WO2007043435A1 - 光ファイバ、光伝送路、光モジュール及び光伝送システム - Google Patents

光ファイバ、光伝送路、光モジュール及び光伝送システム Download PDF

Info

Publication number
WO2007043435A1
WO2007043435A1 PCT/JP2006/319970 JP2006319970W WO2007043435A1 WO 2007043435 A1 WO2007043435 A1 WO 2007043435A1 JP 2006319970 W JP2006319970 W JP 2006319970W WO 2007043435 A1 WO2007043435 A1 WO 2007043435A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
less
dispersion
wavelength
region
Prior art date
Application number
PCT/JP2006/319970
Other languages
English (en)
French (fr)
Inventor
Takashi Sasaki
Kazumasa Makihara
Tetsuya Haruna
Masashi Onishi
Masaaki Hirano
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP06811308A priority Critical patent/EP1933182A1/en
Priority to JP2007539900A priority patent/JPWO2007043435A1/ja
Publication of WO2007043435A1 publication Critical patent/WO2007043435A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02252Negative dispersion fibres at 1550 nm
    • G02B6/02261Dispersion compensating fibres, i.e. for compensating positive dispersion of other fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29371Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion
    • G02B6/29374Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide
    • G02B6/29376Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide coupling light guides for controlling wavelength dispersion, e.g. by concatenation of two light guides having different dispersion properties
    • G02B6/29377Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating principle based on material dispersion in an optical light guide coupling light guides for controlling wavelength dispersion, e.g. by concatenation of two light guides having different dispersion properties controlling dispersion around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm

Definitions

  • Optical fiber, optical transmission line, optical module, and optical transmission system are Optical fiber, optical transmission line, optical module, and optical transmission system
  • the present invention relates to an optical transmission system that transmits signal light via an optical fiber transmission line, an optical fiber that compensates for chromatic dispersion in the entire optical fiber transmission line, and the like.
  • a single mode fiber (SMF) compliant with IEC-G652.C containing quartz glass as a main component is used as an optical fiber transmission line for transmitting signal light.
  • the C band (1530 ⁇ ! ⁇ 1565nm) is used as the signal light wavelength band
  • the L band (1565nm ⁇ 1625nm) is also used.
  • SMF at a wavelength 1550Ita m has 21psZnmZkm and a wavelength dispersion over 12PsZnmZkm, the following dispersion slope 0. 04ps / nm 2 Zkm least 0. 10psZnm 2 Zkm.
  • Patent Document 1 JP 2002-169049
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-84162
  • Patent Document 3 Japanese Patent No. 3602152
  • Patent Document 4 Japanese Patent No. 3247221
  • Non-Patent Document l ECOC— IOOC Proceedings Vol. 3, Paper We4. P. 14-15, 2003 Disclosure of Invention
  • dispersion-compensating optical fiber is generally cascaded with SMF and part of the optical transmission line.
  • the dispersion compensating optical fiber is required to have a large absolute value of chromatic dispersion D and a small transmission loss ⁇ . That is, it is desirable that the figure of merit (FOM) expressed by the absolute value of the ratio (DZ a) is large.
  • the absolute value of the chromatic dispersion D is increased by increasing the relative refractive index difference in the central core region.
  • the present invention has been made to solve the above-described problems, and an optical fiber suitable for a dispersion compensator for an optical transmission line having a structure for further increasing the FOM, and the optical fiber. It is an object of the present invention to provide an optical transmission line including a bus and an optical transmission system in which the optical fiber is applied to a part of the optical transmission line.
  • An optical fiber according to the present invention is an optical fiber mainly composed of quartz glass, and includes a core region including the center of the optical axis, a depressed region surrounding the core region, and surrounding the depressed region. A ring region, and a cladding region to which an F element is added to surround the ring region.
  • the relative refractive index difference in the core region is 3% or more and 4% or less
  • the relative refractive index difference in the depressed region is 1% or more and 0.5% or less, based on the refractive index of pure silica glass.
  • the relative refractive index difference in the ring region is 0.01% or more and 0.24% or less, and the relative refractive index difference in the cladding region is 0.3% or more and 0.1% or less.
  • the cut-off wavelength of the optical fiber is preferably 1.2 m or more and 1.8 m or less.
  • the difference in loss variation in the 1380 nm wavelength band is preferably 0.3 dBZkm or less.
  • the residual dispersion amount of the entire optical transmission line is preferably 0.3 psZnmZkm or less in the C band or the L band.
  • the residual dispersion amount of the entire optical transmission line is preferably 0.5 psZnmZkm or less in the wavelength range including the C band and the L band. Better!/,.
  • the optical fiber according to the present invention preferably has a transmission loss of 0.5 dBZkm or more and 1. OdB / km or less at a wavelength of 1550 nm.
  • the optical fiber according to the present invention preferably has a polarization mode dispersion of 0.3 psZkm V2 or less at a wavelength of 1550 nm.
  • optical fiber according to the invention the characteristics at a wavelength of 1550 nm, less chromatic dispersion 12psZnmZkm than on 21psZnm 2 Zkm, the following dispersion slope 0. 04psZnm 2 Zkm least 0. lOps / nm 2 Zkm
  • connection loss 0.30 dB or less per connection at a wavelength of 1550 nm, and a connection loss of 0.25 dB or less at a wavelength of 1620 nm! I like it!
  • An optical transmission line according to the present invention includes a single mode optical fiber and an optical fiber having the structure as described above (an optical fiber according to the present invention), and the single mode optical fiber, the optical fiber, Have a first structure connected in cascade.
  • the optical transmission line according to the present invention includes a single mode optical fiber, a first dispersion compensating optical fiber, and the first dispersion compensating optical fiber.
  • a second dispersion compensating optical fiber different from the optical fiber may be provided, and the single mode optical fiber may have a first dispersion compensating optical fiber and a second structure in which the second dispersion compensating optical fibers are connected in cascade. .
  • the single mode optical fiber has a wavelength dispersion of 12 psZnmZkm to 21 psZnmZkm and a dispersion slope of 0.04 ps / nm 2 / km to 0.10 psZnm 2 Zkm as characteristics of wavelength 1550 nm.
  • the first dispersion compensating optical fiber has the same structure as the optical fiber having the above structure (the optical fiber according to the present invention).
  • the residual dispersion characteristic in the C band after the total wave dispersion of the single mode optical fiber is compensated is Has a convex shape.
  • the first and second dispersion compensating optical fibers substantially compensate the total dispersion with respect to the single mode fiber in the wavelength 1550 nm band, and the residual dispersion in the used wavelength band.
  • the lengths of the first and second dispersion compensating optical fibers are adjusted so that becomes smaller.
  • the maximum residual dispersion amount at a wavelength of 1550 nm to 1610 nm is 0.04 psZnmZkm.
  • An optical module according to the present invention includes a modularized optical fiber having the above-described structure (the optical fiber according to the present invention).
  • An optical transmission system includes an optical fiber having a structure as described above as an optical fiber transmission line for transmitting signal light and a dispersion compensator for compensating the chromatic dispersion of the optical fiber transmission line ( An optical fiber according to the present invention).
  • the optical fiber is mainly composed of quartz glass, includes a core region including the center of the optical axis, a depressed region surrounding the core region, A ring region surrounding the depressed region, and a cladding region surrounding the ring region and doped with F element.
  • the relative refractive index difference in the core region is 3% or more and 4% or less
  • the relative refractive index difference in the depressed region is 1% or more and 0.5% or less
  • the ring region ratio is based on the refractive index of pure silica glass.
  • the refractive index difference is 0.01% or more and 0.24% or less, and the relative refractive index difference of the cladding region is 0.3% or more and 0.1% or less.
  • the cut-off wavelength is 1. to 1.8 m, and the polarization mode dispersion at the wavelength of 1550 nm is 0.3 psZkm 1/2 or less.
  • the optical fiber is fusion spliced to a single mode optical fiber having a wavelength dispersion of 12 psZnmZkm to 21 psZnmZkm and a dispersion slope of 0.04 psZnm 2 Zkm to 0.10 psZnm 2 Zkm as characteristics of wavelength 1550 nm. Sometimes, it has a splice loss of 0.30 dB or less at a wavelength of 1550 nm and a splice loss of 0.25 dB or less at a wavelength of 1620 nm.
  • the optical fiber according to the present invention can further increase the FOM, and can effectively compensate for the chromatic dispersion of the SMF.
  • FIG. 1 is a diagram showing a schematic configuration of an optical transmission system according to the present invention.
  • FIG. 2 is a sectional view showing the structure of the optical fiber according to the present invention and a refractive index profile file thereof.
  • FIG. 3 is a sectional view showing the structure of another dispersion compensating optical fiber different from the optical fiber according to the present invention and its refractive index profile.
  • FIG. 4 shows the chromatic dispersion of the optical fiber 6 and the relative refractive index difference ⁇ of the core region 61 according to this embodiment.
  • FIG. 1 A first figure.
  • FIG. 5 is a graph showing the relationship between the FOM and the relative refractive index difference ⁇ of the core region (relative refractive index difference of the core region with reference to pure silica glass) in the optical fiber according to the present invention.
  • FIG. 6 is a table showing the specifications of Sample 1 and Sample 2 prepared as optical fibers according to the present invention, and the specifications of Comparative Example 1.
  • FIG. 7 shows the relative refractive index difference ⁇ (pure silica glass) of the optical fiber according to the present invention.
  • FIG. 8 is a graph showing the relationship between the bending loss rising wavelength and the cutoff wavelength ⁇ c for the optical fiber according to the present invention.
  • FIG. 10 shows the increase in loss before and after hydrogen treatment and the relative refractive index difference ⁇ of the cladding region ⁇ (the relative refractive index difference of the cladding region based on pure silica glass) for the optical fiber according to the present invention.
  • FIG. 11 is a graph showing wavelength characteristics of residual dispersion in the C band when the optical fiber according to the present invention is connected to SMF at various dispersion slope compensation rates DSCR (wavelength 15550 nm).
  • FIG. 12 is a graph showing the relationship between DSCR (wavelength 1550 nm) and residual dispersion when the optical fiber according to the present invention is connected to SMF.
  • FIG. 13 is a graph showing the wavelength characteristics of residual dispersion in the wavelength range including the C band and the L band when the optical fiber according to the present invention is connected to the SMF by various DSCRs.
  • FIG. 14 is a graph showing the wavelength dispersion characteristics of the optical transmission line in the optical transmission system according to the present invention.
  • FIG. 15 is a table summarizing residual dispersion values when the optical fiber according to the present invention and other optical fibers are connected to the SMF.
  • FIG. 16 is a graph showing the chromatic dispersion characteristics of the optical fiber and other optical fibers according to the present invention.
  • FIG. 17 shows the splice loss when the optical fiber according to the present invention is fusion spliced to the SMF and the core region relative refractive index difference ⁇ (relative refractive index of the core region based on pure silica glass). It is a graph which shows the relationship with (difference).
  • FIG. 18 is a table summarizing specifications of the optical fiber when the optical fiber according to the present invention is modularized as a dispersion compensator.
  • FIG. 19 is a table summarizing the specifications of the dispersion compensation module when each of the optical fiber samples (Sample 1 and Sample 2) according to the present invention and Comparative Example 3 are applied to the dispersion compensation module. It is.
  • FIG. 20 is a plan view showing a configuration of a dispersion compensation module prepared for obtaining various characteristics shown in FIG.
  • FIG. 21 is a table summarizing the specifications of Sample 3 and Sample 4 prepared as optical fibers according to the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of an optical transmission system according to the present invention.
  • the optical transmission system la shown in the region (a) includes an optical transmitter 2, an optical receiver 3, and an optical transmitter provided between the optical transmitter 2 and the optical receiver 3.
  • the optical transmission line 4a includes a single mode optical fiber (SMF) 5 and an optical fiber 6 according to the present invention, which is prepared as a dispersion compensating optical fiber, connected in cascade.
  • the optical transmission system lb shown in the area (b) of FIG. 1 includes an optical transmitter 2, an optical receiver 3, and the optical transmitter 2 and the optical transmitter.
  • An optical transmission line 4b provided between the receiver 3 and the optical transmission line 4b is prepared as a single mode optical fiber (SMF) 5 and a dispersion compensating optical fiber (DCF).
  • SMF single mode optical fiber
  • DCF dispersion compensating optical fiber
  • the optical fiber 6 according to the present invention and an optical fiber 7 prepared as another dispersion compensating optical fiber different from the optical fiber 6 are connected in cascade.
  • C-band signal light or L-band signal light transmitted from the optical transmitter 2 is used.
  • SMF 5 has, as characteristics at the wavelength of 1550 nm, a 21psZnmZkm and a wavelength dispersion over 12PsZnmZkm, the following dispersion Ro-loop 0. 04psZnm 2 Zkm least 0. 10psZnm 2 Zkm.
  • Each of optical fibers 6 and 7 has negative chromatic dispersion in the C band and L band, and compensates for the chromatic dispersion of SMF5.
  • the optical fiber 6 is an optical fiber according to the present invention, and has a wavelength of residual dispersion characteristics in a wavelength band near a wavelength of 1550 nm with the total dispersion amount adjusted to zero when connected to the SMF. It has a shape whose dependence is convex downward.
  • the wavelength dependence of the residual dispersion characteristic is convex upward in the wavelength band near the wavelength of 1550 nm with the total dispersion amount adjusted to zero when connected to the SMF.
  • the optical fiber 7 has a shape.
  • the optical fiber 7 has a shape in which the wavelength dependence of the dispersion characteristic in the wavelength band near 1550 nm is convex.
  • the optical fibers 6 and 7 may be laid between the optical transmitter 2 and the optical receiver 3, or modularized by being housed in a casing in a coiled state.
  • FIG. 2 is a cross-sectional view showing the structure of the optical fiber 6 according to the present invention and its refractive index profile.
  • Region (a) in FIG. 2 shows the cross-sectional structure of the optical fiber 6 perpendicular to the optical axis.
  • Region (b) in FIG. 2 shows the refractive index profile in the radial direction of the optical fiber 6.
  • An optical fiber 6 according to the present invention includes a core region 61 including an optical axis center extending along a predetermined axis, a depressed region 62 provided on the outer periphery of the core region 61, and an outer side of the depressed region 62.
  • a ring region 63 provided on the periphery, and a cladding region 64 provided on the outer periphery of the ring region 63 are provided.
  • Each of the core region 61, the depressed region 62, the ring region 63, and the cladding region 64 is a region mainly composed of quartz glass. At least GeO is added to each of the core region 61 and the ring region 63, and a small amount is added to each of the depressed region 62 and the cladding region 64. At least F element is added. At a wavelength of 633 nm, based on the refractive index of pure silica glass, the relative refractive index difference ⁇ of the core region 61 is 3% or more and 4% or less, and the relative refractive index difference ⁇ of the depressed region 62 is 1% or more. 5% or less, relative refractive index difference of ring region 63
  • is 0.01% or more and 0.24% or less, and the relative refractive index difference ⁇ of the cladding region 64 is 0.3%
  • the outer diameter 2a of the core region is 1. to 2.5 m.
  • the cladding region 64 may include an optical cladding region and a physical cladding region.
  • the F element is also added to the outermost physical cladding region, and the relative refractive index difference between the optical cladding region and the physical cladding region is equal.
  • An optical fiber preform for obtaining such an optical fiber 6 can be manufactured by the VAD method, the MCVD method, the OVD method, the DVD method, or the collapse method.
  • the fluctuation difference of loss is less than 0.3dBZkm.
  • the optical fiber 6 having a predetermined length When an optical fiber 6 having a predetermined length is connected to SMF 5, the residual dispersion amount of the entire C band (S MF5 + optical fiber 6) is 0.3 psZnmZkm or less.
  • the total residual dispersion (SMF5 + optical fiber 6) in the wavelength range including the C band and L band is 0.5 psZnmZkm or less.
  • the transmission loss of optical fiber 6 is 0.5 dBZkm or more 1. OdB Zkm or less.
  • the polarization mode dispersion of the optical fiber 6 is 0.3 ps Zkm 1/2 or less.
  • the optical fiber 6 when fusion-bonded to the SMF5 has a connection loss of a wavelength of 1550 mn [about 0.3 dB or less and a wavelength of 1620 nm [about 0.25 dB or less]. .
  • FIG. 3 is a cross-sectional view showing the structure of the optical fiber 7 and its refractive index profile.
  • Region (a) in Fig. 3 shows a cross section of the optical fiber 7 perpendicular to the optical axis.
  • Region (b) in FIG. 3 shows the refractive index profile in the radial direction of the optical fiber 7.
  • the optical fiber 7 is provided in a core region 71 including the center of the optical axis so as to extend along a predetermined axis, a depressed region 72 provided mainly in the core region 71, and an outer periphery of the depressed region 72. And a cladding region 74.
  • the relative refractive index difference ⁇ of the core region 71 is 2.6% based on the refractive index of pure silica glass at a wavelength of 633 nm, and the relative refractive index difference of the depressed region 72 is ⁇ is ⁇ 0.37%, and the relative refractive index difference ⁇ of the cladding region 74 is 0.09%.
  • the outer diameter 2a of the core region is 2.39 ⁇ m.
  • FIG. 4 is a graph showing the relationship between the chromatic dispersion of the optical fiber 6 and the relative refractive index difference ⁇ of the core region 61 according to the present invention.
  • the relative refractive index difference ⁇ in the depressed region 62 is ⁇ 0.7%
  • the relative refractive index difference ⁇ in the cladding region 64 is ⁇ 0.2.
  • RDS is 0.
  • Petermann-1 mode field diameter (MFD1) is 8 ⁇ m or less
  • cutoff wavelength c is 1 or more
  • dispersion slope compensation ratio DSCR is 110 ⁇ 10%. Note that the chromatic dispersion of SMF5 is represented as D, the dispersion slope of SMF5 is represented as S,
  • Dispersion slope compensation rate DSCR (%) is ⁇ DSCR 2 (D / S) / (D / S) X 100 ''
  • the outer diameter 2a of the core region 61, the outer diameter 2b of the depressed region 62, the outer diameter 2c of the ring region 53, and the relative refractive index difference ⁇ of the ring region 53 are MFD1, Xc
  • the maximum chromatic dispersion was calculated by adjusting each time. As can be seen from this graph, the larger the relative refractive index difference ⁇ of the core region 61, the larger the absolute value of chromatic dispersion.
  • FIG. 5 is a graph showing the relationship between the FOM and the relative refractive index difference ⁇ of the core region 61 for the optical fiber 6 according to the present invention.
  • the symbol “ ⁇ ” plotted in the graph indicates the optical fiber.
  • Figure 6 shows the measurement results for bar 6 (F element added to the cladding region), and the symbol “ ⁇ ” has the same refractive index profile as the refractive index pull file shown in region (a) in Fig. 2.
  • the measurement results of an optical fiber whose cladding region is made of pure quartz are shown.
  • the prepared optical fiber 6 has a relative refractive index difference ⁇ of 0.7% in the depressed region 62, and a relative refractive index in the cladding region 64.
  • the rate difference ⁇ is 1 ⁇ 0.2%, 13 ⁇ 433 0. 0035nm _1 , Petermann-1 mode field diameter (MFD)
  • the outer diameter 2a of the core region 61, the outer diameter 2b of the depressed region 62, the outer diameter 2c of the ring region 53, and the relative refractive index difference ⁇ of the ring region 53 are MFD.
  • the optical fiber 6 according to the present invention since the F element is added to the cladding region 64, the melting temperature at the time of drawing is lowered by about 150 ° C. compared with a pure quartz clad preform without F addition. Can reduce the glass fictive temperature. Therefore, transmission loss can be reduced. Therefore, as can be seen from the graph shown in FIG. 5, the optical fiber 6 according to the present invention has a large FOM as compared with the optical fiber whose cladding region is pure silica glass.
  • FIG. 6 is a table summarizing the specifications of two samples (Sample 1 and Sample 2) prepared as the optical fiber 6 according to the present invention and Comparative Example 1.
  • the optical fiber of Sample 1 corresponds to the optical fiber 6 having the core region ⁇ of 3.1% in FIG.
  • the optical fiber of the sample 2 corresponds to the embodiment of the optical fiber 6 in which the core region ⁇ in FIG. 5 is 3.4%.
  • the optical fiber of Comparative Example 1 is an optical fiber in which the core region ⁇ in FIG. 5 is 3.1% and the cladding region has pure silica glass force. It corresponds to.
  • FIG. 7 shows the optical fiber according to the present invention with respect to the relative refractive index difference ⁇ of the cladding region 64.
  • region (a) shows the relationship of FOM to relative refractive index difference ⁇ of cladding region 64
  • region (b) shows the cladding
  • the non-circularity relationship with respect to the region 64, and the region (c) is the upper limit of the relative refractive index difference of the cladding region 64 derived from the FOM relationship, and the ratio of the cladding region 64 derived from the non-circularity relationship.
  • the effective range of the relative refractive index difference of the cladding region 64, defined by the lower limit of the refractive index difference, is Each is shown.
  • the relative refractive index difference ⁇ of the cladding region 64 is
  • the FOM is 250 psZnmZdB or more.
  • the relative refractive index difference ⁇ of the cladding region 64 is 0.1% or less.
  • the optical fiber 6 applied to the dispersion compensator has a polarization mode dispersion of 0.4 psZkm 1/2 and a pipe non-circularity of 0.13%.
  • the polarization mode dispersion was 0.2 psZkm 1/2 . Therefore, the noncircularity is preferably 0.2% or less in order to reduce polarization mode dispersion.
  • the relative refractive index difference ⁇ of the cladding region 64 is preferably ⁇ 0.3% or more. After all, the relative refraction of the cladding region 64
  • the rate difference ⁇ is preferably ⁇ 0.3% or more and ⁇ 0.1% or less.
  • FIG. 8 is a graph showing the relationship between the bending loss rising wavelength and the cutoff wavelength c for the optical fiber 6 according to the present invention.
  • the optical fiber 6 is bent with a diameter of 120 mm.
  • the bending loss increases in a wavelength range longer than a certain wavelength (bending loss rising wavelength).
  • the longer the cutoff wavelength c the longer the bending loss rise wavelength.
  • the cut-off wavelength c is greater than or equal to 1.
  • the effect of bending with a bending loss rising wavelength longer than the upper limit of the C-band is small.
  • the cutoff wavelength c is 1.2 m or more, the bending loss rise wavelength is longer than the upper limit of the L band. The impact is small.
  • the MAC value given by MFDZ ⁇ c is often used as a parameter representing the bending resistance of an optical fiber.
  • MFD1 Petermann-1 mode field diameter
  • FIG. 9 is a graph for explaining the relationship between MAC1 and the loss rising wavelength at a wavelength of 155 Onm.
  • module samples wound in a coil shape with a diameter of 120 mm are plotted.
  • the module sample indicated by the symbol “ ⁇ ” is the sample 1 of the optical fiber according to the present invention. Module samples to which ⁇ 4 was applied.
  • FIG. 10 is a graph showing the relationship between the increase in loss before and after hydrogen treatment and the relative refractive index difference ⁇ of the cladding region 64 for the optical fiber 6 according to the present invention. This figure 10 shows the comparison
  • an optical fiber in which the F element is not added to the cladding region and the relative refractive index difference ⁇ is positive.
  • the increase in loss before and after hydrogen treatment is the increase in loss at a wavelength of 1380 nm.
  • the cladding region 64 has an F element compared to an optical fiber (comparative example) in which the F element is not added to the cladding region and the relative refractive index difference ⁇ is positive.
  • the melting temperature at the time of drawing can be lowered by about 150 ° C, and the glass fictive temperature is lowered, so that the loss is lowered.
  • Hydrogen atmosphere H 100%
  • the difference in loss in the 1380 nm wavelength band before and after exposure to 80 ° C for 20 hours is 0.15 dBZkm or less.
  • FIG. 11 is a graph showing the wavelength characteristics of residual dispersion in the C band when the optical fiber 6 according to the present invention is connected to the SMF 5 with various DSCRs (dispersion slope compensation rate at a wavelength of 1550 nm).
  • the length ratio between the optical fiber 6 and the SMF 5 is adjusted so that the residual dispersion becomes 0 at a wavelength of 1550 nm.
  • graph G 1110 shows an optical transmission line with a DSCR set to 90%
  • graph G1120 shows an optical transmission line with a DSCR set to 100%
  • graph Gl 130 shows a DSCR set to 110%.
  • the optical transmission line and graph G1140 show the residual dispersion characteristics of the optical transmission line with DSCR set to 120%.
  • FIG. 12 is a graph showing the relationship between DSCR (wavelength 1550 nm) and residual dispersion when the optical fiber 6 according to the present invention is connected to the SMF 5.
  • the residual dispersion width here refers to the value obtained by subtracting the maximum value and minimum value of the residual dispersion amount in the C-band.
  • the DSCR at a wavelength of 1550 nm is preferably in the range of 110 ⁇ 10%.
  • FIG. 13 is a graph showing the wavelength characteristics of the residual dispersion in the wavelength range including the C band and the L band when the optical fiber 6 according to the present invention is connected to the SMF 5 with various DSCRs (wavelength 1550 nm).
  • graph G1310 is an optical transmission line with DSCR set to 90%
  • graph G1320 is an optical transmission line when DSCR is set to 100%
  • graph G1330 is set to 110% DSCR.
  • G 1340 shows the residual dispersion characteristics of the optical transmission line when DSCR is set to 120%. Each is shown.
  • the optical fiber 6 applied to the dispersion compensator shows a shape in which the wavelength dependency of residual chromatic dispersion in the wavelength band near 1550 nm is convex downward.
  • FIG. 14 is a graph showing the chromatic dispersion characteristics of the optical transmission line 4b in the optical transmission system lb.
  • the length of the SMF 5 is 100 km, and the length ratios of the optical fibers 6 and 7 are adjusted so that the residual dispersion becomes 0 at a wavelength of 1565 nm.
  • graph G1410 shows optical transmission line 4b when DSCR at wavelength 1565nm is set to 90%
  • graph G1420 shows optical transmission line 4b when DSCR at wavelength 1565nm is set to 100%.
  • FIG. 15 is a table summarizing the residual dispersion values when each of the optical fiber 6 and the optical fiber 7 according to the present invention is connected to the SMF 5.
  • FIG. 16 is a graph showing the chromatic dispersion characteristics of the optical fiber 6 and the optical fiber 7 according to the present invention. In FIG. 16, graph G1610 shows the optical fiber 6 and graph G1620 shows the chromatic dispersion characteristic of the optical fiber 7, respectively.
  • the total dispersion at the wavelength of 1565 nm is compensated for the wavelength in the optical transmission line of 1.55 ⁇ m band.
  • the wavelength dependency of the residual dispersion characteristic in FIG. In an optical transmission line in which optical fiber 7 is connected to SMF5, after the total dispersion at wavelength 1565 nm is compensated, the wavelength dependence of the chromatic dispersion characteristic in the wavelength 1.55 ⁇ m band in the optical transmission line The property has an upwardly convex shape.
  • the residual dispersion in the C + L band is reduced while adjusting the total dispersion, as shown in Figs. 6 and 7.
  • the length of the dispersion-compensating optical fiber By adjusting the length of the dispersion-compensating optical fiber, the wavelength dependence of the residual dispersion characteristics at each wavelength of 1.55 m can be compensated.
  • an optical fiber 6 with a DCSR of 90% and an optical fiber 7 with a DSCR of 107% are applied as a dispersion compensator in the optical transmission line 4b.
  • an optical fiber 6 with a DCSR of 90% and an optical fiber 7 with a DSCR of 107% are applied as a dispersion compensator in the optical transmission line 4b.
  • the residual dispersion over a wide band from 1550 nm to 161 Onm can be reduced to a very small value of 0.039 psZnmZkm.
  • FIG. 17 shows the relationship between the connection loss and the relative refractive index difference ⁇ of the core region 61 of the optical fiber 6 for the optical transmission line 4a in which the optical fiber 6 and the SMF 5 according to the present invention are fusion-connected. It is a dull to show.
  • the relative refractive index difference ⁇ of the core region 61 of the optical fiber 6 increases, the power distribution of the guided light propagating through the optical fiber 6 is more similar to the Gaussian-shaped power distribution of the guided light propagating through the SMF 5.
  • the connection loss between optical fiber 6 and SMF5 is low. By heating a certain range including the fusion splice point and diffusing the Ge dopant, the splice loss can be easily reduced.
  • FIG. 18 is a table summarizing the specifications of the optical fiber 6 when the optical fiber 6 according to the present invention is modularized as a dispersion compensator.
  • the table of FIG. 18 shows the optical fiber 6 of Comparative Example 2 (see Non-Patent Document 1) as well as Sample 1 (see region (a) in FIG. 6) as the optical fiber 6.
  • the module loss of the optical fiber of Sample 1 is about half.
  • the optical fiber of Sample 1 has a low bending loss because the cutoff wavelength ⁇ c is 1.55 ⁇ m and the mode fine diameter is 4.19 ⁇ m. Therefore, the transmission loss and the module loss estimated for connection loss force are almost the same as the transmission loss.
  • the outer diameter of the optical fiber 6 of Sample 1 is preferably 100 m or more and 130 m or less.
  • FIG. 19 summarizes the specifications of the dispersion compensation module when each sample (sample 1 and sample 2) of the optical fiber 6 according to the present invention and each of the comparative example 3 are applied to the dispersion compensation module. It is a table. This measurement is performed in the dispersion compensation module shown in FIG. That is, the optical fibers of Samples 1 and 2 to be measured and the optical fiber of Comparative Example 3 are housed in a housing as dispersion-compensating optical fibers (DCF) with SMF fused and connected at both ends. . Note that the dispersion compensation module in FIG. 20 is provided with a connector C as an optical input / output end.
  • DCF dispersion-compensating optical fibers
  • N is the nonlinear refractive index
  • A is the effective area
  • L is the effective fiber.
  • the cladding region 64 since the F element is added to the cladding region 64, the cladding region 64 has an anti-guide structure with respect to the acoustic mode. That is, since the sound wave is not transmitted, the interference with the light wave is reduced, and the stimulated Brillouin scattering threshold is also increased.
  • the optical fibers of Samples 3 and 4 are optical fibers with small core diameters of 1.87 m and 1.92 m. is there.
  • the ratio Ra is 0.232 and the ratio Rb is 0.781
  • the relative refractive index difference ⁇ of the core region 61 with respect to pure quartz glass is 3.2%.
  • the relative refractive index difference ⁇ in region 62 is 0.
  • relative refractive index difference ⁇ of ring region 63 is 0.21%
  • relative refractive index difference ⁇ of cladding region 64 is
  • the optical fiber of Sample 3 has a wavelength dispersion of 282.5 ps / nm / km at a wavelength of 1550 nm, a dispersion slope of 0.998 ps / nm 2 / km at a wavelength of 1550 nm, and 100 for SMF5. It has a DSCR of 2, a transmission loss of 0.95 dBZkm at 1550 nm, a cut-off wavelength c of 1.36 m at a fiber length of 2 m, and a FOM of 297.4 psZnmZdB.
  • the optical fiber of Sample 3 has 6.88 ⁇ m MFD1 and 5.05 MAC1.
  • the ratio Ra is 0.24 and the ratio Rb is 0.637, and the relative refractive index difference ⁇ of the core region 61 with respect to pure silica glass is 3.07%.
  • the relative refractive index difference ⁇ of the depressed region 62 is 0.7%, and the relative refractive index difference ⁇ of the ring region 63 is 0.04%.
  • the relative refractive index difference ⁇ of the doped region 64 is ⁇ 0.2%.
  • the optical fiber of sample 4 is At 1550 nm! /, 298.5 ps / nm / km wavelength dispersion, 1550 nm wavelength 1 0445psZnm 2 Zkm dispersion slope, 102.5 DSCR against SMF5, wavelength 1550 nm Transmission loss of 0.84 dBZkm, a cutoff wavelength c of 1.49 m for a fiber length of 2 m, and a FOM of 355.4 psZnmZdB.
  • the optical fiber of sample 4 has MFD1 of 7. and MAC1 of 4.80.
  • the optical fiber according to the present invention has a larger FOM and can be applied to a dispersion compensator that compensates for chromatic dispersion of SMF in an optical fiber transmission line.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

 この発明は、FOM(=分散/損失)を更に大きくするための構造を備えた、分散補償モジュールへの適用が可能な光ファイバに関する。当該光ファイバは、石英ガラスを主成分とし、光軸中心を含むコア領域と、該コア領域を取り囲むディプレスト領域と、該ディプレスト領域を取り囲むリング領域と、該リング領域を取り囲む、F元素が添加されたクラッド領域とを備える。純石英ガラスの屈折率を基準として、コア領域の比屈折率差は3%以上4%以下、ディプレスト領域の比屈折率差は-0.5%以上-1%以下、リング領域の比屈折率差は0.01%以上0.24%以下、クラッド領域の比屈折率差は-0.3%以上-0.1%以下である。波長1550nmにおけるFOMは250ps/nm/dB以上である。

Description

明 細 書
光ファイバ、光伝送路、光モジュール及び光伝送システム
技術分野
[0001] この発明は、光ファイバ伝送路を介して信号光を伝送する光伝送システム、及び、 該光ファイバ伝送路全体の波長分散を補償する光ファイバ等に関するものである。 背景技術
[0002] 光伝送システムでは、信号光を伝送する光ファイバ伝送路として、石英ガラスを主 成分とする IEC— G652. C準拠のシングルモード光ファイバ(SMF: Single Mode Fi ber)が用いられる。また、信号光波長帯域として、 Cバンド(1530ηπ!〜 1565nm)が 用いられ、更に Lバンド(1565nm〜1625nm)も用いられる。 SMFは、波長 1550η mにおいて、 12psZnmZkm以上 21psZnmZkm以下の波長分散と、 0. 04ps/ nm2Zkm以上 0. 10psZnm2Zkm以下の分散スロープを有する。
[0003] このような SMF力 なる光ファイバ伝送路を介して信号光が伝送されると、 SMFに よる波長分散により信号光の波形が劣化するので、高速伝送が困難になる。そこで、 信号光伝送路上に、 SMFからなる光ファイバ伝送路の波長分散を補償する分散補 償器が挿入される。また、この分散補償器として、 Cバンドにおいて負の波長分散を 有する分散補償光ファイバや、波長分散を負にして波長分散の波長依存性まで補 償する分散補償光ファイバが、一般に使用される (例えば、特許文献 1〜4を参照)。 特許文献 1 :特開 2002— 169049号公報
特許文献 2 :特開 2003— 84162号公報
特許文献 3:特許第 3602152号公報
特許文献 4:特許第 3247221号公報
非特許文献 l :ECOC— IOOC Proceedings Vol. 3, Paper We4. P. 14-15, 2003年 発明の開示
発明が解決しょうとする課題
[0004] 発明者らは、上述の従来技術にっ 、て検討した結果、以下のような課題を発見した 。すなわち、分散補償光ファイバは、一般に SMFと縦続接続され、光伝送路の一部 を構成すること。そのため、該分散補償光ファイバには、波長分散 Dの絶対値が大き く伝送損失 αが小さいことが要求される。すなわち、比 (DZ a )の絶対値で表される 性能指数 (FOM:Figure of Merit)が大きいことが望ましい。し力しながら、上記特許 文献 1〜4に開示された分散補償光ファイバを含め従来の分散補償光ファイバでは、 中心コア領域の比屈折率差を高くすることで、波長分散 Dの絶対値を大きくすること ができる一方、コアの比屈折率差(Δ η)を大きくするためには、コアに添加される Ge の濃度を上げる必要がある。そのため、ガラス内部の散乱に起因するレーリー散乱係 数が大きくなるため、伝送損失 αも大きくなつてしまい、結果として FOMを大きくする ことができない。
[0005] この発明は、上述のような課題を解決するためになされたものであり、 FOMを更に 大きくするための構造を有する光伝送路の分散補償器に適した光ファイバ、該光ファ ィバを含む光伝送路、及び該光ファイバが光伝送路の一部に適用された光伝送シス テムを提供することを目的として!、る。
課題を解決するための手段
[0006] この発明に係る光ファイバは、石英ガラスを主成分とする光ファイバであって、光軸 中心を含むコア領域と、該コア領域を取り囲むディプレスト領域と、該ディプレスト領 域を取り囲むリング領域と、そして、該リング領域を取り囲む F元素が添加されたクラッ ド領域とを有する。なお、当該光ファイバにおいて、純石英ガラスの屈折率を基準とし て、コア領域の比屈折率差は 3%以上 4%以下、ディプレスト領域の比屈折率差は 1%以上 0. 5%以下、リング領域の比屈折率差は 0. 01%以上 0. 24%以下、そし て、クラッド領域の比屈折率差は 0. 3%以上 0. 1%以下である。また、コア領域 の外径 2aとディプレスト領域の外径 2bとの比 Ra ( = 2aZ2b)は 0. 15以上 0. 35以 下である。ディプレスト領域の外径 2bとリング領域の外径 2cとの比 Rb ( = 2bZ2c)は 0. 55以上 0. 85以下であり、より好ましくは 0. 55以上 0. 75以下である。コア領域の 外径 2aは 1. 以上 2. 5 /z m以下であり、波長 1550nmにおける FOM ( =分散 Z損失)は 250psZnmZdB以上である。
[0007] この発明に係る光ファイバは、 Cバンドの諸特性として、 250psZnmZkm以下 の波長分散と、波長分散 Dと分散スロープ Sとの比で規定される 0. 002nm_1以上 0 . OlnnT1以下の RDS ( = SZD)と、直径 20mmで曲げられたときに lOdBZm以下 の曲げ損失を有するのが好ましい。また、当該光ファイバのカットオフ波長は、 1. 2 m以上 1. 8 m以下であるのが好ましい。
[0008] この発明に係る光ファイバでは、水素雰囲気(H 100%、 80°C)に 20時間に亘つて
2
曝露する前後において、波長 1380nm帯における損失の変動差は 0.3dBZkm以 下であるのが好ましい。
[0009] また、波長 1550nmの諸特性として、 12psZnmZkm以上 21psZnmZkm以下 の波長分散と、 0. 04psZnm2Zkm以上 0. 10psZnm2Zkm以下の分散スロープ であるシングロモード光ファイバに対して、所定長の当該光ファイバが接続されること により光伝送路が構成されるとき、この光伝送路全体の残留分散量は、 Cバンド又は Lバンドにおいて 0. 3psZnmZkm以下であるのが好ましい。さらに、波長 1550nm の諸特性として、 12psZnmZkm以上 21psZnmZkm以下の波長分散と、 0. 04p sZnm2Zkm以上 0. 10psZnm2Zkm以下の分散スロープを有するシングルモー ド光ファイバに対し、所定長の当該が光ファイバが接続されることにより光伝送路が構 成されるとき、この光伝送路全体の残留分散量は、 Cバンド及び Lバンドを含む波長 範囲にお 、て 0. 5psZnmZkm以下であるのが好まし!/、。
[0010] この発明に係る光ファイバは、波長 1550nmにおいて 0. 5dBZkm以上 1. OdB/ km以下の伝送損失を有するのが好ましい。また、この発明に係る光ファイバは、波 長 1550nmにおいて 0. 3psZkmV2以下の偏波モード分散を有するのが好ましい。
[0011] この発明に係る光ファイバは、波長 1550nmの諸特性をして、 12psZnmZkm以 上 21psZnm2Zkm以下の波長分散と、 0. 04psZnm2Zkm以上 0. lOps/nm2 Zkm以下の分散スロープを有するシングルモード光ファイバに対して融着接続され たとき、波長 1550nmにおいて 1接続部当たり 0. 30dB以下の接続損失、さらには、 波長 1620nmにお!/、て 0. 25dB以下の接続損失を有するのが好まし!/、。
[0012] この発明に係る光伝送路は、シングルモード光ファイバと、上述のような構造を有す る光ファイバ (この発明に係る光ファイバ)を備え、これらシングルモード光ファイバと 当該光ファイバとが縦列接続された第 1構造を有する。また、このこの発明に係る光 伝送路は、シングルモード光ファイバと、第 1分散補償光ファイバと、該第 1分散補償 光ファイバとは異なる第 2分散補償光ファイバを備え、これらシングルモード光フアイ ノ^第 1分散補償光ファイバ、及び第 2分散補償光ファイバが縦列接続された第 2構 造を有してもよい。ここで、シングルモード光ファイバは、波長 1550nmの諸特性とし て、 12psZnmZkm以上 21psZnmZkm以下の波長分散と、 0. 04ps/nm2/k m以上 0. 10psZnm2Zkm以下の分散スロープを有する。第 1分散補償光ファイバ は、上述のような構造を有する光ファイバ (この発明に係る光ファイバ)と同じ構造を 有する。第 2分散補償光ファイバがシングルモード光ファイバに接続された光伝送路 にお 、て、該シングルモード光ファイバの総波分散が補償された後の Cバンド帯にお ける残留分散特性は、上に凸の形状を有する。特に、第 2構造を有する光伝送路で は、第 1及び第 2分散補償光ファイバにより、波長 1550nm帯においてシングルモー ドファイバに対する総分散が実質的に補償されており、使用波長帯における残留分 散が小さくなるよう第 1及び第 2分散補償光ファイバの長さが調整されている。
[0013] また、この発明に係る光伝送路において、波長 1550nmから 1610nmにおける最 大残留分散量は、 0. 04psZnmZkmであるのが好ましい。
[0014] この発明に係る光モジュールは、モジュールィ匕された、上述のような構造を有する 光ファイバ (この発明に係る光ファイバ)を含む。
[0015] この発明に係る光伝送システムは、信号光を伝送する光ファイバ伝送路と、該光フ アイバ伝送路の波長分散を補償する分散補償器として、上述のような構造を有する 光ファイバ (この発明に係る光ファイバ)を備える。
[0016] さらに、この発明に係る光ファイバの他の構成として、当該光ファイバは、石英ガラ スを主成分とし、光軸中心を含むコア領域と、該コア領域を取り囲むディプレスト領域 と、該ディプレスト領域を取り囲むリング領域と、該リング領域を取り囲む、 F元素が添 カロされたクラッド領域とを備える。当該光ファイバにおいて、純石英ガラスの屈折率を 基準として、コア領域の比屈折率差は 3%以上 4%以下、ディプレスト領域の比屈折 率差は 1%以上 0.5%以下、リング領域の比屈折率差は 0. 01%以上 0. 24% 以下、そして、クラッド領域の比屈折率差は 0. 3%以上 0. 1%以下である。コア 領域の外径 2aとディプレスト領域の外径 2bとの比 Ra ( = 2aZ2b)は 0. 15以上 0. 3 5以下、ディプレスト領域の外径 2bとリング領域の外径 2cとの比 Rb ( = 2bZ2c)は 0 . 55以上 0. 75以下である。また、コア領域の外径 2aは 1. 以 2. 5 m以下で あり、波長 1550nmにおける FOM ( =分散 Z損失)は 250psZnmZdB以上である 。加えて、当該光ファイバは、 Cバンドの諸特性として、—250psZnmZkm以下の 波長分散と、波長分散 Dと分散スロープ Sとの比で規定される 0. 002nm_1以上 0. 0 lnm_1以下の RDS ( = S/D)と、直径 20mmの曲げ径にお!/、て lOdBZm以下の 曲げ損失を有する。カットオフ波長は 1. 以上 1. 8 m以下であり、波長 1550 nmにおける偏波モード分散は 0. 3psZkm1/2以下である。当該光ファイバは、波長 1550nmの諸特性として、 12psZnmZkm以上 21psZnmZkm以下の波長分散 と、 0. 04psZnm2Zkm以上 0. 10psZnm2Zkm以下の分散スロープを有するシ ングルモード光ファイバに対して融着接続されたとき、波長 1550nmにおいて 0. 30 dB以下の接続損失、波長 1620nmにおいて 0. 25dB以下の接続損失を有する。
[0017] なお、この発明に係る各実施例は、以下の詳細な説明及び添付図面によりさらに 十分に理解可能となる。これら実施例は単に例示のために示されるものであって、こ の発明を限定するものと考えるべきではない。
[0018] また、この発明のさらなる応用範囲は、以下の詳細な説明から明らかになる。しかし ながら、詳細な説明及び特定の事例はこの発明の好適な実施例を示すものではある 力 例示のためにのみ示されているものであって、この発明の思想及び範囲における 様々な変形および改良はこの詳細な説明から当業者には自明であることは明らかで ある。
発明の効果
[0019] 本発明に係る光ファイバは、 FOMを更に大きくすることができ、 SMFの波長分散を 効果的に補償することができる。
図面の簡単な説明
[0020] [図 1]は、この発明に係る光伝送システムの概略構成を示す図である。
[図 2]は、この発明に係る光ファイバの構造を示す断面図及びその屈折率屈折率プ 口ファイルである。
[図 3]は、この発明に係る光ファイバとは異なる他の分散補償光ファイバの構造を示 す断面図及びその屈折率プロファイルである。 [図 4]は、本実施形態に係る光ファイバ 6の波長分散とコア領域 61の比屈折率差 Δ
2 との関係を示す図である。
[図 5]は、この発明に係る光ファイバにおいて、 FOMとコア領域の比屈折率差 Δ (純 石英ガラスを基準としたコア領域の比屈折率差)との関係を示すグラフである。
[図 6]は、この発明に係る光ファイバとして用意されたサンプル 1及びサンプル 2それ ぞれの諸元と、比較例 1の諸元を示す表である。
[図 7]は、この発明に係る光ファイバについて、クラッドの比屈折率差 Δ (純石英ガラ
4
スを基準としたクラッド領域の比屈折率差)に対する FOM及び非円率の関係を示す グラフである。
[図 8]は、この発明に係る光ファイバについて、曲げ損失立上がり波長とカットオフ波 長 λ cとの関係を示すグラフである。
[図 9]は、曲げ損失立上がり波長(nm)と波長 1550nmにおける MAC1 ( = MFD1 / X c)との関係を説明するためのグラフである。
[図 10]は、この発明に係る光ファイバについて、水素処理前後の損失増加量とクラッ ド領域の比屈折率差 Δ (純石英ガラスを基準としたクラッド領域の比屈折率差)との
4
関係を示すグラフである。
[図 11]は、この発明に係る光ファイバが SMFに種々の分散スロープ補償率 DSCR ( 波長 15550nm)で接続されたときの Cバンドにおける残留分散の波長特性を示すグ ラフである。
[図 12]は、この発明に係る光ファイバが SMFに接続されたときの DSCR (波長 1550 nm)と残留分散との関係を示すグラフである。
[図 13]は、この発明に係る光ファイバが SMFに種々の DSCRで接続されたときの C バンド及び Lバンドを含む波長範囲における残留分散の波長特性を示すグラフであ る。
[図 14]は、この発明に係る光伝送システムにおける光伝送路の波長分散特性を示す グラフである。
[図 15]は、この発明に係る光ファイバ及び他の光ファイバそれぞれが SMFに接続さ れたときの残留分散値を纏めた表である。 [図 16]は、この発明に係る光ファイバ及び他の光ファイバそれぞれの波長分散特性 を示すグラフである。
[図 17]は、この発明に係る光ファイバが SMFに融着接続されたときの接続損失と該 光フアイのコア領域比屈折率差 Δ (純石英ガラスを基準としたコア領域の比屈折率 差)との関係を示すグラフである。
[図 18]は、この発明に係る光ファイバが分散補償器としてモジュール化されたときの 該光ファイバの諸元を纏めた表である。
[図 19]は、この発明に係る光ファイバの各サンプル(サンプル 1及びサンプル 2)と、比 較例 3それぞれが分散補償モジュールに適用された際の該分散補償モジュールの 諸元を纏めた表である。
[図 20]は、図 19に示された諸特性を得るために用意された分散補償モジュールの構 成を示す平面図である。
[図 21]は、この発明に係る光ファイバとして用意されたサンプル 3及びサンプル 4それ ぞれの諸元を纏めた表である。
符号の説明
[0021] la、 lb…光伝送システム、 2…光送信器、 3…光受信器、 4…光伝送路、 5、 6、 7· ·· 光ファイノく、 61· ··コア領域、 62· ··ディプレスト領域、 63· ··リング領域、 64…クラッド領 域。
発明を実施するための最良の形態
[0022] 以下、この発明に係る光ファイバ、光伝巣路、光モジュール及び光伝送システムの 各実施例を、図 1〜図 21を参照しながら説明する。なお、図面の説明において同一 の要素には同一の符号を付して重複する説明を省略する。
[0023] 図 1は、この発明に係る光伝送システムの概略構成を示す図である。この図 1にお いて、領域 (a)に示された光伝送システム laは、光送信器 2、光受信器 3と、これら光 送信器 2と光受信器 3との間に設けられた光伝送路 4aを備え、該光伝送路 4aは、シ ングルモード光ファイバ(SMF) 5と分散補償光ファイバとして用意された、この発明 に係る光ファイバ 6とが縦列接続されることにより構成されている。また、図 1の領域 (b )に示された光伝送システム lbは、光送信器 2、光受信器 3と、これら光送信器 2と光 受信器 3との間に設けられた光伝送路 4bを備え、該光伝送路 4bは、シングルモード 光ファイバ(SMF) 5と、分散補償光ファイバ(DCF: Dispersion Compensating Fiber) として用意された、この発明に係る光ファイバ 6と、該光ファイバ 6とは異なる別の分散 補償光ファイバとして用意された光ファイバ 7が縦列接続されることにより構成されて いる。なお、光伝送システム la、 lbのいずれにおいても、光送信器 2から送出された Cバンドの信号光又は Lバンドの信号光が使用されるものとする。
[0024] SMF5は、波長 1550nmの諸特性として、 12psZnmZkm以上 21psZnmZkm 以下の波長分散と、 0. 04psZnm2Zkm以上 0. 10psZnm2Zkm以下の分散スロ ープを有する。光ファイバ 6、 7それぞれは、 Cバンド及び Lバンドにおいて負の波長 分散を有し、 SMF5の波長分散を補償する。光ファイバ 6は、この発明に係る光ファ ィバであって、 SMFと接続されたときの総分散量がゼロになるように調整された状態 で波長 1550nm付近の波長帯において残留分散特性の波長依存性が下に凸となる 形状を有する。一方、光ファイバ 7は、 SMFと接続されたときの総分散量がゼロにな るように調整された状態で波長 1550nm付近の波長帯において残留分散特性の波 長依存性が上に凸となる形状を有する。また、光ファイバ 7は、波長 1550nm付近の 波長帯における分散特性の波長依存性が上に凸となる形状を有する。光ファイバ 6、 7は、光送信器 2と光受信器 3との間に敷設されていてもよいし、コイル状に巻かれた 状態で筐体内に収納されることでモジュールィ匕されて 、てもよ 、。
[0025] 図 2は、この発明に係る光ファイバ 6の構造を示す断面図及びその屈折率プロファ ィルである。図 2中の領域 (a)は、光軸に垂直な光ファイバ 6の断面構造を示す。図 2 中の領域 (b)は、光ファイバ 6における径方向の屈折率プロファイルを示す。この発 明に係る光ファイバ 6は、所定軸に沿って伸びるよう光軸中心を含むコア領域 61と、 該コア領域 61の外周に設けられたディプレスト領域 62と、該ディプレスト領域 62の外 周に設けられたリング領域 63と、該リング領域 63の外周に設けられたクラッド領域 64 とを備える。
[0026] コア領域 61、ディプレスト領域 62、リング領域 63及びクラッド領域 64それぞれは、 石英ガラスを主成分とする領域である。コア領域 61及びリング領域 63それぞれには 少なくとも GeOが添加され、ディプレスト領域 62及びクラッド領域 64それぞれには少 なくとも F元素が添加されている。波長 633nmにおいて、純石英ガラスの屈折率を基 準として、コア領域 61の比屈折率差 Δ は 3%以上 4%以下であり、ディプレスト領域 62の比屈折率差 Δ は 1%以上 0. 5%以下であり、リング領域 63の比屈折率差
2
Δ は 0. 01%以上 0. 24%以下であり、クラッド領域 64の比屈折率差 Δ は 0. 3%
3 4 以上 0. 1%以下である。
[0027] コア領域 61の外径 2aとディプレスト領域 62の外径 2bとの比 Ra ( = 2aZ 2b)は 0. 1 5以上 0. 35以下である。ディプレスト領域 62の外径 2bとリング領域 63の外径 2cとの 比 Rb ( = 2bZ2c)は 0. 55以上 0. 85以下である。なお、この発明に係る光ファイバ 6 において、ディプレスト領域 62の外径 2bとリング領域 63の外径 2cとの比 Rb ( = 2bZ 2c)は 0. 55以上 0. 75以下であってもよい。コア領域の外径 2aは 1. 以上 2. 5 m以下である。そして、波長 1550nmにおける性能指数である FOM ( =分散 Z損 失)は 250psZnmZdB以上である。
[0028] クラッド領域 64は、光学クラッド領域及び物理クラッド領域を含んで 、てもよ 、。この 場合、最外周の物理クラッド領域にも F元素が添加され、光学クラッド領域及び物理 クラッド領域それぞれの比屈折率差が等し 、。このような光ファイバ 6を得るための光 ファイバ母材は、 VAD法、 MCVD法、 OVD法、 DVD法又はコラプス法により製造 可能である。
[0029] この発明に係る光ファイバ 6は、好ましくは、 Cバンドにおいて、 250psZnmZk m以下の波長分散と、分散値 Dと分散スロープ Sとの比で規定される 0. 02nm_ 1以 上 0. ΙΟηπ 1以下の RDS ( = SZD)と、直径 20mmで曲げられたときに lOdBZm 以下の曲げ損失を有する。カットオフ波長え cは 1. 以上 1. 以下である。 水素雰囲気(H 100%、 80°C)に 20時間に亘つて曝露した前後の波長 1380nm帯
2
における損失の変動差は 0. 3dBZkm以下である。
[0030] SMF5に対して所定長の光ファイバ 6が接続されたとき、 Cバンドにおける全体(S MF5 +光ファイバ 6)の残留分散量は 0. 3psZnmZkm以下である。また、 SMF5 に対して所定長の光ファイバ 6が接続されたとき、 Cバンド及び Lバンドを含む波長範 囲における全体(SMF5 +光ファイバ 6)の残留分散量は 0. 5psZnmZkm以下で ある。波長 1550nmにおいて、光ファイバ 6の伝送損失は 0. 5dBZkm以上 1. OdB Zkm以下である。波長 1550nmにおいて、光ファイバ 6の偏波モード分散は 0. 3ps Zkm1/2以下である。また、 SMF5に対して融着接続されたときの光ファイバ 6は、波 長 1550mn【こお!ヽて 0. 3dB以下、波長 1620nm【こお!ヽて 0. 25dB以下の接続損 失を有する。
[0031] 図 3は、光ファイバ 7の構造を示す断面図及びその屈折率プロファイルである。図 3 中の領域 (a)は、光軸に垂直な光ファイバ 7の断面を示す。図 3中の領域 (b)は、光 ファイバ 7における径方向の屈折率プロファイルを示す。この光ファイバ 7は、所定軸 に沿って伸びるよう光軸中心を含むコア領域 71と、該コア領域 71の該主に設けられ たディプレスト領域 72と、該ディプレスト領域 72の外周に設けられたクラッド領域 74と を備える。例えば、この光ファイバ 7では、波長 633nmにおいて、純石英ガラスの屈 折率を基準として、コア領域 71の比屈折率差 Δ は 2. 6%であり、ディプレスト領域 7 2の比屈折率差 Δ は—0. 37%であり、クラッド領域 74の比屈折率差 Δ は 0. 09%
2 4 である。コア領域 71の外径 2aとディプレスト領域 72の外径 2bとの比 Ra ( = 2aZ 2b) は 0. 29である。また、コア領域の外径 2aは 2. 39 μ mである。
[0032] 図 4は、この発明に係る光ファイバ 6の波長分散とコア領域 61の比屈折率差 Δ との 関係を示すグラフである。この測定のために用意された光ファイバ 6では、ディプレス ト領域 62の比屈折率差 Δ がー 0. 7%、クラッド領域 64の比屈折率差 Δ がー 0. 2
4
%、 RDSが 0.
Figure imgf000012_0001
Petermann- 1モードフィールド径(MFD1)が 8 μ m以下 、カットオフ波長え cが 1. 以上、分散スロープ補償率 DSCRが 110 ± 10%で ある。なお、 SMF5の波長分散を D と表し、 SMF5の分散スロープを S と表し、
SMF SMF
光ファイバ 6の波長分散を D と表し、光ファイバ 6の分散スロープを S と表すと、
DCF DCF
分散スロープ補償率 DSCR (%)は「DSCR二 (D /S )/(D /S ) X 100」
SMF SMF DCF DCF
なる式で定義される。そして、コア領域 61の外径 2a、ディプレスト領域 62の外径 2b、 リング領域 53の外径 2c及びリング領域 53の比屈折率差 Δ については MFD1、 X c
3
などを都度調整して、最大波長分散が求められた。このグラフから判るように、コア領 域 61の比屈折率差 Δ が大きいほど、波長分散の絶対値は大きい。
[0033] 図 5は、この発明に係る光ファイバ 6について、 FOMとコア領域 61の比屈折率差 Δ との関係を示すグラフである。なお、グラフ中にプロットされた記号 "□"は、光フアイ バ 6 (クラッド領域に F元素が添加されている)の測定結果を示し、記号 "♦"は図 2中 の領域(a)に示された屈折率プルファイルと同様の屈折率プロファイルを有し、クラッ ド領域が純石英からなる光ファイバの測定結果を示す。ここで、用意された光フアイ ノ 6は、ディプレスト領域 62の比屈折率差 Δ が— 0. 7%、クラッド領域 64の比屈折
2
率差 Δ が一 0· 2%、 1¾33カ 0. 0035nm_1、 Petermann- 1モードフィールド径(MFD
4
1)が 8 μ m以下、カットオフ波長 λ cが 1. 2 /z m以上、分散スロープ補償率 DSCRが 110± 10%に設定された比較例として用意された光ファイバは、クラッド領域の比屈 折率のみ純石英からなる。そして、コア領域 61の外径 2a、ディプレスト領域 62の外 径 2b、リング領域 53の外径 2c及びリング領域 53の比屈折率差 Δ については MFD
3
1、 などが都度調整され、最大波長分散、更には FOMが求められた。この発明に 係る光ファイバ 6は、クラッド領域 64に F元素が添加されているので、 F添加されてい な 、純石英クラッドのプリフォームと比べて線引時の溶融温度を 150°C程度低くする ことができ、ガラス仮想温度が低下する。そのため、伝送損失を低下させることができ る。したがって、この図 5に示されたグラフから判るように、クラッド領域が純石英ガラス 力 なる光ファイバと比較すると、この発明に係る光ファイバ 6は、 FOMが大きい。
[0034] 図 6は、この発明に係る光ファイバ 6として用意された 2つのサンプル(サンプル 1、 サンプル 2)と、比較例 1それぞれの諸元を纏めた表である。この図 6中の領域 (a)に 示されたように、サンプル 1の光ファイバは、図 5中のコア領域 Δ が 3. 1%である光フ アイバ 6に相当する。図 6中の領域 (b)に示されたように、サンプル 2の光ファイバは、 図 5中のコア領域 Δ が 3. 4%である光ファイバ 6の実施例に相当する。また、図 6中 の領域 (c)に示されたように、比較例 1の光ファイバは、図 5中のコア領域 Δ が 3. 1 %であり、クラッド領域が純石英ガラス力もなる光ファイバに相当する。
[0035] また、図 7は、クラッド領域 64の比屈折率差 Δ について、この発明に係る光フアイ
4
ノ 6の FOM及び非円率の関係を示すグラフである。特に、この図 7において、領域( a)は、クラッド領域 64の比屈折率差 Δ に対する FOMの関係、領域 (b)は、クラッド
4
領域 64に対する非円率の関係、そして、領域 (c)は、 FOMの関係から導かれるクラ ッド領域 64の比屈折率差の上限、及び非円率の関係から導かれるクラッド領域 64の 比屈折率差の下限で規定される、クラッド領域 64の比屈折率差の有効範囲がそれ ぞれ示されている。これらの図から判るように、クラッド領域 64の比屈折率差 Δ は、
4 光ファイバ 6の FOM及び非円率に影響を与える。 FOMは 250psZnmZdB以上で あるのが好ましぐこの点からは、クラッド領域 64の比屈折率差 Δ は 0. 1%以下で
4
あるのが好ましい。分散補償器に適用される当該光ファイバ 6は、パイプ非円率が 0. 3%の場合、偏波モード分散が 0. 4psZkm1/2であり、パイプ非円率が 0. 13%の場 合、偏波モード分散が 0. 2psZkm1/2であった。したがって、偏波モード分散の低減 のため、非円率は 0. 2%以下であるのが好ましい。この点からは、クラッド領域 64の 比屈折率差 Δ は— 0. 3%以上であるのが好ましい。結局、クラッド領域 64の比屈折
4
率差 Δ は—0. 3%以上—0. 1%以下であるのが好ましい。
4
[0036] 図 8は、この発明に係る光ファイバ 6について、曲げ損失立上がり波長とカットオフ 波長え cとの関係を示すグラフである。この測定に際し、光ファイバ 6は、直径 120m mで曲げられている。光ファイバ 6を曲げると、ある波長(曲げ損失立上がり波長)より 長い波長範囲で曲げ損失が増加する。このグラフから判るように、カットオフ波長え c が長いほど、この曲げ損失立上がり波長は長くなる。 Cバンドの信号光を伝送する場 合、カットオフ波長え cが 1. 以上であれば、曲げ損失立上がり波長が Cバンド の上限より長ぐ曲げの影響が小さい。一方、 Cバンド及び Lバンドを含む波長範囲の 信号光をも伝送する場合、カットオフ波長え cが 1. 2 m以上であれば、曲げ損失立 上がり波長が Lバンドの上限より長ぐ曲げの影響が小さい。
[0037] また、 MFDZ λ cで与えられる MAC値は、しばしば光ファイバの曲げ耐性を表す ノ ラメータとして用いられる。光ファイバをコイル状に巻いた後にモジュールィ匕する場 合、 Petermann- 1モードフィールド径(MFD1)をカットオフ波長 λ cで割った" MAC1 "と、モジュール伝送損失の立上がり波長との間に相関が見られる。図 9は、波長 155 Onmにおける MAC1と損失立上がり波長との関係を説明するためのグラフである。 なお、図 9には、直径 120mmでコイル状に巻かれたモジュールサンプルがプロットさ れており、特に、記号 "〇"で示されたモジュールサンプルは、この発明に係る光ファ ィバのサンプル 1〜4が適用されたモジュールサンプルである。この図 9からも判るよう に、 MAC1が 6. 3以下であれば、直径 120mmでコイル状に巻かれたモジュールサ ンプルの場合、波長 1570nm以下での損失立上がりは見られなかった。 [0038] 図 10は、この発明に係る光ファイバ 6について、水素処理前後損失増加量とクラッ ド領域 64の比屈折率差 Δ との関係を示すグラフである。なお、この図 10には、比較
4
例として、クラッド領域に F元素が添加されておらず比屈折率差 Δ が正である光ファ
4
ィバについても示されている。水素処理前後損失増加量は、波長 1380nmにおける 損失増加量である。このグラフから判るように、クラッド領域に F元素が添加されておら ず比屈折率差 Δ が正である光ファイバ (比較例)と比較して、クラッド領域 64に F元
4
素が添加された光ファイバ 6は、線引時の溶融温度を 150°C程度低くすることができ 、ガラス仮想温度が低下するので、損失が低下する。なお、水素雰囲気 (H 100%、
2
80°C)に 20時間に亘つて曝露した前後の波長 1380nm帯における損失の変動差は 0. 15dBZkm以下であるのが好ましい。
[0039] 図 11は、この発明に係る光ファイバ 6が種々の DSCR (波長 1550nmにおける分散 スロープ補償率)で SMF5に接続されたときの Cバンドにおける残留分散の波長特性 を示すグラフである。このグラフでは、波長 1550nmにおいて残留分散が 0となるよう に光ファイバ 6と SMF5との長さ比が調整されている。また、図 11において、グラフ G 1110は、 DSCRが 90%に設定された光伝送路、グラフ G1120は DSCRが 100% に設定された光伝送路、グラフ Gl 130は DSCRが 110%に設定された光伝送路、 及びグラフ G1140は DSCRが 120%に設定された光伝送路の残留分散特性をそれ ぞれ示す。また、図 12は、この発明に係る光ファイバ 6が SMF5に接続されたときの DSCR (波長 1550nm)と残留分散との関係を示すグラフである。ここで言う残留分 散幅とは、 Cバンド帯における残留分散量の最大値力 最小値を引いたものである。 波長 1550nmにおける DSCRは 110± 10%の範囲であるのが好ましい。図 13は、 この発明に係る光ファイバ 6が種々の DSCR (波長 1550nm)で SMF5に接続された ときの、 Cバンド及び Lバンドを含む波長範囲における残留分散の波長特性を示すグ ラフである。このグラフでも、波長 1550nmにおいて残留分散が 0となるように光フアイ ノ 6と SMF5との長さ比が調整されている。また、図 13において、グラフ G 1310は D SCRが 90%に設定された光伝送路、グラフ G1320は DSCRが 100%に設定された ときの光伝送路、グラフ G1330は DSCRが 110%に設定されたときの光伝送路、及 びグラフ G 1340は DSCRが 120%に設定されたときの光伝送路の残留分散特性を それぞれ示す。分散補償器に適用される光ファイバ 6は、波長 1550nm付近の波長 帯における残留波長分散の波長依存性が下に凸となる形状を示している。
図 14は、光伝送システム lbにおける光伝送路 4bの波長分散特性を示すグラフで ある。ここでは、 SMF5の長さは 100kmであり、波長 1565nmにおいて残留分散が 0 となるように光ファイバ 6、 7それぞれの長さ比が調整されている。なお、図 14におい て、グラフ G1410は波長 1565nmにおける DSCRが 90%に設定されたときの光伝 送路 4b、グラフ G1420は波長 1565nmにおける DSCRが 100%に設定されたとき の光伝送路 4b、グラフ G 1430は波長 1565nmにおける DSCRが 110%に設定され たときの光伝送路 4b、グラフ G1440は波長 1565nmにおける DSCRが 120%に設 定されたときの光伝走路 4bの残留分散特性をそれぞれ示す。図 15は、この発明に 係る光ファイバ 6と光ファイバ 7それぞれが SMF5に接続されたときの残留分散値を 纏めた表である。また、図 16は、この発明に係る光ファイバ 6と、光ファイバ 7それぞ れの波長分散特性を示すグラフである。なお、図 16において、グラフ G1610は光フ アイバ 6、グラフ G1620は光ファイバ 7の波長分散特性をそれぞれ示す。この発明に 係る光ファイバ 6が上述のような特性を有する SMF5に接続された光伝送路におい て、波長 1565nmでの総分散が補償された後の当該光伝送路における波長 1. 55 μ m帯での残留分散特性の波長依存性は下に凸の形状を有する。光ファイバ 7が S MF5に接続された光伝送路にお 、て、波長 1565nmでの総分散が補償された後の 当該光伝送路における波長 1. 55 μ m帯での波長分散特性の波長依存性は上に凸 の形状を有する。したがって、 SMF5、光ファイバ 6、光ファイバ 7が縦列に接続され た光伝送路 4bでは、総分散量を調整しながら C+Lバンドの残留分散を小さくするよ う、図 6及び図 7に示された分散補償光ファイバの長さを調整することで、それぞれの 波長 1. 55 m帯での残留分散特性の波長依存性を補償することができる。その結 果、広い波長範囲に亘つて従来よりも平均単位分散の大きい分散補償ファイバで補 償することが可能になる。例えば、光伝送路 4bにおける分散補償器として、 DCSRが 90%の光ファイバ 6と、 DSCRが 107%の光ファイバ 7を適用し、それぞれのファイバ 長さを例えば図 15の DSCR= 90%のファイバ長に調整することで 1550nmから 161 Onmの広帯域に亘つて残留分散を 0. 039psZnmZkmと非常に小さ 、値にするこ とがでさる。
[0041] 図 17は、この発明に係る光ファイバ 6と SMF5とが融着接続された光伝送路 4aに ついて、接続損失と光ファイバ 6のコア領域 61の比屈折率差 Δ との関係を示すダラ フである。光ファイバ 6のコア領域 61の比屈折率差 Δ が高いほど、光ファイバ 6を伝 搬する導波光のパワー分布は、 SMF5を伝搬する導波光のガウシアン形状のパワー 分布と類似していることから、光ファイバ 6と SMF5との接続損失は低くなる。融着接 続点を含む一定範囲を加熱して Geドーパントを拡散することで、接続損失を容易に 低くすることができる。
[0042] 図 18は、この発明に係る光ファイバ 6が分散補償器としてモジュール化された際に おける該光ファイバ 6の諸元を纏めた表である。この図 18の表には、光ファイバ 6とし てサンプル 1 (図 6中の領域 (a)参照)とともに、比較例 2の光ファイバ (非特許文献 1 参照)についても示されている。この比較例 2の光ファイバと比較すると、サンプル 1の 光ファイバでは、モジュール損失が約半分になっている。また、サンプル 1の光フアイ ノ は、カットオフ波長 λ cが 1. 55 μ m、モードフィーノレド径が 4. 19 μ mであるので、 曲げ損失が小さい。そのため、伝送損失及び接続損失力 見積られるモジュール損 失は伝送損失と略一致している。サンプル 1の光ファイバ 6のファイバ外径は 100 m以上 130 m以下であるのが好ましい。分散調整と、安価な分散補償光ファイバを 実現する(クラッド領域が占める割合を少なくする)ことで、プリフォーム単位重量当た りのファイバ長を長くすることができる。
[0043] 図 19は、この発明に係る光ファイバ 6の各サンプル(サンプル 1及びサンプル 2)と、 比較例 3それぞれが分散補償モジュールに適用された際の該分散補償モジュール の諸元を纏めた表である。なお、この測定は、図 20に示された分散補償モジュール において行われる。すなわち、測定対象であるサンプル 1、 2の光ファイバと、比較例 3の光ファイバは、分散補償光ファイバ (DCF)として、両端に SMFが融着接続され た状態で筐体内に収納されている。なお、図 20の分散補償モジュールには、光入出 力端としてコネクタ Cが取り付けられて 、る。
[0044] この図 19の表において、 Nは非線形屈折率、 A は実効断面積、 L は実効フアイ
2 eff eff
バ長を表し、 0 SPMは自己位相変調に起因した位相シフト量を示す。比較例 3の光 ファイバと比較して、サンプル 1、 2の光ファイバは、非線形係数 (N /A )が大きい
2 eff ので、一見すると比線形性が劣化するように思われるが、波長分散の絶対値が大き いので、分散補償に必要が長さが短くなり、総合的に自己位相変調に起因した位相 シフト量 φ SPMを抑制することができる。
[0045] なお、この発明に係る光ファイバ 6は、クラッド領域 64に F元素が添加されていること により、このクラッド領域 64が音響モードに対してアンチガイド構造となる。すなわち、 音波が伝達されないために光波との干渉が少なくなり、誘導ブリルアン散乱閾値を高 くする効果をも有する。
[0046] 次に、この発明に係る光ファイバ 6として、ディプレスト領域 62の外径 2bとリング領 域 63の外径 2cとの itRb ( = 2b/2c)力 0. 75を超えるサンプノレ 3 (0. 55≤Rb≤0. 85)と、この比 Rbが比較的低いサンプル 4の諸元を図 21の領域 (a)及び領域 (b)に 示す。これらサンプル 3、 4の光ファイバによっても上述のサンプル 1、 2の光ファイバと 同様の効果が得られる。
[0047] なお、図 21の領域(a)及び領域 (b)に示されたように、サンプル 3、 4の光ファイバ は、コア径が 1. 87 m、 1. 92 mと小さい光ファイバである。サンプル 3の光フアイ バにおいて、比 Raは 0. 232、比 Rbは 0. 781であり、純石英ガラスを基準とした、コ ァ領域 61の比屈折率差 Δ は 3. 2%、ディプレスト領域 62の比屈折率差 Δ は 0.
1 2
7%、リング領域 63の比屈折率差 Δ は 0. 21%、クラッド領域 64の比屈折率差 Δ は
3 4
-0. 2%である。このとき、サンプル 3の光ファイバは、波長 1550nmにおいて、 2 82. 5ps/nm/kmの波長分散と、波長 1550nmにおいて一 0. 98ps/nm2/km の分散スロープと、 SMF5に対して 100. 2の DSCRと、波長 1550nmにお!/、て 0. 9 5dBZkmの伝送損失と、 2mのファイバ長において 1. 36 mのカットオフ波長え cと 、 297. 4psZnmZdBの FOMを有する。また、サンプル 3の光ファイバは、 6. 88 ^ mの MFD1と、 5. 05の MAC1を有する。
[0048] 一方、サンプル 4の光ファイバにおいて、比 Raは 0. 24、比 Rbは 0. 637であり、純 石英ガラスを基準とした、コア領域 61の比屈折率差 Δ は 3. 07%、ディプレスト領域 62の比屈折率差 Δ は 0. 7%、リング領域 63の比屈折率差 Δ は 0. 04%、クラッ
2 3
ド領域 64の比屈折率差 Δ は— 0. 2%である。このとき、サンプル 4の光ファイバは、 波長 1550nmにお!/、て、 298. 5ps/nm/kmの波長分散と、波長 1550nmにお いて一 1. 0445psZnm2Zkmの分散スロープと、 SMF5に対して 102. 5の DSCR と、波長 1550nmにおいて 0. 84dBZkmの伝送損失と、 2mのファイバ長において 1 . 49 mのカットオフ波長え cと、 355. 4psZnmZdBの FOMを有する。また、サン プル 4の光ファイバは、 7. の MFD1と、 4. 80の MAC1を有する。
[0049] 上述のように、サンプル 3、 4の光ファイバにおいても、従来よりも大きな FOMが得ら れる。
[0050] 以上の本発明の説明から、本発明を様々に変形しうることは明らかである。そのよう な変形は、本発明の思想および範囲力 逸脱するものとは認めることはできず、すべ ての当業者にとって自明である改良は、以下の請求の範囲に含まれるものである。 産業上の利用可能性
[0051] この発明に係る光ファイバは、より大きな FOMを備え、光ファイバ伝送路における S MFの波長分散を補償する分散補償器への適用が可能である。

Claims

請求の範囲
[1] 石英ガラスを主成分とする光ファイバであって、所定軸に沿って伸びたコア領域と、 該コア領域の外周に設けられたディプレスト領域と、該ディプレスト領域の外周に設 けられたリング領域と、そして、該リング領域の外周に設けられた、 F元素が添加され たクラッド領域とを備免、
純石英ガラスの屈折率を基準として、前記コア領域の比屈折率差は 3%以上 4%以 下、前記ディプレスト領域の比屈折率差は 1%以上 0. 5%以下、前記リング領 域の比屈折率差は 0. 01%以上 0. 24%以下、そして、前記クラッド領域の比屈折率 差は 0. 3%以上 0. 1%以下であり、
前記コア領域の外径 2aと前記ディプレスト領域の外径 2bとの比 Ra ( = 2a/2b)は 0. 15以上 0. 35以下、そして、前記ディプレスト領域の外径 2bと前記リング領域の 外径 2cとの比 Rb ( = 2bZ2c)は 0. 55以上 0. 75以下であり、
前記コア領域の外径 2aは 1. 5 m以上 2. 5 m以下であり、そして、 波長 1550nmにお!/、て、 250psZnmZdBの FOM ( =分散 Z損失)を有する光フ アイバ。
[2] 石英ガラスを主成分とする光ファイバであって、所定軸に沿って伸びたコア領域と、 該コア領域の外周に設けられたディプレスト領域と、該ディプレスト領域の外周に設 けられたリング領域と、そして、該リング領域の外周に設けられた、 F元素が添加され たクラッド領域とを備免、
純石英ガラスの屈折率を基準として、前記コア領域の比屈折率差は 3%以上 4%以 下、前記ディプレスト領域の比屈折率差は 1%以上 0. 5%以下、前記リング領 域の比屈折率差は 0. 01%以上 0. 24%以下、そして、前記クラッド領域の比屈折率 差は 0. 3%以上 0. 1%以下であり、
前記コア領域の外径 2aと前記ディプレスト領域の外径 2bとの比 Ra ( = 2a/2b)は 0. 15以上 0. 35以下、そして、前記ディプレスト領域の外径 2bと前記リング領域の 外径 2cとの比 Rb ( = 2bZ2c)は 0. 55以上 0. 85以下であり、
前記コア領域の外径 2aは 1. 5 m以上 2. 5 m以下であり、そして、 波長 1550nmにお!/、て、 250psZnmZdBの FOM ( =分散 Z損失)を有する光フ アイバ。
[3] Cバンドにおける諸特性として、— 250psZnmZkm以下の波長分散と、波長分散 Dと分散スロープ Sとの比で規定される、 0. 002nm_1以上 0. Olnm—1以下の RDS ( = SZD)と、そして、直径 20mmで曲げられたときに lOdBZm以下の曲げ損失を有 し、そして、
1. 以上 1. 8 m以下のカットオフ波長を有することを特徴とする請求項 1又 は 2記載の光ファイバ。
[4] 水素雰囲気 (H 100%、 80°C)中に 20時間に亘つて曝露する前後において、波長 1
2
380nm帯における損失の変動差は、 0. 3dBZkm以下であることを特徴とする請求 項 1又は 2記載の光ファイバ。
[5] 波長 1550nmの諸特性として、 12psZnmZkm以上 21psZnmZkm以下の波長 分散と、 0. 04psZnm2Zkm以上 0. 10psZnm2Zkm以下の分散スロープを有す るシングルモード光ファイバに対し、所定長の当該光ファイバが接続されたとき、 Cバ ンド又は Lバンドにぉ 、て、前記シングルモード光ファイバと当該光ファイバとで構成 された光伝送路全体の残留分散量は、 0. 3psZnmZkm以下であることを特徴とす る請求項 1又は 2記載の光ファイバ。
[6] 波長 1550nmの諸特性として、 12psZnmZkm以上 21psZnmZkm以下の波長 分散と、 0. 04psZnm2Zkm以上 0. 10psZnm2Zkm以下の分散スロープを有す るシングルモード光ファイバに対し、所定長の当該光ファイバが接続されたとき、 Cバ ンド及び Lバンドを含む波長範囲にぉ 、て、前記シングルモード光ファイバと当該光 ファイバとで構成された光伝送路全体の残留分散量は、 0. 5psZnmZkm以下であ ることを特徴とする請求項 1又は 2記載の光ファイバ。
[7] 波長 1550nmにおいて、 0. 5dBZkm以上 1. OdBZkm以下の伝送損失を有する ことを特徴とする請求項 1又は 2記載の光ファイバ。
[8] 波長 1550nmにおいて、 0. 3psZkm1/2以下の偏波モード分散を有することを特徴 とする請求項 1又は 2記載の光ファイバ。
[9] 波長 1550nmの諸特性として、 12psZnmZkm以上 21psZnmZkm以下の波長 分散と、 0. 04psZnm2Zkm以上 0. 10psZnm2Zkm以下の分散スロープを有す るシングルモード光ファイバに対し、所定長の当該光ファイバが接続されたとき、波長
1550nmにお!/、て 0. 30dB以下の接続損失と、波長 1620nmにお!/ヽて 0. 25dB以 下の接続損失を有することを特徴とする請求項 1又は 2記載の光ファイバ。
[10] 波長 1550nmの諸特性として、 12psZnmZkm以上 21psZnmZkm以下の波長 分散と、 0. 04psZnm2Zkm以上 0. 10psZnm2Zkm以下の分散スロープとを有 するシングルモード光ファイバと、前記シングルモード光ファイバと縦列接続された請 求項 1〜9のいずれか一項記載の光ファイバとを備えた光伝送路。
[11] 波長 1550nmの諸特性として、 12psZnmZkm以上 21psZnmZkm以下の波長 分散と、 0. 04psZnm2Zkm以上 0. 10psZnm2Zkm以下の分散スロープとを有 するシングルモード光ファイバと、
請求項 1〜9のいずれか一項記載の光ファイバと同じ構造を有する第 1分散補償光 ファイバと、そして、
前記シングルモード光ファイバと接続されることで該シングルモード光ファイバの総 分散を補償した後の Cバンド帯における残留分散特性が上に凸となる第 2分散補償 光ファイバとを備え、
前記第 1及び第 2分散補償光ファイバは、前記シングルモード光ファイバと接続され たときの波長 1550nm帯における該シングルモード光ファイバの総分散を実質的に 補償するとともに、これら第 1及び第 2分散補償光ファイバの長さが使用波長帯にお ける当該光伝送路全体の残留分散が小さくなるよう調整された光伝送路。
[12] 前記第 1及び第 2分散補償光ファイバの長さは、波長 1550nmから 1610nmの波長 範囲における最大残留分散量が 0. 04psZnmZkmとなるよう調整されていることを 特徴とするとする請求項 10記載の光伝送路。
[13] モジュールィ匕された、請求項 1〜9のいずれか一項記載の光ファイバを含む光モジュ 一ノレ。
[14] 信号光が伝搬する光ファイバ伝送路と、該光ファイバ伝送路の波長分散を補償する 、請求項 1〜9の 、ずれか一項記載の光ファイバとを備えた光伝送システム。
[15] 石英ガラスを主成分とする光ファイバであって、所定軸に沿って伸びたコア領域と、 該コア領域の外周に設けられたディプレスト領域と、該ディプレスト領域の外周に設 けられたリング領域と、そして、該リング領域の外周に設けられた、 F元素が添加され たクラッド領域とを備免、
純石英ガラスの屈折率を基準として、前記コア領域の比屈折率差は 3%以上 4%以 下、前記ディプレスト領域の比屈折率差は 0. 5%以上 1%以下、前記リング領 域の比屈折率差は 0. 01%以上 0. 24%以下、そして、前記クラッド領域の比屈折率 差は 0. 3%以上 0. 1%以下であり、
前記コア領域の外径 2aと前記ディプレスト領域の外径 2bとの比 Ra ( = 2a/2b)は
0. 15以上 0. 5以下、そして、前記ディプレスト領域の外径 2bと前記リング領域の外 径 2cとの比 Rb ( = 2bZ2c)は 0. 55以上 0. 75以下であり、
前記コア領域の外径 2aは 1. 5 m以上 2. 5 m以下であり、
波長 1550nmにおける FOM ( =分散 Z損失)は 250psZnmZdB以上であり、 Cバンドにおいて、 250psZnmZkm以下の波長分散と、波長分散 Dと分散スロ ープ Sとの比で規定される 0. 002nm_1以上 0. 01nm_1以下の RDS ( = SZD)と、 そして、直径 20mmで曲げられたときに lOdBZm以下の曲げ損失とを有し、
1. 2 111以上1. 8 m以下のカットオフ波長を有し、
波長 1550nmにおいて 0. 3psZkm1/2以下の偏波モード分散を有し、そして、 波長 1550nmの諸特性として、 12psZnmZkm以上 2 IpsZnmZkm以下の波 長分散と、 0. 04psZnm2Zkm以上 0. 10psZnm2Zkm以下の分散スロープとを 有するシングルモード光ファイバに対し、当該光ファイバが融着接続されたとき、波長 1550nmにおける前記シングルモード光ファイバと当該光ファイバとの接続損失が 0 . 30dB以下であり、波長 1620nmにおける前記シングルモード光ファイバと当該光 ファイバとの接続損失が 0. 25dB以下である光ファイバ。
PCT/JP2006/319970 2005-10-07 2006-10-05 光ファイバ、光伝送路、光モジュール及び光伝送システム WO2007043435A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06811308A EP1933182A1 (en) 2005-10-07 2006-10-05 Optical fiber, optical transmission line, optical module, and optical transmission system
JP2007539900A JPWO2007043435A1 (ja) 2005-10-07 2006-10-05 光ファイバ、光伝送路、光モジュール及び光伝送システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005295149 2005-10-07
JP2005-295149 2005-10-07

Publications (1)

Publication Number Publication Date
WO2007043435A1 true WO2007043435A1 (ja) 2007-04-19

Family

ID=37942678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319970 WO2007043435A1 (ja) 2005-10-07 2006-10-05 光ファイバ、光伝送路、光モジュール及び光伝送システム

Country Status (4)

Country Link
EP (1) EP1933182A1 (ja)
JP (1) JPWO2007043435A1 (ja)
CN (1) CN100592113C (ja)
WO (1) WO2007043435A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003084162A (ja) * 2001-09-13 2003-03-19 Sumitomo Electric Ind Ltd 負分散光ファイバ、光増幅器および光伝送路
JP2003104751A (ja) * 2001-07-26 2003-04-09 Fujikura Ltd 光ファイバ母材の製法
JP2004038006A (ja) * 2002-07-05 2004-02-05 Furukawa Electric Co Ltd:The 光ファイバ
JP2004126141A (ja) * 2002-10-01 2004-04-22 Furukawa Electric Co Ltd:The 光ファイバとその製造方法
JP2004157507A (ja) * 2002-07-26 2004-06-03 Furukawa Electric Co Ltd:The 分散補償モジュールおよびこれを用いた光伝送システム
JP2005257928A (ja) * 2004-03-10 2005-09-22 Sumitomo Electric Ind Ltd 分散補償光ファイバ、分散補償器および光伝送路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104751A (ja) * 2001-07-26 2003-04-09 Fujikura Ltd 光ファイバ母材の製法
JP2003084162A (ja) * 2001-09-13 2003-03-19 Sumitomo Electric Ind Ltd 負分散光ファイバ、光増幅器および光伝送路
JP2004038006A (ja) * 2002-07-05 2004-02-05 Furukawa Electric Co Ltd:The 光ファイバ
JP2004157507A (ja) * 2002-07-26 2004-06-03 Furukawa Electric Co Ltd:The 分散補償モジュールおよびこれを用いた光伝送システム
JP2004126141A (ja) * 2002-10-01 2004-04-22 Furukawa Electric Co Ltd:The 光ファイバとその製造方法
JP2005257928A (ja) * 2004-03-10 2005-09-22 Sumitomo Electric Ind Ltd 分散補償光ファイバ、分散補償器および光伝送路

Also Published As

Publication number Publication date
CN101283299A (zh) 2008-10-08
EP1933182A1 (en) 2008-06-18
CN100592113C (zh) 2010-02-24
JPWO2007043435A1 (ja) 2009-04-16

Similar Documents

Publication Publication Date Title
US7286740B2 (en) Optical fiber, optical transmission line, optical module and optical transmission system
JP5379396B2 (ja) 大きい実効面積を有する伝送用光ファイバ
JP5638178B2 (ja) 波長分散補償ファイバ
US6477306B2 (en) Dispersion-compensating optical fiber, and, optical transmission line and dispersion-compensating module respectively including the same
US9020316B2 (en) Low attenuation optical fibers with an F-graded index core
JP3471271B2 (ja) 光ファイバおよび光伝送システム
JP6361101B2 (ja) 光ファイバ
WO2000031573A1 (fr) Fibre optique et systeme de transmission optique renfermant celle-ci
JP4496649B2 (ja) 光ファイバ及びそれを含む光伝送路
WO2005015303A1 (ja) 非線形光ファイバ及びこの光ファイバを用いた光信号処理装置
WO2001001178A1 (fr) Fibre optique a compensation de dispersion et ligne de transmission optique renfermant cette fibre
WO2014067291A1 (zh) 一种大有效面积光纤
EP1189082A1 (en) Low-dispersion optical fiber and optical transmission system using the low-dispersion optical fiber
US20030108317A1 (en) Dispersion and dispersion slope compensating fiber and optical transmission system utilizing same
JP2005512146A (ja) 単一モード分散補償光ファイバ
US20130223851A1 (en) Dispersion-Compensating System And Dispersion-Compensating Fiber with Improved Figure of Merit
JP3725523B2 (ja) 光ファイバおよび光伝送システム
JP2003084163A (ja) 光ファイバ、光伝送路および光通信システム
JP2005055795A (ja) 偏波保持光ファイバ及びこの偏波保持光ファイバを用いた光波長変換器
US7894697B2 (en) Optical fiber, optical transmission line, optical module, and optical transmission system
Bigot-Astruc et al. Trench-assisted profiles for large-effective-area single-mode fibers
JP4362927B2 (ja) 分散補償器および光伝送システム
JP2001296444A (ja) 分散補償光ファイバ、光伝送路および分散補償モジュール
JP4206623B2 (ja) 負分散光ファイバおよび光伝送路
WO2007043435A1 (ja) 光ファイバ、光伝送路、光モジュール及び光伝送システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680037336.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007539900

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006811308

Country of ref document: EP