WO2007041959A1 - Commutateur permutateur a grande vitesse magnetoelectrique sans perte de puissance - Google Patents

Commutateur permutateur a grande vitesse magnetoelectrique sans perte de puissance Download PDF

Info

Publication number
WO2007041959A1
WO2007041959A1 PCT/CN2006/002673 CN2006002673W WO2007041959A1 WO 2007041959 A1 WO2007041959 A1 WO 2007041959A1 CN 2006002673 W CN2006002673 W CN 2006002673W WO 2007041959 A1 WO2007041959 A1 WO 2007041959A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
electromagnet
power
magnetoelectric
contact
Prior art date
Application number
PCT/CN2006/002673
Other languages
English (en)
French (fr)
Inventor
Lei He
Original Assignee
Lei He
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lei He filed Critical Lei He
Publication of WO2007041959A1 publication Critical patent/WO2007041959A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • H01H51/2209Polarised relays with rectilinearly movable armature

Definitions

  • the invention belongs to the field of electronic technology and relates to a current switching electrical switch, in particular to a large current magnetic electricity switching switch, which is suitable for use in an electric/power generation multiplexing control system and other electrical fields in the field of hybrid electric vehicles. Background technique
  • the electromagnetic switch of the prior art is composed of the switch contact (1), the core (2) and its winding (3) and the return spring (4) by using the principle of electromagnetic induction.
  • the winding and the core When the winding is energized, the winding and the core generate a magnetic field that attracts the armature (or moving iron) to bring the contact closed or broken, thereby turning the load current circuit on or off.
  • the windings need to continuously control the current continuously to generate electromagnetic attraction to maintain the contact in a normally open or normally closed state. Therefore, during the operation of the electromagnetic switch, it is necessary to consume the control excitation current, and there are disadvantages such as large power consumption and slow closing speed. Summary of the invention
  • the present invention provides a power-less magnetoelectric high-speed switch including a first electromagnet having a core, a winding, and a contact, wherein the power-free magnetic high-speed switching
  • the switch further includes a second electromagnet, and a permanent magnet is disposed between the two electromagnets, the permanent magnet is provided with a contact corresponding to the contact of the first electromagnet, and the windings of the two electromagnets are connected in parallel or in series.
  • a power-less magnetoelectric high-speed switch according to a preferred technical concept of the present invention, wherein the second electromagnet and the opposite faces of the permanent magnet are respectively provided with corresponding contacts.
  • a power-less magnetoelectric high-speed switching switch wherein the permanent magnet includes a permanent magnet, a contact, and a connecting body connecting the permanent magnet and the contact.
  • a power-less magnetoelectric high-speed switch wherein the power-less magnetoelectric high-speed switch can be used for two or more and is used to form two or more phases without power consumption.
  • Magnetic high-speed switch can be used for two or more and is used to form two or more phases without power consumption.
  • the above-mentioned power-free magnetic high-speed switching switch utilizes an organic combination of electromagnetic induction and magnetic mechanics, and the induced magnetic field generated by the iron core attracts or repels the permanent magnet of the permanent magnet moving contact by instantaneous energization. Fast closing or disconnection, responsive, fast switching response; then disconnected The current is maintained in a normally closed or normally open state by the suction between the permanent magnet and the core of the permanent magnet moving contact. In the normally closed or normally open state, there is no control of the excitation current consumption, which is energy-saving and practical. The normally closed or normally open state of the switch is maintained without winding current, and the operation is switched without current, so the contact has no current ablation, long service life and high reliability. It is especially suitable as a high-current magnetoelectric switching switch required for electric/power generation multiplexing devices in the field of hybrid electric vehicles.
  • Figure 1 is an electromagnetic switch in the prior art
  • FIG. 2 is a schematic structural view showing a closed state of a unidirectional magnetoelectric switching permanent magnet and an upper electromagnet according to a first embodiment of the present invention
  • FIG. 3 is a schematic structural view showing a closed state of a permanent magnet and a lower electromagnet of a unidirectional magnetoelectric switch according to a first embodiment of the present invention
  • FIG. 4 is a schematic structural view showing a closed state of a permanent magnet and an upper electromagnet of a bidirectional magnetoelectric switch according to a second embodiment of the present invention
  • Figure 5 is a structural schematic view showing a closed state of a permanent magnet and a lower electromagnet of a bidirectional magnetoelectric switch according to a second embodiment of the present invention
  • FIG. 6 is a circuit diagram of a magnetoelectric switch including a drive converter circuit in accordance with an embodiment of the present invention. detailed description
  • the unidirectional powerless magnetic high-speed switching switch comprises an upper electromagnet 1, a lower electromagnet 2, and a permanent magnet 3 between the upper electromagnet 1 and the lower electromagnet 2.
  • the upper electromagnet 1 has a core 101, a winding 102 and a contact 103
  • the lower electromagnet 2 has a core 201 and a winding 202.
  • the permanent magnet 3 includes a permanent magnet 301, a contact 302 and a connecting body 303, and the winding of the upper electromagnet 1
  • the winding 202 of the lower electromagnet 2 is connected in parallel or in series, and the contact 302 of the upper end surface of the permanent magnet 3 is opposed to the contact 103 of the upper electromagnet 1.
  • the contact 103 of the upper electromagnet 1 is a stationary contact.
  • the lower end surface of the core 101 of the upper electromagnet 1 when the windings 102, 202 are energized, the lower end surface of the core 101 of the upper electromagnet 1 generates a magnetic force opposite to the upper end surface of the permanent magnet 301, and the upper end surface of the core 201 of the lower electromagnet 2 is generated.
  • the lower end surface of the permanent magnet 301 has the same magnetic force, whereby the core 101 of the upper electromagnet 1 and the permanent magnet 301 are attracted to each other, and the same magnetic pole between the core 201 of the lower electromagnet 2 and the permanent magnet 301 is repelled.
  • the contact 302 of the permanent magnet 3 is quickly closed with the contact 103 of the upper electromagnet 1, and is immediately closed.
  • the currents of the windings 102, 202 of the electromagnets 1, 2 are disconnected, and the contacts 103 of the upper electromagnet 1 and the contacts 302 of the permanent magnet 3 are at the permanent magnet 301 and the upper electromagnet 1 Under the suction of the core 101, the closed state is continued; and as shown in FIG.
  • the bidirectional powerless magnetic high-speed switching switch comprises an upper electromagnet 1, a lower electromagnet 2, and a permanent magnet 3 between the upper electromagnet 1 and the lower electromagnet 2.
  • the upper electromagnet 1 has a core 101, a winding 102 and a contact 103.
  • the lower electromagnet 2 has a core 201, a winding 202 and a contact 203.
  • the permanent magnet 3 includes a permanent magnet 301, contacts 302, 304 and a connecting body 303.
  • the winding 102 of the body 1 and the winding 202 of the electromagnet 2 are connected in parallel or in series, and the contacts 302 and 304 on the upper and lower ends of the permanent magnet 3 are opposed to the contacts 103 and 203 of the upper and lower electromagnets 1, 2, respectively.
  • the contacts 103, 203 of the electromagnets 1, 2 are static contacts.
  • the lower end surface of the core 101 of the upper electromagnet 1 when the windings 102, 202 are energized, the lower end surface of the core 101 of the upper electromagnet 1 generates a magnetic force opposite to that of the upper end surface of the permanent magnet 301, and the upper end surface of the core 201 of the lower electromagnet 2 is generated.
  • the magnetic force of the lower end surface of the permanent magnet 301 is magnetically the same, whereby the opposite magnetic pole between the core 101 of the upper electromagnet 1 and the permanent magnet 301 is attracted, and the isotropic magnetic pole between the lower electromagnet 2 and the permanent magnet 301 repels.
  • the contact 302 of the permanent magnet 3 is quickly closed with the contact 103 of the upper electromagnet 1, and the upper and lower electromagnets are instantly closed. 1.
  • the currents of the windings 102 and 202 are disconnected, and the contacts 103 of the upper electromagnet 1 and the contacts 302 of the permanent magnet 3 continue to maintain a normally closed state under the action of suction, and at this time, the contacts 203 of the lower electromagnet 2 are
  • the contact 304 of the permanent magnet 3 is in a broken state; and as shown in FIG.
  • the currents of the windings 102, 202 are disconnected, and the contacts 203 of the lower electromagnet 2 and the contacts 304 of the permanent magnet 3 continue to maintain a normally closed state under the action of suction, and at this time, the contacts 103 and permanent magnets of the upper electromagnet 1
  • the contact 302 of 3 is in an open state.
  • the power consumption magnetoelectric high speed switch further includes a drive converter circuit.
  • the positive and negative switching circuits are composed of three parts: a control circuit A, a driving circuit B and a power source F.
  • the control circuit A is composed of a pulse trigger control signal circuit.
  • the drive circuit B is composed of four power tube devices of T1, ⁇ 2, ⁇ 3, and ⁇ 4, and constitutes a single-phase bridge type converter drive circuit, and the power supply F provides DC to the variable current drive power circuit. power supply.
  • the output terminals E and H of the converter power tube are respectively connected to the C and D terminals of the winding.
  • the control circuit instantaneously controls the triggering power tubes T1 and T2 to be turned on, the current flows positively through the output end E of the power tube T1 into the C end to the D end of the winding, and then the input end H of the power tube T2 flows into the power tube T2 and the negative pole of the power supply.
  • the power tubes T3 and ⁇ 4 are in the off state, the C terminal of the switching switch winding is connected to the positive pole of the power supply, and the D end of the switching switch winding is connected to the negative pole of the power supply.
  • the upper end of the upper electromagnet and the permanent magnet is the S pole, and the permanent magnet has a suction force
  • the lower end of the lower electromagnet and the permanent magnet is also the S pole
  • the permanent magnet S pole generates a repulsive force.
  • the power tubes T1 and ⁇ 2 are in the off state, the D terminal of the switching switch winding is connected to the positive pole of the power supply, and the C terminal of the switching switch winding is connected to the negative pole of the power supply.
  • the upper end of the upper electromagnet and the permanent magnet is a bungee, and a repulsive force is generated with the permanent magnet buck, and the lower end of the lower electromagnet and the permanent magnet is also a bungee, and the permanent magnet S pole generates a suction force.
  • the contact with the lower electromagnet is quickly closed under the repulsive force of the upper electromagnet and the suction of the lower electromagnet.
  • the two-way or one-way non-power magnetic high-speed switch is used in combination with two or three and more, which constitutes a two-phase or three-phase and multi-phase power-free magnetic high-speed Toggle switch.
  • the power-free magnetic high-speed switch is suitable for the electric/power generation reuse control system in the field of hybrid electric vehicles, and has broad industrial application prospects.

Description

无功耗磁电髙速切换开关
技术领域
本发明属于电子技术领域, 涉及电流切换电器开关, 尤其涉及一种大电 流磁电切换开关, 其适合混合动力电动汽车领域的电动 /发电复用控制系统 以及其它电器领域使用。 背景技术
现有技术中的电磁开关, 如图 1所示, 都是利用电磁感应原理, 由开关 触点 (1 ) 、 铁心 (2 ) 及其绕组 (3) 和回位弹簧 (4) 等组成。 当绕组通电 时, 绕组及铁心产生磁场, 吸引衔铁 (或动铁) 带动触点闭合或断幵, 从而 接通或关断负载电流电路。 无论是常开或常闭电磁开关, 绕组都需要连续常 通控制电流, 以产生电磁吸力维持触点处于常开或常闭状态。 因此, 电磁开 关在工作的过程中, 需要消耗控制励磁电流, 存在功耗大, 闭合速度慢等缺 点。 发明内容
鉴于现有技术的上述缺陷, 本发明的目的在于提供一种无功耗磁电高速 切换开关, 降低励磁能耗并加快闭合速度。
根据本发明的发明目的, 本发明提供一种无功耗磁电高速切换开关, 包 括第一电磁体, 该电磁体具有铁心、 绕组和触点, 其特征在于, 该无功耗磁 电高速切换开关进一步包括第二电磁体, 所述两个电磁体之间设置永磁体, 该永磁体设有与第一电磁体的触点相对应的触点, 两电磁体的绕组并接或串 接。
根据本发明的一个优选技术构思的无功耗磁电高速切换开关, 其中, 所 述第二电磁体和该永磁体的相对面上分别设有相对应的触点。
根据本发明的一个优选技术构思的无功耗磁电高速切换开关, 其中, 上 述永磁体包括永磁铁、 触点及连接永磁铁与触点的连接体。
根据本发明的一个优选技术构思的无功耗磁电高速切换开关, 其中, 所 述无功耗磁电高速切换开关可由两只或两只以上并用以构成两相或两相以上 的无功耗磁电高速切换开关。
本发明提供的上述无功耗磁电高速切换开关, 利用电磁感应和磁力学原 理的有机结合, 通过瞬间通电, 铁心产生的感应磁场与永磁动触点的永磁磁 铁相吸或相斥, 实现快速闭合或断开, 反应灵敏, 开关响应迅速; 随后断开 电流, 再利用永磁动触点的永磁铁与铁心之间的吸力维持常闭或常开状态, 在常闭或常开状态下, 无控制励磁电流的消耗, 节能实用。 该切换开关的触 点常闭或常开状态是在无绕组电流的情况下维持的, 在无电流状态下切换工 作, 所以触点无电流烧蚀, 使用寿命长, 可靠性高。 尤其适合作为混合动力 电动汽车领域电动 /发电复用装置要求的大电流磁电切换开关。 附图说明
图 1为现有技术中的电磁开关;
图 2为根据本发明的第一实施例的单向磁电切换幵关永磁体与上电磁体 闭合状态的结构示意图;
图 3为根据本发明的第一实施例的单向磁电切换开关永磁体与下电磁体 闭合状态的结构示意图;
图 4为根据本发明的第二实施例的双向磁电切换开关永磁体与上电磁体 闭合状态的结构示意图;
图 5为根据本发明的第二实施例的双向磁电切换开关永磁体与下电磁体 闭合状态的结构示意图; 以及
图 6 为根据本发明实施例的包括驱动变流电路的磁电切换开关的电路 图。 具体实施方式
第一具体实施例
如图 2、 图 3所示, 本发明提供的单向无功耗磁电高速切换开关, 包括 上电磁体 1、下电磁体 2以及上电磁体 1和下电磁体 2之间的永磁体 3,其中 上电磁体 1具有铁心 101、 绕组 102和触点 103, 下电磁体 2具有铁心 201 和绕组 202, 永磁体 3包括永磁铁 301、 触点 302和连接体 303, 上电磁体 1 的绕组 102和下电磁体 2的绕组 202并接或串接,永磁体 3上端面的触点 302 与上电磁体 1的触点 103相对。 上电磁体 1的触点 103为静触点。
如图 2所示, 当绕组 102、 202通电时, 上电磁体 1的铁心 101的下端面 产生与永磁铁 301的上端面磁性相反的磁力, 而下电磁体 2的铁心 201的上 端面产生与永磁铁 301的下端面磁性相同的磁力,由此上电磁体 1的铁心 101 与永磁铁 301之间异性磁极相吸, 同时下电磁体 2的铁心 201与永磁铁 301 之间同性磁极相斥, 此时永磁体 3在下电磁体 2的铁心 201斥力和上电磁体 1的铁心 101吸力的共同作用下, 永磁体 3的触点 302迅速与上电磁体 1的 触点 103闭合, 瞬间闭合后上下电磁体 1、 2的绕组 102、 202的电流断开, 上电磁体 1的触点 103与永磁体 3的触点 302在永磁铁 301与上电磁体 1的 铁心 101的吸力作用下, 继续保持闭合状态; 而如图 3所示, 当绕组接通反 向电流时, 永磁体 3在上电磁体 1的铁心 101斥力和下电磁体 2的铁心 201 吸力的共同作用下, 迅速与上电磁体 1的触点 103断开, 永磁体 3在永磁铁 301与下电磁体 2的铁心 201的吸力作用下, 保持闭合状态。
第二具体实施例
如图 4、 图 5所示, 本发明提供的双向无功耗磁电高速切换开关, 包括 上电磁体 1、下电磁体 2以及上电磁体 1和下电磁体 2之间的永磁体 3, 其中 上电磁体 1具有铁心 101、 绕组 102和触点 103, 下电磁体 2具有铁心 201、 绕组 202和触点 203,永磁体 3包括永磁铁 301、触点 302、 304和连接体 303, 电磁体 1的绕组 102和电磁体 2的绕组 202并接或串接, 永磁体 3上下两端 面的触点 302、 304分别与上下电磁体 1、 2的触点 103、 203相对。 电磁体 1、 2的触点 103、 203为静触点。
如图 4所示, 当绕组 102、 202通电时, 上电磁体 1的铁心 101的下端面 产生与永磁铁 301的上端面磁性相反的磁力, 而下电磁体 2的铁心 201的上 端面产生与永磁铁 301下端面磁性相同的磁力,由此,上电磁体 1的铁心 101 与永磁铁 301之间异性磁极相吸, 同时下电磁体 2铁心 201与永磁铁 301之 间同性磁极相斥, 此时永磁体 3在下电磁体 2的铁心 201的斥力和上电磁体 1的铁心 101的吸力下, 永磁体 3的触点 302迅速与上电磁体 1的触点 103 闭合, 瞬间闭合后上下电磁体 1、 2绕组 102、 202的电流断开, 上电磁体 1 的触点 103与永磁体 3的触点 302在吸力作用下, 继续保持常闭状态, 而此 时下电磁体 2的触点 203与永磁体 3的触点 304处于断幵状态; 而如图 5所 示, 当绕组 102、 202接通反向电流时, 永磁体 3在上电磁体 1 的铁心 101 斥力和下电磁体 2的铁心 201吸力的共同作用下, 永磁体 3的触点 302迅速 与上电磁体 1的触点 103断开、永磁体 3的触点 304与下电磁体 2的触点 203 闭合, 瞬间切换后上下电磁体 1、 2绕组 102、 202的电流断开, 下电磁体 2 的触点 203与永磁体 3的触点 304在吸力作用下, 继续保持常闭状态, 而此 时上电磁体 1的触点 103与永磁体 3的触点 302处于断开状态。
第三具体实施例
图 6 为根据本发明实施例的包括驱动变流电路的磁电切换开关的电路 图, 其中该磁电切换开关可以包括该驱动变流电路, 因此, 该电磁体可与该 驱动变流电路共同设置或分别设置。 如图 6所示, 无功耗磁电高速切换开关 进一步包括一个驱动变流电路。 该正负极切换电路由控制电路 A、 驱动电路 B和电源 F三部分组成。 控制电路 A由脉冲触发控制信号电路组成, 驱动电 路 B由 Tl、 Τ2、 Τ3、 Τ4四只功率管器件组成, 构成单相桥式变流驱动电路, 电源 F给变流驱动功率电路 Β提供直流电源。 变流功率管输出端 E、 H分别与绕组的 C、 D端连接。 当控制电路瞬时 控制触发功率管 T1和 T2导通时, 电流正向通过功率管 T1输出端 E流入绕 组的 C端至 D端, 再由功率管 T2的输入端 H流入功率管 T2与电源负极相 连。 此时功率管 T3、 Τ4是处于截至关闭状态, 切换开关绕组的 C端与电源 正极连接, 切换开关绕组的 D端与电源负极连接。 此时上电磁体与永磁体相 邻端为 S极, 与永磁体 Ν极产生吸力, 同时下电磁体与永磁体相邻端也为 S 极, 与永磁体 S极产生斥力, 此时永磁体 3在上电磁体的吸力下和下电磁体 的斥力下迅速与上电磁体的触点闭合。当控制电路 Α瞬时控制触发功率管 T3 和 T4导通时, 电流正向通过功率管 T3输出端 H流入绕组的 D端至 C端, 再由功率管 T4的输出端 E与电源负极相连。此时功率管 Tl、 Τ2是处于截至 关闭状态, 切换开关绕组的 D端与电源正极连接, 切换开关绕组的 C端与电 源负极连接。此时上电磁体与永磁体相邻端为 Ν极,与永磁体 Ν极产生斥力, 同时下电磁体与永磁体相邻端也为 Ν极, 与永磁体 S极产生吸力, 此时永磁 体在上电磁体的斥力下和下电磁体的吸力下迅速与下电磁体的触点闭合。
实际使用中, 将上述双向或单向无功耗磁电高速切换开关, 釆用两只或 三只以及更多只并用, 即构成一只两相或三相以及多相无功耗磁电高速切换 开关。
图 2至图 6所示实施例中, 上电磁体、 下电磁体的位置只是相对而言, 并不局限其左、 右分布或位置互换。 凡作如此等同变换, 均属本发明保护范 围。 工业实用性
该无功耗磁电高速切换开关适合于混合动力电动汽车领域电动 /发电复 用控制系统, 具有广泛的工业应用前景。

Claims

权利要求
1、 一种无功耗磁电高速切换开关, 包括第一电磁体, 该电磁体具有铁 心、 绕组和触点, 其特征在于, 该无功耗磁电高速切换开关进一步包括第二 电磁体, 所述两个电磁体之间设置永磁体, 该永磁体设有与第一电磁体的触 点相对应的触点, 两电磁体的绕组并接或串接。
2、 如权利要求 1 所述的无功耗磁电高速切换开关, 其特征在于, 所述 第二电磁体和该永磁体的相对面上分别设有相对应的触点。
3、 如权利要求 1或 2所述的无功耗磁电高速切换开关, 其特征在于, 上述永磁体包括永磁铁、 触点及连接永磁铁与触点的连接体。
4、 如权利要求 1或 2所述的无功耗磁电高速切换开关, 其特征在于, 所述无功耗磁电高速切换开关可两只或两只以上并用以构成两相或两相以 上的无功耗磁电高速切换开关。
5、 如权利要求 1或 2所述的无功耗磁电高速切换幵关, 其特征在于, 其进一步包括驱动变流电路, 其具有控制电路、 驱动电路和电源, 其中该控 制电路控制该驱动电路来给该切换幵关提供正负极性变化的交变电流, 该电 源向该驱动电路供电。
6、 如权利要求 5 所述的无功耗磁电高速切换开关, 其特征在于, 该控 制电路为脉冲触发控制信号电路。
7、 如权利要求 5所述的无功耗磁电高速切换幵关, 其特征在于, 该驱 动电路为单相桥式变流驱动电路。
PCT/CN2006/002673 2005-10-12 2006-10-11 Commutateur permutateur a grande vitesse magnetoelectrique sans perte de puissance WO2007041959A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2005101130751A CN1949432B (zh) 2005-10-12 2005-10-12 无功耗磁电高速切换开关
CN200510113075.1 2005-10-12

Publications (1)

Publication Number Publication Date
WO2007041959A1 true WO2007041959A1 (fr) 2007-04-19

Family

ID=37942314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002673 WO2007041959A1 (fr) 2005-10-12 2006-10-11 Commutateur permutateur a grande vitesse magnetoelectrique sans perte de puissance

Country Status (2)

Country Link
CN (1) CN1949432B (zh)
WO (1) WO2007041959A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102723225A (zh) * 2012-01-04 2012-10-10 吴江市东泰电力特种开关有限公司 一种真空过载保护器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2030368A (en) * 1978-08-22 1980-04-02 Picchia Walter Del Electromagnetic Cut-out Device Used as a Relay or for Short Circuit Protection
WO2005088659A2 (de) * 2004-03-12 2005-09-22 S-Y Systems Technologies America, Llc Schalter, insbesondere sicherheitsschalter für eine batterie-bordnetzverbindung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2074052U (zh) * 1990-01-23 1991-03-27 钟雄 永磁式接触器
CN2137746Y (zh) * 1992-08-27 1993-07-07 辽宁省铁岭阀门厂 调速型电动蝶阀
CN1213446C (zh) * 2001-02-20 2005-08-03 孙奇锋 双稳态电磁致动器
CN2904272Y (zh) * 2005-10-12 2007-05-23 贺雷 无功耗磁电高速切换开关

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2030368A (en) * 1978-08-22 1980-04-02 Picchia Walter Del Electromagnetic Cut-out Device Used as a Relay or for Short Circuit Protection
WO2005088659A2 (de) * 2004-03-12 2005-09-22 S-Y Systems Technologies America, Llc Schalter, insbesondere sicherheitsschalter für eine batterie-bordnetzverbindung

Also Published As

Publication number Publication date
CN1949432A (zh) 2007-04-18
CN1949432B (zh) 2010-08-11

Similar Documents

Publication Publication Date Title
TW432129B (en) Device for manufacturing single crystals
JP5492475B2 (ja) 電磁始動器
WO2007028321A1 (fr) Contact a commande numerique faible puissance et systeme de controle constitue de contacts
CN107146743B (zh) 一种双稳态宽电压驱动的继电器及其控制电路
CN113611572B (zh) 一种接触器的节能控制方法
CN101728053A (zh) 双稳态电磁驱动器以及使用该驱动器的产品
JP2002319504A (ja) 電磁式リニアアクチュエータおよび回路しゃ断器のリモート操作装置
WO2007041959A1 (fr) Commutateur permutateur a grande vitesse magnetoelectrique sans perte de puissance
CN207068761U (zh) 一种双稳态宽电压驱动的继电器及其控制电路
CN103180928B (zh) 用于电磁开关设备的电路
RU2014107539A (ru) Устройство для подачи, по меньшей мере, на одну электрическую катушку рельсового тормоза рельсового транспортного средства, по меньшей мере, одного электрического импульса
RU112499U1 (ru) Бистабильный электромагнитный привод коммутационного устройства
CN102339686A (zh) 一种低耗高效的电磁系统
CN201315213Y (zh) 用于直流电磁铁中的励磁线圈控制装置
CN201689828U (zh) 一种节能交流接触器
WO2013159247A1 (zh) 电磁能量转换器
CN2904272Y (zh) 无功耗磁电高速切换开关
CN2539260Y (zh) 双向磁保持电磁铁
CN2413378Y (zh) 瞬时功耗双稳态电磁继电器
CN201325818Y (zh) 仅用一台交流接触器控制的起重电磁铁整流控制设备
CN201936818U (zh) 一种节能无弧电磁接触器
CN213092958U (zh) 一种节能型自保持位置电磁铁
CN201845712U (zh) 一种双单稳态永磁交流接触器
RU2153726C1 (ru) Устройство форсированного управления электромагнитом
JPS5927042Y2 (ja) ラツチング型電磁石による単安定動作装置

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06804913

Country of ref document: EP

Kind code of ref document: A1