JP2007175577A - Mems vibrator - Google Patents

Mems vibrator Download PDF

Info

Publication number
JP2007175577A
JP2007175577A JP2005374475A JP2005374475A JP2007175577A JP 2007175577 A JP2007175577 A JP 2007175577A JP 2005374475 A JP2005374475 A JP 2005374475A JP 2005374475 A JP2005374475 A JP 2005374475A JP 2007175577 A JP2007175577 A JP 2007175577A
Authority
JP
Japan
Prior art keywords
electrode plate
mems vibrator
vibrating body
electrode
mems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005374475A
Other languages
Japanese (ja)
Other versions
JP2007175577A5 (en
Inventor
Tatsuji Kihara
竜児 木原
Akira Sato
彰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005374475A priority Critical patent/JP2007175577A/en
Publication of JP2007175577A publication Critical patent/JP2007175577A/en
Publication of JP2007175577A5 publication Critical patent/JP2007175577A5/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a MEMS vibrator in which the insertion loss is diminished by keeping a resistance component of the MEMS vibrator to a minimum. <P>SOLUTION: The MEMS vibrator has a lower electrode 10 as a first electrode plate, a vibration body 12, as a second electrode plate, which has a gap g for the electrode 10 to be oppositely positioned, a supporting beam 14 extended from a side of the vibration body 12, a power supplying circuit 16 as a power supplying means for applying an alternating power of the same phase to the lower electrode 10 and the vibration body 12, and an output circuit 18 as a detection means for obtaining a power output corresponding to the electrostatic capacity between the lower electrode 10 and the vibration body 12, wherein the resistance component is kept to the minimum by adjusting the dimension of the vibration body 12. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、MEMS振動子に関する。   The present invention relates to a MEMS vibrator.

MEMS(Micro Electro Mechanical System)はマイクロマシン技術の1つで、ミクロン(またはナノ)オーダーの微細な電子機械システムを作る技術やその製品のことをいう。半導体チップはシリコン基板上にシリコン薄膜を積み重ねて電子回路を作るため平面的であるが、同じ半導体技術を使いながら、MEMSでは機械加工のようにシリコンを切り出し、ミクロンサイズの板ばねや鏡、回転軸などを作る。これらは立体的であり、部品は可動する。   MEMS (Micro Electro Mechanical System) is one of micromachine technologies, and refers to technologies and products that make microelectron mechanical systems of micron (or nano) order. A semiconductor chip is planar because a silicon thin film is stacked on a silicon substrate to make an electronic circuit, but while using the same semiconductor technology, MEMS cuts silicon like machining, micron-sized leaf springs and mirrors, rotating Make an axis. These are three-dimensional and the parts are movable.

MEMSが注目されている分野として通信分野、特に携帯電話が挙げられている。携帯電話にはLSIの他にフィルタやアンテナ・スイッチ、送受信スイッチなど多くの部品が組み込まれている。Bluetooth(登録商標)や無線LANを利用するマルチバンド化が進めば、アンテナの切り替えスイッチやバンド切り替えスイッチなどの受動部品が増える。小型化、消費電力化を進めるためにはこうした部品を1チップに収めて点数を減らすことが最も効率がいい。また配線が短くなり、メカニカルに動作することから信号ノイズが入ることもなく、個別部品より10倍以上の損失が少ないフィルタが実現するなど性能向上も見込まれる。またシリコンを使うのでシステムLSIと一体化またはパッケージ化したり、貼り合わせたりすることも可能である。   As a field in which MEMS is attracting attention, a communication field, particularly a mobile phone is cited. In addition to LSIs, cellular phones incorporate many components such as filters, antenna switches, and transmission / reception switches. As the number of multibands using Bluetooth (registered trademark) and wireless LAN increases, passive components such as an antenna changeover switch and a band changeover switch increase. In order to reduce the size and power consumption, it is most efficient to reduce these points by putting these parts on one chip. Further, since the wiring is shortened and mechanically operated, no signal noise is introduced, and a performance improvement such as realizing a filter having a loss 10 times or more that of individual components is expected. Since silicon is used, it can be integrated with a system LSI, packaged, or bonded together.

一般的にMEMS技術を用いたデバイスは共振運動を用いて駆動することによりエネルギーを無駄にすることなく駆動させる。例えば、加速度センサや温度センサ、湿度センサなどのセンサアプリケーションは共振周波数の変化を検知することで(物理量)変化をセンシングしている。またMEMS振動子は共振周波数を安定的に共振することで発振器として用いられる。これら(センサや振動子)の形状は目的とする特性、周波数によって決まる。形状は大きく分類すると梁構造、櫛場構造、円盤構造の3種類である。また振動方法は2つあり、屈曲運動と伸縮運動であることが知られている(例えば、非特許文献1参照)。   In general, a device using the MEMS technology is driven without wasting energy by driving using a resonance motion. For example, sensor applications such as an acceleration sensor, a temperature sensor, and a humidity sensor sense a change (physical quantity) by detecting a change in resonance frequency. The MEMS vibrator is used as an oscillator by stably resonating at a resonance frequency. The shapes of these (sensors and vibrators) are determined by the target characteristics and frequency. The shape is roughly classified into three types: a beam structure, a comb structure, and a disk structure. Moreover, there are two vibration methods, and it is known that they are bending motion and telescopic motion (for example, refer nonpatent literature 1).

S.Lee and C.T.−C.Nguyen,“Mechanically−coupled micromechanical arrays for improved phase noise,”Proceedings,IEEE Int.Ultrasonics,Ferroelectrics,and Frequency Control 50th Anniv.Joint Conf.,Montreal,Canada,Aug.24−27,2004,pp.280−286S. Lee and C.L. T. T. et al. -C. Nguyen, “Mechanically-coupled micromechanical arrays for improved phase noise,” Proceedings, IEEE Int. Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniv. Joint Conf. Montreal, Canada, Aug. 24-27, 2004, pp. 280-286

このような3種類の構造全てに共通することは、MEMS振動子の(等価回路として考えた場合の)抵抗成分が大きいということである。抵抗成分が大きいということは挿入損失(入力信号に対して出力信号の損失割合)が大きいことを意味する。デバイスとしては挿入損失の小さいものが望まれる。   What is common to all three types of structures is that the resistance component of the MEMS vibrator (when considered as an equivalent circuit) is large. A large resistance component means a large insertion loss (loss ratio of output signal to input signal). A device with a small insertion loss is desired.

本発明の目的は、MEMS振動子の抵抗成分を最小にすることで挿入損失の小さいMEMS振動子を提供する。   An object of the present invention is to provide a MEMS vibrator having a small insertion loss by minimizing the resistance component of the MEMS vibrator.

(1)本発明に係るMEMS振動子は、第1の電極板と、前記第1の電極板に対して空隙を有して対向配置される第2の電極板と、前記第1の電極板の側面から延在される支持梁と、前記第1の電極板と前記第2の電極板とに同相の交流電力を印加するための給電手段と、前記第1の電極板と前記第2の電極板との間の静電容量に対応した出力を得る検出手段と、を含み、前記第2の電極板の寸法を調整し、下記式が成立することにより抵抗成分を最も低くする。   (1) A MEMS vibrator according to the present invention includes a first electrode plate, a second electrode plate disposed opposite to the first electrode plate with a gap, and the first electrode plate. A support beam extending from the side surface of the substrate, power supply means for applying in-phase AC power to the first electrode plate and the second electrode plate, the first electrode plate and the second electrode plate Detecting means for obtaining an output corresponding to the capacitance between the electrode plate and the electrode plate. The dimension of the second electrode plate is adjusted, and the following equation is established to make the resistance component the lowest.

Figure 2007175577
但し、lは前記第2の電極板の長さ(μm);gは前記第1の電極板と前記第2の電極板との空隙(nm);Eは前記第2の電極板のヤング率(GPa);tは前記第2の電極板の厚み(nm);ε0は前記第2の電極板の誘電率(F/m);VDCは前記第2の電極板にかかるDCバイアス電圧(V):である。本発明によれば、第2の電極板の寸法を調整することにより、第2の電極板が第1の電極板と接触することなくMEMS振動子の抵抗成分が最も低くなるように第2の電極板の形状の寸法を調整できる(具体的には長さを最適な値にすることにより抵抗成分を下げる)。したがって、上記の設計方法を用いることでMEMS振動子の抵抗成分を下げられ、抵抗成分が下がることによって振動子として用いたとき素子の挿入損失の小さいMEMS振動子ができる。
Figure 2007175577
Where l is the length of the second electrode plate (μm); g is the gap (nm) between the first electrode plate and the second electrode plate; E is the Young's modulus of the second electrode plate (GPa); t is the thickness (nm) of the second electrode plate; ε 0 is the dielectric constant (F / m) of the second electrode plate; VDC is the DC bias voltage applied to the second electrode plate (V): According to the present invention, by adjusting the dimensions of the second electrode plate, the second electrode plate does not come into contact with the first electrode plate so that the resistance component of the MEMS vibrator is minimized. The shape dimension of the electrode plate can be adjusted (specifically, the resistance component is lowered by setting the length to an optimum value). Therefore, by using the above-described design method, the resistance component of the MEMS vibrator can be lowered, and a MEMS vibrator having a small insertion loss of an element when used as a vibrator can be obtained by reducing the resistance component.

(2)このMEMS振動子は、前記駆動部は、片持ち梁(カンチレバー)構造であってもよい。これにより、構造はプロセスが容易になる。また、両端支持構造に比べて低い電圧で駆動できる。   (2) In this MEMS vibrator, the drive unit may have a cantilever structure. This makes the structure easier to process. Further, it can be driven at a lower voltage than the both-end support structure.

以下、本発明を適用した実施の形態について図面を参照して説明する。   Embodiments to which the present invention is applied will be described below with reference to the drawings.

図1は、本発明の実施の形態に係るMEMS振動子の片持ち梁構造を示す図である。図2は、本発明の実施の形態に係るMEMS振動子の等価回路を示す図である。本実施の形態に係るMEMS振動子は、図1に示すように、第1の電極板としての下部電極10と、第2の電極板としての振動体12と、支持梁14と、給電手段としての給電回路16と、検出手段としての出力回路18と、を含んでいる。   FIG. 1 is a diagram showing a cantilever structure of a MEMS vibrator according to an embodiment of the present invention. FIG. 2 is a diagram showing an equivalent circuit of the MEMS vibrator according to the embodiment of the present invention. As shown in FIG. 1, the MEMS vibrator according to the present embodiment includes a lower electrode 10 as a first electrode plate, a vibrating body 12 as a second electrode plate, a support beam 14, and power supply means. Power supply circuit 16 and an output circuit 18 as detection means.

本実施形態に係るMEMS振動子は、基本構成として、基板(図示せず)の表面上に形成される下部電極10と、下部電極10に対して空隙gを有して対向配置される矩形状の振動体12と、から構成されている。   The MEMS vibrator according to this embodiment has, as a basic configuration, a lower electrode 10 formed on the surface of a substrate (not shown) and a rectangular shape that is opposed to the lower electrode 10 with a gap g. And the vibrating body 12.

下部電極10は、基板(図示せず)の平面上、即ち基板の少なくとも絶縁性を有する表面上に形成されている。下部電極10は、例えば、シリコン基板の表面に酸化シリコン(SiO2)からなる絶縁層が形成され、その上面に形成されている。下部電極10は、例えば、多結晶シリコン膜、アルミニウム(Al)などの金属膜にて形成することができる。基板(図示せず)は、例えば、シリコン(Si)やガリウム砒素(GaAs)などの半導体基板上に絶縁膜を形成した基板、石英基板やガラス基板のような絶縁性基板等が用いられる。 The lower electrode 10 is formed on a plane of a substrate (not shown), that is, on a surface having at least an insulating property. The lower electrode 10 is formed on an upper surface of an insulating layer made of silicon oxide (SiO 2 ), for example, on the surface of a silicon substrate. The lower electrode 10 can be formed of, for example, a polycrystalline silicon film or a metal film such as aluminum (Al). As the substrate (not shown), for example, a substrate in which an insulating film is formed on a semiconductor substrate such as silicon (Si) or gallium arsenide (GaAs), or an insulating substrate such as a quartz substrate or a glass substrate is used.

振動体12は、下部電極10に対して空隙gを有して対向配置されている。振動体12は、振動体12の寸法を調整し、下記式が成立することにより抵抗成分を最も低くする。   The vibrating body 12 is disposed to face the lower electrode 10 with a gap g. The vibrating body 12 adjusts the dimension of the vibrating body 12 and makes the resistance component the lowest by satisfying the following equation.

Figure 2007175577
但し、lは振動体12の長さ(μm);gは下部電極10と振動体12との空隙(nm);Eは振動体12のヤング率(GPa);tは振動体12の厚み(nm);ε0は振動体12の誘電率(F/m);VDCは振動体12にかかるDCバイアス電圧(V):である。振動体12は、支持梁14で一体に支持されている。振動体12は、例えば、多結晶シリコン膜、アルミニウム(Al)などの金属膜にて形成することができる。
Figure 2007175577
Where l is the length (μm) of the vibrating body 12; g is the gap (nm) between the lower electrode 10 and the vibrating body 12; E is the Young's modulus (GPa) of the vibrating body 12; t is the thickness of the vibrating body 12 ( nm); ε 0 is a dielectric constant (F / m) of the vibrating body 12; VDC is a DC bias voltage (V) applied to the vibrating body 12; The vibrating body 12 is integrally supported by the support beam 14. The vibrating body 12 can be formed of a metal film such as a polycrystalline silicon film or aluminum (Al), for example.

支持梁14は、振動体12の側面から延在されている。支持梁14は、片持ち梁(カンチレバー)構造であってもよい。これにより、構造はプロセスが容易になる。また、両端支持構造に比べて低い電圧で駆動できる。   The support beam 14 extends from the side surface of the vibrating body 12. The support beam 14 may have a cantilever (cantilever) structure. This makes the structure easier to process. Further, it can be driven at a lower voltage than the both-end support structure.

給電回路16は、下部電極10と振動体12とに同相の交流電力を印加している。給電回路16には、交流電源VACと、交流電源VACと下部電極10に形成される電極層(図示せず)とを接続する供給線26とが設けられている。給電回路16は、基板の内部にモノシリックに構成されるが、基板と別に構成してもよく、または外部から交流電力を供給するための配線構造のみを形成してもよい。 The power feeding circuit 16 applies in-phase AC power to the lower electrode 10 and the vibrating body 12. The power supply circuit 16 is provided with an AC power source V AC and a supply line 26 that connects the AC power source V AC and an electrode layer (not shown) formed on the lower electrode 10. The power supply circuit 16 is monolithically configured inside the substrate, but may be configured separately from the substrate, or may form only a wiring structure for supplying AC power from the outside.

出力回路18は、下部電極10と振動体12との間の静電容量に対応した出力を得ている。出力回路18は、支持梁14の下面の電極層24から、振動体12の伸縮振動に応じた出力信号(検出信号)を出力線20を介して得ている。出力回路18は、DCバイアス電圧VDCと出力線20の出力電位との間に接続されたインダクタンスLtと、上記出力電位と接地電位との間に接続された容量Ctとから構成されている。 The output circuit 18 obtains an output corresponding to the capacitance between the lower electrode 10 and the vibrating body 12. The output circuit 18 obtains an output signal (detection signal) corresponding to the stretching vibration of the vibrating body 12 from the electrode layer 24 on the lower surface of the support beam 14 via the output line 20. The output circuit 18 is composed of a DC bias voltage V DC and the inductance L t which is connected between the output potential of the output line 20, the output potential and the connected capacitance C t between the ground potential Yes.

支持梁14の端部には基板と接続する支持部22が形成され、振動体12の下部には、下部電極10との間に空隙gが設けられ、縦方向(振動体12の厚みt方向、図1では上下方向である)に伸縮振動を行える形状である。また、この振動体12と支持梁14の下面には電極層24が形成されており、出力線20を介して出力回路18に接続されている。   A support portion 22 connected to the substrate is formed at the end of the support beam 14, and a gap g is provided between the lower electrode 10 and the lower portion of the vibration body 12, and the vertical direction (the thickness t direction of the vibration body 12) In FIG. 1, it is a shape capable of stretching vibration in the vertical direction). An electrode layer 24 is formed on the lower surface of the vibrating body 12 and the support beam 14, and is connected to the output circuit 18 via the output line 20.

本実施形態のMEMS振動子は、振動体12が縦方向に屈曲振動する際、振動体12と下部電極10との間に発生する静電容量の変化を検出して出力する構造であり、静電容量は、対向する振動体12と下部電極10との空隙gの二乗に反比例し、電極交差面積Aに比例する。また、振動体12と下部電極10との間で、平面的に縦方向に屈曲する態様の振動を生じ、この伸縮振動に応じて空隙gの距離が変化することにより、振動体12と下部電極10との間の静電容量が増減する。この静電容量の増減は、出力回路18に生ずる出力電流iOとして出力端子t2に出力される。さらに、振動体12の屈曲振動は、矩形状の振動体12の形状変化を伴う縦方向の振動であり、振動体12と下部電極10との間の静電力に起因するものである。この振動モードにおいて、振動体12は、その平面形状、厚み、及び、構成素材の密度や弾性特性(例えば、ヤング率やポアソン比など)によって定まる固有振動周波数を有する。 The MEMS vibrator of the present embodiment has a structure that detects and outputs a change in capacitance generated between the vibrating body 12 and the lower electrode 10 when the vibrating body 12 bends and vibrates in the vertical direction. The capacitance is inversely proportional to the square of the gap g between the vibrating body 12 and the lower electrode 10 facing each other, and is proportional to the electrode crossing area A. In addition, vibration in a mode in which the vibration body 12 and the lower electrode 10 are bent in a vertical direction in a plane is generated, and the distance of the gap g is changed according to the stretching vibration, whereby the vibration body 12 and the lower electrode are changed. The capacitance between 10 increases and decreases. Increase or decrease of the capacitance is outputted to the output terminal t 2 as an output current i O generated in the output circuit 18. Further, the bending vibration of the vibrating body 12 is a vertical vibration accompanied by a change in the shape of the rectangular vibrating body 12, and is caused by an electrostatic force between the vibrating body 12 and the lower electrode 10. In this vibration mode, the vibrating body 12 has a natural vibration frequency determined by its planar shape, thickness, density of constituent materials, and elastic characteristics (for example, Young's modulus, Poisson's ratio, etc.).

本実施の形態に係るMEMS振動子では、図2に示すように、MEMS振動子の共振現象を等価回路に置き換えることができる。即ち、入力端子t1と出力端子t2間に、共振系を構成する抵抗RXとインダクタンスLXと容量CXの直列回路と、入出力電極間の空隙による寄生容量C0が並列に挿入される。 In the MEMS vibrator according to the present embodiment, as shown in FIG. 2, the resonance phenomenon of the MEMS vibrator can be replaced with an equivalent circuit. That is, between the input terminal t 1 and the output terminal t 2 , a series circuit of a resistor R X , an inductance L X, and a capacitor C X constituting a resonance system and a parasitic capacitance C 0 due to a gap between input and output electrodes are inserted in parallel. Is done.

本実施の形態に係るMEMS振動子の動作は次の通りである。振動体12には、図1に示すように、所要のDCバイアス電圧VDCが印加される。入力端子t1を通じて交流電源VACが下部電極10に入力される。目的周波数の交流電源VACが入力されると、振動体12と下部電極10間に生じる静電力で、2次の振動モードで振動体12が共振する。この振動体12の共振で支持梁14から出力端子t2を通じて目的周波数の出力電流iOが出力される。他の周波数の信号が入力されたときは振動体12が共振せず、出力端子t2からは信号が出力されない。 The operation of the MEMS vibrator according to the present embodiment is as follows. As shown in FIG. 1, a required DC bias voltage V DC is applied to the vibrating body 12. The AC power source V AC is input to the lower electrode 10 through the input terminal t 1 . When the AC power supply V AC of target frequency is input, an electrostatic force generated between the vibrator 12 and the lower electrode 10, the vibrating body 12 in the secondary vibration mode resonates. The output current i O of target frequency from the supporting beams 14 at the resonance of the vibrating body 12 through the output terminal t 2 is output. When the signal of the other frequency is input without resonance vibrator 12, the signal is not output from the output terminal t 2.

図2に示すように、MEMS振動子を等価回路として考えた場合、抵抗成分としての抵抗値RXは、数3で表すことができる。 As shown in FIG. 2, when the MEMS vibrator is considered as an equivalent circuit, a resistance value R X as a resistance component can be expressed by Equation 3.

Figure 2007175577
但し、VACは交流電圧(V);iは抵抗値RXを流れる電流(μA):である。
Figure 2007175577
Where V AC is an alternating voltage (V); i is a current (μA) flowing through the resistance value R X :

非特許文献1より、MEMS振動子より出力される出力電流iO(図1参照)は、数4で表すことができる。 From Non-Patent Document 1, the output current i O (see FIG. 1) output from the MEMS vibrator can be expressed by Equation 4.

Figure 2007175577
但し、VDCはDCバイアス電圧(V);δC/δxは空隙gの変位あたりの容量変化;δx/δtは振動体12が駆動しているときの速度変化;ω0は角周波数(=2πf):である。
Figure 2007175577
Where VDC is a DC bias voltage (V); δC / δx is a capacity change per displacement of the gap g; δx / δt is a speed change when the vibrating body 12 is driven; ω 0 is an angular frequency (= 2πf) ):

δC/δxは、空隙gの変位あたりの容量変化であり、数5で表すことができる。   δC / δx is a change in capacity per displacement of the gap g, and can be expressed by Equation 5.

Figure 2007175577
但し、ε0は前記第1の電極板の誘電率(F/m);Aは下部電極10−振動体12の電極交差面積;g0は前記第1の電極板と前記第2の電極板との初期空隙(nm):である。
Figure 2007175577
Where ε 0 is the dielectric constant (F / m) of the first electrode plate; A is the electrode crossing area of the lower electrode 10 and the vibrating body 12; g 0 is the first electrode plate and the second electrode plate. And initial gap (nm):

MEMS振動子の全体の抵抗成分は、インダクタンスLXとキャパシタのインピーダンスCXが等しい(ωL=1/ωC)ときが共振なので、抵抗値RXのみになる。数4および数5を数3に代入すると抵抗値RXは、数6で表すことができる。 The entire resistance component of the MEMS vibrator is only the resistance value R X because it is resonant when the inductance L X and the impedance C X of the capacitor are equal (ωL = 1 / ωC). By substituting Equations 4 and 5 into Equation 3, the resistance value R X can be expressed by Equation 6.

Figure 2007175577
但し、krは振動体12のばね定数(N/mm);ω0(=2πf)は角周波数;Qは振動体12のQ値;VDCはDCバイアス電圧(V);gは下部電極10−振動体12間の空隙(nm);ε0は振動体12の誘電率(F/m);Aは下部電極10−振動体12の電極交差面積:である。
Figure 2007175577
Where k r is the spring constant (N / mm) of the vibrating body 12; ω 0 (= 2πf) is the angular frequency; Q is the Q value of the vibrating body 12; V DC is the DC bias voltage (V); 10 is a gap (nm) between the vibrating body 12; ε 0 is a dielectric constant (F / m) of the vibrating body 12, and A is an electrode crossing area of the lower electrode 10 and the vibrating body 12.

抵抗値RX下げる方法としては、1.下部電極10と振動体12との間の空隙gを狭くする(空隙gを小さくする)。2.振動体12に与える電圧を大きくする(DCバイアス電圧VDCを大きくする)。3.複数の振動体を同じ周波数で同時駆動させる(並列に抵抗を並べる)。が考えられる。この中で3.の方法は振動体及び電極の形状を変化させることなく、抵抗値を下げる方法として有効である。 As a method of decreasing the resistance value R X , 1. The gap g between the lower electrode 10 and the vibrating body 12 is narrowed (the gap g is reduced). 2. The voltage applied to the vibrating body 12 is increased (DC bias voltage V DC is increased). 3. A plurality of vibrators are simultaneously driven at the same frequency (resistors are arranged in parallel). Can be considered. Among these, 3. This method is effective as a method for reducing the resistance value without changing the shapes of the vibrating body and the electrode.

図3は、MEMS振動子において、(A)複数の駆動部を同じ周波数で駆動した場合、(B)周波数が0.01%ずれた場合を示す図である。しかし、図3に示すように、複数の振動体を同時に同じ周波数で駆動させるには非常に精度の良いプロセスが要求されるため実現することが困難である。一方1.と2.の方法は3.と違い、MEMS振動子単体の抵抗値を下げる方法であるが、空隙gやDCバイアス電圧VDCを大きくするため、下部電極10と振動体12との接触(Pull−in)が容易に起こるという問題がある。よって加電圧と形状との関係を明確にすることができれば最適なMEMS振動子の形状を設計することができMEMS振動子の抵抗値RXを最小にすることができる。 FIG. 3 is a diagram illustrating a case where (A) a plurality of driving units are driven at the same frequency and (B) the frequency is shifted by 0.01% in the MEMS vibrator. However, as shown in FIG. 3, it is difficult to realize a plurality of vibrators simultaneously driven at the same frequency because a highly accurate process is required. On the other hand, And 2. The method of 3. Unlike the method of reducing the resistance value of the MEMS vibrator alone, the gap g and the DC bias voltage VDC are increased, so that the lower electrode 10 and the vibrator 12 are easily brought into contact with each other (Pull-in). There's a problem. Therefore, if the relationship between the applied voltage and the shape can be clarified, the optimum shape of the MEMS vibrator can be designed, and the resistance value R X of the MEMS vibrator can be minimized.

図1に縦方向屈曲振動型片持ち梁の基本構造を示す。図1より抵抗値RXに影響する要素は幅w、長さl、厚みt及び電極交差面積A、空隙gの5要素である。なお、図1では例として縦方向に運動する構造を示しているが、横方向に運動する構造も縦方向運動との違いはない。 FIG. 1 shows a basic structure of a longitudinal bending vibration type cantilever. As shown in FIG. 1, there are five elements that affect the resistance value R X: width w, length l, thickness t, electrode crossing area A, and gap g. Although FIG. 1 shows a structure that moves in the vertical direction as an example, the structure that moves in the horizontal direction is not different from the vertical movement.

図4は、本発明の実施の形態に係るMEMS振動子の抵抗値と長さの関係を示した図である。(空隙100nm、梁厚み100nm、梁幅1μm、加電圧20V)図4に空隙100nm、梁幅1μm、梁厚み1μmのときの抵抗値RXと梁長さの関係を示す。図4から梁を長くするに従い始めは抵抗値RXが小さくなるが、ある長さから梁長さと反比例するように抵抗値RXは大きくなる。これは梁が長くなると針の剛性が弱まり、与えられる電圧が小さくなるためである。よって特定の梁の長さl、幅w、厚みtをもったときにMEMS振動子の抵抗が最小となることがわかる。 FIG. 4 is a diagram showing the relationship between the resistance value and the length of the MEMS vibrator according to the embodiment of the present invention. (Void 100 nm, beam thickness 100 nm, beam width 1 μm, applied voltage 20 V) FIG. 4 shows the relationship between resistance value R X and beam length when the gap is 100 nm, beam width 1 μm, and beam thickness 1 μm. As shown in FIG. 4, the resistance value R X initially decreases as the beam length increases, but the resistance value R X increases from a certain length in inverse proportion to the beam length. This is because the longer the beam, the less rigid the needle and the smaller the applied voltage. Therefore, it can be seen that the resistance of the MEMS vibrator is minimized when the length, width w, and thickness t of a specific beam are provided.

静的状態でのMEMS振動子の最大変位量を考える。MEMS振動子のバネ定数をkとおくとバネの復元力FSは、数7で表すことができる。 Consider the maximum displacement of the MEMS vibrator in a static state. When the spring constant of the MEMS vibrator is set to k, the restoring force F S of the spring can be expressed by Equation 7.

Figure 2007175577
また、MEMS振動子は静電引力Felで駆動される。静電引力Felはバネの復元力Fsと反対方向に働くので符号はバネの復元力Fsに対して逆(ここでは負)になり数8として表すことができる。
Figure 2007175577
Further, the MEMS vibrator is driven by an electrostatic attractive force Fel . The electrostatic attractive force F el the code so acts in a direction opposite to the restoring force F s of the spring can be expressed as the number becomes 8 (negative in this case) opposite to that restoring force F s of the spring.

Figure 2007175577
但し、VDCは前記第1の電極板にかかるDCバイアス電圧(V);ε0は前記第1の電極板の誘電率(F/m);Aは下部電極10−振動体12の電極交差面積;gは前記第1の電極板と前記第2の電極板との空隙(nm):である。
Figure 2007175577
Where VDC is a DC bias voltage (V) applied to the first electrode plate; ε 0 is a dielectric constant (F / m) of the first electrode plate; A is an electrode intersection of the lower electrode 10 and the vibrating body 12 Area; g is a gap (nm) between the first electrode plate and the second electrode plate.

次にMEMS振動子が最大に変位するときを考える。ここでは初期容量を3μmとして考える。最大に変位するという状態は1.なるべく大きなDCバイアス電圧VDCを与え、2.バネの復元力Fsと静電引力Felが等しい。例えば、DCバイアス電圧VDCに電圧V1を与えたとき(このときの静電引力Fel1)の変位を考えてみる。そうすると図5のようになる。 Next, consider the case where the MEMS vibrator is displaced to the maximum. Here, the initial capacity is assumed to be 3 μm. The state of maximum displacement is 1. 1. Give as much DC bias voltage V DC as possible. Restoring force of the spring F s and the electrostatic attractive force F el is equal. For example, consider the displacement when the voltage V1 is applied to the DC bias voltage V DC (the electrostatic attractive force F el 1 at this time). Then, it becomes like FIG.

図5は、本発明の実施の形態に係るMEMS振動子のDCバイアス電圧VDCに電圧V1を与えたときのバネの復元力Fsと静電引力Fel1の関係を示す図である。図5に示す黒点28がバネの復元力Fsと静電引力Fel1がつりあっている箇所である。それ以上のところではバネの復元力Fsのほうが大きいため変位しない。次にV1よりも大きい電圧(V2<V3<V4)を与えたときを考える。図6に結果を示す。 FIG. 5 is a diagram showing the relationship between the restoring force F s of the spring and the electrostatic attractive force F el 1 when the voltage V1 is applied to the DC bias voltage V DC of the MEMS vibrator according to the embodiment of the present invention. A black spot 28 shown in FIG. 5 is a place where the restoring force F s of the spring and the electrostatic attractive force F el 1 are balanced. Beyond that, the spring restoring force F s is larger, so there is no displacement. Next, consider a case where a voltage (V2 <V3 <V4) greater than V1 is applied. The results are shown in FIG.

図6は、本発明の実施の形態に係るMEMS振動子の各電圧を与えたときのバネの復元力Fsと静電引力の関係を示す図である。図6に示すように、DCバイアス電圧VDCに電圧V3を与えたとき(静電引力Fel3のとき)が最も変位する最大変位30であることがわかる。DCバイアス電圧VDCに電圧V4を与えたとき(静電引力Fel4)は静電引力がバネの復元力Fsに比べ大きいためすぐに振動体12が下部電極10に引き寄せられる。これより最大変位の関係は1.静電引力Felの傾き(数8を微分したもの)とバネの復元力Fsの傾き(数7を微分したもの)が等しいとき、2.静電引力Felとバネの復元力Fsが等しいとき、の2つであることがわかる。これを式として示すと数9で表すことができる。 FIG. 6 is a diagram showing the relationship between the restoring force F s of the spring and the electrostatic attractive force when each voltage is applied to the MEMS vibrator according to the embodiment of the present invention. As shown in FIG. 6, when the voltage V3 is applied to the DC bias voltage V DC (when the electrostatic attractive force F el 3), it is found that the maximum displacement 30 is the maximum displacement. When given a voltage V4 to the DC bias voltage V DC (electrostatic attraction F el 4) is vibrator 12 immediately for electrostatic attraction is greater than the restoring force F s of the spring is attracted to the lower electrode 10. From this, the relationship of maximum displacement is 1. 1. When the slope of the electrostatic attractive force F el (differentiated from Equation 8) and the slope of the spring restoring force F s (differentiated from Equation 7) are equal. It can be seen that the electrostatic attractive force F el and the spring restoring force F s are equal to each other. When this is expressed as an equation, it can be expressed by equation (9).

Figure 2007175577
数9を計算すると数10が求まる。
Figure 2007175577
When Equation 9 is calculated, Equation 10 is obtained.

Figure 2007175577
数10の関係式を解くと、数11が求まる。
Figure 2007175577
When the relational expression of Expression 10 is solved, Expression 11 is obtained.

Figure 2007175577
以上のことから最大変位は初期空隙g0から1g0/3変位したところであることがわかる。よって、数7、数8に最大変位量x=1g/3を代入するとDCバイアス電圧VDCの最大電圧が数12で求まる。
Figure 2007175577
Maximum displacement is found to be the place from the initial gap g 0 and 1 g 0/3 displaced from the above. Therefore, when the maximum displacement amount x = 1 g / 3 is substituted into Equations 7 and 8, the maximum voltage of the DC bias voltage V DC is obtained by Equation 12.

Figure 2007175577
片持ち梁のばね定数krは、数13で表すことができる。
Figure 2007175577
The spring constant k r of the cantilever can be represented by the number 13.

Figure 2007175577
但し、Eは振動体12のヤング率;tは前記第1の電極板の厚み(μm);wは前記第1の電極板の幅(μm);lは前記第1の電極板の長さ(μm):である。厚みtが厚く、幅wが広いとばね定数は大きく、長さlが長いとばね定数は小さくなる。
Figure 2007175577
Where E is the Young's modulus of the vibrator 12, t is the thickness (μm) of the first electrode plate, w is the width (μm) of the first electrode plate, and l is the length of the first electrode plate. (Μm): When the thickness t is thick and the width w is wide, the spring constant is large, and when the length l is long, the spring constant is small.

したがって、与えられる電圧と片持ち梁の形状との関係は、数14で表すことができる。   Therefore, the relationship between the applied voltage and the shape of the cantilever can be expressed by Equation 14.

Figure 2007175577
数14からDCバイアス電圧VDCが大きいほど抵抗値RXは小さくなることがわかる。しかし、加電圧は構成する回路によって決定され制限があり、MEMS振動子はプロセスによって空隙gと厚みに制限がある。よって実際には振動体12の長さlのみが設計によって決定できる値になる。
Figure 2007175577
It can be seen from Equation 14 that the resistance value R X decreases as the DC bias voltage V DC increases. However, the applied voltage is determined and limited by a circuit to be configured, and the MEMS vibrator is limited in the gap g and thickness depending on the process. Therefore, only the length l of the vibrating body 12 is actually a value that can be determined by design.

以上のことから数14を振動体12の長さlについてまとめると数15で表すことができる。   From the above, Equation 14 can be expressed by Equation 15 when the length l of the vibrating body 12 is summarized.

Figure 2007175577
数15からMEMS振動子の抵抗成分は、与えられるDCバイアス電圧VDCに依存する。DCバイアス電圧VDCは、MEMS振動子に電荷を貯める(チャージする)のに必要であり、大きいほど駆動(振幅)に対して流れる電流が大きくなり抵抗値RXが下がる。つまり数15より求められる振動体12の長さlがMEMS振動子の抵抗値RXを最小にする値になる。
Figure 2007175577
From Equation 15, the resistance component of the MEMS vibrator depends on the applied DC bias voltage V DC . The DC bias voltage V DC is necessary for storing (charging) electric charges in the MEMS vibrator, and as the DC bias voltage V DC increases, the current flowing with respect to driving (amplitude) increases and the resistance value R X decreases. That is, the length 1 of the vibrating body 12 obtained from Equation 15 is a value that minimizes the resistance value R X of the MEMS vibrator.

図7は、本発明の実施の形態に係るMEMS振動子の抵抗値RXが最小となる形状の組み合わせ(VDC=20V、E=160GPa)を示す図である。数15を用いて図7に、例として、電圧20Vで空隙gが100nm〜1μm、振動体の厚みtが100nm〜50μm変化したときの各振動体の長さlを求めた結果を示す。 FIG. 7 is a diagram showing a combination of shapes (V DC = 20 V, E = 160 GPa) that minimizes the resistance value R X of the MEMS vibrator according to the embodiment of the present invention. FIG. 7 using Equation 15 shows, as an example, the result of obtaining the length l of each vibrating body when the gap g is changed from 100 nm to 1 μm and the vibrating body thickness t is changed from 100 nm to 50 μm at a voltage of 20V.

本実施例によれば、MEMS振動子の抵抗値RXを下げることができる。抵抗値RXが下がることによって振動子(若しくは発信器)として用いたとき素子の挿入損失(入力信号に対して出力信号の損失割合)が小さくなり、消費電流の少ない振動子または発信器ができる。また、下部電極10と振動体12とが接触することなくMEMS振動子の抵抗値RXが最も低くなる形状(具体的には振動体12の長さlを最適な値にすることにより抵抗値RXを下げる)となる。 According to this embodiment, it is possible to reduce the resistance value R X of the MEMS resonator. When used as a vibrator (or transmitter) by decreasing the resistance value R X, the insertion loss of the element (loss ratio of the output signal with respect to the input signal) is reduced, and a vibrator or transmitter with low current consumption can be obtained. . Further, the shape in which the resistance value R X of the MEMS vibrator is lowest without contacting the lower electrode 10 and the vibrating body 12 (specifically, the resistance value is obtained by setting the length l of the vibrating body 12 to an optimum value). Rx is reduced).

MEMS振動子に与えられる加電圧は構成する回路によって限界値がある。また、MEMSの形状もプロセスによって下部電極10と振動体12との空隙g、振動体12の厚みtにも制限がある。よって唯一設計で変更可能な振動体12の長さlを最適に設計することによりMEMS振動子の抵抗値RXを下げることが可能である。したがって、上記の設計方法を用いることでMEMS振動子の抵抗値RXを下げられる。抵抗値RXが下がることによって振動子(若しくは発信器)として用いたとき素子の挿入損失(入力信号に対して出力信号の損失割合)が小さくなり、消費電流の少ない振動子または発信器ができる。 The applied voltage applied to the MEMS vibrator has a limit value depending on the circuit to be configured. Further, the MEMS shape is also limited in the gap g between the lower electrode 10 and the vibrating body 12 and the thickness t of the vibrating body 12 depending on the process. Therefore, the resistance value R X of the MEMS vibrator can be lowered by optimally designing the length l of the vibrating body 12 that can be changed only by design. Therefore, the resistance value R X of the MEMS vibrator can be lowered by using the above design method. Insertion loss of the device when used as oscillators (or oscillator) by the resistance R X decreases (loss ratio of output signal to input signal) is reduced, it is less transducer or transmitter current consumption .

なお、上記のような構成であるため、本実施形態のMEMS振動子は、振動体12を含め、通常の半導体プロセスで製造することができる。   In addition, since it is the above structures, the MEMS vibrator | oscillator of this embodiment can be manufactured by a normal semiconductor process including the vibrating body 12. FIG.

なお、本発明は、上述した実施の形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施の形態で説明した構成と実質的に同一の構成(例えば、機能、方法及び結果が同一の構成、あるいは目的及び結果が同一の構成)を含む。また、本発明は、実施の形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施の形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施の形態で説明した構成に公知技術を付加した構成を含む。さらに、本発明は、実施の形態で説明した技術的事項のいずれかを限定的に除外した内容を含む。あるいは、本発明は、上述した実施の形態から公知技術を限定的に除外した内容を含む。   In addition, this invention is not limited to embodiment mentioned above, A various deformation | transformation is possible. For example, the present invention includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same purposes and results). In addition, the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced. In addition, the present invention includes a configuration that exhibits the same operational effects as the configuration described in the embodiment or a configuration that can achieve the same object. Further, the invention includes a configuration in which a known technique is added to the configuration described in the embodiment. Furthermore, the present invention includes contents that exclude any of the technical matters described in the embodiments in a limited manner. Or this invention includes the content which excluded the well-known technique limitedly from embodiment mentioned above.

本発明の実施の形態に係るMEMS振動子の片持ち梁構造を示す図である。It is a figure which shows the cantilever structure of the MEMS vibrator | oscillator which concerns on embodiment of this invention. 本発明の実施の形態に係るMEMS振動子の等価回路を示す図である。It is a figure which shows the equivalent circuit of the MEMS vibrator | oscillator which concerns on embodiment of this invention. MEMS振動子において、(A)複数の駆動部を同じ周波数で駆動した場合、(B)周波数が0.01%ずれた場合を示す図である。In a MEMS vibrator, (A) When a plurality of drive parts are driven at the same frequency, (B) It is a figure showing a case where a frequency has shifted 0.01%. 本発明の実施の形態に係るMEMS振動子の抵抗値と長さの関係を示した図である。It is the figure which showed the relationship between resistance value and length of the MEMS vibrator | oscillator which concerns on embodiment of this invention. 本発明の実施の形態に係るMEMS振動子のDCバイアス電圧VDCに電圧V1を与えたときのバネの復元力Fsと静電引力Fel1の関係を示す図である。It is a diagram showing the relationship between the restoring force F s and the electrostatic attractive force F el 1 of the spring when given a voltage V1 to the DC bias voltage V DC of the MEMS resonator according to the embodiment of the present invention. 本発明の実施の形態に係るMEMS振動子の各電圧を与えたときのバネの復元力Fsと静電引力の関係を示す図である。It is a diagram showing the relationship between the restoring force F s and the electrostatic attractive force of the spring when given the voltages of MEMS resonator according to the embodiment of the present invention. 本発明の実施の形態に係るMEMS振動子の抵抗値RXが最小となる形状の組み合わせ(VDC=20V、E=160GPa)を示す図である。The combination of shape resistance R X of the MEMS resonator according to the embodiment of the present invention is minimized (V DC = 20V, E = 160GPa) is a diagram showing a.

符号の説明Explanation of symbols

10…下部電極 12…振動体 14…支持梁 16…給電回路 18…出力回路 20…出力線 22…支持部 24…電極層 26…供給線 28…黒点 30…最大変位。
DESCRIPTION OF SYMBOLS 10 ... Lower electrode 12 ... Vibrating body 14 ... Supporting beam 16 ... Feeding circuit 18 ... Output circuit 20 ... Output line 22 ... Support part 24 ... Electrode layer 26 ... Supply line 28 ... Black spot 30 ... Maximum displacement.

Claims (2)

第1の電極板と、
前記第1の電極板に対して空隙を有して対向配置される第2の電極板と、
前記第2の電極板の側面から延在される支持梁と、
前記第1の電極板と前記第2の電極板とに同相の交流電力を印加するための給電手段と、
前記第1の電極板と前記第2の電極板との間の静電容量に対応した出力を得る検出手段と、
を含み、
前記第2の電極板の寸法を調整し、下記式が成立することにより抵抗成分を最も低くするMEMS振動子。
Figure 2007175577
但し、lは前記第2の電極板の長さ(μm);gは前記第1の電極板と前記第2の電極板との空隙(nm);Eは前記第2の電極板のヤング率(GPa);tは前記第2の電極板の厚み(nm);ε0は前記第2の電極板の誘電率(F/m);VDCは前記第2の電極板にかかるDCバイアス電圧(V):である。
A first electrode plate;
A second electrode plate disposed opposite to the first electrode plate with a gap;
A support beam extending from a side surface of the second electrode plate;
Power supply means for applying in-phase AC power to the first electrode plate and the second electrode plate;
Detecting means for obtaining an output corresponding to a capacitance between the first electrode plate and the second electrode plate;
Including
A MEMS vibrator that adjusts the dimension of the second electrode plate and minimizes the resistance component by satisfying the following expression.
Figure 2007175577
Where l is the length of the second electrode plate (μm); g is the gap (nm) between the first electrode plate and the second electrode plate; E is the Young's modulus of the second electrode plate (GPa); t is the thickness (nm) of the second electrode plate; ε 0 is the dielectric constant (F / m) of the second electrode plate; VDC is the DC bias voltage applied to the second electrode plate (V):
請求項1に記載されたMEMS振動子において、
前記支持梁は、片持ち梁(カンチレバー)構造であるMEMS振動子。
The MEMS vibrator according to claim 1,
The supporting beam is a MEMS vibrator having a cantilever structure.
JP2005374475A 2005-12-27 2005-12-27 Mems vibrator Withdrawn JP2007175577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005374475A JP2007175577A (en) 2005-12-27 2005-12-27 Mems vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005374475A JP2007175577A (en) 2005-12-27 2005-12-27 Mems vibrator

Publications (2)

Publication Number Publication Date
JP2007175577A true JP2007175577A (en) 2007-07-12
JP2007175577A5 JP2007175577A5 (en) 2009-01-22

Family

ID=38301292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374475A Withdrawn JP2007175577A (en) 2005-12-27 2005-12-27 Mems vibrator

Country Status (1)

Country Link
JP (1) JP2007175577A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063612A1 (en) * 2007-11-14 2009-05-22 Panasonic Corporation Synthesizer, synthesizer module, and reception device and electronic device using same
WO2009101792A1 (en) * 2008-02-12 2009-08-20 Panasonic Corporation Synthesizer and reception device using the same
WO2009116262A1 (en) * 2008-03-18 2009-09-24 パナソニック株式会社 Synthesizer and reception device
WO2010023883A1 (en) * 2008-08-28 2010-03-04 パナソニック株式会社 Synthesizer and reception device and electronic device using the same
JP2013541273A (en) * 2010-09-13 2013-11-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Device with suspended beam and piezoresistive means for detecting beam displacement and method of manufacturing the device
US9083309B2 (en) 2010-11-30 2015-07-14 Seiko Epson Corporation Microelectronic device and electronic apparatus
US9444403B2 (en) 2014-09-09 2016-09-13 Seiko Epson Corporation Resonation element, resonator, oscillator, electronic device and moving object

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063612A1 (en) * 2007-11-14 2009-05-22 Panasonic Corporation Synthesizer, synthesizer module, and reception device and electronic device using same
JP4683153B2 (en) * 2007-11-14 2011-05-11 パナソニック株式会社 Synthesizer, synthesizer module, and receiver and electronic apparatus using the same
US8466716B2 (en) 2007-11-14 2013-06-18 Panasonic Corporation Synthesizer, synthesizer module, and reception device and electronic device using same
WO2009101792A1 (en) * 2008-02-12 2009-08-20 Panasonic Corporation Synthesizer and reception device using the same
US8384449B2 (en) 2008-02-12 2013-02-26 Panasonic Corporation Synthesizer and reception device using the same
WO2009116262A1 (en) * 2008-03-18 2009-09-24 パナソニック株式会社 Synthesizer and reception device
JP2009225234A (en) * 2008-03-18 2009-10-01 Panasonic Corp Synthesizer, receiving apparatus using the same, and electronic device
US8594608B2 (en) 2008-03-18 2013-11-26 Panasonic Corporation Synthesizer and reception device
US8390334B2 (en) 2008-08-28 2013-03-05 Panasonic Corporation Synthesizer and reception device and electronic device using the same
CN102132492A (en) * 2008-08-28 2011-07-20 松下电器产业株式会社 Synthesizer and reception device and electronic device using same
WO2010023883A1 (en) * 2008-08-28 2010-03-04 パナソニック株式会社 Synthesizer and reception device and electronic device using the same
CN102132492B (en) * 2008-08-28 2014-07-30 松下电器产业株式会社 Synthesizer and reception device and electronic device using same
JP2013541273A (en) * 2010-09-13 2013-11-07 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Device with suspended beam and piezoresistive means for detecting beam displacement and method of manufacturing the device
US9331606B2 (en) 2010-09-13 2016-05-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device with suspended beam and piezoresistive means of detecting displacement of the beam and method of manufacturing the device
US9083309B2 (en) 2010-11-30 2015-07-14 Seiko Epson Corporation Microelectronic device and electronic apparatus
US9444403B2 (en) 2014-09-09 2016-09-13 Seiko Epson Corporation Resonation element, resonator, oscillator, electronic device and moving object

Similar Documents

Publication Publication Date Title
JP4086023B2 (en) Micromechanical electrostatic vibrator
EP2544370B1 (en) MEMS resonator
JP4728242B2 (en) Torsional resonator and filter using the same
US8742873B2 (en) MEMS resonator devices
JP4645227B2 (en) Vibrator structure and manufacturing method thereof
JP2007175577A (en) Mems vibrator
JP5505596B2 (en) Resonant circuit, oscillation circuit, filter circuit, and electronic device
EP1997225A2 (en) Mems resonator having at least one resonator mode shape
EP2603976A1 (en) Micromechanical resonator and method for manufacturing thereof
Van Toan et al. A capacitive silicon resonator with a movable electrode structure for gap width reduction
JP4822212B2 (en) Electrostatic vibrator
Ziaei-Moayyed et al. Differential internal dielectric transduction of a Lamé-mode resonator
JP5028646B2 (en) Small oscillator
Sutagundar et al. Research issues in MEMS resonators
JP5169518B2 (en) RESONANT CIRCUIT, ITS MANUFACTURING METHOD, AND ELECTRONIC DEVICE
No et al. The HARPSS process for fabrication of nano-precision silicon electromechanical resonators
JP2006319387A (en) Mems resonator
JP2006005731A (en) Micro mechanical electrostatic vibrator
JP2006303558A (en) Mems resonator
JP4930769B2 (en) Oscillator
JP2010232790A (en) Resonance circuit, method of manufacturing the same, and electronic device
US6965274B2 (en) Thin film bulk acoustic resonator for controlling resonance frequency and voltage controlled oscillator using the same
JP5135628B2 (en) Oscillator and oscillator using the same
JP5039959B2 (en) Oscillator
JPWO2009104541A1 (en) Micromechanical resonator

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070405

A521 Written amendment

Effective date: 20081203

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Effective date: 20081203

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Effective date: 20100115

Free format text: JAPANESE INTERMEDIATE CODE: A761