WO2007043443A1 - Digital modulation method, digital modulation circuit, digital demodulation method, and digital transmission system - Google Patents

Digital modulation method, digital modulation circuit, digital demodulation method, and digital transmission system Download PDF

Info

Publication number
WO2007043443A1
WO2007043443A1 PCT/JP2006/319984 JP2006319984W WO2007043443A1 WO 2007043443 A1 WO2007043443 A1 WO 2007043443A1 JP 2006319984 W JP2006319984 W JP 2006319984W WO 2007043443 A1 WO2007043443 A1 WO 2007043443A1
Authority
WO
WIPO (PCT)
Prior art keywords
digital
phase
circuit
digital data
baseband signal
Prior art date
Application number
PCT/JP2006/319984
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Tsubouchi
Tadashi Takagi
Hiroyuki Nakase
Suguru Kameda
Fumio Ishizu
Yasushi Sogabe
Akinori Fujimura
Original Assignee
Mitsubishi Electric Corporation
Tohoku University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corporation, Tohoku University filed Critical Mitsubishi Electric Corporation
Priority to JP2007539906A priority Critical patent/JP5207517B2/en
Publication of WO2007043443A1 publication Critical patent/WO2007043443A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2003Modulator circuits; Transmitter circuits for continuous phase modulation
    • H04L27/2007Modulator circuits; Transmitter circuits for continuous phase modulation in which the phase change within each symbol period is constrained

Definitions

  • Digital modulation method digital modulation circuit, digital demodulation circuit, and digital transmission system
  • the present invention relates to a digital modulation method, a digital modulation circuit, a digital demodulation circuit, and a digital transmission system for performing high-speed digital transmission.
  • wireless communication technology As represented by wireless LAN, wireless communication technology has advanced to high-speed transmission exceeding 100 Mbit / s. In the future, a communication method suitable for high-speed communication that will definitely advance to 1 Gbit / s is essential.
  • the current high-speed transmission is realized by communication using OFDM (Orthogonal Frequency Division Multiplexing). OFDM is currently capable of 54Mbit / s in the 20MHz RF (Radio Frequency) band, and 3bit transmission per 1Hz in the next generation wireless LAN standard, suitable for high-speed transmission ing.
  • OFDM Orthogonal Frequency Division Multiplexing
  • MSK Minimum Shift Keying
  • 4-value MSK that increases speed by multi-leveling
  • Conventional MSK uses 1-bit digital data. Therefore, the phase shift is selected continuously by selecting either ⁇ 90 degrees.
  • 4-level MSK selects ⁇ 135 degrees or 45 degrees based on the 2-bit data value of the digital data to be transmitted to improve the transmission speed.
  • TFM Transformed Frequency Modulation
  • TFM determines the phase shift according to the 1-bit data to be sent and the past 2-bit data sent so far, that is, the data pattern of 3 bits in total. Is the method.
  • the rule is ⁇ ⁇ 2 ⁇ (d Z4 + d Z2 + d Z4).
  • d is the data 2 bits before the transmission
  • d is the data 1 bit before the transmission
  • d is to be transmitted
  • Non-Patent Document 1 S. Pasupathy, "Minimum Shift Keying: A Spectrally Efficiency Modula tion, IEEE Communication Magazine, vol.17, pp.14—22, July 1979.
  • Non-Patent Document 2 Hiroshi Saito “Modulation and Demodulation of Digital Wireless Communication” The Institute of Electronics, Information and Communication Engineers P7 8-88
  • Patent Document 1 Japanese Translation of Special Publication 2000-511009 (Page 1, Figure 1)
  • the four-value MS K in Non-Patent Document 2 is a force that can improve the transmission speed due to the multi-value key shift.
  • the maximum value of the phase to be shifted is ⁇ 135 degrees, which significantly increases the occupied bandwidth.
  • the baseband band and RF band become the same as the conventional MSK system, and narrowband noise cannot be achieved. There was a problem.
  • the MSK modification method in Patent Document 1 can reduce the occupied bandwidth to 2Z3 compared to the conventional MSK method with only one bit transmission with one phase shift. There was a problem in that it was not possible to extend and apply to a modulation system that achieves a narrower band width that is not sufficient for narrowing the band.
  • Non-Patent Document 2 can narrow the 3dB bandwidth compared to the conventional MSK method, the transmission is only one bit with one phase shift, and the main lobe is conventional. The problem is that it is 4Z3 times larger than the MSK.
  • the bandwidth of the MSK modulation signal is determined by the maximum value of the vector phase change amount required when the symbol point shifts.
  • the maximum deviation in 1-bit transmission is ⁇ 90 degrees and the phase changes continuously, so the baseband bandwidth is 3Z4 of the symbol rate.
  • the baseband bandwidth is 375MHz, which requires the same frequency band as the conventional MSK
  • the RF bandwidth is 500 MHz.
  • Baseband bandwidth needs to be over 250MHz.
  • the present invention has been made to solve the above-described problems, and is capable of reducing the baseband bandwidth while increasing the number of transmission bits per symbol and reducing the baseband bandwidth. It is an object to obtain a method, a digital modulation circuit, a digital demodulation circuit, and a digital transmission system.
  • a digital modulation method is a digital modulation method for transmitting digital data by continuously shifting the phase of a carrier signal, and transmitting digital data of 2 bits or more by one phase shift. In this case, the maximum value of the phase to be shifted is limited.
  • the digital modulation circuit generates a baseband signal in which the maximum value of the phase to be shifted is limited corresponding to digital data of 2 bits or more to be transmitted by one phase shift.
  • a baseband signal generation circuit to be generated and a quadrature modulator that orthogonally modulates the generated baseband signal are provided.
  • the digital transmission system according to the present invention is a digital transmission system that performs bidirectional communication between a base station and a terminal using the same carrier frequency or different carrier frequencies, and at least one of the base station and the terminal. Is provided with the digital modulation circuit of the present invention.
  • the phase change amount is limited when determining the symbol point arrangement on the phase plane after performing the multi-value key to increase the number of bits per symbol.
  • the digital modulation method, the digital modulation circuit which can increase the number of transmission bits per symbol and narrow the baseband bandwidth, A digital demodulation circuit and a digital transmission system can be obtained.
  • FIG. 1 is a diagram showing a first transition example of multi-level MSK symbol points in Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a second transition example of multi-level MSK symbol points in Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing a third transition example of multi-level MSK symbol points in Embodiment 1 of the present invention.
  • FIG. 4 is a diagram summarizing comparison of communication performance between the third transition example and the prior art in Embodiment 1 of the present invention.
  • FIG. 5 is a block diagram of a first modulation circuit in the first embodiment of the present invention.
  • FIG. 6 is a block diagram of a second modulation circuit in the first embodiment of the present invention.
  • FIG. 7 is a block diagram of a third modulation circuit in the first embodiment of the present invention.
  • FIG. 8 is a block diagram of a first demodulation circuit in the first embodiment of the present invention.
  • FIG. 9 is a block diagram of a second demodulation circuit in the first embodiment of the present invention.
  • FIG. 10 is a block diagram of a third demodulation circuit according to the first embodiment of the present invention.
  • FIG. 11 is an overall block diagram of a modulation circuit according to the first embodiment of the present invention.
  • FIG. 12 is another example of the entire block diagram of the modulation circuit in the first embodiment of the present invention.
  • FIG. 13 is an overall configuration diagram of a digital transmission system to which the modulation method according to Embodiment 1 of the present invention is applied.
  • the present invention focuses on the MSK modulation method, which is a constant amplitude modulation method to reduce the burden on the RF device, and multi-values are applied to reduce the load on the baseband and to narrow the RF band.
  • the present invention provides a digital modulation method, a digital modulation circuit, a digital demodulation circuit, and a digital transmission system suitable for high-speed transmission.
  • the present invention provides a modulation method capable of significantly reducing the necessary band in a modulation method for transmitting digital data by continuously changing the phase while keeping the amplitude of the carrier signal constant. This makes it easy to configure the equipment in a gigabit per second ultra-high speed radio transmission system.
  • the phase change amount is determined when determining the symbol point arrangement on the phase plane after performing the multi-value ⁇ to increase the number of bits per symbol. Therefore, it is a technical feature that the necessary bandwidth is narrowed by limiting the region of the phase plane to be arranged.
  • FIG. 1 is a diagram showing a first transition example of multi-level MSK symbol points in Embodiment 1 of the present invention.
  • the horizontal axis is the real axis of the phase space
  • the vertical axis is the phase space.
  • the number of bits to be transmitted is 2 bits for each phase shift.
  • the phase shift limit range (corresponding to the lb range in Fig. 1) from the current symbol point phase (corresponding to la in Fig. 1) is set to ⁇ 90 degrees.
  • FIG. 1 illustrates the case where the maximum phase shift amount is 90 degrees
  • the present invention is not limited to this.
  • the maximum phase deviation By setting the maximum phase deviation to less than 135 degrees, it is possible to perform high-speed transmission while suppressing the bandwidth narrower than when the maximum phase deviation is set to 180 degrees or 135 degrees.
  • FIG. 2 is a diagram showing a second transition example of the symbol points of the multi-level MSK according to Embodiment 1 of the present invention.
  • the horizontal axis is the real axis of the phase space
  • the vertical axis is the imaginary axis of the phase space.
  • the number of bits to be transmitted is 3 bits for each phase shift
  • the maximum phase shift amount is 100 degrees
  • the symbol points to be placed are symmetrical. .
  • FIG. 3 is a diagram showing a third transition example of the symbol points of the multi-level MSK according to Embodiment 1 of the present invention.
  • the horizontal axis is the real axis of the phase space
  • the vertical axis is the imaginary axis of the phase space.
  • the number of bits to be transmitted is a single phase shift. Each bit is 2 bits, the maximum phase shift is 90 degrees, and the symbol points to be placed are symmetrical.
  • the symbol points after the shift are arranged so that the phase intervals are equal.
  • the current symbol point position (corresponding to 3a in Fig. 3) is phase 0 degrees
  • the amount of phase change corresponding to 2-bit data is ⁇ 90 degrees and ⁇ 30 degrees, respectively.
  • the phase intervals are all equalized at 60 degrees.
  • the symbol points to be placed are not necessarily 90 degrees, 30 degrees, and positive / negative symmetric.
  • high-speed transmission can be performed without significantly degrading the bit error rate even when the signals are arranged at positions that are deviated ⁇ 10% from the arrangement at equal intervals.
  • FIG. 4 is a diagram summarizing comparison of communication performance between the third transition example in the first embodiment of the present invention and the conventional technology. As is apparent from FIG. 4, the baseband band and the RF band in the present invention are narrower than the known technique for the same bit rate.
  • the amount of phase change is limited when determining the symbol point arrangement on the phase plane.
  • the modulation method of the present invention that limits the region of the phase plane to be arranged, it is possible to narrow the RF band and the baseband band.
  • the bit error rate becomes higher than when the entire region is used.
  • FIG. 5 is a block diagram of the first modulation circuit according to the first embodiment of the present invention.
  • the first modulation circuit includes a baseband signal generation circuit 11 that generates a baseband signal that realizes a shift of a defined vector based on digital data to be transmitted, and a local oscillator 12a. It consists of a quadrature modulation circuit 12 for modulation.
  • the baseband signal generation circuit 11 specifies the real and imaginary axes of the phase space shown in FIGS. 1 to 3 in order to identify symbol points on the phase space corresponding to the digital data to be transmitted. Output two values corresponding to. Then, the quadrature modulation circuit 12 performs a quadrature modulation on the two output signals from the baseband signal generation circuit 11 to generate a modulation signal corresponding to digital data.
  • FIG. 6 is a block diagram of the second modulation circuit in the first embodiment of the present invention.
  • This second modulation circuit is newly provided with an inverse fast Fourier transform circuit (inverse FFT) 13 between the baseband signal generation circuit 11 and the quadrature modulation circuit 12. Different from the modulation circuit.
  • inverse FFT inverse fast Fourier transform circuit
  • the second modulation circuit generates a baseband signal that realizes the shift of the defined vector based on the digital data to be transmitted.
  • a circuit combining the Fourier transform circuit 13 is used.
  • the baseband signal generation circuit 11 and the inverse fast Fourier transform circuit 13 are separately described.
  • the force baseband signal generation circuit 11 includes the inverse fast Fourier transform circuit 13. It is also possible.
  • the inverse fast Fourier transform circuit 13 outputs two values similar to the baseband signal generation circuit 11 in FIG. Furthermore, the quadrature modulation circuit 12 performs a quadrature modulation on the two output signals from the inverse high-speed Fourier transform circuit 13 to generate a modulation signal corresponding to the digital data.
  • FIG. 7 is a block diagram of the third modulation circuit in the first embodiment of the present invention.
  • the modulation circuit 3 is composed of a control signal generation circuit 14 and a voltage control transmitter 15 that realize a deviation of a defined vector based on digital data to be transmitted.
  • a control signal generation circuit 14 and a voltage control transmitter 15 that realize a deviation of a defined vector based on digital data to be transmitted.
  • MSK it is possible to generate a modulated wave whose phase is continuously changed by adopting such a configuration.
  • FIG. 8 is a block diagram of the first demodulation circuit according to Embodiment 1 of the present invention.
  • the first demodulating circuit includes an orthogonal demodulating circuit 21 having a local oscillator 21a and a baseband signal determining circuit 22.
  • the quadrature demodulation circuit 21 converts a baseband signal transmitted by quadrature modulation. Further, the baseband signal determination circuit 22 detects the vector shift of the received wave based on the baseband signal converted by the orthogonal demodulation circuit 21, and demodulates the received digital data.
  • FIG. 9 is a block diagram of a second demodulation circuit in the first embodiment of the present invention.
  • This second demodulator circuit is further provided with a fast Fourier transform circuit (FFT) 23 between the quadrature demodulator circuit 21 provided with the local oscillator 21a and the baseband signal determination circuit 22, as shown in FIG. Different from the first demodulator circuit.
  • FFT fast Fourier transform circuit
  • the modulation method of the present invention is essentially frequency modulation, and a frequency detection circuit is used, and the detection result power can be demodulated. Therefore, this second demodulation circuit is characterized by using a fast Fourier transform circuit (FFT) 23 in order to detect the reception frequency.
  • FFT fast Fourier transform circuit
  • FIG. 9 the fast Fourier transform circuit 23 and the baseband signal determination circuit 22 are described separately.
  • the baseband signal determination circuit 22 may include the high-speed Fourier transform circuit 23. Is possible.
  • FIG. 10 is a block diagram of a third demodulation circuit in the first embodiment of the present invention.
  • the third demodulator circuit includes a frequency determination circuit 24 and a baseband signal determination circuit 22.
  • the modulation method of the present invention is essentially frequency modulation and uses a frequency detection circuit, and the detection result power can be demodulated. Therefore, the third demodulating circuit is characterized in that the frequency determining circuit 24 is used to receive a signal transmitted by orthogonal modulation and detect the received frequency.
  • FIG. 11 is an overall block diagram of the modulation circuit according to the first embodiment of the present invention, which includes a digital data generation circuit 30, a modulation circuit 10, and an RFZIF analog circuit 40.
  • any of the first to third modulation circuits described above with reference to FIGS. 5 to 7 can be applied to the modulation circuit 10.
  • the digital data generating circuit 30 sequentially generates digital data to be transmitted.
  • the modulation circuit 10 generates a modulation signal based on the digital data. Further, the RFZIF analog circuit 40 upgrades the baseband modulation signal generated by the modulation circuit 10 to the radio frequency band and performs radio transmission. With such a configuration, the first to third modulation circuits of the present application can be realized.
  • FIG. 12 is another example of the entire block diagram of the modulation circuit according to Embodiment 1 of the present invention.
  • the overall block diagram of FIG. 12 is different from the overall block diagram of FIG. 11 in that a spread modulation circuit 50 that performs spread modulation of digital data is newly provided.
  • the spread modulation circuit 50 includes a spread code generation circuit 51 that generates a spread code and a spread operation implementation circuit 52 that spreads digital data based on the spread code.
  • the modulation system according to the present invention can have an effect of excellent secrecy that is strong against interference of spread coding.
  • FIG. 13 is an overall configuration diagram of a digital transmission system to which the modulation method according to Embodiment 1 of the present invention is applied.
  • the digital transmission system of FIG. 13 illustrates a wireless communication system including a wireless access point 60 connected to the Internet and wireless terminals 61 to 63 connected to a plurality of notebook PCs, etc.
  • the following shows the case where the modulation method according to is applied as a wireless LAN.
  • Each terminal maintains a respective communication line from the wireless access point 60 to each wireless terminal 61 to 63, and from each wireless terminal 61 to 63 to the wireless access point 60. It is possible to use the modulation system of the present invention for both or one line.
  • each wireless terminal 61-63 Individual modulation schemes or different carrier frequencies can be used. Furthermore, even in the same wireless terminal, individual modulation is performed in the upstream direction (from each wireless terminal 61 to 63 to the wireless access point 60) and in the downstream direction (from the wireless access point 60 to each wireless terminal 61 to 63). It is also possible to use schemes or different carrier frequencies. In addition, it is possible to have some modulation methods coexist with conventional modulation methods.
  • a radio communication system can be constructed without being restricted by a specific modulation method, and the modulation scheme of the present invention can be applied to communication that requires high-speed transmission.
  • the symbol point arrangement is determined on the phase plane.
  • the area of the phase plane to be arranged so that the amount of phase change is limited, it is possible to increase the number of transmission bits per symbol and narrow the baseband bandwidth.
  • An enabling digital modulation method can be obtained.
  • the modulation method of the present invention is constant-amplitude modulation, an operation margin of a power amplifier or a mixer is not particularly required. Therefore, compared with other high-speed methods using phase modulation or the like, The burden is small. Furthermore, since the GMSK multi-leveling that limits the band by the Gaussian filter is an extension by the conventional MSK filtering, the modulation method of the present invention can be applied.

Abstract

Provided is a digital modulation method capable of narrowing a base band width while increasing the number of transmission bits per symbol. The digital modulation method deviates the phase of a carrier signal continuously thereby to transmit digital data, and limits the maximum of the phase to be deviated, when digital data of 2 bits or more is transmitted by one phase deviation. A digital modulation circuit includes a base band signal generation circuit (11) for generating a base band signal, of which the maximum of the phase to be deviated is limited, in a manner to meet the digital data of 2 bits or more to be transmitted by one phase deviation, and an orthogonal modulator (12) for modulating the generated base band signal orthogonally.

Description

明 細 書  Specification
ディジタル変調方法、ディジタル変調回路、ディジタル復調回路、および ディジタル伝送システム  Digital modulation method, digital modulation circuit, digital demodulation circuit, and digital transmission system
技術分野  Technical field
[0001] 本発明は、高速なディジタル伝送を行うためのディジタル変調方法、ディジタル変 調回路、ディジタル復調回路、およびディジタル伝送システムに関する。  The present invention relates to a digital modulation method, a digital modulation circuit, a digital demodulation circuit, and a digital transmission system for performing high-speed digital transmission.
背景技術  Background art
[0002] 無線通信技術は、無線 LANに代表されるように、 100Mビット毎秒を越える高速ィ匕 へと進んでいる。今後、 1Gビット毎秒へ進展することは間違いなぐ高速通信に適し た通信方式は必須である。現在の高速伝送は、 OFDM (Orthogonal Frequency Division Multiplexing :直交周波数分割多重)による通信で実現されている。 O FDMは、現在、 20MHzの RF (Radio Frequency:無線周波数)帯域で 54Mビッ ト毎秒を実現しており、次世代無線 LAN規格においても 1Hz当り 3ビット伝送を実現 しており、高速伝送に適している。  [0002] As represented by wireless LAN, wireless communication technology has advanced to high-speed transmission exceeding 100 Mbit / s. In the future, a communication method suitable for high-speed communication that will definitely advance to 1 Gbit / s is essential. The current high-speed transmission is realized by communication using OFDM (Orthogonal Frequency Division Multiplexing). OFDM is currently capable of 54Mbit / s in the 20MHz RF (Radio Frequency) band, and 3bit transmission per 1Hz in the next generation wireless LAN standard, suitable for high-speed transmission ing.
[0003] し力しながら、無線装置を構築する際には、 OFDM信号の PAPR (Peak to Ave rage Power Ratio :ピーク電力と平均電力の比)が大きぐ増幅器、ミキサなどに バックオフ(線形動作させるための動作マージン)を大きくとる必要があり、デバイスへ の負担が大きい。 1Gビット毎秒の通信を実現する周波数帯として、数十 GHzの周波 数帯が有望であるが、 5GHz帯以下のデバイスと比べ、デバイス性能が相対的に低 く、デバイスに負担の少な 、通信方式が必須である。  [0003] However, when building a wireless device, backoff (linear operation) to an amplifier, mixer, etc., where the PAPR (Peak to Average Power Ratio) of the OFDM signal is large Operating margin) to increase the load on the device. A frequency band of several tens of GHz is promising as a frequency band that realizes communication at 1 Gbit per second, but the communication performance is relatively low and less burdensome on devices compared to devices below 5 GHz. Is essential.
[0004] また、高速伝送を実現するに当り、ベースバンド帯での信号処理の帯域幅をできる 限り小さくし、デバイスの負担を軽減することも同時に必要となる。なお、その他に、で きるだけ狭い RF帯域を使用して高速伝送を可能とすることは、周波数有効利用の観 点からも重要となる。  [0004] In order to realize high-speed transmission, it is also necessary to reduce the load on the device by reducing the signal processing bandwidth in the baseband as much as possible. In addition, it is important from the viewpoint of effective frequency utilization to enable high-speed transmission using the narrowest RF band possible.
[0005] 振幅を一定にしたまま、位相を連続的に変化させる変調方式として、 MSK (Minim urn Shift Keying)、さらに、多値化することにより高速化を図る 4値 MSKなどがあ る(例えば、非特許文献 1、 2参照)。従来の MSKは、 1ビットのディジタルデータによ り、位相偏移を ±90度のどちらかを選択して、連続的に変化させている。一方、 4値 MSKは、伝送すべきディジタルデータの 2ビットのデータ値に基づき、 ± 135度、士 45度を選択し、伝送速度を向上させている。 [0005] There are MSK (Minimum Shift Keying) as a modulation method that continuously changes the phase while keeping the amplitude constant, and four-value MSK that increases speed by multi-leveling (for example, Non-Patent Documents 1 and 2). Conventional MSK uses 1-bit digital data. Therefore, the phase shift is selected continuously by selecting either ± 90 degrees. On the other hand, 4-level MSK selects ± 135 degrees or 45 degrees based on the 2-bit data value of the digital data to be transmitted to improve the transmission speed.
[0006] また、さらなる MSK方式の変形として、 1ビットの伝送すべきディジタルデータにより 、 ± 90度のどちらかを選択する従来の ± 90度の位相偏移のある MSKに加え、連続 する 2ビットのデータパターンがある特別な配列になる場合に位相偏移 0度とすること をカ卩える方式がある(例えば、特許文献 1参照)。この方式では、公知の MSK方式と 異なる位相偏移パターンを用いることで、占有帯域幅を 2Z3まで低減することが可 能である。 [0006] Further, as a further modification of the MSK system, in addition to the conventional MSK having a phase shift of ± 90 degrees, which selects either ± 90 degrees depending on 1-bit digital data to be transmitted, two consecutive bits There is a method that can detect that the phase deviation is 0 degree when the data pattern is a special arrangement (see, for example, Patent Document 1). In this method, the occupied bandwidth can be reduced to 2Z3 by using a phase shift pattern different from the known MSK method.
[0007] さらに、従来の MSKを狭帯域化する技術として、 TFM (Tamed Frequency M odulation)がある(例えば、非特許文献 2参照)。 TFMは、 1ビットのデータを送信す るために、送るべき 1ビットデータと、それまでに送った過去の 2ビットのデータ、つまり 合計 3ビットのデータパターンに応じて、位相偏移を決定する方法である。  [0007] Further, there is TFM (Tamed Frequency Modulation) as a technique for narrowing the bandwidth of the conventional MSK (see, for example, Non-Patent Document 2). To transmit 1-bit data, TFM determines the phase shift according to the 1-bit data to be sent and the past 2-bit data sent so far, that is, the data pattern of 3 bits in total. Is the method.
[0008] そのルールは、 π Ζ2 Χ (d Z4 + d Z2 + d Z4)である。ここで、 d はすでに送 信した 2ビット前のデータ、 dはすでに送信した 1ビット前のデータ、 dは伝送すべき  [0008] The rule is π Ζ2 Χ (d Z4 + d Z2 + d Z4). Where d is the data 2 bits before the transmission, d is the data 1 bit before the transmission, d is to be transmitted
0 1  0 1
データである。データパターンにより、士 π Ζ2、士 π Ζ4、 0の位相偏移を取るため、 従来の MSK方式より 3dB帯域幅を狭くすることができる。  It is data. Depending on the data pattern, the phase shifts of π Ζ2, π Ζ4, and 0 are taken, so the 3dB bandwidth can be narrower than the conventional MSK method.
[0009] 非特許文献 1: S. Pasupathy, " Minimum Shift Keying: A Spectrally Efficiency Modula tion, IEEE Communication Magazine, vol.17, pp.14— 22, July 1979. [0009] Non-Patent Document 1: S. Pasupathy, "Minimum Shift Keying: A Spectrally Efficiency Modula tion, IEEE Communication Magazine, vol.17, pp.14—22, July 1979.
非特許文献 2 :斎藤洋ー著 「ディジタル無線通信の変復調」電子情報通信学会 P7 8〜88  Non-Patent Document 2: Hiroshi Saito “Modulation and Demodulation of Digital Wireless Communication” The Institute of Electronics, Information and Communication Engineers P7 8-88
特許文献 1 :特表 2000— 511009号公報 (第 1頁、図 1)  Patent Document 1: Japanese Translation of Special Publication 2000-511009 (Page 1, Figure 1)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] し力しながら、従来技術には次のような課題がある。非特許文献 2における 4値 MS Kは、多値ィ匕したことにより伝送速度を向上させることを可能としている力 偏移させる 位相の最大値が ± 135度とするため占有帯域幅が著しく拡大し、結果的にベースバ ンド帯域および RF帯域が従来の MSK方式と同等になってしまい、狭帯域ィ匕できな いという問題があった。 However, the conventional techniques have the following problems. The four-value MS K in Non-Patent Document 2 is a force that can improve the transmission speed due to the multi-value key shift. The maximum value of the phase to be shifted is ± 135 degrees, which significantly increases the occupied bandwidth. As a result, the baseband band and RF band become the same as the conventional MSK system, and narrowband noise cannot be achieved. There was a problem.
[0011] また、特許文献 1における MSKの変形方式は、従来の MSK方式に比べて占有帯 域幅を 2Z3まで低減することが可能である力 1回の位相偏移で 1ビットのみの伝送 である点、また狭帯域化も充分ではなぐこれ以上の狭帯域ィ匕を図る変調方式に拡 張して適用できな 、点が問題であった。  [0011] In addition, the MSK modification method in Patent Document 1 can reduce the occupied bandwidth to 2Z3 compared to the conventional MSK method with only one bit transmission with one phase shift. There was a problem in that it was not possible to extend and apply to a modulation system that achieves a narrower band width that is not sufficient for narrowing the band.
[0012] また、非特許文献 2における TFMは、従来の MSK方式より 3dB帯域幅を狭くする ことができるものの、 1回の位相偏移で 1ビットのみの伝送である点、メインローブは従 来の MSKの 4Z3倍となる点が問題であった。 [0012] Although the TFM in Non-Patent Document 2 can narrow the 3dB bandwidth compared to the conventional MSK method, the transmission is only one bit with one phase shift, and the main lobe is conventional. The problem is that it is 4Z3 times larger than the MSK.
[0013] ここで、 MSK変調信号の帯域幅は、シンボル点が偏移する際に必要となるベクトル 位相変化量の最大値で決定される。通常の MSK変調方式では、 1ビット伝送での最 大偏移は ± 90度となり、かつ位相が連続的に変化することから、ベースバンド帯域幅 は、シンボル速度の 3Z4となる。 [0013] Here, the bandwidth of the MSK modulation signal is determined by the maximum value of the vector phase change amount required when the symbol point shifts. In the normal MSK modulation system, the maximum deviation in 1-bit transmission is ± 90 degrees and the phase changes continuously, so the baseband bandwidth is 3Z4 of the symbol rate.
[0014] 例えば、 1Gビット毎秒以上の高速データ伝送を考えた場合、 1シンボルで伝送する ビット数が 2ビットの場合、 500Mシンボル毎秒となり、 RF帯域は 750MHz以上、ベ ースバンド帯域は 375MHz以上必要となる。 [0014] For example, when considering high-speed data transmission of 1 Gbit / s or more, if the number of bits transmitted in 1 symbol is 2 bits, 500 Msymbol / s is required, and the RF band is 750 MHz or more and the baseband band is 375 MHz or more. Become.
[0015] 一方、非特許文献 2の 4値 MSKの場合、シンボル速度は 250Mシンボル毎秒に低 下するものの、 1回の位相偏移の最大値が ± 135度であるため RF帯域は 750MHzOn the other hand, in the case of 4-level MSK in Non-Patent Document 2, the symbol rate is reduced to 250M symbols per second, but since the maximum value of one phase shift is ± 135 degrees, the RF band is 750 MHz.
、ベースバンド帯域は 375MHzとなり、従来の MSKと同じ周波数帯域が必要となるThe baseband bandwidth is 375MHz, which requires the same frequency band as the conventional MSK
。また、特許文献 1に記載の変形 MSK方式を用いた場合でも、 RF帯域は 500MHz. Even when the modified MSK method described in Patent Document 1 is used, the RF bandwidth is 500 MHz.
、ベースバンド帯域幅は 250MHz以上必要となる。 Baseband bandwidth needs to be over 250MHz.
[0016] ベースバンド信号の処理の容易さを考慮すると、 1シンボル当りのビット数を増加さ せた上で、さらに、ベースバンド帯域幅を狭く処理することが可能な変調方式が必要 となる。 [0016] In consideration of the ease of processing of the baseband signal, a modulation scheme that can further reduce the baseband bandwidth after increasing the number of bits per symbol is required.
[0017] 本発明は上述のような課題を解決するためになされたもので、シンボル当りの伝送 ビット数を増加させた上で、かつベースバンド帯域幅を狭くすることが可能となるディ ジタル変調方法、ディジタル変調回路、ディジタル復調回路、およびディジタル伝送 システムを得ることを目的とする。  [0017] The present invention has been made to solve the above-described problems, and is capable of reducing the baseband bandwidth while increasing the number of transmission bits per symbol and reducing the baseband bandwidth. It is an object to obtain a method, a digital modulation circuit, a digital demodulation circuit, and a digital transmission system.
課題を解決するための手段 [0018] 本発明に係るディジタル変調方法は、搬送波信号の位相を連続的に偏移させディ ジタルデータを伝送するディジタル変調方法において、 1回の位相偏移により 2ビット 以上のディジタルデータを伝送する際に、偏移させる位相の最大値を制限するもの である。 Means for solving the problem [0018] A digital modulation method according to the present invention is a digital modulation method for transmitting digital data by continuously shifting the phase of a carrier signal, and transmitting digital data of 2 bits or more by one phase shift. In this case, the maximum value of the phase to be shifted is limited.
[0019] また、本発明に係るディジタル変調回路は、 1回の位相偏移により送信すべき 2ビッ ト以上のディジタルデータに対応して、偏移させる位相の最大値を制限したベースバ ンド信号を生成するベースバンド信号発生回路と、生成されたベースバンド信号を直 交変調する直交変調器とを備えたものである。  [0019] Further, the digital modulation circuit according to the present invention generates a baseband signal in which the maximum value of the phase to be shifted is limited corresponding to digital data of 2 bits or more to be transmitted by one phase shift. A baseband signal generation circuit to be generated and a quadrature modulator that orthogonally modulates the generated baseband signal are provided.
[0020] さらに、本発明に係るディジタル伝送システムは、同じ搬送波周波数もしくは異なる 搬送波周波数を用いて基地局と端末との双方向通信を行うディジタル伝送システム において、基地局もしくは端末の少なくともいずれか 1つは、本発明のディジタル変 調回路を備えるものである。  [0020] Furthermore, the digital transmission system according to the present invention is a digital transmission system that performs bidirectional communication between a base station and a terminal using the same carrier frequency or different carrier frequencies, and at least one of the base station and the terminal. Is provided with the digital modulation circuit of the present invention.
発明の効果  The invention's effect
[0021] 本発明によれば、シンボルあたりのビット数を増カロさせるために多値ィ匕を行った後、 位相平面上にそのシンボル点配置を決定する際に、位相変化量が限定されるように 、配置する位相平面の領域を制限することにより、シンボル当りの伝送ビット数を増加 させた上で、かつベースバンド帯域幅を狭くすることが可能となるディジタル変調方 法、ディジタル変調回路、ディジタル復調回路、およびディジタル伝送システムを得る ことができる。  [0021] According to the present invention, the phase change amount is limited when determining the symbol point arrangement on the phase plane after performing the multi-value key to increase the number of bits per symbol. In this way, by limiting the area of the phase plane to be arranged, the digital modulation method, the digital modulation circuit, which can increase the number of transmission bits per symbol and narrow the baseband bandwidth, A digital demodulation circuit and a digital transmission system can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0022] [図 1]本発明の実施の形態 1における多値 MSKのシンボル点の第 1の遷移例を示す 図である。  FIG. 1 is a diagram showing a first transition example of multi-level MSK symbol points in Embodiment 1 of the present invention.
[図 2]本発明の実施の形態 1における多値 MSKのシンボル点の第 2の遷移例を示す 図である。  FIG. 2 is a diagram showing a second transition example of multi-level MSK symbol points in Embodiment 1 of the present invention.
[図 3]本発明の実施の形態 1における多値 MSKのシンボル点の第 3の遷移例を示す 図である。  FIG. 3 is a diagram showing a third transition example of multi-level MSK symbol points in Embodiment 1 of the present invention.
[図 4]本発明の実施の形態 1における第 3の遷移例と従来技術との通信性能の比較 をまとめた図である。 [図 5]本発明の実施の形態 1における第 1の変調回路のブロック図である。 FIG. 4 is a diagram summarizing comparison of communication performance between the third transition example and the prior art in Embodiment 1 of the present invention. FIG. 5 is a block diagram of a first modulation circuit in the first embodiment of the present invention.
[図 6]本発明の実施の形態 1における第 2の変調回路のブロック図である。  FIG. 6 is a block diagram of a second modulation circuit in the first embodiment of the present invention.
[図 7]本発明の実施の形態 1における第 3の変調回路のブロック図である。  FIG. 7 is a block diagram of a third modulation circuit in the first embodiment of the present invention.
[図 8]本発明の実施の形態 1における第 1の復調回路のブロック図である。  FIG. 8 is a block diagram of a first demodulation circuit in the first embodiment of the present invention.
[図 9]本発明の実施の形態 1における第 2の復調回路のブロック図である。  FIG. 9 is a block diagram of a second demodulation circuit in the first embodiment of the present invention.
[図 10]本発明の実施の形態 1における第 3の復調回路のブロック図である。  FIG. 10 is a block diagram of a third demodulation circuit according to the first embodiment of the present invention.
[図 11]本発明の実施の形態 1における変調回路の全体ブロック図である。  FIG. 11 is an overall block diagram of a modulation circuit according to the first embodiment of the present invention.
[図 12]本発明の実施の形態 1における変調回路の全体ブロック図の別の例である。  FIG. 12 is another example of the entire block diagram of the modulation circuit in the first embodiment of the present invention.
[図 13]本発明の実施の形態 1における変調方法を適用したディジタル伝送システム の全体構成図である。  FIG. 13 is an overall configuration diagram of a digital transmission system to which the modulation method according to Embodiment 1 of the present invention is applied.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明のディジタル変調方法、ディジタル変調回路、ディジタル復調回路、 およびディジタル伝送システムの好適な実施の形態につき図面を用いて説明する。  Hereinafter, preferred embodiments of a digital modulation method, a digital modulation circuit, a digital demodulation circuit, and a digital transmission system according to the present invention will be described with reference to the drawings.
[0024] 本発明は、 RFデバイスへの負担軽減のため定振幅変調方式である MSK変調方 式に着目し、ベースバンド帯域の負担軽減および RF帯域の狭帯域ィ匕のために多値 化を行い、高速伝送に適したディジタル変調方法、ディジタル変調回路、ディジタル 復調回路、およびディジタル伝送システムを提供するものである。  [0024] The present invention focuses on the MSK modulation method, which is a constant amplitude modulation method to reduce the burden on the RF device, and multi-values are applied to reduce the load on the baseband and to narrow the RF band. The present invention provides a digital modulation method, a digital modulation circuit, a digital demodulation circuit, and a digital transmission system suitable for high-speed transmission.
[0025] すなわち、本発明は、搬送波信号の振幅を一定にしたまま、位相を連続的に変化 させることにより、ディジタルデータを伝送する変調方式において、必要帯域を著しく 減少させることが可能な変調方式を提供するもので、ギガビット毎秒以上の超高速無 線伝送システムにお 、て、装置構成を容易にするものである。  [0025] That is, the present invention provides a modulation method capable of significantly reducing the necessary band in a modulation method for transmitting digital data by continuously changing the phase while keeping the amplitude of the carrier signal constant. This makes it easy to configure the equipment in a gigabit per second ultra-high speed radio transmission system.
[0026] より具体的には、本発明は、シンボルあたりのビット数を増カロさせるために多値ィ匕を 行った後、位相平面上にそのシンボル点配置を決定する際に、位相変化量が限定さ れるように、配置する位相平面の領域を制限することにより、必要な帯域幅を狭くする ことを技術的特徴とするものである。  More specifically, according to the present invention, the phase change amount is determined when determining the symbol point arrangement on the phase plane after performing the multi-value 匕 to increase the number of bits per symbol. Therefore, it is a technical feature that the necessary bandwidth is narrowed by limiting the region of the phase plane to be arranged.
[0027] 実施の形態 1.  Embodiment 1.
図 1は、本発明の実施の形態 1における多値 MSKのシンボル点の第 1の遷移例を 示す図である。図 1において、横軸は、位相空間の実軸であり、縦軸は、位相空間の 虚軸である。この第 1の遷移例においては、伝送すべきビット数を、 1回の位相偏移 毎に 2ビットとしている。さらに、現在のシンボル点の位相(図 1における laに相当)か らの位相偏移の制限範囲(図 1における lbの範囲に相当)を、 ± 90度としている。そ して、 2ビットのデータに対応する位相変化量は、 ± 90度である位相偏移の制限範 囲において、 φ 1〜φ 4の 4種類となる。 FIG. 1 is a diagram showing a first transition example of multi-level MSK symbol points in Embodiment 1 of the present invention. In Fig. 1, the horizontal axis is the real axis of the phase space, and the vertical axis is the phase space. The imaginary axis. In this first transition example, the number of bits to be transmitted is 2 bits for each phase shift. In addition, the phase shift limit range (corresponding to the lb range in Fig. 1) from the current symbol point phase (corresponding to la in Fig. 1) is set to ± 90 degrees. There are four types of phase change corresponding to 2-bit data: φ1 to φ4 within the limit range of phase shift of ± 90 degrees.
[0028] このような遷移を用いることにより、 4種類の位相を使うことによる高速伝送が可能と なり、かつ、最大位相偏移量を 90度とすることで、最大位相偏移を 180度あるいは 1 35度とする場合に比べて、帯域を狭く抑圧したままでの高速伝送が可能となる。  [0028] By using such a transition, high-speed transmission is possible by using four types of phases, and by setting the maximum phase deviation amount to 90 degrees, the maximum phase deviation is 180 degrees or Compared to the case of 135 degrees, high-speed transmission with a narrow band is possible.
[0029] なお、図 1においては、最大位相偏移量を 90度とする場合を例示したが、これに限 定されない。最大位相偏移量を 135度未満とすることにより、最大位相偏移を 180度 あるいは 135度とする場合に比べて、帯域を狭く抑圧したままでの高速伝送が可能と なる。  [0029] Although FIG. 1 illustrates the case where the maximum phase shift amount is 90 degrees, the present invention is not limited to this. By setting the maximum phase deviation to less than 135 degrees, it is possible to perform high-speed transmission while suppressing the bandwidth narrower than when the maximum phase deviation is set to 180 degrees or 135 degrees.
[0030] 図 2は、本発明の実施の形態 1における多値 MSKのシンボル点の第 2の遷移例を 示す図である。図 2において、横軸は、位相空間の実軸であり、縦軸は、位相空間の 虚軸である。この第 2の遷移例においては、伝送すべきビット数を、 1回の位相偏移 毎に 3ビット、最大位相偏移量を 100度とし、また、配置するシンボル点を正負対称と している。  [0030] FIG. 2 is a diagram showing a second transition example of the symbol points of the multi-level MSK according to Embodiment 1 of the present invention. In Fig. 2, the horizontal axis is the real axis of the phase space, and the vertical axis is the imaginary axis of the phase space. In this second transition example, the number of bits to be transmitted is 3 bits for each phase shift, the maximum phase shift amount is 100 degrees, and the symbol points to be placed are symmetrical. .
[0031] この結果、現在のシンボル点の位相(図 2における 2aに相当)から、 3ビットのデータ に対応する位相変化量は、士 φ 1 (= 100度)、士 φ 2、士 φ 3、士 φ 4の 8種類となる 。さらに、これらのシンボル点は、制限した最大偏移量 100度以下(図 2における 2b の範囲に相当)において、偏移する位相をランダムに配置していることが特徴である  As a result, from the phase of the current symbol point (corresponding to 2a in FIG. 2), the amount of phase change corresponding to 3-bit data is Zhi φ1 (= 100 degrees), Zhi φ2, Zhi φ3 , There will be 8 types of Shi φ4. Furthermore, these symbol points are characterized in that the phase to be shifted is randomly arranged within the limited maximum shift amount of 100 degrees or less (corresponding to the range 2b in FIG. 2).
[0032] このような遷移を用いることにより、 8種類の位相を使うことによる高速伝送が可能と なり、かつ、最大位相偏移量を 100度とすることで、最大位相偏移を 180度や 135度 とする場合に比べて、帯域を狭く抑圧したままでの高速伝送が可能となる。 [0032] By using such transitions, high-speed transmission is possible by using eight types of phases, and by setting the maximum phase deviation amount to 100 degrees, the maximum phase deviation can be reduced to 180 degrees. Compared to the case of 135 degrees, high-speed transmission with a narrow band is possible.
[0033] 図 3は、本発明の実施の形態 1における多値 MSKのシンボル点の第 3の遷移例を 示す図である。図 3において、横軸は、位相空間の実軸であり、縦軸は、位相空間の 虚軸である。この第 3の遷移例においては、伝送すべきビット数を、 1回の位相偏移 毎に 2ビット、最大位相偏移量を 90度とし、また、配置するシンボル点を、正負対称と している。 [0033] FIG. 3 is a diagram showing a third transition example of the symbol points of the multi-level MSK according to Embodiment 1 of the present invention. In Fig. 3, the horizontal axis is the real axis of the phase space, and the vertical axis is the imaginary axis of the phase space. In this third transition example, the number of bits to be transmitted is a single phase shift. Each bit is 2 bits, the maximum phase shift is 90 degrees, and the symbol points to be placed are symmetrical.
[0034] さらに、偏移した後の各シンボル点は、位相間隔が等しくなるように配置されている 。すなわち、現在のシンボル点の位置(図 3における 3aに相当)を位相 0度とすると、 2ビットのデータに対応する位相変化量は、それぞれ、 ± 90度、 ± 30度となり、制限 した最大偏移量 90度以下(図 3における 3bの範囲に相当)において、位相間隔がど れも 60度で均一化されて 、る。  Furthermore, the symbol points after the shift are arranged so that the phase intervals are equal. In other words, if the current symbol point position (corresponding to 3a in Fig. 3) is phase 0 degrees, the amount of phase change corresponding to 2-bit data is ± 90 degrees and ± 30 degrees, respectively. Below 90 degrees (corresponding to the range 3b in Fig. 3), the phase intervals are all equalized at 60 degrees.
[0035] このような等間隔な配置とすることにより、符号誤りを起こさないための雑音余裕を 均一にして、ビット誤り率を最低にすることができる。ただし、配置するシンボル点は、 必ずしも、 90度、 30度、また正負対称である必要はない。例えば、等間隔となる配置 から ± 10%ずれた位置に配置された場合にも、ビット誤り率を大きく劣化させることな ぐ高速伝送することができる。  [0035] With such an equidistant arrangement, it is possible to make the noise margin uniform so as not to cause a code error and to minimize the bit error rate. However, the symbol points to be placed are not necessarily 90 degrees, 30 degrees, and positive / negative symmetric. For example, high-speed transmission can be performed without significantly degrading the bit error rate even when the signals are arranged at positions that are deviated ± 10% from the arrangement at equal intervals.
[0036] この図 3における第 3の遷移例によると、たとえば、 lGbpsを実現する際に、 1シンポ ル時間(=位相が ± 180度まで回転するのに要する時間の最小値)で 4ビット伝送で きるため、シンボルレート力 S250Mbpsで、必要帯域幅はその 3Z4の 187. 5MHzと なり、公知の MSK方式の半分の占有帯域幅となること力 シミュレーションにより明ら かになつている。  According to the third transition example in FIG. 3, for example, when realizing 1 Gbps, 4-bit transmission is performed in one symbol time (= the minimum time required for the phase to rotate to ± 180 degrees). Therefore, with a symbol rate of S250 Mbps, the required bandwidth is 187.5 MHz of the 3Z4, and it is clear from power simulation that the occupied bandwidth is half that of the known MSK system.
[0037] 図 4は、本発明の実施の形態 1における第 3の遷移例と従来技術との通信性能の 比較をまとめた図である。図 4から明らかなように、同一のビット速度に対して、本発明 におけるベースバンド帯域および RF帯域が公知技術より狭帯域化されている。  [0037] FIG. 4 is a diagram summarizing comparison of communication performance between the third transition example in the first embodiment of the present invention and the conventional technology. As is apparent from FIG. 4, the baseband band and the RF band in the present invention are narrower than the known technique for the same bit rate.
[0038] すなわち、シンボルあたりのビット数を増カロさせるために多値ィ匕を行った後、位相平 面上にそのシンボル点配置を決定する際に、位相変化量が限定されるように、配置 する位相平面の領域を制限する本発明の変調方式を用いることにより、 RF帯域およ びベースバンド帯域を狭帯域化させることが可能となる。  [0038] That is, after performing multi-value 匕 to increase the number of bits per symbol, the amount of phase change is limited when determining the symbol point arrangement on the phase plane. By using the modulation method of the present invention that limits the region of the phase plane to be arranged, it is possible to narrow the RF band and the baseband band.
[0039] 位相平面の領域を制限することにより、全領域を使用する場合と比較してビット誤り 率は高くなつてしまう。し力しながら、高速伝送を実現するに当り、ベースバンド帯で の信号処理の帯域幅をできる限り小さくし、デバイスの負担を軽減することが可能とな り、発熱等の問題が重要となる数十 GHzの周波数帯においても、既存のデバイスを 適用した高速伝送を可能とし、結果として、周波数有効利用を図ることができる。 [0039] By limiting the region of the phase plane, the bit error rate becomes higher than when the entire region is used. However, when realizing high-speed transmission, it is possible to reduce the bandwidth of signal processing in the baseband as much as possible to reduce the burden on the device, and problems such as heat generation become important. Even in the tens of GHz frequency band, existing devices The applied high-speed transmission is possible, and as a result, effective use of the frequency can be achieved.
[0040] 次に、上述のようなシンボル点の配置に基づくディジタル変調方式を実施するため のディジタル伝送システムを構成する変調回路および復調回路について説明する。 まず始めに、変調回路について説明する。図 5は、本発明の実施の形態 1における 第 1の変調回路のブロック図である。この第 1の変調回路は、送信すべきディジタル データに基づき、定義されたベクトルの偏移を実現するベースバンド信号を発生する ベースバンド信号発生回路 11と、局部発振器 12aを備え、搬送波周波数を直交変 調するための直交変調回路 12とから構成される。  [0040] Next, a modulation circuit and a demodulation circuit constituting a digital transmission system for implementing a digital modulation system based on the arrangement of symbol points as described above will be described. First, the modulation circuit will be described. FIG. 5 is a block diagram of the first modulation circuit according to the first embodiment of the present invention. The first modulation circuit includes a baseband signal generation circuit 11 that generates a baseband signal that realizes a shift of a defined vector based on digital data to be transmitted, and a local oscillator 12a. It consists of a quadrature modulation circuit 12 for modulation.
[0041] ベースバンド信号発生回路 11は、送信すべきディジタルデータに対応して位相空 間上のシンボル点を特定するために、図 1〜図 3で示された位相空間の実軸と虚軸 に相当する 2つの値を出力する。そして、直交変調回路 12は、ベースバンド信号発 生回路 11からの 2つの出力信号に対して、直交変調を施すことにより、ディジタルデ ータに対応した変調信号を生成する。  [0041] The baseband signal generation circuit 11 specifies the real and imaginary axes of the phase space shown in FIGS. 1 to 3 in order to identify symbol points on the phase space corresponding to the digital data to be transmitted. Output two values corresponding to. Then, the quadrature modulation circuit 12 performs a quadrature modulation on the two output signals from the baseband signal generation circuit 11 to generate a modulation signal corresponding to digital data.
[0042] 図 6は、本発明の実施の形態 1における第 2の変調回路のブロック図である。この第 2の変調回路は、ベースバンド信号発生回路 11と直交変調回路 12との間に新たに 逆高速フーリエ変換回路 (逆 FFT) 13を備えている点が、先の図 5における第 1の変 調回路と異なる。  FIG. 6 is a block diagram of the second modulation circuit in the first embodiment of the present invention. This second modulation circuit is newly provided with an inverse fast Fourier transform circuit (inverse FFT) 13 between the baseband signal generation circuit 11 and the quadrature modulation circuit 12. Different from the modulation circuit.
[0043] そして、この第 2の変調回路は、送信すべきディジタルデータに基づき、定義された ベクトルの偏移を実現するベースバンド信号を発生するために、ベースバンド信号発 生回路 11と逆高速フーリエ変換回路 13とを組み合わせた回路を用いている。なお、 図 6においては、ベースバンド信号発生回路 11と逆高速フーリエ変換回路 13とを別 々に記載している力 ベースバンド信号発生回路 11の中に逆高速フーリエ変換回路 13を含む構成とすることも可能である。  [0043] Then, the second modulation circuit generates a baseband signal that realizes the shift of the defined vector based on the digital data to be transmitted. A circuit combining the Fourier transform circuit 13 is used. In FIG. 6, the baseband signal generation circuit 11 and the inverse fast Fourier transform circuit 13 are separately described. The force baseband signal generation circuit 11 includes the inverse fast Fourier transform circuit 13. It is also possible.
[0044] 最終的に、逆高速フーリエ変換回路 13は、先の図 5におけるベースバンド信号発 生回路 11と同様の 2つの値を出力することとなる。さらに、直交変調回路 12は、逆高 速フーリエ変換回路 13からの 2つの出力信号に対して、直交変調を施すことにより、 ディジタルデータに対応した変調信号を生成する。  Finally, the inverse fast Fourier transform circuit 13 outputs two values similar to the baseband signal generation circuit 11 in FIG. Furthermore, the quadrature modulation circuit 12 performs a quadrature modulation on the two output signals from the inverse high-speed Fourier transform circuit 13 to generate a modulation signal corresponding to the digital data.
[0045] 図 7は、本発明の実施の形態 1における第 3の変調回路のブロック図である。この第 3の変調回路は、送信すべきディジタルデータに基づき、定義されたベクトルの偏移 を実現する制御信号発生回路 14と、電圧制御発信器 15とから構成される。 MSKの 場合には、このような構成をとることにより、連続的に位相を変化させた変調波を発生 させることがでさる。 FIG. 7 is a block diagram of the third modulation circuit in the first embodiment of the present invention. This first The modulation circuit 3 is composed of a control signal generation circuit 14 and a voltage control transmitter 15 that realize a deviation of a defined vector based on digital data to be transmitted. In the case of MSK, it is possible to generate a modulated wave whose phase is continuously changed by adopting such a configuration.
[0046] 次に、復調回路について説明する。図 8は、本発明の実施の形態 1における第 1の 復調回路のブロック図である。この第 1の復調回路は、局部発振器 21aを備えた直交 復調回路 21と、ベースバンド信号判定回路 22とから構成される。  Next, the demodulation circuit will be described. FIG. 8 is a block diagram of the first demodulation circuit according to Embodiment 1 of the present invention. The first demodulating circuit includes an orthogonal demodulating circuit 21 having a local oscillator 21a and a baseband signal determining circuit 22.
[0047] 直交復調回路 21は、直交変調されて送信されたベースバンド信号を変換する。さ らに、ベースバンド信号判定回路 22は、直交復調回路 21により変換されたベースバ ンド信号に基づき、受信波のベクトル偏移を検出し、受信ディジタルデータを復調す る。  [0047] The quadrature demodulation circuit 21 converts a baseband signal transmitted by quadrature modulation. Further, the baseband signal determination circuit 22 detects the vector shift of the received wave based on the baseband signal converted by the orthogonal demodulation circuit 21, and demodulates the received digital data.
[0048] 図 9は、本発明の実施の形態 1における第 2の復調回路のブロック図である。この第 2の復調回路は、局部発振器 21aを備えた直交復調回路 21とベースバンド信号判定 回路 22との間に新たに高速フーリエ変換回路 (FFT) 23を備えている点が、先の図 8における第 1の復調回路と異なる。  FIG. 9 is a block diagram of a second demodulation circuit in the first embodiment of the present invention. This second demodulator circuit is further provided with a fast Fourier transform circuit (FFT) 23 between the quadrature demodulator circuit 21 provided with the local oscillator 21a and the baseband signal determination circuit 22, as shown in FIG. Different from the first demodulator circuit.
[0049] 本発明の変調方式は、本質的に周波数変調であり、周波数検出回路を用い、その 検出結果力も受信データを復調可能である。そこで、この第 2の復調回路では、受信 周波数の検出を行うために、高速フーリエ変換回路 (FFT) 23を用いることを特徴と している。なお、図 9においては、高速フーリエ変換回路 23とベースバンド信号判定 回路 22とを別々に記載している力 ベースバンド信号判定回路 22の中に高速フーリ ェ変換回路 23を含む構成とすることも可能である。  [0049] The modulation method of the present invention is essentially frequency modulation, and a frequency detection circuit is used, and the detection result power can be demodulated. Therefore, this second demodulation circuit is characterized by using a fast Fourier transform circuit (FFT) 23 in order to detect the reception frequency. In FIG. 9, the fast Fourier transform circuit 23 and the baseband signal determination circuit 22 are described separately. The baseband signal determination circuit 22 may include the high-speed Fourier transform circuit 23. Is possible.
[0050] 図 10は、本発明の実施の形態 1における第 3の復調回路のブロック図である。この 第 3の復調回路は、周波数判定回路 24と、ベースバンド信号判定回路 22とから構成 される。  FIG. 10 is a block diagram of a third demodulation circuit in the first embodiment of the present invention. The third demodulator circuit includes a frequency determination circuit 24 and a baseband signal determination circuit 22.
[0051] 本発明の変調方式は、本質的に周波数変調であり、周波数検出回路を用い、その 検出結果力も受信データを復調可能である。そこで、この第 3の復調回路では、直交 変調されて送信された信号を受信して、受信周波数の検出を行うために、周波数判 定回路 24を用いることを特徴として 、る。 [0052] 図 11は、本発明の実施の形態 1における変調回路の全体ブロック図であり、デイジ タルデータ発生回路 30、変調回路 10、 RFZIFアナログ回路 40から構成される。こ こで、変調回路 10には、先に図 5〜7を用いて説明した第 1の変調回路〜第 3の変調 回路のいずれもが適用可能である。 [0051] The modulation method of the present invention is essentially frequency modulation and uses a frequency detection circuit, and the detection result power can be demodulated. Therefore, the third demodulating circuit is characterized in that the frequency determining circuit 24 is used to receive a signal transmitted by orthogonal modulation and detect the received frequency. FIG. 11 is an overall block diagram of the modulation circuit according to the first embodiment of the present invention, which includes a digital data generation circuit 30, a modulation circuit 10, and an RFZIF analog circuit 40. Here, any of the first to third modulation circuits described above with reference to FIGS. 5 to 7 can be applied to the modulation circuit 10.
[0053] ディジタルデータ発生回路 30は、送信すべきディジタルデータを順次発生させる。  [0053] The digital data generating circuit 30 sequentially generates digital data to be transmitted.
変調回路 10は、ディジタルデータに基づいて変調信号を生成する。さらに、 RFZIF アナログ回路 40は、変調回路 10で生成されたベースバンド帯の変調信号を無線周 波数帯にアップバージョンして無線送信を行う。このような構成により、本願の第 1の 変調回路〜第 3の変調回路を具現化できる。  The modulation circuit 10 generates a modulation signal based on the digital data. Further, the RFZIF analog circuit 40 upgrades the baseband modulation signal generated by the modulation circuit 10 to the radio frequency band and performs radio transmission. With such a configuration, the first to third modulation circuits of the present application can be realized.
[0054] 図 12は、本発明の実施の形態 1における変調回路の全体ブロック図の別の例であ る。図 12の全体ブロック図は、ディジタルデータの拡散変調を行う拡散変調回路 50 を新たに備えている点が、先の図 11の全体ブロック図と異なっている。ここで、拡散 変調回路 50は、拡散符号を生成する拡散符号発生回路 51と、拡散符号に基づいて ディジタルデータを拡散符号化する拡散操作実現回路 52とで構成される。  FIG. 12 is another example of the entire block diagram of the modulation circuit according to Embodiment 1 of the present invention. The overall block diagram of FIG. 12 is different from the overall block diagram of FIG. 11 in that a spread modulation circuit 50 that performs spread modulation of digital data is newly provided. Here, the spread modulation circuit 50 includes a spread code generation circuit 51 that generates a spread code and a spread operation implementation circuit 52 that spreads digital data based on the spread code.
[0055] このような回路構成を取ることにより、本発明による変調方式に対して拡散符号ィ匕を 加味することが可能となる。この結果、本発明による変調方式は、拡散符号化が有す る干渉に強ぐ秘匿性に優れた効果を兼ね備えることが可能となる。  By adopting such a circuit configuration, it becomes possible to add a spreading code to the modulation scheme according to the present invention. As a result, the modulation system according to the present invention can have an effect of excellent secrecy that is strong against interference of spread coding.
[0056] 図 13は、本発明の実施の形態 1における変調方法を適用したディジタル伝送シス テムの全体構成図である。図 13のディジタル伝送システムは、インターネットに接続 されている無線アクセスポイント 60と、複数のノート PCなどに接続される無線端末 61 〜63とで構成された無線通信システムを例示しており、本発明による変調方式を無 線 LANとして適用する場合を示して 、る。  FIG. 13 is an overall configuration diagram of a digital transmission system to which the modulation method according to Embodiment 1 of the present invention is applied. The digital transmission system of FIG. 13 illustrates a wireless communication system including a wireless access point 60 connected to the Internet and wireless terminals 61 to 63 connected to a plurality of notebook PCs, etc. The following shows the case where the modulation method according to is applied as a wireless LAN.
[0057] それぞれの端末は、無線アクセスポイント 60から各無線端末 61〜63へ、そして、 各無線端末 61〜63から無線アクセスポイント 60へのそれぞれの通信回線を維持す るわけであるが、該回線の両方、もしくは片方の回線に本発明の変調方式を用いるこ とが可能である。  [0057] Each terminal maintains a respective communication line from the wireless access point 60 to each wireless terminal 61 to 63, and from each wireless terminal 61 to 63 to the wireless access point 60. It is possible to use the modulation system of the present invention for both or one line.
[0058] すなわち、本発明の通信方式を適用した無線通信システムにお 、ては、システム 全体として必ずしも統一した変調方式を用いる必要はない。各無線端末 61〜63で 個別の変調方式あるいは異なる搬送波周波数を用いることが可能である。さらに、同 一の無線端末においても、上り方向(各無線端末 61〜63から無線アクセスポイント 6 0へ)と下り方向(無線アクセスポイント 60から各無線端末 61〜63へ)とで個別の変 調方式あるいは異なる搬送波周波数を用いることも可能である。また、一部の通信方 式に従来技術による変調方式を併存させることも可能である。 That is, in a wireless communication system to which the communication system of the present invention is applied, it is not always necessary to use a unified modulation system as the entire system. With each wireless terminal 61-63 Individual modulation schemes or different carrier frequencies can be used. Furthermore, even in the same wireless terminal, individual modulation is performed in the upstream direction (from each wireless terminal 61 to 63 to the wireless access point 60) and in the downstream direction (from the wireless access point 60 to each wireless terminal 61 to 63). It is also possible to use schemes or different carrier frequencies. In addition, it is possible to have some modulation methods coexist with conventional modulation methods.
[0059] これにより、特定の変調方法に縛られずに無線通信システムを構築することができ るとともに、高速伝送が要求される通信に本発明の変調方式を適用することができる [0059] Thereby, a radio communication system can be constructed without being restricted by a specific modulation method, and the modulation scheme of the present invention can be applied to communication that requires high-speed transmission.
[0060] 以上のように、本発明の実施の形態 1によれば、シンボルあたりのビット数を増加さ せるために多値ィ匕を行った後、位相平面上にそのシンボル点配置を決定する際に、 位相変化量が限定されるように、配置する位相平面の領域を制限することにより、シ ンボル当りの伝送ビット数を増カロさせた上で、かつベースバンド帯域幅を狭くすること が可能となるディジタル変調方法を得ることができる。 [0060] As described above, according to the first embodiment of the present invention, after performing multi-value 匕 in order to increase the number of bits per symbol, the symbol point arrangement is determined on the phase plane. However, by limiting the area of the phase plane to be arranged so that the amount of phase change is limited, it is possible to increase the number of transmission bits per symbol and narrow the baseband bandwidth. An enabling digital modulation method can be obtained.
[0061] 本発明の変調方法は、定振幅変調であることから、特に電力増幅器やミキサの動 作マージンを不要とするため、他の位相変調などを用いた高速化手法に比べデバィ スへの負担が小さい。さらに、ガウシアンフィルタにより帯域制限を行う GMSKの多値 化は、従来の MSKのフィルタリングによる拡張であるため、本発明の変調方法を適 用することが可能である。 [0061] Since the modulation method of the present invention is constant-amplitude modulation, an operation margin of a power amplifier or a mixer is not particularly required. Therefore, compared with other high-speed methods using phase modulation or the like, The burden is small. Furthermore, since the GMSK multi-leveling that limits the band by the Gaussian filter is an extension by the conventional MSK filtering, the modulation method of the present invention can be applied.
[0062] さらに、本発明の変調方法を用いたディジタル変調回路あるいはディジタル伝送シ ステムを容易に構築することが可能となり、高速伝送を可能にし、かつ、ベースバンド 帯域幅を狭くした通信を実現できる。 [0062] Furthermore, it becomes possible to easily construct a digital modulation circuit or digital transmission system using the modulation method of the present invention, enabling high-speed transmission and realizing communication with a narrow baseband bandwidth. .

Claims

請求の範囲 The scope of the claims
[1] 搬送波信号の位相を連続的に偏移させディジタルデータを伝送するディジタル変 調方法において、  [1] In a digital modulation method for transmitting digital data by continuously shifting the phase of a carrier signal,
1回の位相偏移により 2ビット以上のディジタルデータを伝送する際に、偏移させる 位相の最大値を制限することを特徴とするディジタル変調方法。  A digital modulation method characterized by limiting the maximum phase to be shifted when transmitting digital data of 2 bits or more by one phase shift.
[2] 請求項 1に記載のディジタル変調方法にぉ 、て、 [2] In the digital modulation method according to claim 1,
1回の位相偏移により 2ビットのディジタルデータを伝送する際に、偏移させる位相 の最大値を ± 135度未満に制限することを特徴とするディジタル変調方法。  A digital modulation method characterized by limiting the maximum value of the phase to be shifted to less than ± 135 degrees when transmitting 2-bit digital data with one phase shift.
[3] 請求項 1に記載のディジタル変調方法にぉ 、て、 [3] In the digital modulation method according to claim 1,
2ビット以上の伝送すべきディジタルデータで決定される位相量を、制限された最大 値以下で任意の位相量に定義することを特徴とするディジタル変調方法。  A digital modulation method, characterized in that a phase amount determined by digital data to be transmitted of 2 bits or more is defined as an arbitrary phase amount below a limited maximum value.
[4] 請求項 1に記載のディジタル変調方法にぉ 、て、 [4] In the digital modulation method according to claim 1,
2ビット以上の伝送すべきディジタルデータで決定される位相量を、制限された最大 値以下で、かつ偏移した位相点の位相間隔が等しくなるように定義することを特徴と するディジタル変調方法。  A digital modulation method characterized in that the phase amount determined by digital data to be transmitted of 2 bits or more is defined to be equal to or less than a limited maximum value and to be equal in phase interval between shifted phase points.
[5] 1回の位相偏移により送信すべき 2ビット以上のディジタルデータに対応して、偏移 させる位相の最大値を制限したベースバンド信号を生成するベースバンド信号発生 回路と、 [5] A baseband signal generation circuit that generates a baseband signal in which the maximum value of the phase to be shifted is limited, corresponding to digital data of 2 bits or more to be transmitted by one phase shift,
生成された前記ベースバンド信号を直交変調する直交変調器と  An orthogonal modulator for orthogonally modulating the generated baseband signal;
を備えたことを特徴とするディジタル変調回路。  A digital modulation circuit comprising:
[6] 請求項 5に記載のディジタル変調回路にぉ 、て、 [6] The digital modulation circuit according to claim 5,
前記ベースバンド信号発生回路は、前記ベースバンド信号を生成するための逆高 速フーリエ変換回路を有することを特徴とするディジタル変調回路。  The digital modulation circuit, wherein the baseband signal generation circuit includes an inverse high-speed Fourier transform circuit for generating the baseband signal.
[7] 請求項 5または 6に記載のディジタル変調回路にぉ 、て、  [7] The digital modulation circuit according to claim 5 or 6,
前記ディジタルデータをベースバンド帯で拡散した信号を生成する拡散変調回路 をさらに備え、  A spread modulation circuit for generating a signal obtained by spreading the digital data in a baseband;
前記ベースバンド信号発生回路は、前記ディジタルデータをベースバンド帯で拡散 した信号に対応して前記ベースバンド信号を生成する ことを特徴とするディジタル変調回路。 The baseband signal generation circuit generates the baseband signal corresponding to a signal obtained by spreading the digital data in a baseband. A digital modulation circuit characterized by the above.
[8] 1回の位相偏移により送信すべき 2ビット以上のディジタルデータに対応して、偏移 させる位相の最大値を制限した位相制御信号を生成する制御信号発生回路と、 生成された前記位相制御信号に応じて連続的に位相を変化させた発振信号を生 成する電圧制御発振器と  [8] A control signal generation circuit that generates a phase control signal that limits the maximum value of the phase to be shifted, corresponding to digital data of 2 bits or more to be transmitted by one phase shift, and the generated A voltage-controlled oscillator that generates an oscillation signal whose phase is continuously changed according to the phase control signal;
を備えたことを特徴とするディジタル変調回路。  A digital modulation circuit comprising:
[9] 請求項 8に記載のディジタル変調回路にぉ 、て、 [9] In the digital modulation circuit according to claim 8,
前記ディジタルデータをベースバンド帯で拡散した信号を生成する拡散変調回路 をさらに備え、  A spread modulation circuit for generating a signal obtained by spreading the digital data in a baseband;
前記制御信号発生回路は、前記ディジタルデータをベースバンド帯で拡散した信 号に対応して前記位相制御信号を生成する  The control signal generation circuit generates the phase control signal corresponding to a signal obtained by spreading the digital data in a baseband.
ことを特徴とするディジタル変調回路。  A digital modulation circuit.
[10] 1回の位相偏移により送信すべき 2ビット以上のディジタルデータに対応して、偏移 させる位相の最大値を制限したベースバンド信号を直交変調した信号を受信し、前 記直交変調した信号を変換して前記ベースバンド信号を生成する直交復調回路と、 生成された前記ベースバンド信号力 受信波のベクトル偏移を検出し、前記ディジ タルデータを復調するベースバンド信号判定回路と [10] In response to digital data of 2 bits or more to be transmitted by one phase shift, a signal obtained by quadrature modulation of a baseband signal with a maximum shift phase limit is received, and the quadrature modulation described above is received. A quadrature demodulating circuit for converting the generated signal to generate the baseband signal; a baseband signal determining circuit for detecting a vector shift of the generated received baseband signal force and demodulating the digital data;
を備えたことを特徴とするディジタル復調回路。  A digital demodulation circuit comprising:
[11] 請求項 10に記載のディジタル復調回路において、 [11] In the digital demodulation circuit according to claim 10,
前記ベースバンド信号判定回路は、生成された前記ベースバンド信号の受信周波 数を解析することにより受信波のベクトル偏移を検出するための高速フーリエ変換回 路を有することを特徴とするディジタル復調回路。  The baseband signal determination circuit has a fast Fourier transform circuit for detecting a vector shift of a received wave by analyzing a reception frequency of the generated baseband signal. .
[12] 1回の位相偏移により送信すべき 2ビット以上のディジタルデータに対応して、偏移 させる位相の最大値を制限して連続的に位相が変化する発振信号を受信し、前記 発振信号の受信周波数を判定する周波数判定回路と、 [12] In response to digital data of 2 bits or more to be transmitted with a single phase shift, the maximum value of the phase to be shifted is limited, and an oscillation signal whose phase continuously changes is received. A frequency determination circuit for determining a reception frequency of the signal;
判定された前記受信周波数から受信波のベクトル偏移を検出し、前記ディジタルデ ータを復調するベースバンド信号判定回路と  A baseband signal determination circuit for detecting a vector shift of a received wave from the determined reception frequency and demodulating the digital data;
を備えたことを特徴とするディジタル復調回路。 同じ搬送波周波数もしくは異なる搬送波周波数を用いて基地局と端末との双方向 通信を行うディジタル伝送システムにお 、て、 A digital demodulation circuit comprising: In a digital transmission system that performs bidirectional communication between a base station and a terminal using the same carrier frequency or different carrier frequencies,
前記基地局もしくは前記端末の少なくとも 、ずれか 1つは、請求項 5な 、し 9の 、ず れカゝ 1項に記載のディジタル変調回路を備えることを特徴とするディジタル伝送シス テム。  At least one of the base station or the terminal includes the digital modulation circuit according to any one of claims 5 and 9, and a digital transmission system according to claim 5.
PCT/JP2006/319984 2005-10-14 2006-10-05 Digital modulation method, digital modulation circuit, digital demodulation method, and digital transmission system WO2007043443A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007539906A JP5207517B2 (en) 2005-10-14 2006-10-05 Digital modulation method, digital modulation circuit, digital demodulation circuit, and digital transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-300386 2005-10-14
JP2005300386 2005-10-14

Publications (1)

Publication Number Publication Date
WO2007043443A1 true WO2007043443A1 (en) 2007-04-19

Family

ID=37942686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319984 WO2007043443A1 (en) 2005-10-14 2006-10-05 Digital modulation method, digital modulation circuit, digital demodulation method, and digital transmission system

Country Status (2)

Country Link
JP (1) JP5207517B2 (en)
WO (1) WO2007043443A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276410A (en) * 1988-09-13 1990-03-15 Kokusai Electric Co Ltd Afc circuit
JPH04257148A (en) * 1991-02-08 1992-09-11 Anritsu Corp Method and device for differential phase shift modulation
JPH07154438A (en) * 1993-07-06 1995-06-16 Ericsson Ge Mobil Commun Inc Method for communicating digital information in radio channel and transmitter
JPH09130438A (en) * 1995-10-27 1997-05-16 Matsushita Electric Ind Co Ltd Radio equipment
JPH10285228A (en) * 1997-04-02 1998-10-23 Tohoku Electric Power Co Inc Digital modulating circuit
JP2000216704A (en) * 1999-01-21 2000-08-04 Toyota Autom Loom Works Ltd Receiver used in spread spectrum communications system
JP2001298379A (en) * 2000-04-12 2001-10-26 Nec Corp Receiving circuit
JP2002171243A (en) * 2000-11-30 2002-06-14 Hitachi Kokusai Electric Inc Digital transmitting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6221352A (en) * 1985-07-22 1987-01-29 Nippon Telegr & Teleph Corp <Ntt> Phase continuous fsk modulation and demodulation system
JP4292355B2 (en) * 1999-12-03 2009-07-08 株式会社富士通ゼネラル GMSK modulation circuit
JP3542986B2 (en) * 2001-09-06 2004-07-14 アンリツ株式会社 BbT product measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0276410A (en) * 1988-09-13 1990-03-15 Kokusai Electric Co Ltd Afc circuit
JPH04257148A (en) * 1991-02-08 1992-09-11 Anritsu Corp Method and device for differential phase shift modulation
JPH07154438A (en) * 1993-07-06 1995-06-16 Ericsson Ge Mobil Commun Inc Method for communicating digital information in radio channel and transmitter
JPH09130438A (en) * 1995-10-27 1997-05-16 Matsushita Electric Ind Co Ltd Radio equipment
JPH10285228A (en) * 1997-04-02 1998-10-23 Tohoku Electric Power Co Inc Digital modulating circuit
JP2000216704A (en) * 1999-01-21 2000-08-04 Toyota Autom Loom Works Ltd Receiver used in spread spectrum communications system
JP2001298379A (en) * 2000-04-12 2001-10-26 Nec Corp Receiving circuit
JP2002171243A (en) * 2000-11-30 2002-06-14 Hitachi Kokusai Electric Inc Digital transmitting device

Also Published As

Publication number Publication date
JP5207517B2 (en) 2013-06-12
JPWO2007043443A1 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
Guo et al. WIDE: Physical-level CTC via digital emulation
CN111245757B (en) Phase shift keying modulation and demodulation method and equipment
Barnela et al. Digital modulation schemes employed in wireless communication: A literature review
Sharma et al. Analog & digital modulation techniques: an overview
Ndujiuba et al. Comparative analysis of digital modulation techniques in LTE 4G systems
US20050237923A1 (en) Multi-bank OFDM high data rate extensions
US8311146B2 (en) Radio communication system
CN112398770B (en) Bluetooth low-power consumption multiphase frequency shift keying modulation and demodulation method and equipment
US8971450B2 (en) Transmission device, reception device, transmission method and reception method for wireless communication system
CN101296208B (en) Two-bit-per-symbol small linear frequency-modulation key modulation communication method
KR20120071951A (en) Apparatus and method for transmitting and receiving
CN112600781B (en) Variable envelope frequency shift keying modulation and demodulation method and equipment
Zhao et al. Multiple chirp-rate modulation based on fractional Fourier transform
Natarajan et al. Novel multi-carrier implementation of FSK for bandwidth efficient, high performance wireless systems
WO2007043443A1 (en) Digital modulation method, digital modulation circuit, digital demodulation method, and digital transmission system
US20110228822A1 (en) Spectral smoothing wireless communications device and associated methods
Sarnin et al. BER Performance of QAM and QPSK Modulation Technique for DCT Based Channel Estimation of STBC MIMO OFDM
Pandey et al. Analysis of M-ary QAM-based OFDM systems in AWGN channel
US20240073071A1 (en) Higher bit rate modulation format for polar transmitter
Niu et al. A research on modulation in digital communication system
Bahuguna et al. A Review of Various Digital Modulation Schemes Used in Wireless Communications
Rahim et al. Design and simulation of Orthogonal Frequency Division Multiplexing transceiver system using Differential Phase Shift Keying (DPSK) for Wireless Local Area Network
Chen et al. Demonstration of DCSK-aided OFDM Design for Cognitive Radio System via USRP
CN107370707B (en) Signal processing method and device
Singh et al. A review article of signal to noise ratio using frequency division multiplexing PSO algorithm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007539906

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06821819

Country of ref document: EP

Kind code of ref document: A1