. 7 is a timing chart showing the operation of the infrared sensor according to the second embodiment of the present invention.
  • FIG. 8 is a diagram showing a method of calculating the infrared intensity of the reference capacitive element portion of the infrared sensor according to the second embodiment of the present invention.
  • FIG. 9 is a circuit diagram showing another example of the reference pixel unit and the peripheral circuit portion of the infrared sensor according to the second embodiment of the present invention.
  • FIG. 10 is a layout diagram showing an infrared sensor according to a modification of the second embodiment of the present invention.
  • FIG. 11 is a layout diagram showing another example of an infrared sensor according to a modification of the second embodiment of the present invention.
  • FIG. 12 is a circuit diagram showing an infrared sensor according to a conventional example.
  • FIG. 13 is a graph showing drive signals of an infrared sensor according to a conventional example.
  • FIG. 1 shows the layout of the infrared sensor according to the first embodiment.
  • a plurality of reference pixel units 2 are arranged in a two-dimensional matrix in a pixel area 1 where infrared rays are incident. Outside the pixel area 1, a series capacitor and a peripheral circuit described later are provided.
  • Each reference pixel unit 2 includes a plurality of infrared detection capacitive elements 12 and one reference capacitive element 13.
  • the infrared detection capacitive element 12 and the reference capacitive element 13 are combined to form a two-dimensional matrix. Arranged in a shape.
  • FIG. 2 shows a circuit configuration by extracting one reference pixel unit 2 and its peripheral circuit in the infrared sensor of the present embodiment.
  • one reference capacitor element 13 and eight infrared detection capacitor elements 12 are arranged in a matrix of 3 rows and 3 columns.
  • the reference capacitive element 13 is provided in the second row and second column, which is the center of the matrix. One terminal of the reference capacitive element 13 is grounded, and the other terminal is connected to the output line 30 in the second row via a reference capacitive element control switch 17 which is a transistor. One terminal of each infrared detection capacitive element 12 is grounded, and the other terminal detects each infrared ray via an infrared detection capacitive element control switch 16 that is a transistor. Capacitance elements 12 are provided and connected to the output lines 30 of the respective rows.
  • the output lines 30 of each row are connected in common, and an output node 41 is formed. Further, the output lines 30 of each row are connected in common via the series capacitive element control switch 15 and are connected to one terminal of the series capacitive element 14.
  • the series capacitive element control switch 15 which is a transistor provided in each output line 30 can be controlled independently, and the control terminal of each series capacitive element control switch 15 is a control line 36A, a control line 36B and a control line. Each is connected to 36C.
  • the capacitance value of the series capacitance element 14, the capacitance value of the reference capacitance element 13, and the capacitance value in the case where infrared rays are incident on the infrared detection capacitance element 12 are set to be substantially equal. It has been. In other words, each capacitance value is equal within the range of error when manufactured by a known manufacturing method.
  • the other terminal of the series capacitive element 14 is connected to the power line 35.
  • a noise terminal 45 is connected between the series capacitance element 14 and each series capacitance element control switch 15 via a bias control switch 18 so that a predetermined bias voltage can be applied.
  • the bias control switch 18 is driven by a bias control line 37.
  • the control terminal of the reference capacitive element control switch 17 is connected to the reference capacitive element control line 32, and the control terminal of each infrared detection capacitive element control switch 16 is an infrared detection capacitive element control provided for each column. Connected to line 31 respectively.
  • the reference capacitor element control line 32 is connected to the output terminal of the AND circuit 22, and each input terminal of the AND circuit 22 is connected to the reference capacitor element selection line 33 and the output terminal of the OR circuit 21, respectively. It is connected.
  • Each input terminal of the OR circuit 21 is connected to the first-stage output terminal 42, the second-stage output terminal 43, and the third-stage output terminal 44 of the three-stage vertical shift register 20, respectively.
  • the infrared detection capacitive element control line 31 provided in each column is connected to the output terminal of the AND circuit 23 provided for each column, and one of the input terminals of each AND circuit 23 is The other end of the vertical shift register 20 is connected to one of the output terminal 42, the output terminal 43, and the output terminal 44.
  • Figure 3 shows in Figure 2. The operation timing of the reference pixel unit 2 and the peripheral circuit is shown.
  • the power supply line 35 rises from the “L” level to the “H” level.
  • an intermediate potential between the series capacitive element 14 and the reference capacitive element 13 is output to the output node 41. Since the capacitance values of the series capacitive element 14 and the reference capacitive element 13 are equal, the output node 41 outputs V, which is a potential obtained by adding a bias potential to a voltage that is a half of the voltage of the power supply line 35. . This V is used as the reference potential.
  • the bias control line 37 is applied with the "H" level voltage so that the bias Control switch 18 becomes conductive.
  • a bias voltage is applied to the connection point between the series capacitive element 14 and the reference capacitive element 13. Therefore, bias voltage (V) is applied to output node 41.
  • the intensity of the infrared light incident on the infrared detection capacitor element 12 in the first row and the second column is obtained from the reference potential V obtained in the period t3 and the detection potential obtained in the period t4. From the reference potential V obtained at t5 and the detection potential obtained during the period t6, the intensity of the infrared light incident on the infrared detection capacitive element 12 in the first row and third column is obtained. Similarly, in period T2, the intensity of infrared light incident on each infrared detection capacitor element in the second row is obtained, and in period T3, the intensity of infrared light incident on each infrared detection capacitor element in the third row is obtained.
  • the series capacitive element is provided in common for the eight infrared detection capacitive elements.
  • the area occupied by the series capacitive element can be significantly reduced.
  • the intensity of infrared rays is detected by the difference between the capacitance value of the series capacitive element and the capacitance value of the infrared detection capacitive element. For this reason, it is necessary to make the capacitance value of the series capacitive element coincide with the capacitance value when infrared rays are incident on the infrared detection capacitive element.
  • the series capacitive element is shared by a plurality of infrared detection capacitive elements, the capacitance values of the infrared detection capacitive elements must also be matched. However, variations in film thickness and the like always occur when manufacturing infrared detection capacitors. The capacitance value of the quantity element always includes a certain variation.
  • the reference capacitive element is also provided in common for the eight infrared detection capacitive elements. Therefore, a decrease in the aperture ratio due to the reference capacitor element can be suppressed to a small level.
  • FIG. 4 shows a pseudo layout of the reference pixel unit 2 configured in one 3 ⁇ 3 matrix.
  • the reference capacitive element 13 is arranged in the second column of the second row, which is the center of the matrix of 3 rows and 3 columns. If the infrared intensity detected by the eight infrared detection capacitive elements 12 is a, b, c, d, e, f, g, h, respectively, the infrared intensity in the part of the reference capacitive element 13 is, for example, adjacent.
  • the intensity detected by a total of four infrared detection capacitors, two in the row direction and two in the column direction, can be calculated as (b + d + e + g) Z4.
  • the infrared sensor of the present embodiment can improve the aperture ratio without reducing the detection accuracy.
  • FIG. 6 shows a circuit configuration by extracting the reference pixel unit 2A, the reference pixel unit 2B, the reference pixel unit 2C and their peripheral circuits from the reference pixel unit 2 of the infrared sensor according to the present embodiment.
  • one reference capacitive element 13, infrared detection capacitive element 12a, and infrared detection capacitive element 12b constitute a one-dimensional array.
  • One terminal of the reference capacitive element 13 included in the reference pixel unit 2A is grounded, and the other terminal is connected to the output line 30A via the reference capacitive element control switch 17.
  • One terminal of each of the infrared detection capacitive element 12a and the infrared detection capacitive element 12b is grounded, and the other terminal is output via the infrared detection capacitive element control switch 16a and the infrared detection capacitive element control switch 16b. Each is connected to line 30A.
  • the reference capacitive element 13 included in the reference pixel unit 2B, the infrared detection capacitive element 12a, and the infrared detection capacitive element 12b are connected to the output line 30B, and the reference capacitive element 13 included in the reference pixel unit 2C.
  • the infrared detection capacitive element 12a and the infrared detection capacitive element 12b are connected to an output line 30C.
  • each reference capacitive element control switch 17 is connected to a reference capacitive element control line 32, respectively.
  • the control terminal of each infrared detection capacitive element control switch 16a is connected to the infrared detection capacitive element control line 31A
  • the control terminal of each infrared detection capacitive element control switch 16b is connected to the infrared detection capacitive element control line 31B.
  • the reference capacitor element control line 32 is connected to the output terminal of the AND circuit 22, and each input terminal of the AND circuit 22 is connected to the reference capacitor element selection line 33 and the output terminal of the OR circuit 21, respectively.
  • Each input terminal of the OR circuit 21 is connected to the first-stage output terminal 42 and the second-stage output terminal 43 of the two-stage vertical shift register 20, respectively.
  • the infrared detection capacitive element control line 31A is connected to the output terminal of the AND circuit 23.
  • One input terminal of the AND circuit 23 is connected to the infrared detection capacitive element selection line 34, and the other is vertical.
  • the infrared detection capacitive element control line 31B is connected to the output terminal of the AND circuit 23, one of the input terminals of the AND circuit 23 is connected to the infrared detection capacitive element selection line 34, and the other is the vertical shift register 20 Output terminal 43.
  • the voltage at the output terminal 42 of the first stage of the vertical shift register 20 is set to the “H” level.
  • the output of the OR circuit 21 becomes the “H” level.
  • each reference capacitive element control switch 17 becomes conductive. Thereby, each series capacitive element 14 and each reference capacitive element 13 are connected.
  • each bias control switch 18 becomes conductive. As a result, the bias voltage (V)
  • the voltage is applied to a connection point between the element 14 and each reference capacitive element 13. Therefore, the voltages of the output line 30A, the output line 30B, and the output line 30C are all V.
  • the power supply line 35 rises from the “L” level to the “H” level.
  • an intermediate potential between the series capacitive element 14 and the reference capacitive element 13 is output to the output node 41. Since the capacitance values of the series capacitor element 14 and the reference capacitor element 13 are equal, the output line 30A, the output line 30B, and the output line 30C have a potential obtained by adding a bias potential to a voltage that is half the voltage of the power line 35. Each V is output. This V is used as the reference potential.
  • the bias control switch 18 Since the "H" level voltage is applied to the bias control line 37 in the period ta, the bias control switch 18 becomes conductive. As a result, a bias voltage is applied to the connection point between the series capacitive element 14 and the reference capacitive element 13. Therefore, the voltages of the output line 30A, the output line 30B, and the output line 30C are all V.
  • the power supply line 35 rises from the “L” level to the “H” level.
  • intermediate potentials between the series capacitive elements 14 and the infrared detection capacitive elements 12a are output to the output line 30A, the output line 30B, and the output line 30C, respectively.
  • the output line 30A, the output line 30B, and the output line 30C are connected to the power line according to the intensity of the infrared ray incident on the infrared detection capacitive element 12a.
  • V which is a potential obtained by adding a bias voltage to a voltage smaller than half of the voltage of 35, is output. Using this V as the detection potential, the difference between the reference potential V and the detection potential V is obtained.
  • the intensity of the infrared light incident on the infrared detection capacitive element 12b can be detected.
  • the infrared detection capacitive element and the reference capacitive element are arranged one-dimensionally in the reference pixel unit. For this reason, the infrared detection capacitive element can be read at a higher speed than the infrared sensor of the first embodiment.
  • the reference pixel unit is configured by two infrared detection capacitive elements and one reference capacitive element, but the number of infrared detection capacitive elements included in the reference pixel unit is arbitrarily increased. be able to.
  • FIG. 10 shows a layout of an infrared sensor according to this modification.
  • the infrared sensor of this modification only the infrared detection capacitive element 12 of the pixel reference unit 2 is formed in the pixel area 1, and the reference capacitive element 13 is located outside the pixel area 1. Is formed in the reference capacitor element formation region 3 provided in FIG. By doing so, it is possible to prevent the aperture ratio from being lowered by the reference capacitive element 13.
  • the infrared detection capacitive element 12 is arranged in all the pixel areas 1. Therefore, the intensity of incident infrared rays can be obtained for the entire pixel area 1.
  • the circuit configuration and operation are substantially the same as those of the infrared sensor of the second embodiment, and thus description thereof is omitted.
  • the reference capacitor element formation region 3 may be arranged on both sides of the pixel area 1. In this way, the number of reference pixel units 2 that can be provided in the pixel area 1 can be increased. Therefore, the number of infrared detection capacitive elements 12 included in one reference pixel unit 2 can be reduced without reducing the number of infrared detection capacitive elements 12 included in the pixel area 1. As a result, the reading speed can be improved. [0079] Further, compared to the case where the reference capacitor element 13 is provided only on one side of the pixel area 1, the distance between the infrared ray detection capacitor element 12 and the reference capacitor element 13 can be shortened, so that the detection accuracy can be reduced. Can be further improved.
  • the infrared sensor of the present invention can realize an infrared sensor having high detection accuracy without reducing the aperture ratio, and is useful as an infrared sensor for detecting infrared rays emitted from an object and a human body.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Geophysics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Radiation Pyrometers (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

 赤外線センサは、行列状に配置された複数の参照画素単位2と、各参照画素単位2と対応して設けられた直列容量素子14とを備えている。参照画素単位2は、出力線30と、出力線30と接地との間にスイッチ素子17を介して接続された参照容量素子13と、出力線30と接地との間にスイッチ素子16を介して接続された複数の赤外線検出容量素子12とを有している。直列容量素子14は、出力線30と接続されている。

Description

明 細 書
赤外線センサ及びその駆動方法
技術分野
[0001] 本発明は、物体及び人体から放出される赤外線を検出する赤外線センサ及びその 駆動方法に関する。
背景技術
[0002] 人体をはじめとする物体力 輻射されている赤外線を検出する赤外線センサは、物 体の存在や温度についての情報を非接触で得ることができるため、さまざまな分野に おいて応用が期待されている。特に、複数の赤外線センサをマトリックス状に配置し た赤外線センサは、 2次元的な赤外線イメージが得られるため、さらに応用範囲の広 力 Sりが期待される。このような赤外線センサとしては、冷却やチヨツバ回路が不要であ ることから、電界を印加して誘電率の温度変化を検知する誘電ポロメータが有望であ る。
[0003] 図 12は従来の誘電ポロメータ型の赤外線センサの信号読み出し回路を示している 。図 12に示すように直列容量素子 201と赤外線検出容量素子 202とが接続点 210 を介して直列に接続されている。赤外線検出容量素子 202は、素子に入射した赤外 線の強度に応じて容量が変化する特性を持ち、赤外線が入射して 、な 、場合には、 赤外線検出容量素子 202と直列容量素子 201との容量値は等しくなるように設定さ れている。
[0004] また、直列容量素子 201及び赤外線検出容量素子 202にはそれぞれ駆動用の交 流電源 204及び交流電源 205が接続されており、交流電源 204と交流電源 205との 振幅は同じであり、位相は反転している。
[0005] 接続点 210は、トランジスタ 203を介して出力端子 206に接続されており、信号線 S によりトランジスタ 203をオン状態とすることにより出力端子 206に接続点 210の電 sw
位を取り出すことができる。
[0006] 接続点 210の電位は、直列容量素子 201及び赤外線検出容量素子 202の容量値 と、交流電源 204及び交流電源 205の電圧(振幅)とによって決定される。従って、図 19に示すように、赤外線検出容量素子 202に赤外線が入射し赤外線検出容量素子 202の容量値が増加した場合には、図 19の Aに示すような出力曲線が得られる。な お、図 19にお!/、て曲線 C及び曲線 Dはそれぞれ交流電源 204及び交流電源 205の 出力電圧を示す。
[0007] 赤外線検出容量素子 202に赤外線が照射されていない場合には、直列容量素子 201と赤外線検出容量素子 202との容量値は等しくなり、図 19の Bに示すように接続 点 210の電位は常に 0となる。従って、精度よく赤外線を検出することが可能となる( 例えば、特許文献 1を参照)。
特許文献 1 :特開 2002— 365130号
発明の開示
発明が解決しょうとする課題
[0008] しかしながら、前記従来の赤外線センサは、赤外線検出容量素子と直列容量素子 とが 1個ずつ必要であるため、画素内にお!/、て赤外線検出容量素子が占める割合で ある開口率が、直列容量素子がない場合と比べて小さくなるという問題がある。特に、 複数の赤外線センサをマトリックス状に配置する場合には、画素の面積の制限が大き ぐ開口率の低下は大きな問題となる。
[0009] また、赤外線が入射して ヽな ヽ場合の赤外線検出容量素子の容量値と、直列容量 素子の容量値とにばらつきがある場合には、出力にオフセットを生じるため測定精度 が低下してしまうと 、う問題がある。オフセットによる測定精度の低下を防ぐためにォ フセットを補正する回路を設けると、開口率がさらに低下してしまうという問題がある。
[0010] 本発明は、前記従来の問題を解決し、開口率を低下させることなぐ高い測定精度 を有する赤外線センサを実現できるようにすることを目的とする。
課題を解決するための手段
[0011] 前記の目的を達成するため、本発明は、赤外線センサを複数の赤外線検出容量 素子が共通の直列容量素子と参照容量素子とに接続されている構成とする。
[0012] 具体的に本発明に係る赤外線センサは、それぞれが行列状に配置されており、出 力線と、該出力線と接地との間にスィッチ素子を介して接続された参照容量素子及 び入射した赤外線の強度に応じた容量値を示す複数の赤外線検出容量素子とを含 む複数の参照画素単位と、それぞれが各参照画素単位と対応して設けられ、出力線 と電源との間に接続された複数の直列容量素子とを備えていることを特徴とする。
[0013] 本発明の赤外線センサによれば、赤外線検出容量素子を含む各参照画素単位と 対応して直列容量素子が設けられているため、赤外線検出容量素子に対する直列 容量素子の占有面積を小さく抑えることができる。従って、開口率を向上させることが できる。また、参照画素単位は、参照容量素子を含むため、参照容量素子を用いるこ とによりオフセットの影響を低減し、測定精度を向上させることが可能である。さらに、 複数の赤外線検出容量素子に対して参照容量素子は 1つであるため、参照容量素 子による開口率の低下も抑えることができる。
[0014] 本発明の赤外線センサにおいて、参照容量素子の容量値と、直列容量素子の容 量値と、赤外線が入射して 、な 、場合の赤外線検出容量素子の容量値とは等し 、こ とが好ましい。このような構成とすることによりオフセットの影響を確実に低減できる。
[0015] 本発明の赤外線センサでは、参照画素単位において、参照容量素子及び赤外線 検出容量素子は 1次元状に配列されて 、ることが好ま 、。
[0016] 本発明の赤外線センサでは、参照画素単位において、参照容量素子及び赤外線 検出容量素子は 2次元状に配列されて 、ることが好ま 、。
[0017] 本発明の赤外線センサにおいて、各直列容量素子は、赤外線が入射する画素エリ ァの外側の領域に設けられて 、ることが好ま U、。
[0018] 本発明の赤外線センサにおいて、各直列容量素子及び各参照容量素子は、赤外 線が入射する画素エリアの外側の領域に設けられて 、ることが好ま 、。このような 構成とすることにより、直列容量素子及び参照容量素子による開口率の低下を確実 に避けることができる。
[0019] 本発明の赤外線センサにおいて、複数の参照容量素子は、画素エリアを挟んで両 側にそれぞれ設けられた第 1の参照容量素子形成領域又は第 2の参照容量素子形 成領域にそれぞれ形成され、第 1の参照容量素子形成領域に形成された参照容量 素子と同一の参照画素単位に含まれる各赤外線検出容量素子は、画素エリアの第 1 の参照容量素子形成領域側に形成されており、第 2の参照容量素子形成領域に形 成された参照容量素子と同一の参照画素単位に含まれる各赤外線検出容量素子は 、画素エリアの第 2の参照容量素子形成領域側に形成されていることが好ましい。ま た、この場合において、各直列容量素子は、画素エリアの外側の領域における各直 列容量素子と対応する参照容量素子と同じ側に形成されていることが好ましい。この ような構成とすることにより。直列容量素子及び参照容量素子と赤外線検出容量素 子との距離を短くすることができるので、測定精度を向上去ることが可能となる。
[0020] 本発明の赤外線センサにおいて、参照容量素子と出力線との間に接続されたスィ ツチをオン状態として、直列容量素子と参照容量素子との間に所定の電圧を印加し た際の出力線の電位を基準電位とし、所定の赤外線検出容量素子と出力線との間 に接続されたスィッチをオン状態として、直列容量素子と所定の赤外線検出容量素 子との間に所定の電圧を印カロした際の出力線の電位を検出電位とし、基準電位と検 出電位との電位差を、所定の赤外線検出容量素子に入射した赤外線の強度を示す 出力信号として出力することが好ましい。このような構成とすることにより、オフセットの 影響を低減できるため、測定精度を向上させることが可能となる。
[0021] 本発明の赤外線センサにおいて、参照容量素子と出力線との間に接続されたスィ ツチをオン状態として、直列容量素子と参照容量素子との間に所定の電圧を印加し た際の出力線の電位を基準電位とし、所定の赤外線検出容量素子と出力線との間 に接続されたスィッチをオン状態として、直列容量素子と所定の赤外線検出容量素 子との間に所定の電圧を印カロした際の出力線の電位を検出電位とし、基準電位と検 出電位との電位差を、所定の赤外線検出容量素子に入射した赤外線の強度を示す 出力信号として出力し、参照容量素子の周囲に配置され、参照容量素子と同一の参 照画素単位に含まれる複数の赤外線検出容量素子の出力信号を用いて、参照容量 素子が配置された部分に入射した赤外線の強度を算出することが好ましい。このよう な構成とすることにより、データの欠落を抑えることができるため、鮮明な赤外画像を 得ることが可能となる。
[0022] 本発明に係る赤外線センサの駆動方法は、出力線と、該出力線と接地との間にそ れぞれスィッチ素子を介して接続された参照容量素子及び入射した赤外線の強度 に応じて容量値が変化する複数の赤外線検出容量素子とを含む参照画素単位と、 出力線と電源との間に接続された直列容量素子とを備えた赤外線センサの駆動方 法を対象とし、参照画素単位に含まれる各赤外線検出容量素子に入射した赤外線 の強度を順次出力するステップ (a)を備え、ステップ (a)は、参照容量素子と接続され たスィッチ素子をオン状態として、参照容量素子と出力線とを電気的に接続した後、 参照容量素子と直列容量素子との間に所定の電圧を印加することにより、出力線に 基準電位を読み出すステップ (al)と、ステップ (al)よりも後に、複数の赤外線検出 容量素子のうちの一の赤外線検出容量素子と接続されたスィッチ素子をオン状態と して、一の赤外線検出容量素子を出力線と電気的に接続した後、一の赤外線検出 容量素子と直列容量素子との間に所定の電圧を印加することにより、出力線に検出 電位を読み出すステップ (a2)と、ステップ (al)及びステップ (a2)よりも後に、基準電 位と検出電位との電位差の値を求め、求めた電位差の値を一の赤外線検出容量素 子に入射した赤外線の強度の値として出力するステップ (a3)とを含むことを特徴とす る。
[0023] 本発明の赤外線センサの駆動方法によれば、開口率を向上させるために複数の赤 外線検出容量素子に対して 1つの参照容量素子が設けられている赤外線センサに ぉ 、ても、オフセットの影響を低減し正確な赤外線の強度を測定することが可能とな る。
[0024] 本発明の赤外線センサの駆動方法において、参照容量素子及び赤外線検出容量 素子は、赤外線が入射する画素エリアに形成されており、駆動方法はステップ (a)よ りも後に、複数の赤外線検出容量素子のうち参照容量素子と隣接して配置された赤 外線容量素子に入射した赤外線の強度の値に基づいて、画素エリアにおける参照 容量素子が配置された部分に入射した赤外線の強度の値を算出するステップ (b)を さらに備えて 、ることが好まし 、。
[0025] 本発明の赤外線センサの駆動方法によればステップ (b)は、参照容量素子と隣接 して配置された赤外線容量素子に入射した赤外線の強度の値の平均値を求めるス テツプであることが好まし!/、。
発明の効果
[0026] 本発明の赤外線センサによれば、開口率を低下させることなぐ高い検出精度を有 する赤外線センサを実現できる。 図面の簡単な説明
[0027] [図 1]図 1は本発明の第 1の実施形態に係る赤外線センサを示すレイアウト図である。
[図 2]図 2は本発明の第 1の実施形態に係る赤外線センサの参照画素単位及び周辺 回路部分を示す回路図である。
[図 3]図 3は本発明の第 1の実施形態に係る赤外線センサの動作を示すタイミング図 である。
[図 4]図 4は本発明の第 1の実施形態に係る赤外線センサの参照容量素子部分の赤 外線強度を算出する方法を示す図である。
[図 5]図 5は本発明の第 2の実施形態に係る赤外線センサを示すレイアウト図である。
[図 6]図 6は本発明の第 2の実施形態に係る赤外線センサの参照画素単位及び周辺 回路部分を示す回路図である。
[図 7]図 7は本発明の第 2の実施形態に係る赤外線センサの動作を示すタイミング図 である。
[図 8]図 8は本発明の第 2の実施形態に係る赤外線センサの参照容量素子部分の赤 外線強度を算出する方法を示す図である。
[図 9]図 9は本発明の第 2の実施形態に係る赤外線センサの参照画素単位及び周辺 回路部分の別の例を示す回路図である。
[図 10]図 10は本発明の第 2の実施形態の一変形例に係る赤外線センサを示すレイ アウト図である。
[図 11]図 11は本発明の第 2の実施形態の一変形例に係る赤外線センサの別の例を 示すレイアウト図である。
[図 12]図 12は従来例に係る赤外線センサを示す回路図である。
[図 13]図 13は従来例に係る赤外線センサの駆動信号を示すグラフである。
符号の説明
[0028] 1 画素エリア
2 参照画素単位
2A 参照画素単位
2B 参照画素単位 C 参照画素単位
参照容量素子形成領域
2 赤外線検出容量素子
2a 赤外線検出容量素子
2b 赤外線検出容量素子
2c 赤外線検出容量素子
3 参照容量素子
4 直列容量素子
5 直列容量素子制御スィッチ6 赤外線検出容量素子制御スィッチ6a 赤外線検出容量素子制御スィッチ6b 赤外線容量素子制御スィッチ6c 赤外線検出容量素子制御スィッチ7 参照容量素子制御スィッチ8 バイアス制御スィッチ
0 垂直シフトレジスタ
1 論理和回路
2 論理積回路
3 論理積回路
0 出力線
0A 出力線
0B 出力線
0C 出力線
1 赤外線検出容量素子制御線1A 赤外線検出容量素子制御線1B 赤外線検出容量素子制御線1C 赤外線検出容量素子制御線2 参照容量素子制御線 33 参照容量素子選択線
34 赤外線検出容量素子選択線
35 電源線
37 バイアス制御線
41 出力ノード
42 垂直シフトレジスタの出力端子
43 垂直シフトレジスタの出力端子
44 垂直シフトレジスタの出力端子
45 バイアス端子
発明を実施するための最良の形態
[0029] (第 1の実施形態)
本発明の第 1の実施形態について図面を参照して説明する。図 1は第 1の実施形 態に係る赤外線センサのレイアウトを示して 、る。図 1に示すように赤外線が入射する 画素エリア 1には、複数の参照画素単位 2が 2次元のマトリックス状に配置されている 。画素エリア 1の外側には、後で述べる直列容量素子及び周辺回路等が設けられて いる。
[0030] 各参照画素単位 2は、複数の赤外線検出容量素子 12と、 1つの参照容量素子 13 とを含んでおり、赤外線検出容量素子 12と参照容量素子 13とは合わせて 2次元のマ トリックス状に配置されて 、る。
[0031] 図 2は本実施形態の赤外線センサにおける 1つの参照画素単位 2とその周辺回路 とを抜き出して、回路構成を示している。図 2に示すように参照画素単位 2は、 1個の 参照容量素子 13と 8個の赤外線検出容量素子 12とが、 3行 3列のマトリックス状に配 置されている。
[0032] 本実施形態において、参照容量素子 13はマトリックスの中央である 2行 2列目に設 けられている。参照容量素子 13の一方の端子は接地されており、他方の端子は、トラ ンジスタである参照容量素子制御スィッチ 17を介して、 2行目の出力線 30と接続さ れている。各赤外線検出容量素子 12の一方の端子は接地されており、他方の端子 は、トランジスタである赤外線検出容量素子制御スィッチ 16を介して各赤外線検出 容量素子 12が設けられて 、る行の出力線 30とそれぞれ接続されて 、る。
[0033] 各行の出力線 30は、共通に接続され、出力ノード 41が形成されている。また、各行 の出力線 30は、直列容量素子制御スィッチ 15を介して共通に接続され、直列容量 素子 14の一方の端子と接続されている。各出力線 30にそれぞれ設けられたトランジ スタである直列容量素子制御スィッチ 15は独立して制御可能であり、各直列容量素 子制御スィッチ 15の制御端子は制御線 36A、制御線 36B及び制御線 36Cとそれぞ れ接続されている。
[0034] 直列容量素子 14の容量値と、参照容量素子 13の容量値と、赤外線検出容量素子 12に赤外線が入射して 、な 、場合の容量値とは、実質的に等しくなるように設定さ れている。つまり、各容量値は既知の製造方法により製造した場合の誤差の範囲で 等しい。
[0035] 直列容量素子 14の他方の端子は、電源線 35と接続されて 、る。また、直列容量素 子 14と各直列容量素子制御スィッチ 15との間には、バイアス制御スィッチ 18を介し てノ ィァス端子 45が接続されており、所定のバイアス電圧を印加することができる。 バイアス制御スィッチ 18は、バイアス制御線 37により駆動される。
[0036] 参照容量素子制御スィッチ 17の制御端子は、参照容量素子制御線 32と接続され ており、各赤外線検出容量素子制御スィッチ 16の制御端子は、列ごとに設けられた 赤外線検出容量素子制御線 31とそれぞれ接続されている。
[0037] 参照容量素子制御線 32は、論理積回路 22の出力端子と接続されており、論理積 回路 22の各入力端子は、参照容量素子選択線 33及び論理和回路 21の出力端子と それぞれ接続されている。論理和回路 21の各入力端子は、 3段の垂直シフトレジス タ 20の 1段目の出力端子 42、 2段目の出力端子 43及び 3段目の出力端子 44とそれ ぞれ接続されている。
[0038] 各列に設けられた赤外線検出容量素子制御線 31は、列ごとに設けられた論理積 回路 23の出力端子とそれぞれ接続されており、各論理積回路 23の入力端子の一方 は、赤外線検出容量素子選択線 34と接続され、他方は垂直シフトレジスタ 20の出力 端子 42、出力端子 43及び出力端子 44の 、ずれか 1つと接続されて!、る。
[0039] 以下に、本実施形態の赤外線センサの動作について説明する。図 3は図 2に示し た参照画素単位 2及び周辺回路の動作タイミングを示している。
[0040] まず、期間 T1の期間 tlにおいて垂直シフトレジスタ 20の 1段目の出力端子 42の電 圧が" H"レベルとなる。これにより論理和回路 21の入力端子に" H"レベルの信号が 印加されるため論理和回路 21の出力は" H"レベルとなる。
[0041] tlにおいて、参照容量素子選択線 33の電圧も" H"レベルとなるため、論理積回路 22の出力と接続された参照容量素子制御線 32の電圧は" H"レベルとなる。これによ り参照容量素子制御スィッチ 17が導通状態となり、参照容量素子 13と 2行目の出力 線 30とが接続される。また、制御線 36Bの電圧力 'Η"レベルとなるから 2行目の直列 容量素子制御スィッチ 15が導通状態となる。これにより、直列容量素子 14と参照容 量素子 13とが接続される。
[0042] 期間 taにおいてバイアス制御線 37に" Η"レベルの電圧が印加されるためバイアス 制御スィッチ 18が導通状態となる。これにより、バイアス電圧が直列容量素子 14と参 照容量素子 13との接続点に印加される。従って、出力ノード 41にバイアス電圧 (V
bias
)が出力される。
[0043] 次に期間 tbにおいて電源線 35が" L"レベルから" H"レベルに立ち上がる。これに より直列容量素子 14と参照容量素子 13との中間の電位が出力ノード 41に出力され る。直列容量素子 14と参照容量素子 13の容量値は等しいため、出力ノード 41には 、電源線 35の電圧の 2分の 1の電圧にバイアス電位が加算された電位である Vが出 力される。この Vを基準電位として用いる。
[0044] 期間 T1の期間 t2において参照容量素子選択線 33の電圧が" L"レベルとなるため 論理積回路 22の出力が" L"レベルとなり参照容量素子制御スィッチ 17が非導通状 態となる。代わって、赤外線検出容量素子選択線 34の電圧力 ' H"レベルとなるため 、論理積回路 23の出力力 H"レベルとなる。従って、 1列目の各赤外線検出容量素 子制御スィッチ 16がそれぞれ導通状態となり、 1列目に設けられた各赤外線検出容 量素子 12と各出力線 30とがそれぞれ接続される。また、制御線 26Aの電圧が" H"レ ベルとなるため、 1行目の直列容量素子制御スィッチ 15が導通状態となる。これによ り直列容量素子 14と 1行 1列目の赤外線検出容量素子 12とが接続される。
[0045] 期間 taにおいてバイアス制御線 37に" H"レベルの電圧が印加されるためバイアス 制御スィッチ 18が導通状態となる。これにより、バイアス電圧が直列容量素子 14と参 照容量素子 13の接続点に印加される。従って、出力ノード 41にバイアス電圧 (V )
bias が出力される。
[0046] 次に、期間 tbにおいて電源線 35が" L"レベルから" H"レベルに立ち上がる。これ により直列容量素子 14と参照容量素子 13との中間の電位が出力ノード 41に出力さ れる。赤外線検出容量素子 12の容量値は入射する赤外線の強度によって異なるた め、出力ノード 41には、赤外線検出容量素子 12に入射する赤外線の強度に応じて 、電源線 35の電圧の 2分の 1よりも小さい電圧にバイアス電圧が加算された電位であ る Vが出力される。この Vを検出電位とし、基準電位 Vと検出電位 Vとの差を求め
2 2 1 2
、これを 1行 1列目の赤外線検出容量素子 12に入射した赤外線の強度を示す出力 信号として出力する。
[0047] 以下、同様にして期間 t3において得られた基準電位 Vと期間 t4において得られた 検出電位から 1行 2列目の赤外線検出容量素子 12に入射した赤外線の強度が得ら れ、期間 t5において得られた基準電位 Vと期間 t6において得られた検出電位から 1 行 3列目の赤外線検出容量素子 12に入射した赤外線の強度が得られる。同様に期 間 T2では 2行目の各赤外線検出容量素子に入射した赤外線の強度が得られ、期間 T3では 3行目の各赤外線検出容量素子に入射した赤外線の強度が得られる。
[0048] 本実施形態の赤外線センサは、直列容量素子を 8個の赤外線検出容量素子に対 して共通に設けている。このため直列容量素子の占有面積を大幅に削減することが できる。また、このように直列容量素子を共通とすることにより、直列容量素子を赤外 線の入射領域である画素エリアの外に設けることが可能となる。これにより、直列容量 素子による開口率の低下の低下をほとんどなくすことができる。
[0049] 誘電型ポロメータの場合、直列容量素子の容量値と赤外線検出容量素子の容量 値との差によって赤外線の強度を検出している。このため、直列容量素子の容量値と 赤外線検出容量素子における赤外線が入射して!/ヽな!ヽ場合の容量値とを一致させ る必要がある。直列容量素子を複数の赤外線検出容量素子に共通とする場合には、 各赤外線検出容量素子同士の容量値も一致させる必要がある。しかし、赤外線検出 容量素子の製造する際には、膜厚等のばらつきが必ず生じるため、各赤外線検出容 量素子の容量値には必ず一定のばらつきが含まれる。このため、単純に直列容量素 子を共通とした場合には、赤外線検出容量素子ごとに異なるオフセット電位が発生 するので、測定精度が低下してしまう。しかし、本実施形態の赤外線センサにおいて は、参照容量素子を設け参照容量素子と直列容量素子とを用いて基準電位を求め 、基準電位と検出電位との差を用いて赤外線の強度を検出している。このため、赤外 線検出容量素子同士の容量値のばらつきの影響を抑え、精度よく赤外線の強度を 検出することができる。
[0050] また、本実施形態の赤外線センサは、参照容量素子も 8個の赤外線検出容量素子 に対して共通に設けている。従って、参照容量素子による開口率の低下も、小さく抑 えることができる。
[0051] また、以下のようにして参照容量素子が形成されている部分における赤外線の強 度を擬似的に求めることも可能である。
[0052] 図 4は 1つの 3行 3列のマトリックスに構成された参照画素単位 2のレイアウトを擬似 的に示している。この場合に、参照容量素子 13は、 3行 3列のマトリックスの中心であ る 2行目の 2列目に配置されている。 8個の赤外線検出容量素子 12によって検出さ れた赤外線の強度をそれぞれ a、 b、 c、 d、 e、 f、 g、 hとすると、参照容量素子 13の部 分における赤外線強度を、例えば隣接する行方向の 2個及び列方向の 2個の計 4個 の赤外線検出容量素子が検出した強度を平均して (b + d+e+g) Z4として求めれ ばよい。
[0053] また、隣接する 8個の赤外線検出容量素子 12の平均として(a + b + c + d + e + f+ g+h) Z8としてもよぐ隣接する赤外線検出容量素子 12に重み付け平均をして、行 方向の 2個及び列方向の 2個の計 4個の赤外線検出容量素子 12についての係数を α、対角方向の 4個の赤外線検出容量素子 12についての係数を |8とし、 { α X (b + d+e+g) + j8 X (a + c+f +h) }/8として求めてもよい。
[0054] 以上説明したように、本実施形態の赤外線センサは、検出精度を低下させることな く、開口率を向上させることができる。
[0055] なお、本実施形態において参照画素単位を構成するマトリックスのサイズを 3行 3列 としたが、マトリックスのサイズは任意に変更して力まわない。また、参照容量素子を マトリックスの中央となる 2行目の 2列目に配置した力 この位置も任意に変更してか まわない。
[0056] (第 2の実施形態)
以下に、本発明の第 2の実施形態について図面を参照して説明する。図 5は第 2の 実施形態に係る赤外線センサのレイアウトを示している。図 5に示すように赤外線が 入射する画素エリア 1には、複数の参照画素単位 2が 2次元のマトリックス状に配置さ れている。各参照画素単位 2は、複数の赤外線検出容量素子 12と、 1つの参照容量 素子 13とを含んでいる。赤外線検出容量素子と参照容量素子とは、合わせて 1次元 の配列を構成している。
[0057] 図 6は本実施形態に係る赤外線センサの参照画素単位 2のうち参照画素単位 2A、 参照画素単位 2B及び参照画素単位 2Cとその周辺回路とを抜き出して回路構成を 示している。図 6に示すように各参照画素単位 2は、 1個の参照容量素子 13と赤外線 検出容量素子 12a及び赤外線検出容量素子 12bとが、 1次元の配列を構成している
[0058] 参照画素単位 2Aに含まれる参照容量素子 13の一方の端子は接地されており、他 方の端子は、参照容量素子制御スィッチ 17を介して、出力線 30Aと接続されている 。赤外線検出容量素子 12a及び赤外線検出容量素子 12bの一方の端子はそれぞ れ接地されており、他方の端子は、赤外線検出容量素子制御スィッチ 16a及び赤外 線検出容量素子制御スィッチ 16bを介して出力線 30Aとそれぞれ接続されている。
[0059] 同様にして参照画素単位 2Bに含まれる参照容量素子 13と赤外線検出容量素子 1 2a及び赤外線検出容量素子 12bとは出力線 30Bと接続され、参照画素単位 2Cに 含まれる参照容量素子 13と赤外線検出容量素子 12a及び赤外線検出容量素子 12 bとは出力線 30Cと接続されている。
[0060] 出力線 30A、出力線 30B及び出力線 30Cの一方の端は直列容量素子 14の一方 の端子とそれぞれ接続されている。各直列容量素子 14の他方の端子は、電源線 35 とそれぞれ接続されている。また、出力線 30A、出力線 30B及び出力線 30Cには、 ノィァス制御スィッチ 18を介してバイアス端子 45がそれぞれ接続されており、所定の 電圧を印加することができる。各バイアス制御スィッチ 18は、ノィァス制御線 37により 駆動される。
[0061] 各参照容量素子制御スィッチ 17の制御端子は、参照容量素子制御線 32とそれぞ れ接続されている。各赤外線検出容量素子制御スィッチ 16aの制御端子は、赤外線 検出容量素子制御線 31Aとそれぞれ接続されており、各赤外線検出容量素子制御 スィッチ 16bの制御端子は、赤外線検出容量素子制御線 31Bとそれぞれ接続されて 参照容量素子制御線 32は、論理積回路 22の出力端子と接続されており、論理積 回路 22の各入力端子は、参照容量素子選択線 33及び論理和回路 21の出力端子と それぞれ接続されている。論理和回路 21の各入力端子は、 2段の垂直シフトレジス タ 20の 1段目の出力端子 42及び 2段目の出力端子 43とそれぞれ接続されている。
[0062] 赤外線検出容量素子制御線 31Aは、論理積回路 23の出力端子と接続されており 、論理積回路 23の入力端子の一方は、赤外線検出容量素子選択線 34と接続され、 他方は垂直シフトレジスタ 20の出力端子 42と接続されている。赤外線検出容量素子 制御線 31Bは、論理積回路 23の出力端子と接続されており、論理積回路 23の入力 端子の一方は、赤外線検出容量素子選択線 34と接続され、他方は垂直シフトレジス タ 20の出力端子 43と接続されている。
[0063] 以下に、本実施形態の赤外線センサの動作について説明する。図 7は図 2に示し た参照画素単位 2及び周辺回路の動作タイミングを示している。
[0064] まず、期間 T1の期間 tlにおいて垂直シフトレジスタ 20の 1段目の出力端子 42の電 圧を" H"レベルとする。これにより論理和回路 21の入力端子に" H"レベルの信号が 印加されるため論理和回路 21の出力は" H"レベルとなる。
[0065] tlにおいて、参照容量素子選択線 33の電圧も" H"レベルとなるため、論理積回路 22の出力と接続された参照容量素子制御線 32の電圧は" H"レベルとなる。これによ り各参照容量素子制御スィッチ 17が導通状態となる。これにより、各直列容量素子 1 4と各参照容量素子 13とが接続される。
[0066] 期間 taにおいてバイアス制御線 37に" H"レベルの電圧が印加されるため各バイァ ス制御スィッチ 18が導通状態となる。これにより、バイアス電圧 (V )が各直列容量
bias
素子 14と各参照容量素子 13との接続点に印加される。従って、出力線 30A、出力 線 30B及び出力線 30Cの電圧はいずれも V となる。 [0067] 次に期間 tbにおいて電源線 35が" L"レベルから" H"レベルに立ち上がる。これに より直列容量素子 14と参照容量素子 13との中間の電位が出力ノード 41に出力され る。直列容量素子 14と参照容量素子 13の容量値は等しいため、出力線 30A、出力 線 30B及び出力線 30Cには、電源線 35の電圧の 2分の 1の電圧にバイアス電位が 加算された電位である Vがそれぞれ出力される。この Vを基準電位として用いる。
[0068] 期間 T1の期間 t2において参照容量素子選択線 33の電圧が" L"レベルとなるため 論理積回路 22の出力が" L"レベルとなり参照容量素子制御スィッチ 17が非導通状 態となる。代わって、赤外線検出容量素子選択線 34の電圧力 ' H"レベルとなるため 、論理積回路 23の出力力 H"レベルとなる。従って、赤外線検出容量素子制御線 3 1 Aの電圧が "H"レベルとなり、各赤外線検出容量素子制御スィッチ 16aが導通状態 となる。これにより各直列容量素子 14と各赤外線検出容量素子 12aとが接続される。
[0069] 期間 taにおいてバイアス制御線 37に" H"レベルの電圧が印加されるためバイアス 制御スィッチ 18が導通状態となる。これにより、バイアス電圧が直列容量素子 14と参 照容量素子 13の接続点に印加される。従って、出力線 30A、出力線 30B及び出力 線 30Cの電圧はいずれも V となる。
bias
[0070] 次に、期間 tbにおいて電源線 35が" L"レベルから" H"レベルに立ち上がる。これ により各直列容量素子 14と赤外線検出容量素子 12aとの中間の電位が出力線 30A 、出力線 30B及び出力線 30Cにそれぞれ出力される。赤外線検出容量素子 12aの 容量値は入射する赤外線の強度によって異なるため、出力線 30A、出力線 30B及 び出力線 30Cには、赤外線検出容量素子 12aに入射する赤外線の強度に応じて、 電源線 35の電圧の 2分の 1よりも小さい電圧にバイアス電圧が加算された電位である Vが出力される。この Vを検出電位とし、基準電位 Vと検出電位 Vとの差を求め、こ
2 2 1 2
れを赤外線検出容量素子 12aに入射した赤外線の強度として出力する。
[0071] 同様にして期間 T2において、赤外線検出容量素子 12bに入射した赤外線の強度 を検出することができる。
[0072] 本実施形態の赤外線センサは、参照画素単位内において赤外線検出容量素子と 参照容量素子とを 1次元に配列している。このため、第 1の実施形態の赤外線センサ と比べて赤外線検出容量素子の読み出しを高速に行うことができる。 [0073] また、本実施形態の赤外線センサにおいても、第 1の実施形態の赤外線センサと同 様に、参照容量素子が形成されている部分における赤外線の強度を擬似的に求め ることも可能である。この場合には、図 8に示すように参照容量素子の両側に配置さ れた 2個の赤外線検出容量素子の検出値を平均すればよい。また、重み付け平均を してちよい。
[0074] また、本実施形態においては、参照容量素子を 2個の赤外線検出容量素子の間に 配置する構成とした力 図 9に示すように参照容量素子の位置を変更しても力まわな い。
[0075] なお、本実施形態において、参照画素単位を 2個の赤外線検出容量素子と 1個の 参照容量素子とにより構成したが、参照画素単位に含まれる赤外線検出容量素子の 数は任意に増やすことができる。
[0076] (第 2の実施形態の一変形例)
以下に、本発明の第 2の実施形態の一変形例について図面を参照して説明する。 図 10は本変形例に係る赤外線センサのレイアウトを示している。図 10に示すように 本変形例の赤外線センサは、画素エリア 1には画素参照単位 2のうちの赤外線検出 容量素子 12の部分のみが形成されており、参照容量素子 13は画素エリア 1の外側 に設けられた参照容量素子形成領域 3に形成されて!ヽる。このようにすることにより、 参照容量素子 13により開口率が低下することを防ぐことができる。
[0077] このように、参照容量素子 13を画素エリア 1の外に設けられた参照容量素子形成 領域 3に配置することにより、画素エリア 1にはすべて赤外線検出容量素子 12が配置 される。従って、画素エリア 1の全体について入射する赤外線の強度が得られる。な お、回路構成及び動作については、第 2の実施形態の赤外線センサとほぼ同じであ るため説明を省略する。
[0078] また、図 11に示すように参照容量素子形成領域 3を画素エリア 1の両側に配置して もよい。このようにすることにより、画素エリア 1に設けることができる参照画素単位 2の 数を増やすことができる。従って、画素エリア 1に含まれる赤外線検出容量素子 12の 数を減らすことなぐ 1つの参照画素単位 2に含まれる赤外線検出容量素子 12の数 を減らすことができる。その結果、読み出し速度を向上させることが可能となる。 [0079] また、画素エリア 1の一方の側にのみ参照容量素子 13を設けた場合と比べて、赤 外線検出容量素子 12と参照容量素子 13との距離を短くすることができるので、検出 精度をより向上させることができる。
[0080] この場合、直列容量素子 14も参照容量素子 13と同じ側に設けることにより、直列容 量素子 14と参照容量素子 13及び赤外線検出容量素子 12との距離を短くすることが できるので、検出精度をより向上させることができる。
産業上の利用可能性
[0081] 本発明の赤外線センサは、開口率を低下させることなぐ高い検出精度を有する赤 外線センサを実現でき、物体及び人体から放出される赤外線を検出する赤外線セン サ等として有用である。

Claims

請求の範囲
[1] それぞれが行列状に配置されており、出力線と、該出力線と接地との間にスィッチ 素子を介して接続された参照容量素子及び入射した赤外線の強度に応じて容量値 が変化する複数の赤外線検出容量素子とを含む複数の参照画素単位と、
それぞれが前記各参照画素単位と対応して設けられ、前記出力線と電源との間に 接続された複数の直列容量素子とを備えて!/、る赤外線センサ。
[2] 前記参照容量素子の容量値と、前記直列容量素子の容量値と、赤外線が入射して Vヽな!ヽ場合の前記赤外線検出容量素子の容量値とは等 ヽ請求項 1に記載の赤外 線センサ。
[3] 前記参照画素単位において、前記参照容量素子及び赤外線検出容量素子は 1次 元状に配列されて!ヽる請求項 1に記載の赤外線センサ。
[4] 前記参照画素単位において、前記参照容量素子及び赤外線検出容量素子は 2次 元状に配列されて!ヽる請求項 1に記載の赤外線センサ。
[5] 前記各直列容量素子は、赤外線が入射する画素エリアの外側の領域に設けられて
V、る請求項 1に記載の赤外線センサ。
[6] 前記各直列容量素子及び各参照容量素子は、赤外線が入射する画素エリアの外 側の領域に設けられて 、る請求項 1に記載の赤外線センサ。
[7] 前記各参照容量素子は、前記画素エリアを挟んで両側にそれぞれ設けられた第 1 の参照容量素子形成領域及び第 2の参照容量素子形成領域にそれぞれ形成され、 前記第 1の参照容量素子形成領域に形成された参照容量素子と同一の参照画素 単位に含まれる前記各赤外線検出容量素子は、前記画素エリアの前記第 1の参照 容量素子形成領域側に形成されており、
前記第 2の参照容量素子形成領域に形成された参照容量素子と同一の参照画素 単位に含まれる前記各赤外線検出容量素子は、前記画素エリアの前記第 2の参照 容量素子形成領域側に形成されている請求項 6に記載の赤外線センサ。
[8] 前記各直列容量素子は、前記画素エリアの外側の領域における前記各直列容量 素子と対応する前記参照容量素子と同一の側に形成されている請求項 7に記載の 赤外線センサ。
[9] 前記参照容量素子と前記出力線との間に接続されたスィッチ素子をオン状態として 、前記直列容量素子と前記参照容量素子との間に所定の電圧を印加した際の前記 出力線の電位を基準電位とし、
所定の前記赤外線検出容量素子と前記出力線との間に接続されたスィッチ素子を オン状態として、前記直列容量素子と前記所定の赤外線検出容量素子との間に所 定の電圧を印加した際の前記出力線の電位を検出電位とし、
前記基準電位と前記検出電位との電位差を、前記所定の赤外線検出容量素子に 入射した赤外線の強度を示す出力信号として出力する請求項 1に記載の赤外線セ ンサ。
[10] 前記参照容量素子と前記出力線との間に接続されたスィッチ素子をオン状態として 、前記直列容量素子と前記参照容量素子との間に所定の電圧を印加した際の前記 出力線の電位を基準電位とし、
所定の前記赤外線検出容量素子と前記出力線との間に接続されたスィッチ素子を オン状態として、前記直列容量素子と前記所定の赤外線検出容量素子との間に所 定の電圧を印加した際の前記出力線の電位を検出電位とし、
前記基準電位と前記検出電位との電位差を、前記所定の赤外線検出容量素子に 入射した赤外線の強度を示す出力信号として出力し、
前記参照容量素子の周囲に配置され、前記参照容量素子と同一の参照画素単位 に含まれる前記複数の赤外線検出容量素子の出力信号を用いて、前記参照容量素 子が配置された部分に入射した赤外線の強度を算出する請求項 1に記載の赤外線 センサ。
[11] 出力線と、該出力線と接地との間にそれぞれスィッチ素子を介して接続された参照 容量素子及び入射した赤外線の強度に応じて容量値が変化する複数の赤外線検出 容量素子とを含む参照画素単位と、前記出力線と電源との間に接続された直列容量 素子とを備えた赤外線センサの駆動方法であって、
前記参照画素単位に含まれる前記各赤外線検出容量素子に入射した赤外線の強 度を順次出力するステップ (a)を備え、
前記ステップ (a)は、 前記参照容量素子と接続された前記スィッチ素子をオン状態として、前記参照容 量素子と前記出力線とを電気的に接続した後、前記参照容量素子と前記直列容量 素子との間に所定の電圧を印加することにより、前記出力線に基準電位を読み出す ステップ(al)と、
前記ステップ (al)よりも後に、前記複数の赤外線検出容量素子のうちの一の赤外 線検出容量素子と接続された前記スィッチ素子をオン状態として、前記一の赤外線 検出容量素子を前記出力線と電気的に接続した後、前記一の赤外線検出容量素子 と前記直列容量素子との間に所定の電圧を印加することにより、前記出力線に検出 電位を読み出すステップ (a2)と、
前記ステップ (al)及びステップ (a2)よりも後に、前記基準電位と前記検出電位との 電位差の値を求め、求めた電位差の値を前記一の赤外線検出容量素子に入射した 赤外線の強度の値として出力するステップ (a3)とを含む赤外線センサの駆動方法。
[12] 前記参照容量素子及び赤外線検出容量素子は、赤外線が入射する画素エリアに 形成されており、
前記ステップ (a)よりも後に、前記複数の赤外線検出容量素子のうち前記参照容量 素子と隣接して配置された赤外線容量素子に入射した赤外線の強度の値に基づい て、前記画素エリアにおける前記参照容量素子が配置された部分に入射した赤外線 の強度の値を算出するステップ (b)をさらに備えて 、る請求項 11に記載の赤外線セ ンサの駆動方法。
[13] 前記ステップ (b)は、前記参照容量素子と隣接して配置された赤外線容量素子に 入射した赤外線の強度の値の平均値を求めるステップである請求項 12に記載の赤 外線センサの駆動方法。
PCT/JP2006/311617 2005-10-21 2006-06-09 赤外線センサ及びその駆動方法 WO2007046167A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006800011480A CN101052862B (zh) 2005-10-21 2006-06-09 红外线传感器及其驱动方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005306852A JP2007114089A (ja) 2005-10-21 2005-10-21 赤外線センサ
JP2005-306852 2005-10-21

Publications (1)

Publication Number Publication Date
WO2007046167A1 true WO2007046167A1 (ja) 2007-04-26

Family

ID=37962266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311617 WO2007046167A1 (ja) 2005-10-21 2006-06-09 赤外線センサ及びその駆動方法

Country Status (4)

Country Link
US (1) US7423271B2 (ja)
JP (1) JP2007114089A (ja)
CN (1) CN101052862B (ja)
WO (1) WO2007046167A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7825379B2 (en) * 2007-11-09 2010-11-02 Mitsubishi Electric Corporation Thermal-type infrared image sensing device and method of producing the same
DE102010015084B4 (de) * 2010-04-15 2020-12-10 Schaeffler Technologies AG & Co. KG Sensorteil für einen Infrarot-Sensor sowie Verfahren zu dessen Herstellung
JP5749534B2 (ja) 2011-03-25 2015-07-15 浜松ホトニクス株式会社 赤外線イメージセンサ及び信号読み出し方法
ES2682097T3 (es) * 2015-08-03 2018-09-18 Fundació Institut De Ciències Fotòniques Sensor de imagen con circuito de lectura no local y dispositivo optoelectronico que comprende dicho sensor de imagen
US10847567B2 (en) * 2017-01-12 2020-11-24 Mitsubishi Electric Corporation Infrared sensor device including infrared sensor substrate and signal processing circuit substrate coupled to each other
JP6345370B1 (ja) * 2017-01-12 2018-06-20 三菱電機株式会社 赤外線センサデバイス
TWI795245B (zh) * 2022-03-23 2023-03-01 鴻海精密工業股份有限公司 紅外線偵測結構

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271141A (ja) * 1998-03-20 1999-10-05 Masanori Okuyama 赤外線検出回路および赤外線2次元イメージセンサ
JP2000114467A (ja) * 1998-10-06 2000-04-21 Nec Corp 半導体装置
JP2001343281A (ja) * 2000-05-31 2001-12-14 Konica Corp 光ビーム形状計測装置
JP2002365130A (ja) * 2001-06-07 2002-12-18 Osaka Prefecture 赤外線2次元センサアレイシステム
WO2006043384A1 (ja) * 2004-10-18 2006-04-27 Matsushita Electric Industrial Co., Ltd. 赤外線センサ及び赤外線センサアレイ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5679267A (en) * 1994-04-04 1997-10-21 Texas Instruments Incorporated Dual etching of ceramic materials with an elevated thin film
US5457318A (en) * 1994-04-29 1995-10-10 Texas Instruments Incorporated Thermal detector apparatus and method using reduced thermal capacity
US5478242A (en) * 1994-04-29 1995-12-26 Texas Instruments Incorporated Thermal isolation of hybrid thermal detectors through an anisotropic etch
US5424544A (en) * 1994-04-29 1995-06-13 Texas Instruments Incorporated Inter-pixel thermal isolation for hybrid thermal detectors
US5602392A (en) * 1995-01-31 1997-02-11 Texas Instruments Thermal crosstalk reduction for infrared detectors with common electrodes
US5577309A (en) * 1995-03-01 1996-11-26 Texas Instruments Incorporated Method for forming electrical contact to the optical coating of an infrared detector
US5638599A (en) * 1995-03-29 1997-06-17 Texas Instruments Incorporated Method of fabricating hybrid uncooled infrared detectors
JP4612932B2 (ja) * 2000-06-01 2011-01-12 ホーチキ株式会社 赤外線検出素子および赤外線2次元イメージセンサ
US7038206B2 (en) * 2003-10-06 2006-05-02 Symetrix Corporation Infrared sensor and imager with differential ferroelectric cells
JP2006003301A (ja) * 2004-06-21 2006-01-05 Matsushita Electric Ind Co Ltd 赤外線検出素子、赤外線検出装置および固体撮像装置、および赤外線検出装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271141A (ja) * 1998-03-20 1999-10-05 Masanori Okuyama 赤外線検出回路および赤外線2次元イメージセンサ
JP2000114467A (ja) * 1998-10-06 2000-04-21 Nec Corp 半導体装置
JP2001343281A (ja) * 2000-05-31 2001-12-14 Konica Corp 光ビーム形状計測装置
JP2002365130A (ja) * 2001-06-07 2002-12-18 Osaka Prefecture 赤外線2次元センサアレイシステム
WO2006043384A1 (ja) * 2004-10-18 2006-04-27 Matsushita Electric Industrial Co., Ltd. 赤外線センサ及び赤外線センサアレイ

Also Published As

Publication number Publication date
CN101052862A (zh) 2007-10-10
US20080087823A1 (en) 2008-04-17
US7423271B2 (en) 2008-09-09
CN101052862B (zh) 2011-05-18
JP2007114089A (ja) 2007-05-10

Similar Documents

Publication Publication Date Title
US7332717B2 (en) Infrared sensor and infrared sensor array
WO2007046167A1 (ja) 赤外線センサ及びその駆動方法
CN111226434B (zh) 距离图像测定装置以及距离图像测定方法
CN111801934B (zh) 检测装置
US7884810B2 (en) Unevenness detecting apparatus for compensating for threshold voltage and method thereof
US11282424B2 (en) Flexible display panel, flexible display apparatus, and display control method thereof
JP4813997B2 (ja) 可変容量値検出回路およびその駆動方法
US20160050378A1 (en) Pixel sensor device and operating method thereof
CN102169019B (zh) 红外线检测电路、传感器装置及电子设备
US11837010B2 (en) Input sensing method and input sensing device including the same
KR101949524B1 (ko) 공간 잡음에 대해 낮은 민감도를 가지는 전자기 방사 검출 기기
CN113489923B (zh) 使用tft像素电路的光学有源像素传感器
WO2012014376A1 (ja) 磁界検知マイコンおよび磁界検知方法
JP6108936B2 (ja) 撮像装置、撮像システム、撮像装置の駆動方法
CN104869333A (zh) 电流镜、控制方法和图像传感器
EP1607715A1 (en) Optical sensor
JP5017895B2 (ja) 赤外線検出装置
US5856666A (en) Multiplexer circuit
JP6974091B2 (ja) 2次元センサ及びタッチセンサ
US11240458B2 (en) Image sensor with capacitor randomization for column gain
US10482307B2 (en) Fingerprint sensing system and method utilizing edge-compensating structure
JP2013069201A (ja) 光センサーとその駆動方法、及び静脈センサー、指紋センサー
JP2005049194A (ja) 静電容量検出装置及び電子機器
JP3216523B2 (ja) 赤外線検出装置
JP4581672B2 (ja) 赤外線検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11665603

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680001148.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06766529

Country of ref document: EP

Kind code of ref document: A1