WO2007043006A2 - Mems tunable device - Google Patents
Mems tunable device Download PDFInfo
- Publication number
- WO2007043006A2 WO2007043006A2 PCT/IB2006/053711 IB2006053711W WO2007043006A2 WO 2007043006 A2 WO2007043006 A2 WO 2007043006A2 IB 2006053711 W IB2006053711 W IB 2006053711W WO 2007043006 A2 WO2007043006 A2 WO 2007043006A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- movable element
- electrodes
- substrate
- voltage
- level
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 32
- 230000007423 decrease Effects 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims description 9
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 6
- 230000010355 oscillation Effects 0.000 claims description 5
- 238000013016 damping Methods 0.000 abstract description 21
- 230000000694 effects Effects 0.000 description 7
- 238000006073 displacement reaction Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000003044 adaptive effect Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000008713 feedback mechanism Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003534 oscillatory effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G5/00—Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture
- H01G5/16—Capacitors in which the capacitance is varied by mechanical means, e.g. by turning a shaft; Processes of their manufacture using variation of distance between electrodes
Definitions
- the present invention relates to MEMS devices, and to corresponding methods of controlling and manufacturing such devices, and more particularly relates to MEMS tunable capacitor devices.
- MEMS' Micro-electromechanical system or structure or switch
- a common arrangement of a MEM device comprises a moveable item such as a freestanding beam with a first electrode located opposite a second electrode. The first and the second electrode are mutually separated by an air gap. The first electrode can be moved towards the second electrode by application of an actuation voltage to provide an electrostatic force. The spring force is used to move the first electrode away from the second electrode. Other forces could be used such as an inductive force from current in electrodes in the form of coils, air pressure etc.
- MEMS devices usually have the following properties: small component size, e.g. in the micron range (about the thickness of human hair), electro-controllable with electrical signals, and mechanical in the sense of containing moving parts.
- Tunable capacitors can be formed from metal-based MEMS, and are very promising for application in RF architectures, e.g. in adaptive impedance matching networks or in tunable LC VCO tank circuits.
- a disadvantage of these devices is, however, that they are inherently slow, especially when the actuation voltage is close to the closing voltage.
- the closing voltage is the voltage at which the displacement of the top metal has reached the point that the middle gap closes.
- An object of the invention is to provide improved MEMS devices, and corresponding methods of controlling and manufacturing such devices, and more particularly improved MEMS tunable capacitor devices.
- An advantage of the present invention is higher speed of reaching a working point for a tunable MEMS device, e.g. with moveable members and a settable gap therebetween.
- the invention provides: a micro- electromechanical device having a substrate, a movable element, a pair of electrodes arranged on the substrate and on the movable element to cooperate to move the movable element relative to the substrate, and a controller arranged to supply electrical power to the electrodes to move the movable element to an intermediate position between a maximum and a minimum position, the controller providing one or more pulses at a first level higher than a second level required to hold the electrodes at the intermediate position and then reducing to the second level to stabilize the moveable element at the intermediate position.
- the preferred first level is a voltage close to the maximum that can be applied, e.g. without breakdown. To provide this voltage a separate voltage generator may be provided. Instead of voltage a current can be applied for an inductive device.
- the first level is applied independent of the intermediate position to be obtained.
- the length of time the pulse at the first level is applied is varied to bring the moveable element close to the desired final position.
- the controller drives the moveable element as fast as possible to the intermediate position at the highest voltage available and one which is preferably much higher than the voltage required to hold the moveable element at the intermediate position.
- the electrodes may be forced into a ringing state if the device is under damped. In this case the ringing can be suppressed by active damping.
- the ringing can be detected by the oscillatory change in capacitance of the electrodes and a suitable inverse driving voltage generated therefrom to suppress the ringing. This can reduce a settling delay and so help to overcome the disadvantages of such delays.
- the advantages can apply to any tunable device in principle.
- the invention provides: a micro- electromechanical device having a substrate, a movable element, a pair of electrodes arranged on the substrate and on the movable element to cooperate to move the movable element relative to the substrate, and a controller arranged to supply electrical power to the electrodes to move the movable element to an intermediate position between a maximum and a minimum position, the controller providing electrical power to overcome ringing by active damping.
- a micro- electromechanical device having a substrate, a movable element, a pair of electrodes arranged on the substrate and on the movable element to cooperate to move the movable element relative to the substrate, and a controller arranged to supply electrical power to the electrodes to move the movable element to an intermediate position between a maximum and a minimum position, the controller providing electrical power to overcome ringing by active damping.
- An embodiment of the present invention provides a micro- electromechanical device having a substrate, a movable element, a pair of electrodes arranged on the substrate and on the movable element to cooperate to move the movable element relative to the substrate, and a controller arranged to supply the electrodes with electrical power to move the movable element to an intermediate position between a maximum and a minimum position, e.g. the intermediate position corresponding to a given power supply level applied to the electrodes, by supplying to the electrodes one or more pulses during the movement, followed by the given supply level, the pulse or pulses being timed to compensate for the inherent slowness and/ or for under or over damping of the movement.
- This can reduce a settling delay and so help to overcome the disadvantages of such delays.
- the advantages can apply to any tunable device in principle.
- the pulse or pulses are dependent on whether the movement is to reduce a gap or increase the gap between the electrodes. This typically determines whether the movement is under damped or over damped, and hence whether the pulses should add or overcome the damping to reduce the settling time.
- the controller is arranged to control a voltage differential between the electrodes to vary an electrostatic force. This is typically more power efficient than alternatives such as using inductive force.
- the controller is arranged to supply a single pulse of a maximum supply level. This suits a device for which such decreases are overdamped, which is a common situation.
- the duration of the single pulse is dependent on the supply levels before and after the movement.
- the controller is arranged to supply a sequence of pulses timed to dampen oscillations of the movable element. This suits a device for which such decreases are under damped, which is a common situation.
- the sequence is dependent on the supply levels before and after the movement.
- the sequence has a period corresponding to a resonant frequency, and comprises a number of peaks and troughs above and below the given supply level, such that successive ones of the peaks and troughs are closer to the given supply level.
- the device has capacitor electrodes on the substrate and on the movable element, to form a tunable capacitor.
- a resilient coupling is provided to bias the movable element. This can provide a simpler structure or more precise positioning than a floating movable element needing multiple pairs of electrodes.
- the resilient coupling is arranged on at least two sides of the movable element. This can provide a more stable and reliable structure with less susceptibility to vibration and manufacturing variations for example.
- Fig 1 shows a schematic view of a MEMS tunable capacitor
- Fig 2 shows a graph of capacitance versus actuation voltage
- Fig 3 shows a graph of tuning ratio versus closing time
- Fig 4 shows a pulse in the actuation voltage during movement according to an embodiment of the present invention
- Fig 6 shows graphs of settling time of capacitance
- Fig 7 shows pulses in the actuation voltage during movement according to another embodiment of the present invention
- Fig 8 shows parts of an electrode voltage controller according to an embodiment of the present invention.
- Dual-gap parallel-plate tunable capacitors combine a large continuous and reversible capacitance tuning, typically a tuning ratio of 4-5, with a high quality factor, typically 300 at 1 pF and 2 GHz (Rijks et al., to be published, and references therein).
- the tuning ratio is defined as C(V)/C(0).
- the concept is illustrated schematically in figure 1.
- This figure shows a cross-sectional view of a dual-gap relay-type tunable capacitor.
- the actuation capacitors with a large air gap are separated from the RF capacitor with a small air gap.
- d1/d2 ⁇ 1/3 continuous tuning of the gap d1 is possible without being limited by the pull-in effect.
- bumps at the edges of the structure prevent pull-in of the actuation capacitors.
- Figure 2 shows a tuning curve of measured capacitance and tuning ratio as a function of the actuation voltage.
- the dotted line indicates the closing voltage. Contrary to a switch, for which only two states are important, all states between the open and closed state should be addressable by choosing the appropriate actuation voltage.
- FIG. 1 shows the tuning ratio versus closing time (time to go from C(O) to C(V)) measured when applying a step-function voltage).
- the closing voltage of this device is about 15 V.
- the embodiments show methods of actuating tunable MEMS devices, which result in faster tuning.
- the tunable device such as a capacitor
- a well-timed voltage pulse with a voltage higher than the voltage required to hold the tunable device in the final desired position.
- Such a voltage is applied with differing pulse lengths ⁇ t pu ⁇ se to bring the tuning device close to the final desired position.
- the actuation is with the highest allowable voltage (V max » V C
- dual-gap parallel plate tunable MEMS capacitors can exploit this.
- the electrodes are oriented perpendicular to the substrate surface. This construction can be used for sensor applications and for resonator applications but other applications are not excluded.
- a MEMS structure as a thin-film element.
- the movable element in the form of a beam is typically oriented substantially parallel to the substrate.
- This type of MEMS structure is used typically for RF MEMS.
- a double clamped beam i.e. a beam that is connected to the substrate surface at two or more sides, to form a resilient coupling so the deflection towards the substrate occurs in the centre of the beam
- the beam is generally provided with holes, that are present as a consequence of the etching of the sacrificial layer between the beam and the substrate to create the air gap. These holes also help to reduce air damping by allowing air to flow in and out of the cavity between beam and substrate, while opening or closing the beam.
- An example of a variable capacitor using a MEM device is shown in WO 2004/000717. Here it is explained that the capacitance increases as the gap between the electrodes is reduced. The motion is restricted by a mechanical spring force, which is directly proportional to the distance traveled by the moveable electrode. However, the electrostatic attractive force has a non-linear relationship with changes in the gap as the moveable electrode moves. Thus there is a point when the attractive force overcomes the spring force and the electrodes collapse together.
- a first embodiment of the invention can make use of the arrangement illustrated in Fig 1 and will be described with reference to a device for use at radio frequencies (RF).
- RF radio frequencies
- Capacitor electrodes 40 are provided on both the substrate and the movable element, defining a gap d1.
- Drive electrodes 30 for moving the movable element to tune the capacitor are provided on both the substrate and the movable element, defining gap d2, larger than d1.
- a stopper 20 can be provided to prevent pull in of the electrodes.
- the moving top electrode is typically the common ground for DC and RF.
- the bottom electrode is segmented in this case, as shown in figure 1 , and mounted on a substrate 60.
- the centre bottom electrode is used for the RF capacitor (small air gap), the left and right bottom electrodes are connected to the DC actuation (large air gap to prevent pull in).
- An electrode voltage controller 50 supplies the voltage or current to the drive electrodes necessary to move the movable element.
- the MEMS structure can be manufactured using the known manufacturing processes of the applicant, called PASSITM or CoSip (also known as PICS or Silicon-based Sip SbSiP). These provide a process flow in which passive components like coils, capacitors and resistors, MEMS switches and tuneable capacitors for mobile phone applications for example.
- PASSITM PASSITM
- CoSip also known as PICS or Silicon-based Sip SbSiP
- RF-MEMS compared to standard PASSITM is a sacrificial layer etching step in order to create surface-micromachined free-hanging structures. More details can be found in: J.T.M. van Beek et al., High-Q integrated RF passives and RF-MEMS on silicon: Materials, integration and packaging issues for high-frequency devices symp. Boston 2003. Ed. by P.
- Some embodiments of the present invention actuate the tunable capacitor with a well-timed voltage pulse with a voltage higher than the voltage required to hold the capacitor in its final position and in some embodiments the actuation is with the highest allowed voltage V max » V C
- Such a pulse is applied for a pulse length t pu ⁇ se to bring the capacitor as close as possible to its final desired position in order to achieve the highest possible tuning speed, followed by dropping to lower a second voltage Vf ina ⁇ to stabilize the required state.
- An example is shown in figure 4.
- the problem described above and the measure to solve it apply particularly to all arrangements where there is upward tuning (i.e. increasing the capacitance).
- An example is shown in Figure 6.
- For downward tuning i.e.
- the tuning speed is determined by the spring force and the air damping and there can be underdamping and therefore ringing after the application of a pulse as described above.
- a subsequent different sequence of pulses can be used to reduce settling time by providing pulses timed to be out of phase with the ringing.
- An example is shown in Figure 7 described below. By minimizing the oscillations, this can reduce the tuning time.
- V sta rt defines the starting or present voltage applied to the tunable capacitor, having a capacitance C sta rt-
- V f ⁇ na ⁇ is the voltage that determines the final or new state of the tunable capacitor, Cf ina ⁇ - Both voltages can be derived from a C-V curve as in figure 2.
- a pulse of V max is applied.
- V f ⁇ na ⁇ is applied to maintain the electrodes and therefore the capacitance at a constant value.
- V max is a voltage above V f ⁇ na ⁇ and is preferably the maximum allowed (e.g. maximum possible without serious risk of damage or breakdown) actuation voltage.
- ⁇ t pu ⁇ se can be derived from the C-t curve at V max , as shown in figure 5.
- This figure shows a time response of the capacitance when applying a step-function actuation voltage V max .
- the V-t pattern of figure 4 is in principle the fastest way of tuning the capacitance upward from C star t to C f ⁇ na ⁇
- the principle of this embodiment is to drive the system as fast as possible to the final desired position and then to apply the constraints, e.g. voltage, necessary to maintain the reached position.
- V-t patterns can be devised when the settling time is an issue, e.g. in underdamped devices, as shown in fig 7 and described below.
- two forms of tuning control are used: firstly overdriving the moveable member of a MEMS device with a high voltage, in this case the member is driven to its final position as fast as possible, and secondly application of active damping if the movable member is underdamped and has started to ring.
- Figure 6 shows a graph of a time response of the capacitance of the device for three different cases, for comparison.
- Figure 6 shows by comparison a first example of the effect applying the V-t pattern of figure 4.
- the gain in tuning speed is clearly illustrated by the middle curve.
- the voltage pulse in the embodiments of the present invention is used for reducing tuning delay and is followed by a hold voltage (Vf ina ⁇ ) that stabilizes the final state.
- the movable element of the device can become under damped for example when it has been packaged at low pressure using a hermetic package. This will increase the tuning speed but will also cause ringing, i.e. oscillation with the mechanical resonance frequency around the stable state. When this ringing is detected it can be fed back into the driving voltage generator. If the driving voltage is made to oscillate with the same frequency but 180 degrees out of phase it effectively damps the oscillation of the device. This is the principle of active damping.
- Fig 7 shows an example of a sequence of pulses for damping the ringing to reduce the settling time.
- the sequence has a period corresponding to a resonant frequency, and comprises a number of peaks and troughs above and below the given supply level, such that successive ones of the peaks and troughs are closer to the given supply level.
- the rate of reducing the peaks and troughs can be determined according to the amount of ringing. This can depend on the starting and final levels, and on the characteristics of the movable element, such as the spring constant, and air damping factors.
- a feedback mechanism can be used so that the controller senses the output capacitance ringing and can adapt the control of the electrodes accordingly.
- the period of the pulses and their amplitudes could be adapted.
- FIG. 8 shows an example of parts of a controller, though other implementations can be envisaged.
- a high voltage is used to improve tuning speed.
- a high- voltage generator chip is normally used. This chip can have a voltage regulator to make the V-t pattern described above.
- the high voltage is generated using an oscillator 100, supplied by the low voltage supply used for other circuitry, typically 2.7v, though other levels can be used.
- the oscillator feeds a DC to DC converter 110 which boosts the voltage. This can be achieved by a charge pump or other well known types of circuitry as desired.
- a 30V output is shown, though other levels can be used as needed. The amount of current needed will depend on the charge used when changing the differential voltage, and the rate of the changes.
- Altering the differential voltage involves supplying a charge which will depend on the capacitance of the driving electrodes and on the voltage levels.
- This capacitance of the driving electrodes consists of two parts, the capacitance over the air gap and the capacitance over the dielectric. These two parts are connected in series, so the total capacitance can be derived.
- the mechanical equations to determine the motion of the movable element can be derived from the spring constant of the arrangement, a damping factor caused by the atmosphere surrounding the movable element, the electrical permittivity and the relative electrical permittivity of the dielectric.
- the charge needed to pull down the bridge completely may be extremely low, in the range of 50 pC (with a closed capacitance of ⁇ 10 pF and a voltage of 5 V). However, if a higher voltage is applied, this can result in a much higher charge being used.
- the high voltage is fed to a voltage regulator 120 which outputs pulses and levels to the drive electrodes.
- the regulator can be implemented following established practice in high-voltage applications.
- An example is a MOSFET arranged as a variable resistor. This is controlled by a control signal which in this example is output by a DAC (digital to analog converter) 140, fed by a micro processor 130, which outputs digital representations of pulses and levels following a program and according to external inputs such as timing signals and feedback from elsewhere.
- the processor can be programmed using conventional programming languages.
- the processor circuitry and other parts can be implemented using logic circuitry or other digital hardware for example following established practice.
- the processor can use any conventional ASIC technologies, or be implemented as a hybrid of different technologies for example.
- the device may be implemented as a hybrid using different technologies to suit the differing requirements of MEMS structures, high voltage circuitry and low voltage logic and other circuitry.
- the embodiments of the invention can be applied in many applications, notably RF architectures that use tunable capacitors to built adaptive networks.
- Examples are adaptive impedance matching networks and tunable LC tank circuits for VCO's in RF front ends for mobile communication, and adaptive filters for mobile TV or mobile communication base stations.
- the embodiments can encompass devices other than capacitors, any device which can exploit a movable element being repositioned to intermediate positions, including variable attenuators, optical beam deflectors, sensors and so on.
- a micro-electromechanical device having a substrate (60), a movable element (15), a pair of electrodes (40) arranged on the substrate and on the movable element to move the movable element, and an electrode voltage controller (50) to supply electrical power to the electrodes.
- the pulse or pulses during the movement can be timed to compensate for the inherent slowness of the device and/or under- or over-damping of the movement.
- two forms of control are used: overdriving with a high voltage when the moveable member of a MEMS device is closed, in this case the member is driven to its final position as fast as possible, and active damping when the moveable member is underdamped and ringing has started. This can reduce a settling delay.
- the invention can be applied to tunable RF capacitors. To control a decrease in the gap, a single pulse of a maximum supply level compensates for over-damping. To compensate for under- damping, additional pulses ca be applied having a period corresponding to a resonant frequency, and comprise peaks and troughs above and below the final supply level, such that successive ones of the peaks and troughs are closer to the given supply level.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Micromachines (AREA)
- Pressure Sensors (AREA)
- Oscillators With Electromechanical Resonators (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06809552A EP1938345B1 (en) | 2005-10-14 | 2006-10-10 | Mems tunable device |
US12/090,004 US8027143B2 (en) | 2005-10-14 | 2006-10-10 | MEMS tunable device |
DE602006005698T DE602006005698D1 (en) | 2005-10-14 | 2006-10-10 | TUNABLE MEMS ARRANGEMENT |
JP2008535164A JP4990286B2 (en) | 2005-10-14 | 2006-10-10 | MEMS tunable devices |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05109574 | 2005-10-14 | ||
EP05109574.3 | 2005-10-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007043006A2 true WO2007043006A2 (en) | 2007-04-19 |
WO2007043006A3 WO2007043006A3 (en) | 2007-09-13 |
Family
ID=37943198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2006/053711 WO2007043006A2 (en) | 2005-10-14 | 2006-10-10 | Mems tunable device |
Country Status (7)
Country | Link |
---|---|
US (1) | US8027143B2 (en) |
EP (1) | EP1938345B1 (en) |
JP (1) | JP4990286B2 (en) |
CN (1) | CN101288137A (en) |
AT (1) | ATE425544T1 (en) |
DE (1) | DE602006005698D1 (en) |
WO (1) | WO2007043006A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010021252A (en) * | 2008-07-09 | 2010-01-28 | Murata Mfg Co Ltd | Variable capacitance element, and method of manufacturing the same |
WO2014186656A1 (en) * | 2013-05-17 | 2014-11-20 | Cavendish Kinetics, Inc | Method and technique to control mems dvc control waveform for lifetime enhancement |
US10215566B2 (en) | 2015-09-15 | 2019-02-26 | Seiko Epson Corporation | Oscillator, electronic device, and moving object |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010199214A (en) * | 2009-02-24 | 2010-09-09 | Oki Semiconductor Co Ltd | Mems tunable capacitor |
DE102010014101B4 (en) | 2010-04-07 | 2016-06-09 | Epcos Ag | Hybrid circuit with adjustable impedance |
CN103221331B (en) | 2010-09-18 | 2016-02-03 | 快捷半导体公司 | Hermetically sealed for MEMS |
US9246018B2 (en) | 2010-09-18 | 2016-01-26 | Fairchild Semiconductor Corporation | Micromachined monolithic 3-axis gyroscope with single drive |
US10065851B2 (en) | 2010-09-20 | 2018-09-04 | Fairchild Semiconductor Corporation | Microelectromechanical pressure sensor including reference capacitor |
US8927311B2 (en) * | 2011-02-16 | 2015-01-06 | Freescale Semiconductor, Inc. | MEMS device having variable gap width and method of manufacture |
US8294184B2 (en) | 2011-02-23 | 2012-10-23 | Qualcomm Mems Technologies, Inc. | EMS tunable transistor |
US8978475B2 (en) | 2012-02-01 | 2015-03-17 | Fairchild Semiconductor Corporation | MEMS proof mass with split z-axis portions |
US9488693B2 (en) * | 2012-04-04 | 2016-11-08 | Fairchild Semiconductor Corporation | Self test of MEMS accelerometer with ASICS integrated capacitors |
EP2648334B1 (en) | 2012-04-05 | 2020-06-10 | Fairchild Semiconductor Corporation | Mems device front-end charge amplifier |
EP2647952B1 (en) | 2012-04-05 | 2017-11-15 | Fairchild Semiconductor Corporation | Mems device automatic-gain control loop for mechanical amplitude drive |
EP2647955B8 (en) | 2012-04-05 | 2018-12-19 | Fairchild Semiconductor Corporation | MEMS device quadrature phase shift cancellation |
US9625272B2 (en) | 2012-04-12 | 2017-04-18 | Fairchild Semiconductor Corporation | MEMS quadrature cancellation and signal demodulation |
US10183857B2 (en) * | 2012-08-21 | 2019-01-22 | Robert Bosch Gmbh | MEMS pressure sensor with multiple membrane electrodes |
DE102013014881B4 (en) | 2012-09-12 | 2023-05-04 | Fairchild Semiconductor Corporation | Enhanced silicon via with multi-material fill |
WO2015172809A1 (en) * | 2014-05-12 | 2015-11-19 | Epcos Ag | Microphone assembly and method of manufacturing a microphone assembly |
US10454019B2 (en) * | 2016-09-29 | 2019-10-22 | The Boeing Company | Anisotropic piezoelectric device, system, and method |
US10239746B2 (en) * | 2016-11-11 | 2019-03-26 | Analog Devices, Inc. | Vertical stopper for capping MEMS devices |
CN108249381B (en) * | 2016-12-29 | 2020-03-17 | 财团法人工业技术研究院 | Micro-electromechanical device with impact absorber |
CN107437483A (en) * | 2017-07-24 | 2017-12-05 | 中北大学 | A kind of board-type single-pole single-throw switch (SPST) single-chip integration attenuator |
CN110632753B (en) * | 2018-06-21 | 2021-10-01 | 华为技术有限公司 | Step drive signal control method and device |
CN109243912A (en) * | 2018-09-13 | 2019-01-18 | 中国工程物理研究院电子工程研究所 | A kind of MEMS inertia switch based on three-stage bistable state girder construction |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020025595A1 (en) * | 2000-02-02 | 2002-02-28 | Ji-Hai Xu | MEMS variable capacitor with stabilized electrostatic drive and method therefor |
US20020075626A1 (en) * | 2000-12-20 | 2002-06-20 | Chang Liu | Wide tuning range variable mems capacitor |
WO2004000717A2 (en) * | 2002-06-19 | 2003-12-31 | Filtronic Compound Semiconductors Limited | A micro-electromechanical variable capactitor |
EP1473691A2 (en) * | 2003-04-30 | 2004-11-03 | Hewlett-Packard Development Company, L.P. | Charge control of micro-electromechanical device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3500756B2 (en) | 1995-03-08 | 2004-02-23 | 株式会社デンソー | Angular velocity sensor |
JPH10335675A (en) * | 1997-05-30 | 1998-12-18 | Aisin Seiki Co Ltd | Semiconductor micromachine |
FI109155B (en) | 2000-04-13 | 2002-05-31 | Nokia Corp | Method and arrangement for controlling a micromechanical element |
JP2002178516A (en) * | 2000-12-14 | 2002-06-26 | Ricoh Co Ltd | Method for driving electrostatic actuator and ink jet recorder applying the same |
JP2004172504A (en) | 2002-11-21 | 2004-06-17 | Fujitsu Media Device Kk | Variable capacitor, package provided therewith, and method for manufacturing the same |
US7657242B2 (en) * | 2004-09-27 | 2010-02-02 | Qualcomm Mems Technologies, Inc. | Selectable capacitance circuit |
CN1769945A (en) * | 2004-09-30 | 2006-05-10 | 富士胶片株式会社 | Microelectromechanical modulation device and microelectromechanical modulation device array, and image forming apparatus |
-
2006
- 2006-10-10 EP EP06809552A patent/EP1938345B1/en active Active
- 2006-10-10 US US12/090,004 patent/US8027143B2/en active Active
- 2006-10-10 DE DE602006005698T patent/DE602006005698D1/en active Active
- 2006-10-10 CN CNA2006800380146A patent/CN101288137A/en active Pending
- 2006-10-10 JP JP2008535164A patent/JP4990286B2/en not_active Expired - Fee Related
- 2006-10-10 AT AT06809552T patent/ATE425544T1/en not_active IP Right Cessation
- 2006-10-10 WO PCT/IB2006/053711 patent/WO2007043006A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020025595A1 (en) * | 2000-02-02 | 2002-02-28 | Ji-Hai Xu | MEMS variable capacitor with stabilized electrostatic drive and method therefor |
US20020075626A1 (en) * | 2000-12-20 | 2002-06-20 | Chang Liu | Wide tuning range variable mems capacitor |
WO2004000717A2 (en) * | 2002-06-19 | 2003-12-31 | Filtronic Compound Semiconductors Limited | A micro-electromechanical variable capactitor |
EP1473691A2 (en) * | 2003-04-30 | 2004-11-03 | Hewlett-Packard Development Company, L.P. | Charge control of micro-electromechanical device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010021252A (en) * | 2008-07-09 | 2010-01-28 | Murata Mfg Co Ltd | Variable capacitance element, and method of manufacturing the same |
WO2014186656A1 (en) * | 2013-05-17 | 2014-11-20 | Cavendish Kinetics, Inc | Method and technique to control mems dvc control waveform for lifetime enhancement |
US9948212B2 (en) | 2013-05-17 | 2018-04-17 | Cavendish Kinetics, Inc. | Method and technique to control MEMS DVC control waveform for lifetime enhancement |
US10215566B2 (en) | 2015-09-15 | 2019-02-26 | Seiko Epson Corporation | Oscillator, electronic device, and moving object |
Also Published As
Publication number | Publication date |
---|---|
WO2007043006A3 (en) | 2007-09-13 |
JP4990286B2 (en) | 2012-08-01 |
DE602006005698D1 (en) | 2009-04-23 |
EP1938345B1 (en) | 2009-03-11 |
JP2009512210A (en) | 2009-03-19 |
CN101288137A (en) | 2008-10-15 |
ATE425544T1 (en) | 2009-03-15 |
US20080253057A1 (en) | 2008-10-16 |
US8027143B2 (en) | 2011-09-27 |
EP1938345A2 (en) | 2008-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1938345B1 (en) | Mems tunable device | |
EP1573894B1 (en) | Driving of an array of micro-electro-mechanical-system (mems) elements | |
Seeger et al. | Charge control of parallel-plate, electrostatic actuators and the tip-in instability | |
Park et al. | Micromachined RF MEMS tunable capacitors using piezoelectric actuators | |
US8194386B2 (en) | Arrangement of MEMS devices having series coupled capacitors | |
US7085121B2 (en) | Variable capacitance membrane actuator for wide band tuning of microstrip resonators and filters | |
US20100026136A1 (en) | Micromechanical resonating devices and related methods | |
US20050162244A1 (en) | Switch | |
WO2004047190A3 (en) | Micro electro-mechanical system device with piezoelectric thin film actuator | |
US20080180872A1 (en) | Drive control method and unit for micro machine device | |
US8363381B2 (en) | Variable capacitive element, variable capacitive device, and method for driving the variable capacitive element | |
WO2002043089A9 (en) | Electronic device including multiple capacitance value mems capacitor and associated methods | |
US20030090346A1 (en) | Resonant operation of MEMS switch | |
WO2007072404A2 (en) | Tuneable electronic devices and electronic arrangements comprising such tuneable devices | |
KR102669193B1 (en) | optical filter system | |
JP2007175577A (en) | Mems vibrator | |
Pu et al. | Stable zipping RF MEMS varactors | |
US7939993B2 (en) | Micromechanical Hf switching element and method for the production thereof | |
Chiou et al. | A novel capacitance control design of tunable capacitor using multiple electrostatic driving electrodes | |
He et al. | A novel mems tunable capacitor | |
Revandkar et al. | Analyzing the effect of metals on the dynamic performance of RF MEMS Switch | |
KR101636698B1 (en) | MEMS Variable Capacitor Having Switching and Latching Mechanisms, Manufacturing Method, and Electric Device Having the Same | |
EP2507804B1 (en) | Variable capacitor and method for driving the same | |
WO2003083886A1 (en) | Switch device | |
Pu et al. | High-Q continuously tunable zipping varactors with large tuning range |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680038014.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006809552 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12090004 Country of ref document: US Ref document number: 2008535164 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06809552 Country of ref document: EP Kind code of ref document: A2 |
|
WWP | Wipo information: published in national office |
Ref document number: 2006809552 Country of ref document: EP |