WO2007040170A1 - 車載撮像装置 - Google Patents

車載撮像装置 Download PDF

Info

Publication number
WO2007040170A1
WO2007040170A1 PCT/JP2006/319436 JP2006319436W WO2007040170A1 WO 2007040170 A1 WO2007040170 A1 WO 2007040170A1 JP 2006319436 W JP2006319436 W JP 2006319436W WO 2007040170 A1 WO2007040170 A1 WO 2007040170A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging device
color
color signal
vehicle imaging
vehicle
Prior art date
Application number
PCT/JP2006/319436
Other languages
English (en)
French (fr)
Inventor
Ryuichi Miyakoshi
Kazuyuki Inokuma
Toshiya Fujii
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/066,472 priority Critical patent/US8022985B2/en
Priority to CN2006800332655A priority patent/CN101263720B/zh
Priority to JP2007538744A priority patent/JP4974897B2/ja
Publication of WO2007040170A1 publication Critical patent/WO2007040170A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/181Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R2300/00Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle
    • B60R2300/80Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement
    • B60R2300/8046Details of viewing arrangements using cameras and displays, specially adapted for use in a vehicle characterised by the intended use of the viewing arrangement for replacing a rear-view mirror system
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0841Registering performance data
    • G07C5/0875Registering performance data using magnetic data carriers
    • G07C5/0891Video recorder in combination with video camera

Definitions

  • the present invention relates to an in-vehicle imaging device that is mounted on an automobile and monitors an image around the vehicle.
  • a system that detects the movement of a car around the captured video signal force using an optical correlation system and warns the driver based on the distance and speed, and the road area of the recognized video A system that recognizes signs by searching a predetermined position for ⁇ , '' displays the output of the camera built in the door mirror or side mirror on the video display device provided near the driver's seat in the car, There are systems that allow you to easily check the status of adjacent lanes, and in-vehicle cameras that can simultaneously capture and display a blind spot image in the left and right direction and a vehicle lower image.
  • Such a vehicle-mounted camera is required not to be affected by weather conditions.
  • a mirror part of the door mirror of the vehicle is used as a noise mirror, and a video lens with an optical filter and an imaging device such as a CCD are arranged inside.
  • a video signal processed by a camera signal processing circuit disposed in a passenger compartment is output to a video display device.
  • Patent Document 1 (1) disposing the camera in the vehicle interior may deteriorate aesthetics and may reduce the driver's field of view. (2) In the engine room In this case, the surrounding environment will cause a very bad breakdown. (3) If it is placed around the vehicle, for example, on the side of a door or engine room, there will be adverse effects such as safety, design, and performance such as aerodynamic resistance. It is described that the problem regarding the mounting position of the camera is solved.
  • Patent Document 1 JP-A-5-294183 (Fig. 1)
  • the temperature inside the vehicle parked under the hot summer heat is the interior of the vehicle interior or door mirror. It is a well-known fact that it becomes very high including In addition, the engine room is much hotter than the passenger compartment when driving, and the camera mounted on the outside of the vehicle is exposed to direct sunlight.
  • the color filter in the conventional solid-state imaging device is made of a pigment made of an organic material.
  • the color filter is kept at a high temperature for a long time or when strong incident light is applied for a long time, the color filter is used. A chemical change occurs to change the wavelength selection characteristics.
  • a conventional solid-state imaging device using a pigment filter has a problem of fading (deterioration of color separation characteristics) due to high temperature or high irradiation. As described above, this problem becomes a more prominent problem for in-vehicle imaging devices.
  • the present invention has been made in view of power, and the object of the present invention is when the camera is mounted in any place such as the outer side of the vehicle, the vehicle interior, or the engine room. S of color signals and color signals with high accuracy without deterioration due to ambient temperature or direct sunlight.
  • the present invention is an in-vehicle imaging device in which a plurality of unit pixels are arranged on a chip, A photoelectric conversion element that photoelectrically converts incident light for each unit pixel;
  • a multilayer filter that is disposed above the photoelectric conversion element and selectively transmits only a part of wavelengths of the incident light to separate color components;
  • An image processing unit that performs image processing on the color signal photoelectrically converted through the multilayer filter
  • the image processing unit is configured to correct the color signal for each region on a color matrix divided into a plurality of regions corresponding to the color signal.
  • the in-vehicle imaging device has the R (red), G (green), and B (blue) components of the color signal obtained by photoelectrically converting incident light that has passed through the multilayer filter. Since correction is performed for each area on the color matrix divided into a plurality of areas, a beneficial effect can be obtained in ensuring high-precision color reproducibility.
  • FIG. 1 is a cross-sectional view showing a pixel portion of an in-vehicle imaging device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a state where the in-vehicle imaging device according to the present embodiment is attached to an automobile vehicle.
  • FIG. 3 (a) is a diagram showing a layer structure of a conventional multilayer filter.
  • Fig. 3 (b) is a graph showing the transmittance characteristics of a conventional multilayer filter.
  • FIG. 4 (a) is a diagram showing a layer structure of the multilayer filter of the present embodiment.
  • Figure 4 (b) is a diagram showing a layer structure of the multilayer filter of the present embodiment.
  • FIG. 5 is a diagram showing an overall configuration of an in-vehicle imaging device according to the present embodiment.
  • FIG. 6 is a diagram showing ideal spectral characteristics of a dielectric multilayer filter.
  • FIG. 7 is a diagram of a dielectric multilayer filter in the in-vehicle imaging device according to this embodiment. It is a figure which shows an optical characteristic.
  • FIG. 8 is a schematic diagram showing coordinates before correction on a conventional color matrix.
  • FIG. 9 is a schematic diagram showing coordinates after correction on a conventional color matrix.
  • FIG. 10 is a schematic diagram showing final corrected coordinates on a conventional color matrix.
  • FIG. 11 is another schematic diagram showing coordinates before correction on a conventional color matrix.
  • FIG. 12 is another schematic diagram showing final corrected coordinates on a conventional color matrix.
  • FIG. 13 is a schematic diagram showing four regions on the color matrix that also have forces such as the RG axis and the BG axis of the present embodiment.
  • FIG. 14 is a schematic diagram showing four regions on a color matrix composed of the RY axis and the BY axis in the present embodiment.
  • FIG. 15 is a schematic diagram showing coordinates after correction on the color matrix of the present embodiment.
  • FIG. 16 is a schematic diagram showing a pixel portion of the in-vehicle imaging device according to the present embodiment.
  • FIG. 17 is a schematic diagram showing a correction threshold value and a correction function value in noise reduction according to the present embodiment.
  • FIG. 18 is a schematic diagram showing correction values in noise reduction of the present embodiment.
  • FIG. 19 is a schematic diagram showing the setting of the correction threshold value for each level of the color signal (R ⁇ Y) ′ in the noise reduction of the present embodiment.
  • FIG. 20 is a schematic diagram showing the setting of the correction function value for each level of the color signal (R ⁇ Y) ′ in the noise reduction of the present embodiment.
  • FIG. 1 is a cross-sectional view showing three pixel portions in an in-vehicle imaging device according to the present invention.
  • an image sensor 101 in an in-vehicle imaging device includes a silicon semiconductor substrate in which a P-type layer 103 is laminated on an N-type layer 102, and an interlayer insulating film 104 is formed thereon.
  • a plurality of photodiodes (photoelectric conversion elements) 105 are formed in the P-type layer 103 by ion implantation of N-type impurities, and incident light 106 is photoelectrically converted.
  • the photodiodes 105 are separated from each other by an element isolation region 107.
  • a light shielding film 108 that suppresses the incidence of light is formed above the element isolation region 107.
  • a multilayer filter 109 that also has a dielectric force and realizes a wavelength selection function is formed.
  • a condensing lens 110 for efficiently condensing incident light 106 is formed above the multilayer filter 109.
  • FIG. 2 is a diagram showing a state in which the in-vehicle imaging device according to the present embodiment is attached to an automobile vehicle.
  • the automobile 201 is not provided with a fender mirror or a door mirror in terms of design, and a side camera 202 is installed on the side of the vehicle instead.
  • the video signal from the side camera 202 is input to the video control device 203 installed in the console, and the output signal from the video control device 203 is displayed on the video display device 204 provided near the driver's seat in the vehicle.
  • the video control device 203 includes a front camera 205 installed in the front part of the vehicle, a vehicle Output signals from a rear camera 206, a vehicle interior camera 207, and an engine room internal force mem- ber 208 installed at both rear portions are further input, and a side camera 202, a front camera 205, and The video signal from the rear camera 206 can be switched and displayed simultaneously. Furthermore, by processing the video signal, it is possible to measure the distance between the vehicle ahead, the following vehicle, or the adjacent vehicle, detect obstacles, and give a warning to the driver.
  • the video signal of the in-vehicle camera 207 is used to analyze the driver's movements and to detect a drowsiness and drunken driving. Used for video recording.
  • the engine compartment internal force mem- ber 208 is used to monitor the engine, transmission, suspension, tires, and the like.
  • the vehicle interior and the engine compartment are more easily protected in the event of an accident such as a collision than the exterior of the vehicle, the vehicle interior camera 207 or the engine compartment internal force membrane 208 is monitored outside the vehicle. You may use for an application. This is particularly effective when used as an in-vehicle black box that records images during a traffic accident before and after the collision.
  • FIG. 2 shows that the side camera 202, the front camera 205, and the rear camera 206 are!
  • the in-vehicle imaging device shown in FIG. 1 is incorporated in the vehicle interior camera 207 and the engine compartment internal force mem- ber 208.
  • the transmittance characteristics of the multilayer filter according to the present embodiment will be described in comparison with the transmittance characteristics of a conventional multilayer filter.
  • FIG. 3 (a) is a diagram showing the layer structure of a multilayer filter that is a multilayer reflector used in a conventional high-reflection mirror, and FIG. 3 (b) shows the transmittance of the conventional multilayer filter. It is a figure which shows a characteristic.
  • the layer structure of the multilayer filter includes silicon nitride 301 (SiN) and silicon oxide 302, 303 (SiO 2), which are materials having different refractive indexes. Simply laminated structure and
  • the vertical axis indicates the light transmittance after passing through the multilayer film with respect to the incident
  • the horizontal axis indicates the wavelength of light incident on the multilayer film.
  • the calculation uses the Fresnel coefficient. The matrix method is used, the number of pairs is 10, the setting center wavelength is 550 nm, and only the normal incident light is calculated.
  • the optical film thickness nd (n: refractive index of the material, d: film thickness of the material) of each dielectric constituting the multilayer film is a quarter wavelength ( ⁇ / 4), and as a result, a reflection band characteristic centered on the set center wavelength is obtained.
  • the reflection bandwidth is determined by the refractive index difference of the material used, and the bandwidth increases as the refractive index difference increases.
  • FIG. 4 (a) is a diagram showing a layer structure of a multilayer filter that is a color separation filter used in the high reflection mirror of the present embodiment
  • FIG. 4 (b) is a multilayer film of the present embodiment. It is a figure which shows the transmittance
  • the multilayer filter according to the embodiment of the present invention has a ⁇ ⁇ 4 multilayer structure ( ⁇ : set center wavelength) around the spacer layer 304.
  • the reflector 305 and the lower reflector 306 are arranged so as to be symmetrical. With such a layer structure, a transmission band region is selectively formed in the reflection band, and the transmission peak wavelength can be changed by changing the thickness of the spacer layer 304.
  • the dielectric multilayer filter of the present invention can be configured using only inorganic materials and does not cause a fading phenomenon even when used under high temperature and high irradiation. It can be installed in any place, such as in an engine room or a passenger compartment.
  • FIG. 5 is a diagram showing an overall configuration of the in-vehicle imaging device according to the present embodiment.
  • 101 is an image sensor
  • 109 is a multilayer filter formed by laminating inorganic materials
  • 401 is an AFE (Analog Front End) for analog processing of the output signal of the image sensor 101
  • an ADC Analog Front End
  • AD Converter Analog Front End
  • Reference numeral 402 denotes an image processing LSI that generates desired image data by processing the output signal of the image sensor 101 that has become a digital signal.
  • Reference numeral 403 denotes a luminance signal processing unit that generates a luminance signal Y from the output signal of the image sensor 101 and performs output processing.
  • Reference numeral 404 denotes a color signal processing unit, which is a multi-axis color that corrects color signals on a color matrix.
  • Provided with MTX unit 405 and digital noise reduction unit 406 to reduce noise
  • color difference signals R—Y and ⁇ — ⁇ are calculated from R (red), G (green), and B (blue) components.
  • FIG. 6 is a diagram showing ideal spectral characteristics of the dielectric multilayer filter
  • FIG. 7 is a diagram showing spectral characteristics of the dielectric multilayer filter in the in-vehicle imaging device according to the present embodiment. is there.
  • the dielectric multilayer filter of the present embodiment has a poor spectral characteristic and a low degree of modulation. Therefore, ideal color reproduction and SZN of the color signal as shown in FIG. 6 are ensured. It turns out that it has not reached. Therefore, the image processing LSI 402 needs to perform image processing on the output signal from the multilayer filter.
  • FIG. 8 is a schematic diagram showing the coordinates of the color signal before correction on the conventional color matrix.
  • the ideal red coordinates on the color matrix composed of the R—Y axis and the B—Y axis.
  • Yellow coordinates 702 and color signal coordinates (red coordinates 703, yellow coordinates 704) obtained by color-separating red and yellow objects with a dielectric multilayer filter and photoelectric conversion. .
  • FIG. 9 is a schematic diagram showing coordinates after correction using equations (1) and (2).
  • R-Y (R-G) -n (B-G) (n is an arbitrary integer) ⁇ ⁇ ⁇ ⁇ (1)
  • B-Y (B-G) -m (R-G) (m is an arbitrary integer) ⁇ ⁇ ⁇ (2)
  • equation (1) when calculating the color difference signal (R—Y), the difference between the B component and the G component (B —G) is multiplied by the constant n to obtain the color difference signal (R—Y). ).
  • equation (2) when the color difference signal (B—Y) is calculated, the difference between the R component and G component (B—G) is multiplied by the constant m to obtain the color difference signal (B—Y). Correction is being performed.
  • FIG. 10 is a schematic diagram showing coordinates after correction using equations (3) and (4).
  • Equation (3) the color difference signal (R ⁇ Y) is corrected by multiplying the color difference signal (R ⁇ Y) obtained in Equation (1) by the constant s.
  • Equation (4) the color difference signal (B ⁇ Y) is corrected by multiplying the color difference signal (B ⁇ Y) obtained in Equation (2) by a constant t.
  • FIG. 13 is a schematic diagram showing a region divided into four on the color matrix composed of the RG axis and the BG axis.
  • correction is performed using equations (5) to (8) for the red coordinate 1001 and the yellow coordinate 1002 in FIG. 10 that have not been corrected by the conventional correction procedure.
  • R- — Y (R- G) -n (B- G) (n is an arbitrary integer, B-G> 0) ⁇ ⁇ • (5)
  • R- — ⁇ (R- G) -n (B- G) (n is an arbitrary integer, B-G ⁇ 0) ⁇ ⁇ • (6)
  • FIG. 14 is a schematic diagram showing a region divided into four on the color matrix that also has the RY axis, the BY axis, and the force.
  • equations (9) to (12) mean that correction is performed for each region 1301 to 1304.
  • the red coordinate 1001 and the yellow coordinate 1002 overlap the ideal red coordinate 701 and yellow coordinate 702, so that color reproduction with high accuracy is possible. Is possible.
  • the area is divided into four on the color matrix composed of the R-G axis and the ⁇ -G axis, and the R-Y axis and the ⁇ - ⁇ axis are used.
  • the force that divides the area into four on the color matrix is not limited to this form. By increasing the number of divided areas, more accurate color reproduction is possible.
  • n, m, s, and t take into consideration the positional relationship between the coordinates of the ideal color signal and the coordinates of the color signal obtained by photoelectric conversion after color separation by the multilayer filter. It is preferable to set it.
  • the dielectric multilayer filter has a low modulation degree, there is a problem that the correction degree V on the color matrix becomes large and the SZN deterioration of the color signal is remarkable.
  • the SZN degradation is performed so that strong noise reduction is performed on the U-amber signal.
  • noise reduction includes the absolute value of the color signal difference between the surrounding pixels 1502 to 1509 with respect to the pixel 1501 shown in FIG. 16, the correction threshold 1601 and the correction function value 1602 shown in FIG. ⁇ correction threshold ⁇ correction function value).
  • the absolute value 1510 to 1507 of the difference between the color signal (R-Y) between the pixel 1501 and the surrounding eight pixels 1502 to 1509 is 1 0, 11, 25, 9, 30, 8, 12, 35.
  • the color The absolute value of the difference between the signal (R—Y) and the correction function value of 1602 or less is the absolute value of the difference between the color signal (R—Y) '1510, 1511, 1513, 1505, 1506.
  • the average value is "10".
  • the correction threshold 1601 is “8” and the correction function value 1602 is “12” has been described.
  • the present invention is not limited to this embodiment.
  • the filter modulation is low, the degree of correction on the color matrix increases, and when the SGN degradation of the color signal is significant, the correction threshold 1601 is "12" and the correction function value 1602 is "16".
  • the intensity of noise reduction for each level of the color signal can be changed. This makes it possible to reduce noise along the strength of color signal correction on the color matrix.
  • the power for performing noise reduction by obtaining the absolute value of the difference between the color signals for each of the eight neighboring pixels is not limited to this form.
  • By increasing the number of surrounding pixels used to calculate the absolute value of the difference it is possible to perform noise reduction taking into account the color signal of a wide range of pixels, which is more advantageous in preventing SZN degradation of the color signal. Become.
  • the present invention provides a highly practical effect of ensuring high-precision color reproduction and SZN of a color signal without being deteriorated by the influence of ambient temperature or direct sunlight. Therefore, it is extremely useful and has high industrial applicability. In particular, it can be used as an on-vehicle imaging device for mounting on an automobile and monitoring an image around the vehicle.

Abstract

 多層膜フィルタを通過して光電変換された色信号を画像処理LSIに入力し、画像処理LSI内の色信号処理部において、該色信号に対応する複数の領域に分割した色マトリクス上で各領域毎に該色信号の補正を行う。

Description

明 細 書
車載撮像装置
技術分野
[0001] 本発明は、自動車に搭載して車両周辺の映像を監視するための車載撮像装置に 関するものである。
背景技術
[0002] 従来より、自動車の走行安全性を高めるために、車両にビデオカメラ等の撮像手段 を搭載して車両周辺の映像を監視し、その映像に含まれる各種情報を取出して利用 する装置が多数提案されて 、る。
[0003] この中には、取込んだ映像信号力 周辺の自動車の動きを光学的相関システムに より検出し、その距離、速度により運転者に警告を与えるシステムや、認識した映像 の「道路領域」に対する所定の位置を探索して標識を認識するシステム、ドアミラーあ るいはサイドミラーに内蔵したカメラの出力を車内の運転席付近に設けられた映像表 示装置で表示し、対向車の状況や隣車線の状況を容易に確認できるシステム、左右 方向の死角映像と車両下方映像を同時に撮影し表示できる車載カメラなどがある。
[0004] このような車載カメラは、気象条件に左右されないことが要求される。例えば、特許 文献 1には、気象条件に左右されない撮像装置とするために、車両のドアミラーのミラ 一部をノヽーフミラーとし、内部に光学フィルタ付のビデオレンズと CCD等の撮像装置 を配置し、車室内に配置したカメラ信号処理回路により処理した映像信号を映像表 示装置に出力するようにしたものが開示されて 、る。
[0005] また、前記特許文献 1には、(1)カメラを車室内に配置すると、美観上、居住性の劣 化を招いたり、運転者の視野を狭めたりする、(2)エンジンルーム内では周囲の環境 が非常に悪ぐ故障の原因となる、(3)車両の周辺、例えばドア側面やエンジンルー ムの上に配置すると、安全上、デザイン上、空力抵抗といった性能上などの悪影響が あるという、カメラの搭載位置に関する課題が解決される、と記載されている。
特許文献 1 :特開平 5— 294183号公報(図 1)
発明の開示 発明が解決しょうとする課題
[0006] このような従来の技術では、車両の性能を劣化させることのないカメラの搭載位置を 提供しているが、車載カメラの性能が限定されるという別の課題がある。すなわち、(1 )ハーフミラーを介して外界の映像を撮影するので感度が低下する、 (2)カメラの搭 載位置がドアミラー内なので、カメラの方向あるいは視野角を工夫しても撮影できる 視野が限定される、(3)将来的にはデザイン上の観点力 ドアミラーをなくすことも検 討されておりこれに対応できない等がある。
[0007] さらに、ドアミラーの内部は、車両の外側部又はエンジンルーム内に比べれば良好 な使用環境にあると言えるが、真夏の炎天下に駐車された車両内の気温は、車室内 又はドアミラーの内部を含めて非常に高くなることは周知の事実である。また、ェンジ ンルーム内は、走行時には車室内に比べてはるかに高温になるし、車両の外側部に 搭載したカメラは直射日光に晒されるという使用環境上の問題がある。
[0008] また、従来の固体撮像装置内のカラーフィルタは、有機材料よりなる顔料によって 構成されており、長時間高温状態におかれた場合、あるいは強い入射光が長時間当 たった場合、顔料に化学変化が生じて波長選択特性が変化する。このため、顔料フ ィルタを用いた従来の固体撮像装置では、高温又は高照射による退色 (色分離特性 の劣化)という課題があった。この課題が、車載撮像装置に対してより顕著な問題とな ることは、上述した通りである。
[0009] また、車載撮像装置としてはカラーフィルタを有しないモノクロタイプのものもあるが 、上述した標識を認識するシステムや映像表示装置を目視するシステムでは、カラー の撮像装置が望まし 、ことは言うまでもな 、。
[0010] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、車両の 外側部、車室内、エンジンルーム内など、どのような場所にカメラを搭載した場合にも 、周囲温度又は直射日光の影響で劣化することなぐ高精度な色再現、色信号の s
ZNを確保することにある。
課題を解決するための手段
[0011] すなわち、本発明では、複数の単位画素がチップ上に配列された車載撮像装置で あって、 前記単位画素毎に入射光を光電変換する光電変換素子と、
前記光電変換素子の上方に配置され前記入射光の一部の波長のみを選択的に透 過させて色成分を分離する多層膜フィルタと、
前記多層膜フィルタを通過して光電変換された色信号に対して画像処理を行う画 像処理部とを備え、
前記画像処理部は、前記色信号に対応する複数の領域に分割した色マトリクス上 で各領域毎に該色信号をそれぞれ補正するように構成されて 、ることを特徴とするも のである。
発明の効果
[0012] 以上のように、本発明に係る車載撮像装置は、多層膜フィルタを通過した入射光を 光電変換した色信号の R (赤)、 G (緑)、 B (青)成分に対して、複数の領域に分割し た色マトリクス上で各領域毎に補正を行うから、高精度な色再現性を確保する上で有 利な効果が得られる。
[0013] また、前記多層膜フィルタの変調度が低ぐ色信号の補正によりノイズが発生する 場合には、ノイズリダクションを行うようにしたから、色信号の SZNを確保する上で有 利な効果が得られる。
図面の簡単な説明
[0014] [図 1]図 1は、本発明の実施形態に係る車載撮像装置の画素部分を示す断面図であ る。
[図 2]図 2は、本実施形態に係る車載撮像装置を自動車車両に取付けた状態を示す 図である。
[図 3]図 3 (a)は、従来の多層膜フィルタの層構造を示す図である。図 3 (b)は、従来 の多層膜フィルタの透過率特性を示す図である。
[図 4]図 4 (a)は、本実施形態の多層膜フィルタの層構造を示す図である。図 4 (b)は
、本実施形態の多層膜フィルタの透過率特性を示す図である。
[図 5]図 5は、本実施形態に係る車載撮像装置の全体構成を示す図である。
[図 6]図 6は、誘電体多層膜フィルタの理想的な分光特性を示す図である。
[図 7]図 7は、本実施形態に係る車載撮像装置における誘電体多層膜フィルタの分 光特性を示す図である。
[図 8]図 8は、従来の色マトリクス上における補正前の座標を示す模式図である。
[図 9]図 9は、従来の色マトリクス上における補正後の座標を示す模式図である。
[図 10]図 10は、従来の色マトリクス上における最終的な補正後の座標を示す模式図 である。
[図 11]図 11は、従来の色マトリクス上における補正前の座標を示す別の模式図であ る。
[図 12]図 12は、従来の色マトリクス上における最終的な補正後の座標を示す別の模 式図である。
[図 13]図 13は、本実施形態の R— G軸と B - G軸と力もなる色マトリクス上の 4つの領 域を示す模式図である。
[図 14]図 14は、本実施形態の R—Y軸と B—Y軸とからなる色マトリクス上の 4つの領 域を示す模式図である。
[図 15]図 15は、本実施形態の色マトリクス上における補正後の座標を示す模式図で ある。
[図 16]図 16は、本実施形態に係る車載撮像装置の画素部を示す模式図である。
[図 17]図 17は、本実施形態のノイズリダクションにおける補正閾値と補正関数値とを 示す模式図である。
[図 18]図 18は、本実施形態のノイズリダクションにおける補正値を示す模式図である
[図 19]図 19は、本実施形態のノイズリダクションにおける色信号 (R—Y) 'のレベル毎 の補正閾値の設定を示す模式図である。
[図 20]図 20は、本実施形態のノイズリダクションにおける色信号 (R—Y) 'のレベル毎 の補正関数値の設定を示す模式図である。
符号の説明
101 イメージセンサ
105 フォトダイオード
106 入射光 109 多層膜フィルタ
201 自動車
402 画像処理 LSI
404 色信号処理部
405 多軸色差 MTX部
406 ノイズリダクション咅
発明を実施するための最良の形態
[0016] 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の好ましい実施 形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制 限することを意図するものでは全くな 、。
[0017] 図 1は、本発明に係る車載撮像装置における 3つの画素部分を示す断面図である
。図 1に示すように、車載撮像装置におけるイメージセンサ 101は、 N型層 102に P型 層 103が積層されたシリコン半導体基板を備え、さらにその上に層間絶縁膜 104が 形成されている。
[0018] 前記 P型層 103には、 N型不純物のイオン注入により複数のフォトダイオード (光電 変換素子) 105が形成されており、入射光 106を光電変換するようになっている。そし て、各フォトダイオード 105間は素子分離領域 107により分離されている。
[0019] さらに、前記素子分離領域 107の上方には、光の入射を抑制する遮光膜 108が形 成されている。そして、この遮光膜 108の上には、誘電体力もなり、波長選択機能を 実現する多層膜フィルタ 109が形成されている。さらに、この多層膜フィルタ 109の上 方には、入射光 106を効率良く集光するための集光レンズ 110が形成されている。
[0020] 図 2は、本実施形態に係る車載撮像装置を自動車車両に取付けた状態を示す図 である。図 2に示すように、自動車 201には、デザイン上の観点力もフェンダーミラー やドアミラーが取り付けられておらず、代わりにサイドカメラ 202が車両側部に設置さ れている。このサイドカメラ 202からの映像信号は、コンソール内に設置された映像制 御装置 203に入力され、映像制御装置 203からの出力信号が車内の運転席付近に 設けられた映像表示装置 204に表示される。
[0021] また、前記映像制御装置 203には、車両前部に設置されたフロントカメラ 205、車 両後部に設置されたリアカメラ 206、車室内カメラ 207、及びエンジンルーム内力メラ 208からの出力信号がさらに入力されており、前記映像表示装置 204に対して、サイ ドカメラ 202、フロントカメラ 205、及びリアカメラ 206からの映像信号を切り替えて、あ るいは同時に表示することができるようになつている。さらに、映像信号を処理するこ とで前方車、後続車、又は隣接車との車間距離測定、障害物の検知等を行い、運転 者に警告を与えることができるようになって 、る。
[0022] また、車室内カメラ 207の映像信号は、運転者の動作を分析して居眠り、酒酔い運 転を検知するのに用いられる他、駐車時に動作させて、車上荒しに対する警報発令 や映像記録をするために用いられる。
[0023] また、エンジンルーム内力メラ 208は、エンジン、トランスミッション、サスペンション、 タイヤ等を監視するために用いられる。
[0024] なお、車室内及びエンジンルーム内は、車両外部に比べて衝突等の事故の際に力 メラが保護されやすいという特徴があるので、車室内カメラ 207又はエンジンルーム 内力メラ 208を車外監視用途に用いてもよい。これは特に、交通事故時の映像を衝 突の前後で記録する車載ブラックボックスとして用いると効果的である。
[0025] また、図 2には示して!/ヽな 、が、サイドカメラ 202、フロントカメラ 205、リアカメラ 206
、車室内カメラ 207、及びエンジンルーム内力メラ 208の中には、図 1に示した車載撮 像装置が組み込まれて 、るものとする。
[0026] 以下、本実施形態に係る多層膜フィルタの透過率特性について、従来の多層膜フ ィルタの透過率特性と比較しながら説明する。
[0027] 図 3 (a)は、従来の高反射ミラーに用いる多層膜反射鏡である多層膜フィルタの層 構造を示す図であり、図 3 (b)は、従来の多層膜フィルタの透過率特性を示す図であ る。
[0028] 図 3 (a)に示すように、多層膜フィルタの層構造は、屈折率の異なる材料である、窒 化シリコン 301 (SiN)と、酸ィ匕シリコン 302, 303 (SiO )とを単純に積層させた構成と
2
なっている。
[0029] また、図 3 (b)にお 、て、縦軸は入射に対して多層膜を通過した後の光透過率、横 軸は多層膜に入射させる光の波長を示している。なお、計算にはフレネル係数を用 いたマトリクス法を用いており、ペア数は 10、設定中心波長は 550nmで、垂直入射 光のみを計算している。
[0030] ここで、多層膜を構成する各誘電体の光学膜厚 nd (n:材料の屈折率、 d:材料の膜 厚)については、設定中心波長 λに対して 4分の 1波長( λ /4)となるように設定して あり、その結果、設定中心波長を中心とする反射帯域特性となる。また、反射帯域幅 は用いる材料の屈折率差で決定され、屈折率差が大きいほど帯域幅が大きくなる。
[0031] し力しながら、このような層構造では、広い反射阻止帯域は得られるものの、 R、 G、 Bの色分離機能のために波長を選択的に透過させることは難しいと言える。
[0032] 図 4 (a)は、本実施形態の高反射ミラーに用いる色分離フィルタである多層膜フィル タの層構造を示す図であり、図 4 (b)は、本実施形態の多層膜フィルタの透過率特性 を示す図である。
[0033] 図 4 (a)に示すように、本発明の実施形態に係る多層膜フィルタは、スぺーサ層 30 4を中心にして、 λ Ζ4多層膜構造(λ :設定中心波長)の上部反射器 305及び下部 反射器 306が対称となるように配置した構成となっている。このような層構造により、 反射帯域中に透過帯域領域が選択的に形成され、さらにスぺーサ層 304の膜厚を 変化させることによって、その透過ピーク波長を変化させることが可能となる。
[0034] さらに、本発明の誘電体多層膜フィルタは、無機材料のみを用いて構成可能であり 、高温、高照射下で使用しても退色現象を生じないことから、車載用途として車両の 外部、エンジンルーム内、車室内など、どのような場所にでも搭載することができる。
[0035] 図 5は、本実施形態に係る車載撮像装置の全体構成を示す図である。図 5におい て、 101はイメージセンサ、 109は無機材料を積層してなる多層膜フィルタ、 401はィ メージセンサ 101の出力信号をアナログ処理する AFE (Analog Front End)及びデジ タル信号に変換する ADC (AD Converter)である。
[0036] 402は、デジタル信号となったイメージセンサ 101の出力信号を処理して所望の画 像データを生成する画像処理 LSIである。
[0037] 403は輝度信号処理部であり、イメージセンサ 101の出力信号から輝度信号 Yを生 成して出力処理するものである。
[0038] 404は色信号処理部であり、色信号に対して色マトリクス上での補正を行う多軸色 查 MTX部 405と、ノイズを低減するデジタルノイズリダクション部 406とを備えて 、る
[0039] この色信号処理部 404では、 R (赤)、 G (緑)、 B (青)成分から色差信号 R— Y、 Β —Υが算出される。ここで、 Υは輝度信号を表し、 Y=0. 59R+0. 3G + 0. 11Bに 相当する。そして、色信号処理部 404で得られた色差信号 R—Y、 B— Yと輝度信号 Yを用いて出力画像が作成される。
[0040] このように、前記色信号処理部 404において色補正及びノイズリダクションを行うこ とによって、高精度な色再現性と色信号の SZNの確保が可能となる。
[0041] 図 6は、誘電体多層膜フィルタの理想的な分光特性を示す図であり、図 7は、本実 施形態に係る車載撮像装置における誘電体多層膜フィルタの分光特性を示す図で ある。
[0042] 図 7に示すように、本実施形態の誘電体多層膜フィルタでは、分光特性が悪く変調 度も低いため、図 6に示すような理想的な色再現や色信号の SZNを確保するには 至っていないことが分かる。従って、多層膜フィルタからの出力信号に対しては、前 記画像処理 LSI402において画像処理を施す必要がある。
[0043] 以下、色信号に対する従来の補正手順と本発明の補正手順とを比較しながら説明 する。まず、色信号に対する従来の補正手順について説明する。
[0044] 図 8は、従来の色マトリクス上における補正前の色信号の座標を示す模式図であり 、 R—Y軸と B—Y軸とからなる色マトリクス上における理想的な赤色の座標 701、黄 色の座標 702、及び赤色、黄色の被写体を誘電体多層膜フィルタにより色分離し、 光電変換して得られる色信号の座標(赤色の座標 703、黄色の座標 704)を示して ヽ る。
[0045] ここで、図 8における赤色の座標 703、黄色の座標 704に対して、式(1)、(2)を用 いて補正を行う。図 9は、式(1)、(2)を用いた補正後の座標を示す模式図である。
[0046] R-Y= (R-G) -n (B-G) (nは任意の整数) · · ·(1)
B-Y= (B-G) -m (R-G) (mは任意の整数) · · ·(2)
このように、式(1)では、色差信号 (R—Y)を算出する際に、 B成分と G成分の差 (B —G)に定数 nを乗算することにより、色差信号 (R—Y)の補正を行っている。同様に 、式 (2)では、色差信号 (B— Y)を算出する際に、 R成分と G成分の差 (B— G)に定 数 mを乗算することにより、色差信号 (B—Y)の補正を行っている。
[0047] 次に、図 9における赤色の座標 801、黄色の座標 802に対して、式(3)、 (4)を用い て補正を行う。図 10は、式 (3)、 (4)を用いた補正後の座標を示す模式図である。
[0048] (R— Y),=s (R— Y) (sは任意の整数) · · ·(3)
(B-Y), =t (B-Y) (tは任意の整数) · · ·(4)
このように、式(3)では、式(1)で得られる色差信号 (R— Y)に定数 sを乗算すること により、色差信号 (R—Y)の補正を行っている。同様に、式 (4)では、式(2)で得られ る色差信号 (B— Y)に定数 tを乗算することにより、色差信号 (B—Y)の補正を行って いる。
[0049] 以上のように、色信号に対する従来の補正手順では、赤色の座標 703、黄色の座 標 704をそれぞれ理想的な赤色の座標 701、黄色の座標 702に重なるように補正を 行う。しかしながら、例えば、図 11に示すように補正前の色信号の座標(赤色の座標 1001、黄色の座標 1002)が位置していた場合には、上述の式(1)〜(4)を用いて 色信号の補正を行うと、図 12に示すように黄色の座標 1002が理想的な座標 702と 大幅にずれてしま、、良好な色再現ができな 、ことが分かる。
[0050] 次に、色信号に対する本発明の補正手順について説明する。図 13は、 R— G軸と B - G軸とからなる色マトリクス上の 4つに分割した領域を示す模式図である。
[0051] ここで、先ほど従来の補正手順では補正し切れなかった図 10における赤色の座標 1001、黄色の座標 1002に対して、式(5)〜(8)を用いて補正を行う。
R- — Y= (R- G) -n (B- G) (nは任意の整数、 B - G>0) · · •(5)
1 1
R- — Υ= (R- G) -n (B- G) (nは任意の整数、 B - G< 0) · · •(6)
2 2
B- — Υ= (B- - G) — m (R- - G) (mは任意の整数、 R -G>0) · ••(7)
1 1
B- — Υ= (B- - G) — m (R- - G) (mは任意の整数、 R -G< 0) · ••(8) ここで、式(5)〜(8)は、領域 1201〜1204毎に補正を行うことを意味している。
[0053] 図 14は、 R—Y軸と B—Y軸と力もなる色マトリクス上の 4つに分割した領域を示す 模式図である。
[0054] 次に、先ほど同様に、図 10における赤色の座標 1001、黄色の座標 1002に対して 、式(9)〜(12)を用いて補正を行う。
(R- -γ) ' =s (R- -Y) (sは任意の整数、 R- -Y>0) · ••(9)
1 1
(R- -Y) ' =s (R- -Y) (sは任意の整数、 R- -Υ< 0) · ••do)
2 2
(B- -γ) ' =t (B- -Y) (tは任意の整数、 B- -Υ>0) · ••(11)
1 1
(B- -γ) ' =t (B- -Y) (tは任意の整数、 B- -Υ< 0) · ••(12)
2 2
ここで、式(9)〜(12)は、領域毎 1301〜1304に補正を行うことを意味している。
[0056] 以上のような補正を行うことで、図 15に示すように、赤色の座標 1001、黄色の座標 1002が理想的な赤色の座標 701、黄色の座標 702に重なり、高精度な色再現が可 能となる。
[0057] なお、式(5)〜(12)では、 R—G軸と Β— G軸とからなる色マトリクス上で領域を 4つ に分割し、 R—Y軸と Β—Υ軸とからなる色マトリクス上で領域を 4つに分割した力 こ の形態に限定するものではなぐ分割する領域数を増やすことでより高精度な色再現 が可能となる。
[0058] なお、 n、 m、 s、 t等の係数は、理想的な色信号の座標と多層膜フィルタにより色分 離した後で光電変換して得られる色信号の座標の位置関係を考慮して設定するの が好ましい。
[0059] ここで、誘電体多層膜フィルタは変調度が低!、ため、色マトリクス上での補正度合 V、が大きくなり、色信号の SZN劣化が著 、と 、う問題がある。
[0060] そこで、本発明の実施形態に係る車載撮像装置では、 SZN劣化が著 Uヽ色信号 に対して強力なノイズリダクションを行うようにして 、る。このようなノイズリダクションは 、図 16に示す画素 1501に対して周辺の 8つの画素 1502〜1509の色信号の差分 の絶対値と、図 17に示す補正閾値 1601と補正関数値 1602 (ただし、 0≤補正閾値 ≤補正関数値)を用いることで行われる。
[0061] 具体的には、図 16に示す画素 1501〜1509の色信号 (R— Y),の値がそれぞれ 1 5、 25、 26、 40、 24、 45、 23、 27、 50である場合、画素 1501とその周辺の 8つの画 素 1502〜1509との色信号 (R— Y) ,の差分の絶対値 1510〜1507は、それぞれ 1 0、 11、 25、 9、 30、 8、 12、 35となる。
[0062] また、図 17に示す補正閾値 1601を" 8"、補正関数値 1602を" 12"とした場合、色 信号 (R—Y),の差分の絶対値が補正関数値 1602以下となるのは、色信号 (R— Y) 'の差分の絶対値 1510、 1511、 1513, 1505, 1506の 5つであり、その平均値は" 10"である。
[0063] 図 18【こ示すよう【こ、差分の絶対値 1510、 1511、 1513、 1505、 1506の平均値" 10"は補正関数値 1602以下となり、その補正値 1702は" 4"となる。すなわち、画素 1501の色信号 (R—Y),は、 15+4= 19と補正される。同様に色信号 (B—Y),に対 しても補正が行われる。
[0064] なお、本実施形態では、補正閾値 1601を" 8"、補正関数値 1602を" 12"とした場 合について説明したが、この形態に限定するものではなぐ例えば、誘電体多層膜フ ィルタの変調度が低いため色マトリクス上での補正度合いが大きくなり、色信号の SZ N劣化が著しい場合には、補正閾値 1601を" 12"、補正関数値 1602を" 16"のよう に大きい値に設定することで、強力なノイズリダクションを行い、色信号の SZN劣化 を防止するようにしても構わな!/、。
[0065] また、図 19及び図 20に示すように、色信号のレベル毎に補正閾値 1601と補正関 数値 1602とを設定することで、色信号のレベル毎ノイズリダクションの強弱を変えるこ とが可能となり、色マトリクス上における色信号の補正の強弱に沿ったノイズリダクショ ンが可能となる。
[0066] なお、図 16に示す画素部の例では、周辺画素 8つに関してそれぞれ色信号の差 分の絶対値を求めてノイズリダクションを行っている力 この形態に限定するものでは なぐ色信号の差分の絶対値の算出に用いる周辺画素数を増やすことで、広範囲に わたる画素の色信号を考慮に入れてノイズリダクションを行うことが可能となり、より色 信号の SZN劣化を防止する上で有利となる。
産業上の利用可能性
[0067] 以上説明したように、本発明は、周囲温度又は直射日光の影響で劣化することなく 、高精度な色再現、色信号の SZNを確保することができるという実用性の高い効果 が得られることから、きわめて有用で産業上の利用可能性は高い。特に、自動車に搭 載して車両周辺の映像を監視するための車載撮像装置として利用可能である。

Claims

請求の範囲
[1] 複数の単位画素がチップ上に配列された車載撮像装置であって、
前記単位画素毎に入射光を光電変換する光電変換素子と、
前記光電変換素子の上方に配置され前記入射光の一部の波長のみを選択的に透 過させて色成分を分離する多層膜フィルタと、
前記多層膜フィルタを通過して光電変換された色信号に対して画像処理を行う画 像処理部とを備え、
前記画像処理部は、前記色信号に対応する複数の領域に分割した色マトリクス上 で各領域毎に該色信号をそれぞれ補正するように構成されて!ヽることを特徴とする車 載撮像装置。
[2] 請求項 1に記載された車載撮像装置にぉ 、て、
前記画像処理部は、前記複数の領域における色信号毎にそれぞれ異なる定数を 乗算することで該色信号の補正を行うように構成されて 、ることを特徴とする車載撮 像装置。
[3] 請求項 1に記載された車載撮像装置にぉ 、て、
前記色信号に対応する領域は、少なくとも 4つの領域に分割されていることを特徴と する車載撮像装置。
[4] 請求項 1に記載された車載撮像装置にぉ 、て、
前記画像処理部は、特定の単位画素の色信号と該単位画素の周辺画素の色信号 との差分を算出し、該算出結果を予め設定された閾値と比較し、該比較結果に基づ V、てノイズリダクションを行うように構成されて!、ることを特徴とする車載撮像装置。
[5] 請求項 4に記載された車載撮像装置にぉ ヽて、
前記画像処理部は、前記閾値の設定変更によりノイズリダクションの強弱が調整さ れるように構成されていることを特徴とする車載撮像装置。
[6] 請求項 4に記載された車載撮像装置にぉ ヽて、
前記色信号のレベル毎にそれぞれ異なる閾値が設定されていることを特徴とする 車載撮像装置。
[7] 請求項 4に記載された車載撮像装置にぉ ヽて、 前記画像処理部は、前記特定の単位画素の色信号に対して少なくとも 8つの周辺 画素の色信号の差分を算出するように構成されていることを特徴とする車載撮像装 置。
PCT/JP2006/319436 2005-10-04 2006-09-29 車載撮像装置 WO2007040170A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/066,472 US8022985B2 (en) 2005-10-04 2006-09-29 Vehicle-mounted imaging device
CN2006800332655A CN101263720B (zh) 2005-10-04 2006-09-29 车载摄像装置
JP2007538744A JP4974897B2 (ja) 2005-10-04 2006-09-29 車載撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-290782 2005-10-04
JP2005290782 2005-10-04

Publications (1)

Publication Number Publication Date
WO2007040170A1 true WO2007040170A1 (ja) 2007-04-12

Family

ID=37906212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319436 WO2007040170A1 (ja) 2005-10-04 2006-09-29 車載撮像装置

Country Status (4)

Country Link
US (1) US8022985B2 (ja)
JP (1) JP4974897B2 (ja)
CN (1) CN101263720B (ja)
WO (1) WO2007040170A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170095158A (ko) * 2016-02-12 2017-08-22 비아비 솔루션즈 아이엔씨. 광학 필터 어레이

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007043452A1 (ja) * 2005-10-12 2009-04-16 パイオニア株式会社 車載撮影装置及び車載カメラの撮影可動範囲測定方法
JP5117003B2 (ja) * 2006-07-11 2013-01-09 本田技研工業株式会社 運転支援装置
US20080204556A1 (en) * 2007-02-23 2008-08-28 De Miranda Federico Thoth Jorg Vehicle camera security system
US8837677B2 (en) * 2007-04-11 2014-09-16 The Invention Science Fund I Llc Method and system for compton scattered X-ray depth visualization, imaging, or information provider
US7658431B2 (en) 2007-08-24 2010-02-09 Ford Global Technologies, Llc Stowable child seat for automotive vehicles
JP6802035B2 (ja) * 2016-10-24 2020-12-16 株式会社日立製作所 画像処理装置、警告装置、画像処理システム、画像処理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100404A (en) * 1980-12-16 1982-06-22 Toshiba Corp Stripe filter
JP2000299875A (ja) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd 映像信号処理装置およびそれを備えた撮像装置
JP2005260675A (ja) * 2004-03-12 2005-09-22 Olympus Corp 画像処理装置およびプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591527A (ja) * 1991-09-25 1993-04-09 Sony Corp 色信号処理回路
US5523811A (en) * 1992-04-17 1996-06-04 Canon Kabushiki Kaisha Camera device for moving body
US5710872A (en) * 1995-03-23 1998-01-20 Nikon Corporation Color image recording device, system, and method
US6337692B1 (en) * 1998-04-03 2002-01-08 Da Vinci Systems, Inc. Primary and secondary color manipulations using hue, saturation, luminance and area isolation
EP1220547A4 (en) * 1999-09-17 2005-09-21 Nature Technology Co Ltd IMAGE ENTRY SYSTEM, IMAGE PROCESSOR AND CAMERA THEREFOR
TW200524150A (en) * 2004-01-15 2005-07-16 Matsushita Electric Ind Co Ltd Solid state imaging device, process for fabricating solid state imaging device and camera employing same
JP4042736B2 (ja) * 2004-02-19 2008-02-06 ソニー株式会社 画像処理装置及び画像処理方法
WO2005101853A1 (ja) * 2004-04-05 2005-10-27 Mitsubishi Denki Kabushiki Kaisha 撮像装置
JP2007317750A (ja) * 2006-05-23 2007-12-06 Matsushita Electric Ind Co Ltd 撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100404A (en) * 1980-12-16 1982-06-22 Toshiba Corp Stripe filter
JP2000299875A (ja) * 1999-04-14 2000-10-24 Matsushita Electric Ind Co Ltd 映像信号処理装置およびそれを備えた撮像装置
JP2005260675A (ja) * 2004-03-12 2005-09-22 Olympus Corp 画像処理装置およびプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170095158A (ko) * 2016-02-12 2017-08-22 비아비 솔루션즈 아이엔씨. 광학 필터 어레이
KR102465441B1 (ko) 2016-02-12 2022-11-09 비아비 솔루션즈 아이엔씨. 광학 필터 어레이

Also Published As

Publication number Publication date
JP4974897B2 (ja) 2012-07-11
CN101263720A (zh) 2008-09-10
CN101263720B (zh) 2010-05-19
JPWO2007040170A1 (ja) 2009-04-16
US8022985B2 (en) 2011-09-20
US20090128626A1 (en) 2009-05-21

Similar Documents

Publication Publication Date Title
US7852388B2 (en) Imaging device
US7952624B2 (en) Image pickup device having a color filter for dividing incident light into multiple color components and image processing system using the same
US11743604B2 (en) Imaging device and image processing system
JPWO2006100903A1 (ja) 車載撮像装置
JP4974897B2 (ja) 車載撮像装置
JP7310869B2 (ja) 固体撮像装置、および電子機器
US7903157B2 (en) Imaging system and image sensor with filter selectively transmitting combination of plural narrow wavelength bands of incident light in low color rendering illumination
US10372139B2 (en) Color filter array for machine vision system
CN110959194B (zh) 固态摄像器件及电子设备
US20180376089A1 (en) Image sensing device
KR20200138158A (ko) 촬상 소자 및 촬상 장치
WO2019078291A1 (ja) 撮像装置
WO2019207927A1 (ja) アレイアンテナ、固体撮像装置および電子機器
KR101838525B1 (ko) 경찰차용 cctv 시스템
WO2019087527A1 (ja) 固体撮像装置及び電子機器
WO2019078110A1 (ja) 固体撮像素子、固体撮像素子の駆動方法および電子機器
WO2022019111A1 (ja) 光検出装置
JP7484904B2 (ja) 撮像素子、信号処理装置、信号処理方法、プログラム、及び、撮像装置
WO2023100640A1 (ja) 半導体装置および信号処理方法、並びにプログラム
WO2022181536A1 (ja) 光検出装置及び電子機器
WO2022209327A1 (ja) 撮像装置
KR20230156322A (ko) 촬상 장치
JP2024000625A (ja) 固体撮像装置および電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033265.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007538744

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12066472

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810842

Country of ref document: EP

Kind code of ref document: A1