WO2007040165A1 - Image exposure apparatus - Google Patents

Image exposure apparatus Download PDF

Info

Publication number
WO2007040165A1
WO2007040165A1 PCT/JP2006/319420 JP2006319420W WO2007040165A1 WO 2007040165 A1 WO2007040165 A1 WO 2007040165A1 JP 2006319420 W JP2006319420 W JP 2006319420W WO 2007040165 A1 WO2007040165 A1 WO 2007040165A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
microlens array
array
image
photosensitive material
Prior art date
Application number
PCT/JP2006/319420
Other languages
French (fr)
Japanese (ja)
Inventor
Shuichi Ishii
Takao Ozaki
Norihisa Takada
Original Assignee
Fujifilm Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corporation filed Critical Fujifilm Corporation
Publication of WO2007040165A1 publication Critical patent/WO2007040165A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/46Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources characterised by using glass fibres
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70283Mask effects on the imaging process
    • G03F7/70291Addressable masks, e.g. spatial light modulators [SLMs], digital micro-mirror devices [DMDs] or liquid crystal display [LCD] patterning devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels

Definitions

  • the present invention relates to an image exposure apparatus, and more particularly to an image exposure apparatus that exposes a photosensitive material by forming an image of light modulated by a spatial light modulator on a photosensitive material.
  • an image exposure apparatus in which light modulated by a spatial light modulation element is passed through an imaging optical system, an image formed by this light is formed on a predetermined photosensitive material, and the photosensitive material is exposed. It has become.
  • This type of image exposure apparatus basically irradiates light to a spatial light modulation element in which a plurality of pixel units that modulate irradiated light according to control signals are arranged in parallel, and the spatial light modulation element. And an imaging optical system that forms an image of light modulated by the spatial light modulator on the photosensitive material.
  • a DMD digital 'micromirror' device
  • the DMD is a mirror device that is two-dimensionally arranged on a semiconductor substrate such as a number of rectangular micromirror forces silicon that changes the angle of the reflecting surface in accordance with a control signal.
  • the mirror acts as a reflective pixel portion.
  • the first imaging optical system is arranged on the optical path of the light modulated by the spatial light modulation element, and each of the light beams of each pixel portion of the spatial light modulation element passes through this imaging optical system.
  • a microlens array in which microphone-lenses are arranged in an array is arranged, and a modulated light image is formed on the photosensitive material screen in the optical path of the light that has passed through the microlens array.
  • 2 imaging optical systems are arranged, and these first and second imaging optical systems are arranged. Therefore, it is considered to enlarge and project an image.
  • the size of the image projected on the photosensitive material screen is enlarged, while the light from each pixel portion of the spatial light modulator is condensed by each microlens of the microlens array. Since the pixel size (spot size) in the projected image is reduced and kept small, the sharpness of the image can be kept high.
  • Patent Document 1 shows an example of an image exposure apparatus that uses a DMD as a spatial light modulation element and combines it with a microlens array.
  • an aperture array (aperture plate) having an aperture (opening) corresponding to each microlens of the microlens array is arranged behind the microlens array in the same type of image exposure apparatus.
  • a configuration is shown in which only the light that has passed through the corresponding microlens passes through the aperture.
  • the light from the adjacent microlens is prevented from entering each aperture of the aperture plate, so that the stray light can be prevented from entering the adjacent pixel.
  • the DMD pixel micromirror
  • a slight light may be incident on the exposure surface. As a result, the amount of light on the exposure surface when the DMD pixel is in the off state can be reduced.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-305663
  • Patent Document 2 JP 2004-122470 A
  • a spatial light modulation element having a reflective pixel portion, a microlens array, and an imaging optical system, such as the DMD described above are combined with the microscopic lens by an imaging optical system.
  • An image of a pixel portion such as a mirror is formed, and each microlens of the microlens array is positioned near the image formation position.
  • the image exposure apparatus having such a configuration exposes a photosensitive material with a beam of about 3 ⁇ m.
  • a problem that the relative position between the exposure head and the stage holding the photosensitive material is shifted by about 1 to 2 / zm, and a correct image cannot be formed on the photosensitive material.
  • the correction process using software is complicated, and the processing time cannot be reduced for the high tact.
  • the present invention has been proposed to solve the above-described problems.
  • the image exposure apparatus of the present invention includes a spatial light modulation element that modulates irradiated light at each pixel section arranged in a two-dimensional manner, a light source that irradiates light to the spatial light modulation element, A first optical system that collects light passing through the spatial light modulator and forms each image of the pixel portion, and a plurality of light beams that pass through the first optical system are arranged in a two-dimensional manner.
  • a microlens array that forms an image on a photosensitive material with each microlens, a positional deviation detection unit that detects a relative positional deviation between the photosensitive material and light from the microlens array caused by disturbance vibration, and And a microlens array moving means for moving the microlens array based on the positional deviation detected by the positional deviation detection means.
  • the image exposure apparatus includes a positional deviation detection unit that detects a relative positional deviation between the photosensitive material caused by disturbance vibration and the light from the microlens array, and a positional deviation detected by the positional deviation detection unit. Accordingly, by providing the microlens array moving means for moving the microlens array, it is possible to obtain a high quality image by exposing the photosensitive material without being affected by disturbance vibration.
  • the image exposure apparatus can obtain a high-quality image by exposing a photosensitive material without being affected by disturbance vibration.
  • FIG. 1 is a perspective view showing an appearance of an image exposure apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view showing a configuration of a scanner of the image exposure apparatus.
  • FIG. 3A is a plan view showing an exposed area formed on a photosensitive material.
  • FIG. 3B is a diagram showing an arrangement of exposure areas by each exposure head.
  • FIG. 4 is a perspective view showing a schematic configuration of an exposure head of the image exposure apparatus.
  • FIG. 5 is a schematic sectional view of an exposure head.
  • FIG. 6 is a partially enlarged view showing the configuration of a digital micromirror device (DMD).
  • DMD digital micromirror device
  • FIG. 7A is an explanatory diagram for explaining the operation of DMD.
  • FIG. 7B is an explanatory diagram for explaining the operation of the DMD.
  • FIG. 8A is a plan view showing exposure beam arrangement and scanning lines when DMD is not inclined.
  • FIG. 8B is a plan view showing the arrangement of exposure beams and scanning lines when the DMD is inclined.
  • FIG. 9A is a perspective view showing a configuration of a fiber array light source.
  • FIG. 9B is a front view showing the arrangement of light emitting points in the laser emitting section of the fiber array light source.
  • FIG. 10 is a diagram showing a configuration of a multimode optical fiber.
  • FIG. 11 is a plan view showing a configuration of a multiplexed laser light source.
  • FIG. 12 is a plan view showing a configuration of a laser module.
  • FIG. 13 is a side view showing a configuration of a laser module.
  • FIG. 14 is a partial front view showing a configuration of a laser module.
  • FIG. 15 is a block diagram showing an electrical configuration of the image exposure apparatus.
  • FIG. 16 is a plan view of the image exposure apparatus.
  • FIG. 17A is a diagram for explaining the movement operation of the microlens array and the light transmission flat plate.
  • FIG. 17B is a diagram for explaining the movement operation of the microlens array and the light transmission flat plate.
  • FIG. 18A is a diagram showing an example of a DMD usage area.
  • FIG. 18B is a diagram showing an example of a DMD usage area.
  • FIG. 19 is a schematic sectional view of an exposure head.
  • FIG. 20 is a schematic sectional view of an exposure head.
  • FIG. 21 is a schematic sectional view of an exposure head.
  • FIG. 22 is a diagram for explaining a microlens array and an aperture array.
  • FIG. 23A is a view for explaining the movement operation of the microlens array and the aperture array.
  • FIG. 23B is a diagram for explaining the movement operation of the microlens array and the aperture array.
  • FIG. 24 is a diagram for explaining a microlens array and an aperture array.
  • FIG. 25 is a diagram for explaining a microlens array.
  • FIG. 26 is a schematic sectional view of an exposure head.
  • this image exposure apparatus includes a flat plate-like moving stage 152 that holds a sheet-like photosensitive material 150 by adsorbing to the surface.
  • Two guides 158 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation base 156 supported by the four legs 154.
  • the stage 152 is disposed so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 158 so as to be reciprocally movable.
  • this image exposure apparatus is provided with a stage drive unit 304 (see FIG. 15), which will be described later, that drives a stage 152 as a sub-scanning means along a guide 158.
  • a U-shaped gate 160 is provided at the center of the installation table 156 so as to straddle the moving path of the stage 152. Each end of the U-shaped gate 160 is fixed to both side surfaces of the installation table 156.
  • a scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) sensors 164 for detecting the front and rear ends of the photosensitive material 150 are provided on the other side.
  • the scanner 162 and the sensor 164 are respectively attached to the gate 160 and fixedly arranged above the moving path of the stage 152.
  • the scanner 162 and the sensor 164 are connected to a controller (not shown) that controls them. [0018] As shown in FIGS.
  • the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a matrix of m rows and n columns (eg, 3 rows and 5 columns). Yes. In this example, four exposure heads 166 are arranged in the third row in relation to the width of the photosensitive material 150. It should be noted that the individual exposure heads arranged in the m-th row and the n-th column are denoted as exposure head 16 6.
  • An exposure area 168 by the exposure head 166 has a rectangular shape with the short side in the sub-scanning direction.
  • a strip-shaped exposed region 170 is formed in the photosensitive material 150 for each exposure head 166.
  • the exposure area by each exposure head arranged in the m-th row and the n-th column is indicated, it is expressed as an exposure area 168.
  • each of the exposure heads in each row arranged in a line is arranged so that the strip-shaped exposed regions 170 are arranged without gaps in the direction orthogonal to the sub-scanning direction. They are arranged with a predetermined interval in the direction (a natural number multiple of the long side of the exposure area, twice in this example). For this reason, exposure cannot be performed between the exposure area 168 and the exposure area 168 in the first row.
  • the exposure area is exposed using the exposure area 168 in the second row and the exposure area 168 in the third row.
  • Each of the exposure heads 166 to 166 converts the incident light beam into an image as shown in FIG.
  • a spatial light modulation element As a spatial light modulation element that modulates each pixel according to data, it is equipped with a digital micro mirror 1 device (DMD) 50 made in Texas USA.
  • the DM D50 is connected to a controller 302 (see FIG. 15), which will be described later, provided with a data processing unit and a mirror drive control unit.
  • the data processing unit of the controller 302 generates a control signal for driving and controlling each micromirror in the region to be controlled by the DMD 50 for each exposure head 166 based on the input image data.
  • the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 for each exposure head 166 based on the control signal generated by the image data processing unit.
  • a fiber array light source including a laser emitting portion in which the emitting end portion (light emitting point) of the optical fiber is arranged in a line along the direction corresponding to the long side direction of the exposure area 168 66, a lens system 67 that corrects the laser light emitted from the fiber array light source 66 and collects it on the DMD, and reflects the laser light transmitted through the lens system 67 toward the DMD 50.
  • the mirrors 69 to be operated are arranged in this order. In FIG. 4, the lens system 67 is schematically shown.
  • the lens system 67 includes a condensing lens 71 that condenses the laser light B as the illuminating light emitted from the fiber array light source 66, and the light that has passed through the condensing lens 71. It is composed of a rod-shaped optical integrator (hereinafter referred to as a rod integrator) 72 inserted in the optical path, and an imaging lens 74 disposed in front of the rod integrator 72, that is, on the mirror 69 side.
  • the condensing lens 71, the rod integrator 72, and the imaging lens 74 cause the laser light emitted from the fiber array light source 66 to enter the DMD 50 as a light beam that is close to parallel light and has a uniform beam cross-sectional intensity.
  • the laser beam B emitted from the lens system 67 is reflected by the mirror 69 and irradiated to the DMD 50 via a TIR (total reflection) prism 70.
  • TIR total reflection
  • an optical system 51 that forms an image on the photosensitive material 150 with the laser beam B reflected by the DMD 50 is disposed on the light reflecting side of the DMD 50.
  • the optical system 51 includes a first optical system including lens systems 52 and 54, a microlens array 55, and a light transmission flat plate provided between the lens system 54 and the microlens array 55. 80.
  • a photosensitive material 150 is arranged at a condensing position by each microlens 55a of the microlens array 55, and an image condensed by the microlens array 55 is directly exposed to the photosensitive material 150.
  • each microlens 55 a of the microlens array 55 is defocused by the micromirror 62 and the lens systems 52, 54, which is out of the imaging position of the micromirror 62 by the lens systems 52, 54. Since they are arranged at positions, even if the DMD 50 and the microlens array 55 are slightly misaligned, the light use efficiency and the extinction ratio are kept high.
  • the DMD 50 has a large number of micromirrors 62 (for example, 1024 x 768) that constitute each pixel (pixel) on an SRAM cell (memory cell) 60.
  • This is a mirror device arranged in a child shape.
  • a rectangular micromirror 62 supported by a support column is provided at the top, and a material having high reflectivity such as aluminum is deposited on the surface of the micromirror 62.
  • the reflectivity of the micromirror 62 is 90% or more, and its size is 13 m as an example in both the vertical and horizontal directions, and the array pitch is 13.7 m as an example in both the vertical and horizontal directions.
  • Each micromirror 62 is formed in a concave mirror shape having a light collecting function by a method described later.
  • a silicon gate CMOS SRAM cell 60 manufactured in a normal semiconductor memory manufacturing line is arranged directly below the microphone mirror 62 via a support including a hinge and a yoke. It is configured.
  • the microphone mirror 62 supported by the support is ⁇ degrees (eg ⁇ 12 °) with respect to the substrate side on which the DMD50 is arranged with the diagonal line as the center. ) Tilted within the range.
  • FIG. 7A shows a state tilted to + ⁇ degrees when the micromirror 62 is on
  • FIG. 7B shows a state tilted to ⁇ degrees when the micromirror 62 is off. Therefore, by controlling the tilt of the micromirror 62 in each pixel of the DMD 50 according to the image signal as shown in FIG. 6, the laser light incident on the DMD 50 is reflected in the tilt direction of each micromirror 62.
  • FIG. 6 shows an example of a state in which a part of the DMD 50 is enlarged and the micromirror 62 is controlled to + ⁇ degrees or ⁇ degrees.
  • On / off control of each micromirror 62 is performed by the controller 302 connected to the DMD 50. Further, a light absorber (not shown) is arranged in the direction in which the laser beam reflected by the micro mirror 62 in the off state travels.
  • the microlens array 55 shown in FIG. 5 is formed by two-dimensionally arranging a large number of microlenses 55a corresponding to each pixel of the DMD 50, that is, each micromirror 62.
  • Each microlens 55a is located at the position where the laser beam B from the corresponding micromirror 62 is incident, and is out of the imaging position of the micromirror 62 by the lens system 52, 54. It is arranged at the condensing position by 54.
  • the microlens 55a is correspondingly arranged with 1024 x 256 columns. Is placed.
  • the size of the microlens 55a is 41 ⁇ m in both the vertical and horizontal directions.
  • the micro lens 55a has a focal length of 0.23 mm, NA (numerical aperture) of 0.06, and is formed of a quartz glass cover.
  • the photosensitive material 150 is sub-scanned in the direction of arrow F.
  • the DMD 50 is arranged with a slight inclination so that the short side forms a predetermined angle 0 (eg, 0.1 ° to 5 °) with the sub-scanning direction.
  • FIG. 8A shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 50 is not tilted
  • FIG. 8B shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted.
  • the DMD50 has a multi-row mirror array force in which a large number of micromirrors are arranged in the longitudinal direction (for example, 1024).
  • the pitch P1 of the trajectory (scanning line) of the exposure beam 53 by each micromirror becomes narrower than the pitch P2 of the scanning line when the DMD50 is not tilted, greatly increasing the resolution. Can be improved.
  • the inclination angle of the DMD 50 is very small, the scanning width W2 when the DMD 50 is inclined and the scanning width W1 when the DMD 50 is not inclined are substantially the same.
  • the same scanning line is overlaid and exposed (multiple exposure) by different micromirror arrays.
  • multiple exposure it is possible to control a minute amount of the exposure position and realize high-definition exposure.
  • the joints between a plurality of exposure heads arranged in the main scanning direction can be connected without a step by controlling a very small amount of exposure position.
  • the fiber array light source 66 includes a plurality of (for example, 14) laser modules 64, and one end of the multimode optical fiber 30 is coupled to each laser module 64. ing. The other end of the multimode optical fiber 30 is coupled with an optical fiber 31 having the same core diameter as the multimode optical fiber 30 and a cladding diameter smaller than the multimode optical fiber 30. As shown in detail in FIG. 9B, seven ends of the multimode optical fiber 31 opposite to the optical fiber 30 are arranged along the main scanning direction orthogonal to the sub-scanning direction. These are arranged in two rows to constitute the laser emitting portion 68.
  • the laser emitting portion 68 formed by the end portion of the multimode optical fiber 31 is sandwiched and fixed between two support plates 65 having a flat surface.
  • a transparent protective plate such as glass is disposed on the light emitting end face of the multimode optical fiber 31 for protection.
  • the light exit end face of the multimode optical fiber 31 has a high light density and is likely to collect dust and easily deteriorate.However, the protective plate as described above prevents the dust from adhering to the end face and deteriorates. Can be delayed.
  • an optical fiber 31 having a cladding diameter of about 1 to 30 cm and a small cladding diameter of S is coaxially provided at the tip of the laser light emission side of the multimode optical fiber 30 having a large cladding diameter.
  • the optical fibers 30 and 31 are coupled by fusing the incident end face of the optical fiber 31 to the outgoing end face of the optical fiber 30 in a state where the respective core axes coincide.
  • the diameter of the core 31a of the optical fiber 31 is the same as the diameter of the core 30a of the multimode optical fiber 30.
  • the cladding diameter of the optical fiber 31 is not limited to 60 m.
  • the clad diameter of many optical fibers used in conventional fiber light sources is 125 m.
  • the core diameter needs to be at least 3-4 / ⁇ ⁇ , and therefore the cladding diameter of the optical fiber 31 is preferably 10 m or more.
  • a fiber array light source may be configured by bundling a plurality of fibers (for example, optical fiber 30 in the case of FIG. 9A) as they are.
  • the GaN-based semiconductor lasers LD1 to LD7 have substantially the same oscillation wavelength (for example, 405 nm), and all the maximum outputs are also almost the same (for example, about 100 mW for the multimode laser and about 50 mW for the single mode laser).
  • the outputs of the GaN-based semiconductor lasers LD1 to LD7 may be different from each other below the maximum output.
  • lasers that oscillate at wavelengths other than 405 nm in the wavelength range of 350 nm to 450 nm may be used.
  • the combined laser light source is housed in a box-shaped package 40 having an upper opening together with other optical elements.
  • the package 40 is provided with a package lid 41 that is designed to close the opening thereof, and a sealing gas is introduced after the deaeration process, and the opening of the knock 40 is closed by the package lid 41, thereby forming the package lid 41.
  • the combined laser light source is hermetically sealed in a closed space (sealing space) formed.
  • a base plate 42 is fixed to the bottom surface of the package 40.
  • the heat block 10 On the top surface of the base plate 42, the heat block 10, the condensing lens holder 45 for holding the condensing lens 20, and the multimode light.
  • a fiber holder 46 that holds the incident end of the fiber 30 is attached.
  • the exit end of the multimode optical fiber 30 is formed on the wall surface of the knock 40. It is pulled out of the package from the opened opening.
  • a collimator lens holder 44 is attached to the side surface of the heat block 10, and collimator lenses 11 to 17 are held there.
  • An opening is formed in the lateral wall surface of the package 40, and a wiring 47 for supplying a driving current to the GaN semiconductor lasers LD1 to LD7 is bowed out of the package through the opening! /.
  • FIG. 14 shows the front shape of the mounting portion of the collimator lenses 11 to 17.
  • Each of the collimator lenses 11 to 17 is formed in a shape obtained by cutting an area including the optical axis of a circular lens having an aspherical surface into an elongated shape with a parallel plane.
  • This elongated collimator lens can be formed, for example, by molding a resin or optical glass.
  • the collimator lenses 11 to 17 are closely arranged in the arrangement direction of the light emitting points so that the length direction is orthogonal to the arrangement direction of the light emitting points of the GaN-based semiconductor lasers LD1 to LD 7 (left and right direction in FIG. 14). Yes.
  • the GaN-based semiconductor lasers LD1 to LD7 have an active layer with an emission width of 2 ⁇ m, and the divergence angles in a direction parallel to and perpendicular to the active layer are, for example, 10 ° and 30 °, respectively. Lasers that emit laser beams B1 to B7 are used. These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.
  • the laser beams B1 to B7 emitted from the respective light emitting points are spread with the direction in which the divergence angle is large coincides with the length direction with respect to the elongated collimator lenses 11 to 17 as described above.
  • the incident light enters in a state where the direction with a small angle coincides with the width direction (direction perpendicular to the length direction).
  • the width of each collimator lens 11 to 17 is 1. lmm and the length is 4.6 mm, and the beam diameters of the laser beams B1 to B7 incident thereon are 0.9 mm and 2 respectively. 6mm.
  • the condensing lens 20 is formed by cutting a region including the optical axis of a circular lens having an aspherical surface into a long plane in a parallel plane, and extending it in the arrangement direction of the collimator lenses 11 to 17, that is, in the horizontal direction. It is formed in a short shape in a perpendicular direction.
  • This condensing lens 20 is also formed, for example, by molding a resin or optical glass.
  • a modulation circuit 301 is connected to the overall control unit 300, and a controller 302 that controls the DMD 50 is connected to the modulation circuit 301.
  • the overall control unit 300 is connected to an LD drive circuit 303 that drives the laser module 64 and a stage drive device 304 that drives the stage 152.
  • the overall control unit 300 further includes a microlens array driving device 305 that moves the microphone aperture lens array 55 in a direction parallel to the exposure surface, and a light transmission flat plate 80 that changes an angle formed by the microlens array 55.
  • the light transmitting flat plate driving device 306 to be inclined is connected to displacement sensors 192, 194, and 196 for detecting vibrations such as disturbance vibrations.
  • the displacement sensor 192 measures the relative position in the x direction between the photosensitive material 150 and the exposure head.
  • the displacement sensors 194 and 196 measure the relative position in the y direction between the photosensitive material 150 and the exposure head.
  • the displacement sensors 192, 194, and 196 are laser measuring instruments, and are fixed to the scanner 162 by an unillustrated indicating member so as to be able to move rigidly.
  • the displacement sensor 192 is disposed at a position corresponding to the bar-shaped mirror 193 provided on the side surface parallel to the y direction of the stage 152, and performs position measurement using reflection by the mirror 193.
  • the displacement sensors 194 and 196 perform position measurement using reflections by two mirrors 195 and 197 provided near both ends of a side parallel to the X direction of the stage 152, respectively.
  • the displacement sensors 192, 194, 196 measure the relative position of the exposure head with respect to the photosensitive material 150, and output the measurement information to the overall control unit 300 shown in FIG.
  • the measurement information includes the X position and two y positions.
  • the overall control unit 300 calculates the position of the stage 152 in the X direction and the y direction and the attitude of the stage 152 (the rotation angle around the z axis) from the measurement information, and the X direction of the exposure head with respect to the photosensitive material 150 Calculate the relative displacement in the y and y directions, and calculate the shift amounts in the x and y directions to correct the relative displacement. The overall control unit 300 then determines the shift amount. Based on the above, the microlens array driving device 305 and / or the light transmission flat plate driving device 306 are controlled.
  • the collimator lenses 11 to 17 and the condenser lens 20 constitute a condensing optical system
  • the condensing optical system and the multimode optical fiber 30 constitute a multiplexing optical system. That is, the laser beam Bl to B7 force condensed as described above by the condensing lens 20 is incident on the core 30a of the multimode optical fiber 30, propagates in the optical fiber, and is combined into one laser beam B. Then, the light is emitted from the optical fiber 31 coupled to the emission end of the multimode optical fiber 30.
  • each laser module when the coupling efficiency of laser light B1 ⁇ : B7 to the multimode optical fiber 30 is 0.9 and each output of the GaN-based semiconductor laser LD1 ⁇ : LD7 is 50mW, it is an array
  • image data corresponding to the exposure pattern is input from the modulation circuit 301 shown in FIG. 15 to the controller 302 of the DMD 50 and stored in the frame memory thereof.
  • This image data is data in which the density of each pixel constituting the image is expressed by binary values (whether or not dots are recorded).
  • the stage 152 having the photosensitive material 150 adsorbed on the surface is moved at a constant speed from the upstream side to the downstream side of the gate 160 along the guide 158 by a stage driving device 304 shown in FIG. Sensor attached to gate 160 as stage 152 passes under gate 160
  • the image data stored in the frame memory is sequentially read out for each of a plurality of lines, and each exposure head 166 is based on the image data read out by the data processing unit.
  • a control signal is generated every time.
  • each of the micromirrors of the DMD 50 is controlled on and off for each exposure head 166 by the mirror drive control unit based on the generated control signal.
  • the DMD 50 When the DMD 50 is irradiated with laser light B from the fiber array light source 66, the laser light reflected when the microphone mirror of the DMD 50 is on is imaged on the photosensitive material 150 by the lens system 51. . In this manner, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the photosensitive material 150 is exposed in approximately the same number of pixels (exposure area 168) as the number of pixels used in the DMD 50. In addition, the photosensitive material 150 is moved at a constant speed together with the stage 152, so that the photosensitive material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed area for each exposure head 166. 170 is formed.
  • the light transmission flat plate 80 is disposed in parallel to the exposure surface. Therefore, the light from the lens system 54 shown in FIG. 5 passes through the light transmitting flat plate 80 as it is, and is imaged on the photosensitive material 150 by each microlens 55a of the microphone aperture lens array 55. However, when external force disturbance vibration is applied, the stage 55 and the optical system are displaced, and the exposure position is displaced.
  • the microlens array driving device 305 shown in FIG. 15 detects the exposure position due to the disturbance vibration as shown in FIG. 17B.
  • the microlens array 55 is moved in parallel in the direction to cancel the displacement. As a result, the deviation of the exposure position can be corrected, and a high-quality image can be formed without being affected by disturbance vibration.
  • the light transmission flat plate driving device 306 further changes the angle formed between the light transmission flat plate 80 and the exposure surface in a direction to cancel the deviation of the exposure position due to disturbance vibration.
  • the light transmission flat plate 80 is inclined. Thereby, the light incident on the light transmission flat plate 80 is refracted in the light transmission flat plate 80 and is emitted from the light transmission flat plate 80 in a state shifted in the horizontal direction. For this reason, the light transmission flat plate driving device 306 cancels the exposure position due to disturbance vibration.
  • the displacement of the exposure position can be corrected by tilting the light transmitting flat plate 80 in the direction.
  • DMD 50 has a power map in which 768 pairs of micro mirror arrays in which 1024 microphone aperture mirrors are arranged in the main scanning direction are arranged in the sub scanning direction.
  • the controller 302 controls only a part of the micromirror rows (for example, 1024 ⁇ 256 rows).
  • a micromirror array arranged at the end of DMD50 may be used as shown in FIG. 18B. May be.
  • the micromirror array to be used may be appropriately changed depending on the situation, such as using a micromirror array in which no defect has occurred.
  • the modulation speed per line is determined in proportion to the number of pixels to be used.
  • the modulation speed per hit is increased.
  • the stage 152 is moved along the guide 158 by the stage driving device 304.
  • the origin returns to the upstream side, and is moved again along the guide 158 from the upstream side of the gate 160 to the downstream side at a constant speed.
  • the laser light B as illumination light is provided to the DMD 50, which includes the fiber array light source 66, the condensing lens 71, the rod integrator 72, the imaging lens 74, the mirror 69, and the TIR prism 70 shown in FIG.
  • the rod integrator 72 is, for example, a translucent rod formed in a square columnar shape, and the intensity distribution in the beam cross section of the laser beam B is made uniform while the laser beam B travels while totally reflecting inside the rod integrator 72. Note that the entrance end face and the exit end face of the rod integrator 72 are coated with an antireflection film to increase the transmittance.
  • the intensity distribution in the beam cross section of the laser beam B that is illumination light can be made highly uniform, non-uniform illumination light intensity can be eliminated and a high-definition image can be exposed on the photosensitive material 150.
  • each microlens 55 of the microlens array 55 shown in FIG. a is disposed at the converging position of the micromirror 62 and the lens systems 52 and 54, which are out of the imaging position of the micromirror 62 by the lens systems 52 and 54, so that the DMD 50 and the microphone lens array 55 Even if there is a slight misalignment, the light utilization efficiency and the extinction ratio are kept high.
  • the image exposure apparatus is a case where a relative deviation occurs between the exposure position of the laser beam and the position on the stage 152 due to disturbance vibration.
  • the microlens array 55 is moved in parallel to the exposure surface based on disturbance vibrations, and the aperture array 59 is also moved in parallel, thereby correcting the deviation of the exposure position and exposing the photosensitive material to obtain a high-quality image. Can be obtained.
  • the image exposure apparatus of the present embodiment may include an optical system 51 as shown in FIG. 19 instead of the optical system 51 shown in FIG.
  • the optical system 51 includes a first optical system including lens systems 52 and 54, a microlens array 55, and an aperture array 59. That is, the optical system 51 further includes an aperture array 59 provided between the microlens array 55 and the photosensitive material 150 in addition to the configuration shown in FIG.
  • the aperture array 59 is formed by forming a large number of apertures (openings) 59a corresponding to the microlenses 55a of the microlens array 55 on the light shielding member 59b.
  • the aperture array 59 has a plurality of circular apertures (openings) 59 a arranged in a two-dimensional manner.
  • the image exposure apparatus provided with such an aperture array 59 can further shape the beam shape and expose the photosensitive material to obtain a high-quality image.
  • the optical system 51 includes a first optical system including lens systems 52 and 54, a microlens array 55, and a second microlens array.
  • the optical system 51 includes a second microlens array 81 instead of the aperture array 59 of the optical system 51 shown in FIG.
  • the aperture array 59 cannot be provided between the microlens array 55 and the exposure surface where the distance is small, the microlens array 55 and the exposure surface are exposed.
  • the photosensitive material 150 can be exposed by providing the second microlens array with the surface.
  • the aperture array 59 has a plurality of circular apertures (openings) 59a arranged in a two-dimensional manner on the light shielding member 59b.
  • Each aperture 59a is formed in the aperture array 59 so that the image of each micromirror 62 of the DMD 50 corresponds to each aperture 59a.
  • the aperture array 59 can shape the beam shape by the aperture 59a.
  • the aperture array 59 is not limited to the above-described configuration, and may be configured as follows.
  • the aperture array 59 is a mask that shields the outer peripheral area of each microphone aperture lens 55a (the part excluding the area of a predetermined distance from the center of the microlens 55a) on the light transmitting substrate 59c. 59b may be formed. Accordingly, the aperture array 59 has a plurality of circular apertures 59a arranged in a two-dimensional shape.
  • microlens array 55 a large number of microlenses 55a corresponding to each aperture 59a of the aperture array 59 (that is, corresponding to each micromirror 62 of the DMD 50) are arranged in a two-dimensional shape. These microlenses 55a form images of the corresponding portions of the apertures 59a on the photosensitive material 150, respectively.
  • each aperture 59a of the aperture array 59 enters the microlens 55a of the microlens array 55 as it is, and the photosensitive material 150 passes through each microlens 55a. Imaged on top.
  • the microlens array driving device 305 cancels the deviation of the exposure position due to the disturbance vibration, as shown in FIG. 23B.
  • the microlens array 55 and the aperture array 59 are both translated in the direction.
  • the amount of light displaced by disturbance vibrations The light is always shielded by the array 59, and only the light is incident on each microlens 55a of the microlens array 55 without being shifted in the exposure position.
  • the photosensitive material 150 can be exposed without being affected by disturbance vibration, and a high-quality image can be obtained.
  • microlens array 55 and the aperture array 59 may have the following configuration instead of the configuration shown in FIG.
  • a first mask 55b that shields the outer peripheral area of each microlens 55a may be formed in the microlens array 55.
  • the aperture array 59 is not limited to the aspect of the present embodiment, and may be formed integrally with the microlens array 55 on the light incident side or the light emitting side of the microphone port lens array 55. Good.
  • a first mask 55b for shielding the outer peripheral area of each microlens 55a is formed on the light exit side of the microlens array 55, and the light incident side of the microlens array 55 is formed.
  • a second mask 55c that shields the outer peripheral area of each microlens 55a may be formed. Note that only one of the first mask 55b and the second mask 55c may be formed. With such a microlens array 55, the beam shape can be shaped by the aperture 59a.
  • the image exposure apparatus includes an imaging optical system 51 having a configuration different from the configuration shown in FIG. 5 or FIG. 19, an imaging optical system 51, and a photosensitive material 150. And an optical path length changing member 73 disposed between them.
  • an imaging optical system 51 that forms an image on the photosensitive material 150 of the laser light B reflected by the DMD 50 is disposed.
  • This imaging optical system 51 is inserted between the first imaging optical system consisting of lens systems 52 and 54, the second imaging optical system consisting of lens systems 57 and 58, and these imaging optical systems.
  • Microlens array 55 and aperture array 5 As in the second embodiment, 9 can be moved in a direction parallel to the exposure surface by the microlens array driving device 305 shown in FIG.
  • the light beam emitted from the fiber array light source 66 is modulated by the DMD 50, and then directed and emitted to the photosensitive material 150 through the imaging optical system 51.
  • the photosensitive material 150 is sub-scanned in the direction of arrow F.
  • the optical path length changing member 73 also has a wedge-shaped prism 73OA and a wedge-shaped prism 730B force arranged adjacent to each other in an inverted direction.
  • the wedge-shaped prism 730A and the wedge-shaped prism 730B are obtained by, for example, cutting a parallel plate made of a transparent material such as glass or acrylic on a plane inclined obliquely with respect to the parallel plane of the parallel plate.
  • a wedge prism can be used.
  • the wedge prism 730A and the wedge prism 730B are made of glass having a refractive index of 1.51.
  • the optical path length changing member 73 configured as described above has a substantial thickness of a parallel plate formed by a combination of a pair of wedge prisms 730A and 730B (the thickness of the parallel plate formed as described above).
  • the optical path length is a value obtained by multiplying the substantial thickness of the parallel plate by the refractive index of the parallel plate.
  • a mask that shields the outer peripheral region of the microlens 55a may be formed on the microlens array 55 shown in the first and third embodiments.
  • the aperture array 59 shown in FIG. 26 may be one in which an aperture 59a is formed on a light-shielding member as shown in FIG. 19, or an aperture 59a is formed by forming a mask on a light transmitting member.
  • the displacement sensor detects the vibration of the stage with a laser measuring device arranged around the stage, and calculates the positional deviation of the light on the exposure surface of the exposure beam.
  • the present invention is not limited to this.
  • vibrations of both the exposure head and the stage may be detected. Further, it is possible to adopt a configuration for detecting the positional deviation of the direct exposure beam on the exposure surface.
  • DMD digital micromirror device

Abstract

An image exposure apparatus is provided with a spatial light modulating element wherein irradiated light is modulated at each of two-dimensionally arranged pixel sections; a light source for irradiating the spatial light modulating element with light; a first optical system which collects the light passed through the spatial light modulating element and forms images of the pixel sections; a microlens array for forming images on a photosensitive material by the luminous flux passed through the first optical system from the pixel sections by means of a plurality of two-dimensionally arranged microlenses; a positional shift detecting means for detecting a relative positional shift of the photosensitive material and the light from the microlens array; and a microlens array moving means for moving the microlens array based on the positional shift detected by the positional shift detecting means.

Description

明 細 書  Specification
画像露光装置  Image exposure device
技術分野  Technical field
[0001] 本発明は、画像露光装置に係り、特に、空間光変調素子で変調された光による像 を感光材料に結像させて感光材料を露光する画像露光装置に関する。  TECHNICAL FIELD [0001] The present invention relates to an image exposure apparatus, and more particularly to an image exposure apparatus that exposes a photosensitive material by forming an image of light modulated by a spatial light modulator on a photosensitive material.
背景技術  Background art
[0002] 従来、空間光変調素子で変調された光を結像光学系に通し、この光による像を所 定の感光材料上に結像して該感光材料を露光する画像露光装置が公知となってい る。この種の画像露光装置は、基本的に、照射された光を各々制御信号に応じて変 調する画素部が複数並設されてなる空間光変調素子と、この空間光変調素子に光を 照射する光源と、前記空間光変調素子により変調された光による像を感光材料上に 結像する結像光学系とを備えてなるものである。  Conventionally, an image exposure apparatus is known in which light modulated by a spatial light modulation element is passed through an imaging optical system, an image formed by this light is formed on a predetermined photosensitive material, and the photosensitive material is exposed. It has become. This type of image exposure apparatus basically irradiates light to a spatial light modulation element in which a plurality of pixel units that modulate irradiated light according to control signals are arranged in parallel, and the spatial light modulation element. And an imaging optical system that forms an image of light modulated by the spatial light modulator on the photosensitive material.
[0003] この種の画像露光装置にお!、て、上記空間光変調素子として、例えば DMD (デジ タル'マイクロミラー'デバイス)等が好適に用いられ得る。なお上記の DMDは、制御 信号に応じて反射面の角度を変化させる多数の矩形のマイクロミラー力 シリコン等 の半導体基板上に 2次元状に配列されてなるミラーデバイスであり、そこでは、上記 マイクロミラーが反射型の画素部として作用する。  In this type of image exposure apparatus, for example, a DMD (digital 'micromirror' device) or the like can be suitably used as the spatial light modulation element. The DMD is a mirror device that is two-dimensionally arranged on a semiconductor substrate such as a number of rectangular micromirror forces silicon that changes the angle of the reflecting surface in accordance with a control signal. The mirror acts as a reflective pixel portion.
[0004] 上述のような画像露光装置にお!、ては、感光材料に投影する画像を拡大した 、と いう要求が伴うことも多ぐその場合には、結像光学系として拡大結像光学系が用い られる。そのようにする際、空間光変調素子を経た光をただ拡大結像光学系に通し ただけでは、空間光変調素子の各画素部からの光束が拡大して、投影された画像に ぉ 、て画素サイズが大きくなり、画像の鮮鋭度が低下してしまう。  [0004] In the image exposure apparatus as described above, there is often a demand for enlarging the image projected onto the photosensitive material. A system is used. In doing so, if the light passing through the spatial light modulator is simply passed through the magnification imaging optical system, the luminous flux from each pixel portion of the spatial light modulator is expanded, and the projected image is reduced. The pixel size increases and the sharpness of the image decreases.
[0005] そこで、空間光変調素子で変調された光の光路に第 1の結像光学系を配し、この 結像光学系を経た、空間光変調素子の各画素部の光束にそれぞれ対応するマイク 口レンズがアレイ状に配されてなるマイクロレンズアレイを配置し、そしてこのマイクロ レンズアレイを通過した光の光路には、変調された光による像を感光材料ゃスクリー ン上に結像する第 2の結像光学系を配置して、これら第 1および第 2の結像光学系に よって像を拡大投影することが考えられている。この構成においては、感光材料ゃス クリーン上に投影される画像のサイズは拡大される一方、空間光変調素子の各画素 部からの光はマイクロレンズアレイの各マイクロレンズによって集光されるので、投影 画像における画素サイズ (スポットサイズ)は絞られて小さく保たれるので、画像の鮮 鋭度も高く保つことができる。 [0005] Therefore, the first imaging optical system is arranged on the optical path of the light modulated by the spatial light modulation element, and each of the light beams of each pixel portion of the spatial light modulation element passes through this imaging optical system. A microlens array in which microphone-lenses are arranged in an array is arranged, and a modulated light image is formed on the photosensitive material screen in the optical path of the light that has passed through the microlens array. 2 imaging optical systems are arranged, and these first and second imaging optical systems are arranged. Therefore, it is considered to enlarge and project an image. In this configuration, the size of the image projected on the photosensitive material screen is enlarged, while the light from each pixel portion of the spatial light modulator is condensed by each microlens of the microlens array. Since the pixel size (spot size) in the projected image is reduced and kept small, the sharpness of the image can be kept high.
[0006] なお特許文献 1には、空間光変調素子として DMDを用い、それとマイクロレンズァ レイとを組み合わせてなる画像露光装置の一例が示されている。  [0006] Note that Patent Document 1 shows an example of an image exposure apparatus that uses a DMD as a spatial light modulation element and combines it with a microlens array.
[0007] また特許文献 2には、同種の画像露光装置において、マイクロレンズアレイの後側 にマイクロレンズアレイの各マイクロレンズと対応するアパーチャ(開口)を有するァパ 一チヤアレイ(開口板)を配置して、対応するマイクロレンズを経た光のみが開口を通 過するようにした構成が示されている。この構成においては、開口板の各開口に、そ れと対応しな 、隣接のマイクロレンズからの光が入射することが防止されるので、隣 接画素への迷光の入射を抑制できる。また、 DMDの画素(マイクロミラー)をオフ状 態にして露光面上に光が照射されないようにする場合であっても、露光面上に僅か な光が入射することがある力 上記構成とすることで、 DMD画素がオフ状態にある時 の露光面上の光量を低減することができる。  In Patent Document 2, an aperture array (aperture plate) having an aperture (opening) corresponding to each microlens of the microlens array is arranged behind the microlens array in the same type of image exposure apparatus. Thus, a configuration is shown in which only the light that has passed through the corresponding microlens passes through the aperture. In this configuration, the light from the adjacent microlens is prevented from entering each aperture of the aperture plate, so that the stray light can be prevented from entering the adjacent pixel. In addition, even when the DMD pixel (micromirror) is turned off so that light is not irradiated onto the exposure surface, a slight light may be incident on the exposure surface. As a result, the amount of light on the exposure surface when the DMD pixel is in the off state can be reduced.
特許文献 1:特開 2001— 305663号公報  Patent Document 1: Japanese Patent Laid-Open No. 2001-305663
特許文献 2:特開 2004 - 122470号公報  Patent Document 2: JP 2004-122470 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 上述の DMDのように反射型の画素部を有する空間光変調素子とマイクロレンズァ レイと結像光学系とを組み合わせてなる従来の画像露光装置においては、結像光学 系によって前記マイクロミラー等の画素部の像を結像させ、その結像位置付近にマイ クロレンズアレイの各マイクロレンズが位置するように構成されて 、る。 [0008] In a conventional image exposure apparatus in which a spatial light modulation element having a reflective pixel portion, a microlens array, and an imaging optical system, such as the DMD described above, are combined with the microscopic lens by an imaging optical system. An image of a pixel portion such as a mirror is formed, and each microlens of the microlens array is positioned near the image formation position.
[0009] このような構成の画像露光装置は、約 3 μ mのビームで感光材料を露光する。しか し、外乱振動が加わると、露光ヘッドと感光材料を保持するステージとの相対位置が 約 l〜2 /z mずれてしまい、感光材料上に正しい像が形成されなくなってしまう問題が ある。 [0010] このような問題に対処するために、露光により得られた画像データをソフトウェアで 補正することが考えられる。しかし、ソフトウェアで補正する処理は複雑で、かつ高タ タト化に対して処理時間をさくことができない。 The image exposure apparatus having such a configuration exposes a photosensitive material with a beam of about 3 μm. However, when disturbance vibration is applied, there is a problem that the relative position between the exposure head and the stage holding the photosensitive material is shifted by about 1 to 2 / zm, and a correct image cannot be formed on the photosensitive material. In order to cope with such a problem, it is conceivable to correct image data obtained by exposure with software. However, the correction process using software is complicated, and the processing time cannot be reduced for the high tact.
課題を解決するための手段  Means for solving the problem
[0011] 本発明は、上述した課題を解決するために提案されたものである。  The present invention has been proposed to solve the above-described problems.
[0012] 本発明の画像露光装置は、照射された光を 2次元状に配列された各々の画素部で 変調する空間光変調素子と、前記空間光変調素子に光を照射する光源と、前記空 間光変調素子を経た光を集光して、前記画素部の像をそれぞれ結像する第 1の光 学系と、前記第 1の光学系を経た光束を複数 2次元状に配列された各々のマイクロレ ンズで感光材料上に結像させるマイクロレンズアレイと、外乱振動によって生じる前記 感光材料と前記マイクロレンズアレイからの光との相対的な位置ずれを検出する位置 ずれ検出手段と、前記位置ずれ検出手段により検出された位置ずれに基づいて、前 記マイクロレンズアレイを移動させるマイクロレンズアレイ移動手段と、を備えたもので ある。 [0012] The image exposure apparatus of the present invention includes a spatial light modulation element that modulates irradiated light at each pixel section arranged in a two-dimensional manner, a light source that irradiates light to the spatial light modulation element, A first optical system that collects light passing through the spatial light modulator and forms each image of the pixel portion, and a plurality of light beams that pass through the first optical system are arranged in a two-dimensional manner. A microlens array that forms an image on a photosensitive material with each microlens, a positional deviation detection unit that detects a relative positional deviation between the photosensitive material and light from the microlens array caused by disturbance vibration, and And a microlens array moving means for moving the microlens array based on the positional deviation detected by the positional deviation detection means.
[0013] 外乱振動が生じると、光源や光学系等を有する露光側と感光材料との間で相対的 な位置がずれてしまい、感光材料上の光の位置ずれが生じる。そこで、画像露光装 置は、外乱振動によって生じる感光材料と前記マイクロレンズアレイからの光との相 対的な位置ずれを検出する位置ずれ検出手段と、位置ずれ検出手段により検出さ れた位置ずれに基づ 、て、マイクロレンズアレイを移動させるマイクロレンズアレイ移 動手段と、を備えることにより、外乱振動の影響を受けることなく感光材料を露光して 高画質の画像を得ることができる。  When disturbance vibration occurs, the relative position between the exposure side having the light source and the optical system and the photosensitive material shifts, and the positional shift of the light on the photosensitive material occurs. Therefore, the image exposure apparatus includes a positional deviation detection unit that detects a relative positional deviation between the photosensitive material caused by disturbance vibration and the light from the microlens array, and a positional deviation detected by the positional deviation detection unit. Accordingly, by providing the microlens array moving means for moving the microlens array, it is possible to obtain a high quality image by exposing the photosensitive material without being affected by disturbance vibration.
発明の効果  The invention's effect
[0014] 本発明に係る画像露光装置は、外乱振動の影響を受けることなく感光材料を露光 して高画質の画像を得ることができる。  The image exposure apparatus according to the present invention can obtain a high-quality image by exposing a photosensitive material without being affected by disturbance vibration.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明の第 1の実施形態による画像露光装置の外観を示す斜視図である。  FIG. 1 is a perspective view showing an appearance of an image exposure apparatus according to a first embodiment of the present invention.
[図 2]画像露光装置のスキャナの構成を示す斜視図である。  FIG. 2 is a perspective view showing a configuration of a scanner of the image exposure apparatus.
[図 3A]感光材料に形成される露光済み領域を示す平面図である。 [図 3B]各露光ヘッドによる露光エリアの配列を示す図である。 FIG. 3A is a plan view showing an exposed area formed on a photosensitive material. FIG. 3B is a diagram showing an arrangement of exposure areas by each exposure head.
[図 4]画像露光装置の露光ヘッドの概略構成を示す斜視図である。  FIG. 4 is a perspective view showing a schematic configuration of an exposure head of the image exposure apparatus.
[図 5]露光ヘッドの概略断面図である。  FIG. 5 is a schematic sectional view of an exposure head.
[図 6]デジタルマイクロミラーデバイス (DMD)の構成を示す部分拡大図である。  FIG. 6 is a partially enlarged view showing the configuration of a digital micromirror device (DMD).
[図 7A]DMDの動作を説明するための説明図である。 FIG. 7A is an explanatory diagram for explaining the operation of DMD.
[図 7B]DMDの動作を説明するための説明図である。 FIG. 7B is an explanatory diagram for explaining the operation of the DMD.
[図 8A]DMDを傾斜配置しない場合における露光ビームの配置および走査線を示す 平面図である。  FIG. 8A is a plan view showing exposure beam arrangement and scanning lines when DMD is not inclined.
[図 8B]DMDを傾斜配置する場合における露光ビームの配置および走査線を示す 平面図である。  FIG. 8B is a plan view showing the arrangement of exposure beams and scanning lines when the DMD is inclined.
[図 9A]ファイバアレイ光源の構成を示す斜視図である。  FIG. 9A is a perspective view showing a configuration of a fiber array light source.
[図 9B]ファイバアレイ光源のレーザ出射部における発光点の配列を示す正面図であ る。  FIG. 9B is a front view showing the arrangement of light emitting points in the laser emitting section of the fiber array light source.
[図 10]マルチモード光ファイバの構成を示す図である。  FIG. 10 is a diagram showing a configuration of a multimode optical fiber.
[図 11]合波レーザ光源の構成を示す平面図である。 FIG. 11 is a plan view showing a configuration of a multiplexed laser light source.
[図 12]レーザモジュールの構成を示す平面図である。 FIG. 12 is a plan view showing a configuration of a laser module.
[図 13]レーザモジュールの構成を示す側面図である。 FIG. 13 is a side view showing a configuration of a laser module.
[図 14]レーザモジュールの構成を示す部分正面図である。 FIG. 14 is a partial front view showing a configuration of a laser module.
[図 15]画像露光装置の電気的構成を示すブロック図である。 FIG. 15 is a block diagram showing an electrical configuration of the image exposure apparatus.
[図 16]画像露光装置の平面図である。 FIG. 16 is a plan view of the image exposure apparatus.
[図 17A]マイクロレンズアレイ及び光透過平板の移動動作を説明するための図である  FIG. 17A is a diagram for explaining the movement operation of the microlens array and the light transmission flat plate.
[図 17B]マイクロレンズアレイ及び光透過平板の移動動作を説明するための図である FIG. 17B is a diagram for explaining the movement operation of the microlens array and the light transmission flat plate.
[図 18A]DMDの使用領域の例を示す図である。 FIG. 18A is a diagram showing an example of a DMD usage area.
[図 18B]DMDの使用領域の例を示す図である。 FIG. 18B is a diagram showing an example of a DMD usage area.
[図 19]露光ヘッドの概略断面図である。 FIG. 19 is a schematic sectional view of an exposure head.
[図 20]露光ヘッドの概略断面図である。 [図 21]露光ヘッドの概略断面図である。 FIG. 20 is a schematic sectional view of an exposure head. FIG. 21 is a schematic sectional view of an exposure head.
[図 22]マイクロレンズアレイ及びアパーチャアレイを説明するための図である。  FIG. 22 is a diagram for explaining a microlens array and an aperture array.
[図 23A]マイクロレンズアレイ及びアパーチャアレイの移動動作を説明するための図 である。  FIG. 23A is a view for explaining the movement operation of the microlens array and the aperture array.
[図 23B]マイクロレンズアレイ及びアパーチャアレイの移動動作を説明するための図 である。  FIG. 23B is a diagram for explaining the movement operation of the microlens array and the aperture array.
[図 24]マイクロレンズアレイ及びアパーチャアレイを説明するための図である。  FIG. 24 is a diagram for explaining a microlens array and an aperture array.
[図 25]マイクロレンズアレイを説明するための図である。  FIG. 25 is a diagram for explaining a microlens array.
[図 26]露光ヘッドの概略断面図である。  FIG. 26 is a schematic sectional view of an exposure head.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] [第 1の実施形態] [First Embodiment]
以下、図面を参照して本発明の実施形態を詳細に説明する。まず、本発明の第 1 の実施形態による画像露光装置について説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, an image exposure apparatus according to a first embodiment of the present invention will be described.
(画像露光装置の構成)  (Configuration of image exposure device)
この画像露光装置は、図 1に示すように、シート状の感光材料 150を表面に吸着し て保持する平板状の移動ステージ 152を備えて 、る。 4本の脚部 154に支持された 厚い板状の設置台 156の上面には、ステージ移動方向に沿って延びた 2本のガイド 158が設置されている。ステージ 152は、その長手方向がステージ移動方向を向くよ うに配置されると共に、ガイド 158によって往復移動可能に支持されている。なお、こ の画像露光装置には、副走査手段としてのステージ 152をガイド 158に沿って駆動 する後述のステージ駆動装置 304 (図 15参照)が設けられている。  As shown in FIG. 1, this image exposure apparatus includes a flat plate-like moving stage 152 that holds a sheet-like photosensitive material 150 by adsorbing to the surface. Two guides 158 extending along the stage moving direction are installed on the upper surface of the thick plate-shaped installation base 156 supported by the four legs 154. The stage 152 is disposed so that the longitudinal direction thereof faces the stage moving direction, and is supported by the guide 158 so as to be reciprocally movable. Note that this image exposure apparatus is provided with a stage drive unit 304 (see FIG. 15), which will be described later, that drives a stage 152 as a sub-scanning means along a guide 158.
[0017] 設置台 156の中央部には、ステージ 152の移動経路を跨ぐようにコ字状のゲート 1 60が設けられている。コ字状のゲート 160の端部の各々は、設置台 156の両側面に 固定されている。このゲート 160を挟んで一方の側にはスキャナ 162が設けられ、他 方の側には感光材料 150の先端および後端を検知する複数 (例えば 2個)のセンサ 1 64が設けられている。スキャナ 162およびセンサ 164はゲート 160に各々取り付けら れて、ステージ 152の移動経路の上方に固定配置されている。なお、スキャナ 162お よびセンサ 164は、これらを制御する図示しないコントローラに接続されている。 [0018] スキャナ 162は、図 2および図 3Bに示すように、 m行 n列(例えば 3行 5列)の略マト リックス状に配列された複数 (例えば 14個)の露光ヘッド 166を備えている。この例で は、感光材料 150の幅との関係で、 3行目には 4個の露光ヘッド 166を配置してある 。なお、 m行目の n列目に配列された個々の露光ヘッドを示す場合は、露光ヘッド 16 6 と表記する。 A U-shaped gate 160 is provided at the center of the installation table 156 so as to straddle the moving path of the stage 152. Each end of the U-shaped gate 160 is fixed to both side surfaces of the installation table 156. A scanner 162 is provided on one side of the gate 160, and a plurality of (for example, two) sensors 164 for detecting the front and rear ends of the photosensitive material 150 are provided on the other side. The scanner 162 and the sensor 164 are respectively attached to the gate 160 and fixedly arranged above the moving path of the stage 152. The scanner 162 and the sensor 164 are connected to a controller (not shown) that controls them. [0018] As shown in FIGS. 2 and 3B, the scanner 162 includes a plurality of (for example, 14) exposure heads 166 arranged in a matrix of m rows and n columns (eg, 3 rows and 5 columns). Yes. In this example, four exposure heads 166 are arranged in the third row in relation to the width of the photosensitive material 150. It should be noted that the individual exposure heads arranged in the m-th row and the n-th column are denoted as exposure head 16 6.
mn  mn
[0019] 露光ヘッド 166による露光エリア 168は、副走査方向を短辺とする矩形状である。  An exposure area 168 by the exposure head 166 has a rectangular shape with the short side in the sub-scanning direction.
従って、ステージ 152の移動に伴い、感光材料 150には露光ヘッド 166毎に帯状の 露光済み領域 170が形成される。なお、 m行目の n列目に配列された個々の露光へ ッドによる露光エリアを示す場合は、露光エリア 168 と表記する。  Accordingly, as the stage 152 moves, a strip-shaped exposed region 170 is formed in the photosensitive material 150 for each exposure head 166. In addition, when the exposure area by each exposure head arranged in the m-th row and the n-th column is indicated, it is expressed as an exposure area 168.
mn  mn
[0020] また、図 3Aおよび Bに示すように、帯状の露光済み領域 170が副走査方向と直交 する方向に隙間無く並ぶように、ライン状に配列された各行の露光ヘッドの各々は、 配列方向に所定間隔 (露光エリアの長辺の自然数倍、本例では 2倍)ずらして配置さ れている。このため、 1行目の露光エリア 168 と露光エリア 168 との間の露光できな  In addition, as shown in FIGS. 3A and 3B, each of the exposure heads in each row arranged in a line is arranged so that the strip-shaped exposed regions 170 are arranged without gaps in the direction orthogonal to the sub-scanning direction. They are arranged with a predetermined interval in the direction (a natural number multiple of the long side of the exposure area, twice in this example). For this reason, exposure cannot be performed between the exposure area 168 and the exposure area 168 in the first row.
11 12  11 12
い部分は、 2行目の露光エリア 168 と 3行目の露光エリア 168 とにより露光すること  The exposure area is exposed using the exposure area 168 in the second row and the exposure area 168 in the third row.
21 31  21 31
ができる。  Can do.
[0021] 露光ヘッド 166〜166 の各々は、図 4に示すように、入射された光ビームを画像  Each of the exposure heads 166 to 166 converts the incident light beam into an image as shown in FIG.
11 mn  11 mn
データに応じて各画素毎に変調する空間光変調素子として、米国テキサス 'インスッ ルメンツネ土製のデジタル ·マイクロミラ一'デバイス (DMD) 50を備えて!/、る。この DM D50は、データ処理部とミラー駆動制御部とを備えた後述のコントローラ 302 (図 15 参照)に接続されている。このコントローラ 302のデータ処理部は、入力された画像デ ータに基づいて、露光ヘッド 166毎に DMD50の制御すべき領域内の各マイクロミラ 一を駆動制御する制御信号を生成する。また、ミラー駆動制御部は、画像データ処 理部で生成した制御信号に基づいて、露光ヘッド 166毎に DMD50の各マイクロミラ 一の反射面の角度を制御する。  As a spatial light modulation element that modulates each pixel according to data, it is equipped with a digital micro mirror 1 device (DMD) 50 made in Texas USA. The DM D50 is connected to a controller 302 (see FIG. 15), which will be described later, provided with a data processing unit and a mirror drive control unit. The data processing unit of the controller 302 generates a control signal for driving and controlling each micromirror in the region to be controlled by the DMD 50 for each exposure head 166 based on the input image data. Further, the mirror drive control unit controls the angle of the reflection surface of each micromirror of the DMD 50 for each exposure head 166 based on the control signal generated by the image data processing unit.
[0022] DMD50の光入射側には、光ファイバの出射端部 (発光点)が露光エリア 168の長 辺方向と対応する方向に沿って一列に配列されたレーザ出射部を備えたファイバァ レイ光源 66、ファイバアレイ光源 66から出射されたレーザ光を補正して DMD上に集 光させるレンズ系 67、このレンズ系 67を透過したレーザ光を DMD50に向けて反射 するミラー 69がこの順に配置されている。なお図 4では、レンズ系 67を概略的に示し てある。 [0022] On the light incident side of the DMD 50, a fiber array light source including a laser emitting portion in which the emitting end portion (light emitting point) of the optical fiber is arranged in a line along the direction corresponding to the long side direction of the exposure area 168 66, a lens system 67 that corrects the laser light emitted from the fiber array light source 66 and collects it on the DMD, and reflects the laser light transmitted through the lens system 67 toward the DMD 50. The mirrors 69 to be operated are arranged in this order. In FIG. 4, the lens system 67 is schematically shown.
[0023] 上記レンズ系 67は、図 5に詳しく示すように、ファイバアレイ光源 66から出射した照 明光としてのレーザ光 Bを集光する集光レンズ 71、この集光レンズ 71を通過した光 の光路に挿入されたロッド状オプティカルインテグレータ(以下、ロッドインテグレータ という) 72、およびこのロッドインテグレータ 72の前方つまりミラー 69側に配置された 結像レンズ 74から構成されている。集光レンズ 71、ロッドインテグレータ 72および結 像レンズ 74は、ファイバアレイ光源 66から出射したレーザ光を、平行光に近くかつビ ーム断面内強度が均一化された光束として DMD50に入射させる。  As shown in detail in FIG. 5, the lens system 67 includes a condensing lens 71 that condenses the laser light B as the illuminating light emitted from the fiber array light source 66, and the light that has passed through the condensing lens 71. It is composed of a rod-shaped optical integrator (hereinafter referred to as a rod integrator) 72 inserted in the optical path, and an imaging lens 74 disposed in front of the rod integrator 72, that is, on the mirror 69 side. The condensing lens 71, the rod integrator 72, and the imaging lens 74 cause the laser light emitted from the fiber array light source 66 to enter the DMD 50 as a light beam that is close to parallel light and has a uniform beam cross-sectional intensity.
[0024] 上記レンズ系 67から出射したレーザ光 Bはミラー 69で反射し、 TIR (全反射)プリズ ム 70を介して DMD50に照射される。なお図 4では、この TIRプリズム 70は省略して ある。  The laser beam B emitted from the lens system 67 is reflected by the mirror 69 and irradiated to the DMD 50 via a TIR (total reflection) prism 70. In FIG. 4, the TIR prism 70 is omitted.
[0025] また DMD50の光反射側には、 DMD50で反射されたレーザ光 Bによる像を、感光 材料 150上に結像する光学系 51が配置されている。この光学系 51は、図 5に示すよ うに、レンズ系 52, 54からなる第 1光学系と、マイクロレンズアレイ 55と、レンズ系 54と マイクロレンズアレイ 55との間に設けられた光透過平板 80と、を備えている。  In addition, an optical system 51 that forms an image on the photosensitive material 150 with the laser beam B reflected by the DMD 50 is disposed on the light reflecting side of the DMD 50. As shown in FIG. 5, the optical system 51 includes a first optical system including lens systems 52 and 54, a microlens array 55, and a light transmission flat plate provided between the lens system 54 and the microlens array 55. 80.
[0026] マイクロレンズアレイ 55の各マイクロレンズ 55aによる集光位置に感光材料 150が 配置され、該マイクロレンズアレイ 55が集光した像が直接この感光材料 150に露光さ れるようになっている。  A photosensitive material 150 is arranged at a condensing position by each microlens 55a of the microlens array 55, and an image condensed by the microlens array 55 is directly exposed to the photosensitive material 150.
[0027] 本実施形態においては、マイクロレンズアレイ 55の各マイクロレンズ 55aが、レンズ 系 52, 54によるマイクロミラー 62の結像位置力 外れた、該マイクロミラー 62および レンズ系 52, 54による集光位置に配されているので、 DMD50とマイクロレンズァレ ィ 55とが多少位置ずれを起こしても、光利用効率および消光比が高く保たれる。  In the present embodiment, each microlens 55 a of the microlens array 55 is defocused by the micromirror 62 and the lens systems 52, 54, which is out of the imaging position of the micromirror 62 by the lens systems 52, 54. Since they are arranged at positions, even if the DMD 50 and the microlens array 55 are slightly misaligned, the light use efficiency and the extinction ratio are kept high.
[0028] 光透過平板 80は、例えば BK7で構成され、所定の厚みを有した平板である。光透 過平板 80は、露光面やマイクロレンズアレイ 55の面に平行に配置されている力 後 述する光透過平板駆動装置によって露光面とのなす角が調整可能になっている。  [0028] The light transmitting flat plate 80 is a flat plate made of, for example, BK7 and having a predetermined thickness. The light transmitting flat plate 80 has a force arranged parallel to the exposure surface and the surface of the microlens array 55, and an angle formed with the exposure surface can be adjusted by a light transmitting flat plate driving device described later.
[0029] DMD50は図 6に示すように、 SRAMセル (メモリセル) 60上に、各々画素(ピクセ ル)を構成する多数 (例えば 1024個 X 768個)の微小ミラー(マイクロミラー) 62が格 子状に配列されてなるミラーデバイスである。各ピクセルにおいて、最上部には支柱 に支えられた矩形のマイクロミラー 62が設けられており、マイクロミラー 62の表面には アルミニウム等の反射率の高い材料が蒸着されている。なお、マイクロミラー 62の反 射率は 90%以上であり、そのサイズは縦方向、横方向とも一例として 13 m、配列ピ ツチは縦方向、横方向とも一例として 13. 7 mである。また各マイクロミラー 62は、 後述する方法によって、集光機能を有する凹面鏡状に形成されている。また、マイク 口ミラー 62の直下には、ヒンジおよびヨークを含む支柱を介して通常の半導体メモリ の製造ラインで製造されるシリコンゲートの CMOSの SRAMセル 60が配置されてお り、全体はモノリシックに構成されている。 [0029] As shown in Fig. 6, the DMD 50 has a large number of micromirrors 62 (for example, 1024 x 768) that constitute each pixel (pixel) on an SRAM cell (memory cell) 60. This is a mirror device arranged in a child shape. In each pixel, a rectangular micromirror 62 supported by a support column is provided at the top, and a material having high reflectivity such as aluminum is deposited on the surface of the micromirror 62. The reflectivity of the micromirror 62 is 90% or more, and its size is 13 m as an example in both the vertical and horizontal directions, and the array pitch is 13.7 m as an example in both the vertical and horizontal directions. Each micromirror 62 is formed in a concave mirror shape having a light collecting function by a method described later. In addition, a silicon gate CMOS SRAM cell 60 manufactured in a normal semiconductor memory manufacturing line is arranged directly below the microphone mirror 62 via a support including a hinge and a yoke. It is configured.
[0030] DMD50の SRAMセル 60にデジタル信号が書き込まれると、支柱に支えられたマ イク口ミラー 62が、対角線を中心として DMD50が配置された基板側に対して ±ひ度 (例えば ± 12度)の範囲で傾けられる。図 7Aは、マイクロミラー 62がオン状態である + α度に傾いた状態を示し、図 7Βは、マイクロミラー 62がオフ状態である α度に 傾いた状態を示す。したがって、画像信号に応じて、 DMD50の各ピクセルにおける マイクロミラー 62の傾きを、図 6に示すように制御することによって、 DMD50に入射 したレーザ光 Βはそれぞれのマイクロミラー 62の傾き方向へ反射される。  [0030] When a digital signal is written in the SRAM cell 60 of the DMD50, the microphone mirror 62 supported by the support is ±± degrees (eg ± 12 °) with respect to the substrate side on which the DMD50 is arranged with the diagonal line as the center. ) Tilted within the range. FIG. 7A shows a state tilted to + α degrees when the micromirror 62 is on, and FIG. 7B shows a state tilted to α degrees when the micromirror 62 is off. Therefore, by controlling the tilt of the micromirror 62 in each pixel of the DMD 50 according to the image signal as shown in FIG. 6, the laser light incident on the DMD 50 is reflected in the tilt direction of each micromirror 62. The
[0031] なお図 6には、 DMD50の一部を拡大し、マイクロミラー 62が + α度又は α度に 制御されている状態の一例を示す。それぞれのマイクロミラー 62のオンオフ制御は、 DMD50に接続された前記コントローラ 302によって行われる。また、オフ状態のマイ クロミラー 62で反射したレーザ光 Βが進行する方向には、光吸収体(図示せず)が配 置されている。  FIG. 6 shows an example of a state in which a part of the DMD 50 is enlarged and the micromirror 62 is controlled to + α degrees or α degrees. On / off control of each micromirror 62 is performed by the controller 302 connected to the DMD 50. Further, a light absorber (not shown) is arranged in the direction in which the laser beam reflected by the micro mirror 62 in the off state travels.
[0032] 図 5に示したマイクロレンズアレイ 55は、 DMD50の各画素、つまり各マイクロミラー 62に対応する多数のマイクロレンズ 55aが 2次元状に配列されてなるものである。各 マイクロレンズ 55aは、それぞれ対応するマイクロミラー 62からのレーザ光 Bが入射す る位置において、レンズ系 52, 54によるマイクロミラー 62の結像位置から外れた、該 マイクロミラー 62およびレンズ系 52, 54による集光位置に配されている。本例では、 後述するように DMD50の 1024個 X 768列のマイクロミラーのうち 1024個 X 256列 だけが駆動されるので、それに対応させてマイクロレンズ 55aは 1024個 X 256列配 置されている。またマイクロレンズ 55aのサイズは縦方向、横方向とも 41 μ mである。 このマイクロレンズ 55aは、一例として焦点距離が 0. 23mm、NA (開口数)が 0. 06 で、石英ガラスカゝら形成されている。なお同図中において、感光材料 150は矢印 F方 向に副走査送りされる。 The microlens array 55 shown in FIG. 5 is formed by two-dimensionally arranging a large number of microlenses 55a corresponding to each pixel of the DMD 50, that is, each micromirror 62. Each microlens 55a is located at the position where the laser beam B from the corresponding micromirror 62 is incident, and is out of the imaging position of the micromirror 62 by the lens system 52, 54. It is arranged at the condensing position by 54. In this example, as will be described later, only 1024 x 256 columns of the DMD50's 1024 x 768 micromirrors are driven, so the microlens 55a is correspondingly arranged with 1024 x 256 columns. Is placed. The size of the microlens 55a is 41 μm in both the vertical and horizontal directions. As an example, the micro lens 55a has a focal length of 0.23 mm, NA (numerical aperture) of 0.06, and is formed of a quartz glass cover. In the figure, the photosensitive material 150 is sub-scanned in the direction of arrow F.
[0033] ここで DMD50は、その短辺が副走査方向と所定角度 0 (例えば、 0. 1° 〜5° ) を成すように僅かに傾斜させて配置するのが好まし 、。図 8Aは DMD50を傾斜させ ない場合の各マイクロミラーによる反射光像 (露光ビーム) 53の走査軌跡を示し、図 8 Bは DMD50を傾斜させた場合の露光ビーム 53の走査軌跡を示している。  Here, it is preferable that the DMD 50 is arranged with a slight inclination so that the short side forms a predetermined angle 0 (eg, 0.1 ° to 5 °) with the sub-scanning direction. FIG. 8A shows the scanning trajectory of the reflected light image (exposure beam) 53 by each micromirror when the DMD 50 is not tilted, and FIG. 8B shows the scanning trajectory of the exposure beam 53 when the DMD 50 is tilted.
[0034] DMD50には、長手方向にマイクロミラーが多数個(例えば 1024個)配列されたマ イク口ミラー列力 短手方向に多数^ 1_ (例えば 756糸且)配列されている力 図 8Bに示 すように、 DMD50を傾斜させることにより、各マイクロミラーによる露光ビーム 53の走 查軌跡(走査線)のピッチ P1が、 DMD50を傾斜させない場合の走査線のピッチ P2 より狭くなり、解像度を大幅に向上させることができる。一方、 DMD50の傾斜角は微 小であるので、 DMD50を傾斜させた場合の走査幅 W2と、 DMD50を傾斜させない 場合の走査幅 W1とは略同一である。  [0034] The DMD50 has a multi-row mirror array force in which a large number of micromirrors are arranged in the longitudinal direction (for example, 1024). A force in which a large number of ^ 1_ (for example, 756 threads) is arranged in the short direction. As shown in the figure, by tilting the DMD50, the pitch P1 of the trajectory (scanning line) of the exposure beam 53 by each micromirror becomes narrower than the pitch P2 of the scanning line when the DMD50 is not tilted, greatly increasing the resolution. Can be improved. On the other hand, since the inclination angle of the DMD 50 is very small, the scanning width W2 when the DMD 50 is inclined and the scanning width W1 when the DMD 50 is not inclined are substantially the same.
[0035] また、異なるマイクロミラー列により同じ走査線上が重ねて露光(多重露光)されるこ とになる。このように、多重露光されることで、露光位置の微少量をコントロールするこ とができ、高精細な露光を実現することができる。また、主走査方向に配列された複 数の露光ヘッドの間のつなぎ目を微少量の露光位置制御により段差無くつなぐこと ができる。  [0035] In addition, the same scanning line is overlaid and exposed (multiple exposure) by different micromirror arrays. In this way, by performing multiple exposure, it is possible to control a minute amount of the exposure position and realize high-definition exposure. Further, the joints between a plurality of exposure heads arranged in the main scanning direction can be connected without a step by controlling a very small amount of exposure position.
[0036] なお、 DMD50を傾斜させる代わりに、各マイクロミラー列を副走査方向と直交する 方向に所定間隔ずらして千鳥状に配置しても、同様の効果を得ることができる。  [0036] It should be noted that the same effect can be obtained by arranging the micromirror rows in a staggered manner by shifting the micromirror rows by a predetermined interval in a direction orthogonal to the sub-scanning direction instead of inclining the DMD 50.
[0037] ファイバアレイ光源 66は、図 9Aに示すように、複数(例えば 14個)のレーザモジュ ール 64を備えており、各レーザモジュール 64には、マルチモード光ファイバ 30の一 端が結合されている。マルチモード光ファイバ 30の他端には、コア径がマルチモード 光ファイバ 30と同一で且つクラッド径がマルチモード光ファイバ 30より小さい光フアイ バ 31が結合されている。図 9Bに詳しく示すように、マルチモード光ファイバ 31の光フ アイバ 30と反対側の端部は副走査方向と直交する主走査方向に沿って 7個並べられ 、それが 2列に配列されてレーザ出射部 68が構成されている。 [0037] As shown in FIG. 9A, the fiber array light source 66 includes a plurality of (for example, 14) laser modules 64, and one end of the multimode optical fiber 30 is coupled to each laser module 64. ing. The other end of the multimode optical fiber 30 is coupled with an optical fiber 31 having the same core diameter as the multimode optical fiber 30 and a cladding diameter smaller than the multimode optical fiber 30. As shown in detail in FIG. 9B, seven ends of the multimode optical fiber 31 opposite to the optical fiber 30 are arranged along the main scanning direction orthogonal to the sub-scanning direction. These are arranged in two rows to constitute the laser emitting portion 68.
[0038] マルチモード光ファイバ 31の端部で構成されるレーザ出射部 68は、図 9Bに示すよ うに、表面が平坦な 2枚の支持板 65に挟み込まれて固定されている。また、マルチモ ード光ファイバ 31の光出射端面には、その保護のために、ガラス等の透明な保護板 が配置されるのが望ましい。マルチモード光ファイバ 31の光出射端面は、光密度が 高いため集塵し易く劣化し易いが、上述のような保護板を配置することにより、端面 への塵埃の付着を防止し、また劣化を遅らせることができる。 [0038] As shown in FIG. 9B, the laser emitting portion 68 formed by the end portion of the multimode optical fiber 31 is sandwiched and fixed between two support plates 65 having a flat surface. Moreover, it is desirable that a transparent protective plate such as glass is disposed on the light emitting end face of the multimode optical fiber 31 for protection. The light exit end face of the multimode optical fiber 31 has a high light density and is likely to collect dust and easily deteriorate.However, the protective plate as described above prevents the dust from adhering to the end face and deteriorates. Can be delayed.
[0039] 本例では図 10に示すように、クラッド径が大きいマルチモード光ファイバ 30のレー ザ光出射側の先端部分に、長さ l〜30cm程度のクラッド径カ S小さい光ファイバ 31が 同軸的に結合されている。それらの光ファイバ 30, 31は、それぞれのコア軸が一致 する状態で光ファイバ 31の入射端面を光ファイバ 30の出射端面に融着することによ り結合されている。上述した通り、光ファイバ 31のコア 31aの径は、マルチモード光フ アイバ 30のコア 30aの径と同じ大きさである。  [0039] In this example, as shown in FIG. 10, an optical fiber 31 having a cladding diameter of about 1 to 30 cm and a small cladding diameter of S is coaxially provided at the tip of the laser light emission side of the multimode optical fiber 30 having a large cladding diameter. Combined. The optical fibers 30 and 31 are coupled by fusing the incident end face of the optical fiber 31 to the outgoing end face of the optical fiber 30 in a state where the respective core axes coincide. As described above, the diameter of the core 31a of the optical fiber 31 is the same as the diameter of the core 30a of the multimode optical fiber 30.
[0040] マルチモード光ファイバ 30および光ファイバ 31としては、ステップインデックス型光 ファイバ、グレーデッドインデックス型光ファイバ、および複合型光ファイバの何れも適 用可能である。例えば、三菱電線工業株式会社製のステップインデックス型光フアイ バを用いることができる。本例において、マルチモード光ファイバ 30および光ファイバ 31はステップインデックス型光ファイバであり、マルチモード光ファイバ 30は、クラッド 径 = 125 、コア径 = 50 /ζ πι、 NA=0. 2、入射端面コートの透過率 = 99. 5%以 上であり、光ファイバ 31は、クラッド径 =60 m、コア径 = 50 m、 NA=0. 2である  [0040] As the multimode optical fiber 30 and the optical fiber 31, any of a step index type optical fiber, a graded index type optical fiber, and a composite type optical fiber can be applied. For example, a step index type optical fiber manufactured by Mitsubishi Cable Industries, Ltd. can be used. In this example, the multimode optical fiber 30 and the optical fiber 31 are step index type optical fibers, and the multimode optical fiber 30 has a cladding diameter = 125, a core diameter = 50 / ζ πι, NA = 0.2, an incident end face Coat transmittance = 99.5% or more, and optical fiber 31 has a cladding diameter = 60 m, a core diameter = 50 m, and NA = 0.2.
[0041] ただし、光ファイバ 31のクラッド径は 60 mには限定されない。従来のファイバ光 源に使用されている多くの光ファイバのクラッド径は 125 mである力 クラッド径が 小さくなるほど焦点深度がより深くなるので、マルチモード光ファイバのクラッド径は 8 0 μ m以下が好ましぐ 60 μ m以下がより好ましい。一方、シングルモード光ファイバ の場合、コア径は少なくとも 3〜4 /ζ πι必要であることから、光ファイバ 31のクラッド径 は 10 m以上が好ましい。また、光ファイバ 30のコア径と光ファイバ 31のコア径をー 致させること力 結合効率の点から好ましい。 [0042] なお本発明においては、上述のようにクラッド径が互いに異なる 2つの光ファイバ 30 、 31を融着 (いわゆる異径融着)して用いることは必ずしも必要ではなぐクラッド径が 一定の光ファイバ(例えば図 9Aの例ならば光ファイバ 30)を複数本そのままバンドル 状に束ねてファイバアレイ光源を構成してもよ 、。 [0041] However, the cladding diameter of the optical fiber 31 is not limited to 60 m. The clad diameter of many optical fibers used in conventional fiber light sources is 125 m. The smaller the clad diameter, the deeper the focal depth. Therefore, the clad diameter of multimode optical fibers should be 80 μm or less. 60 μm or less is preferable. On the other hand, in the case of a single mode optical fiber, the core diameter needs to be at least 3-4 / ζ πι, and therefore the cladding diameter of the optical fiber 31 is preferably 10 m or more. In addition, it is preferable from the viewpoint of force coupling efficiency that the core diameter of the optical fiber 30 matches the core diameter of the optical fiber 31. In the present invention, as described above, it is not always necessary to use two optical fibers 30 and 31 having different clad diameters by fusing (so-called different diameter fusion). A fiber array light source may be configured by bundling a plurality of fibers (for example, optical fiber 30 in the case of FIG. 9A) as they are.
[0043] レーザモジュール 64は、図 11に示す合波レーザ光源(ファイバ光源)によって構成 されている。この合波レーザ光源は、ヒートブロック 10上に配列固定された複数 (例え ば 7個)のチップ状の横マルチモード又はシングルモードの GaN系半導体レーザ LD 1, LD2, LD3, LD4, LD5, LD6,および LD7と、 GaN系半導体レーザ LD1〜LD 7の各々に対応して設けられたコリメータレンズ 11, 12, 13, 14, 15, 16および 17と 、 1つの集光レンズ 20と、 1本のマルチモード光ファイバ 30とから構成されている。な お、半導体レーザの個数は 7個に限定されるものではなぐその他の個数が採用され てもよい。また、上述のような 7個のコリメータレンズ 11〜17に代えて、それらのレンズ がー体ィ匕されてなるコリメータレンズアレイを用いることもできる。  [0043] The laser module 64 is configured by a combined laser light source (fiber light source) shown in FIG. This combined laser light source is composed of a plurality of (for example, 7) chip-shaped lateral multimode or single mode GaN-based semiconductor lasers LD 1, LD2, LD3, LD4, LD5, LD6 arranged and fixed on the heat block 10. , And LD7, collimator lenses 11, 12, 13, 14, 15, 16 and 17 provided corresponding to each of the GaN-based semiconductor lasers LD1 to LD7, one condenser lens 20, and one And a multimode optical fiber 30. Note that the number of semiconductor lasers is not limited to seven, and other numbers may be adopted. Further, instead of the seven collimator lenses 11 to 17 as described above, a collimator lens array in which these lenses are assembled can be used.
[0044] GaN系半導体レーザ LD1〜LD7は、発振波長がほぼ共通(例えば、 405nm)で あり、最大出力も総てほぼ共通(例えばマルチモードレーザでは 100mW、シングル モードレーザでは 50mW程度)である。なお、 GaN系半導体レーザ LD1〜LD7の各 出力は、最大出力以下で、互いに異なっていても構わない。また、 GaN系半導体レ 一ザ LD1〜LD7としては、 350nm〜450nmの波長範囲において、上記 405nm以 外の波長で発振するレーザを用いてもょ 、。  [0044] The GaN-based semiconductor lasers LD1 to LD7 have substantially the same oscillation wavelength (for example, 405 nm), and all the maximum outputs are also almost the same (for example, about 100 mW for the multimode laser and about 50 mW for the single mode laser). The outputs of the GaN-based semiconductor lasers LD1 to LD7 may be different from each other below the maximum output. As the GaN-based semiconductor lasers LD1 to LD7, lasers that oscillate at wavelengths other than 405 nm in the wavelength range of 350 nm to 450 nm may be used.
[0045] 上記の合波レーザ光源は、図 12および図 13に示すように、他の光学要素と共に、 上方が開口した箱状のパッケージ 40内に収納されている。パッケージ 40は、その開 口を閉じるように作成されたパッケージ蓋 41を備えており、脱気処理後に封止ガスを 導入し、ノ ッケージ 40の開口をパッケージ蓋 41で閉じることにより、それらによって形 成される閉空間 (封止空間)内に上記合波レーザ光源が気密封止されている。  [0045] As shown in Figs. 12 and 13, the combined laser light source is housed in a box-shaped package 40 having an upper opening together with other optical elements. The package 40 is provided with a package lid 41 that is designed to close the opening thereof, and a sealing gas is introduced after the deaeration process, and the opening of the knock 40 is closed by the package lid 41, thereby forming the package lid 41. The combined laser light source is hermetically sealed in a closed space (sealing space) formed.
[0046] パッケージ 40の底面にはベース板 42が固定されており、このベース板 42の上面に は、前記ヒートブロック 10と、集光レンズ 20を保持する集光レンズホルダー 45と、マ ルチモード光ファイバ 30の入射端部を保持するファイバホルダー 46とが取り付けら れている。マルチモード光ファイバ 30の出射端部は、ノ ッケージ 40の壁面に形成さ れた開口からパッケージ外に引き出されている。 [0046] A base plate 42 is fixed to the bottom surface of the package 40. On the top surface of the base plate 42, the heat block 10, the condensing lens holder 45 for holding the condensing lens 20, and the multimode light. A fiber holder 46 that holds the incident end of the fiber 30 is attached. The exit end of the multimode optical fiber 30 is formed on the wall surface of the knock 40. It is pulled out of the package from the opened opening.
[0047] また、ヒートブロック 10の側面にはコリメータレンズホルダー 44が取り付けられており 、そこにコリメータレンズ 11〜17が保持されている。パッケージ 40の横壁面には開口 が形成され、この開口を通して GaN系半導体レーザ LD1〜LD7に駆動電流を供給 する配線 47がパッケージ外に弓 Iき出されて!/、る。  Further, a collimator lens holder 44 is attached to the side surface of the heat block 10, and collimator lenses 11 to 17 are held there. An opening is formed in the lateral wall surface of the package 40, and a wiring 47 for supplying a driving current to the GaN semiconductor lasers LD1 to LD7 is bowed out of the package through the opening! /.
[0048] なお、図 13においては、図の煩雑化を避けるために、複数の GaN系半導体レーザ のうち GaN系半導体レーザ LD7にのみ番号を付し、複数のコリメータレンズのうちコ リメータレンズ 17にのみ番号を付している。  In FIG. 13, in order to avoid complication of the drawing, only the GaN semiconductor laser LD 7 among the plurality of GaN semiconductor lasers is numbered, and the collimator lens 17 among the plurality of collimator lenses is assigned. Only numbered.
[0049] 図 14は、上記コリメータレンズ 11〜17の取り付け部分の正面形状を示すものであ る。コリメータレンズ 11〜17の各々は、非球面を備えた円形レンズの光軸を含む領 域を平行な平面で細長く切り取った形状に形成されている。この細長形状のコリメ一 タレンズは、例えば、榭脂又は光学ガラスをモールド成形することによって形成するこ とができる。コリメータレンズ 11〜17は、長さ方向が GaN系半導体レーザ LD1〜LD 7の発光点の配列方向(図 14の左右方向)と直交するように、上記発光点の配列方 向に密接配置されている。  FIG. 14 shows the front shape of the mounting portion of the collimator lenses 11 to 17. Each of the collimator lenses 11 to 17 is formed in a shape obtained by cutting an area including the optical axis of a circular lens having an aspherical surface into an elongated shape with a parallel plane. This elongated collimator lens can be formed, for example, by molding a resin or optical glass. The collimator lenses 11 to 17 are closely arranged in the arrangement direction of the light emitting points so that the length direction is orthogonal to the arrangement direction of the light emitting points of the GaN-based semiconductor lasers LD1 to LD 7 (left and right direction in FIG. 14). Yes.
[0050] 一方 GaN系半導体レーザ LD1〜LD7としては、発光幅が 2 μ mの活性層を備え、 活性層と平行な方向、直角な方向の拡がり角が各々例えば 10° 、30° の状態で各 々レーザ光 B1〜B7を発するレーザが用いられている。これら GaN系半導体レーザ LD1〜LD7は、活性層と平行な方向に発光点が 1列に並ぶように配設されている。  [0050] On the other hand, the GaN-based semiconductor lasers LD1 to LD7 have an active layer with an emission width of 2 μm, and the divergence angles in a direction parallel to and perpendicular to the active layer are, for example, 10 ° and 30 °, respectively. Lasers that emit laser beams B1 to B7 are used. These GaN-based semiconductor lasers LD1 to LD7 are arranged so that the light emitting points are arranged in a line in a direction parallel to the active layer.
[0051] したがって、各発光点から発せられたレーザ光 B1〜B7は、上述のように細長形状 の各コリメータレンズ 11〜17に対して、拡がり角度が大きい方向が長さ方向と一致し 、拡がり角度が小さい方向が幅方向(長さ方向と直交する方向)と一致する状態で入 射することになる。つまり、各コリメータレンズ 11〜17の幅が 1. lmm、長さが 4. 6m mであり、それらに入射するレーザ光 B1〜B7の水平方向、垂直方向のビーム径は 各々 0. 9mm、 2. 6mmである。また、コリメータレンズ 11〜17の各々は、焦点距離 f l = 3mm、 NA=0. 6、レンズ配置ピッチ = 1. 25mmである。  [0051] Therefore, the laser beams B1 to B7 emitted from the respective light emitting points are spread with the direction in which the divergence angle is large coincides with the length direction with respect to the elongated collimator lenses 11 to 17 as described above. The incident light enters in a state where the direction with a small angle coincides with the width direction (direction perpendicular to the length direction). In other words, the width of each collimator lens 11 to 17 is 1. lmm and the length is 4.6 mm, and the beam diameters of the laser beams B1 to B7 incident thereon are 0.9 mm and 2 respectively. 6mm. Each of the collimator lenses 11 to 17 has a focal length f 1 = 3 mm, NA = 0.6, and a lens arrangement pitch = 1.25 mm.
[0052] 集光レンズ 20は、非球面を備えた円形レンズの光軸を含む領域を平行な平面で細 長く切り取って、コリメータレンズ 11〜17の配列方向、つまり水平方向に長ぐそれと 直角な方向に短い形状に形成されている。この集光レンズ 20は、焦点距離 f 2 = 23 mm、 NA=0. 2である。この集光レンズ 20も、例えば榭脂又は光学ガラスをモール ド成形することにより形成される。 [0052] The condensing lens 20 is formed by cutting a region including the optical axis of a circular lens having an aspherical surface into a long plane in a parallel plane, and extending it in the arrangement direction of the collimator lenses 11 to 17, that is, in the horizontal direction. It is formed in a short shape in a perpendicular direction. This condenser lens 20 has a focal length f 2 = 23 mm and NA = 0.2. This condensing lens 20 is also formed, for example, by molding a resin or optical glass.
[0053] 次に図 15を参照して、本例の画像露光装置における電気的な構成について説明 する。ここに示されるように全体制御部 300には変調回路 301が接続され、該変調回 路 301には DMD50を制御するコントローラ 302が接続されている。また全体制御部 300には、レーザモジュール 64を駆動する LD駆動回路 303、ステージ 152を駆動 するステージ駆動装置 304が接続されている。全体制御部 300には、さらに、マイク 口レンズアレイ 55を露光面に対して平行な方向に移動させるマイクロレンズアレイ駆 動装置 305、マイクロレンズアレイ 55とのなす角が変化する光透過平板 80を傾斜さ せる光透過平板駆動装置 306、外乱振動などの振動を検出するための変位センサ 1 92、 194、 196力接続されている。  Next, the electrical configuration of the image exposure apparatus of this example will be described with reference to FIG. As shown here, a modulation circuit 301 is connected to the overall control unit 300, and a controller 302 that controls the DMD 50 is connected to the modulation circuit 301. The overall control unit 300 is connected to an LD drive circuit 303 that drives the laser module 64 and a stage drive device 304 that drives the stage 152. The overall control unit 300 further includes a microlens array driving device 305 that moves the microphone aperture lens array 55 in a direction parallel to the exposure surface, and a light transmission flat plate 80 that changes an angle formed by the microlens array 55. The light transmitting flat plate driving device 306 to be inclined is connected to displacement sensors 192, 194, and 196 for detecting vibrations such as disturbance vibrations.
[0054] 図 16に示すように、変位センサ 192は、感光材料 150と露光ヘッドとの x方向の相 対位置を測定する。変位センサ 194、 196は、感光材料 150と露光ヘッドとの y方向 の相対位置を測定する。変位センサ 192、 194、 196は、本実施形態ではレーザ測 長器であり、スキャナ 162と剛体的に運動可能なように不図示の指示部材により固定 されている。  As shown in FIG. 16, the displacement sensor 192 measures the relative position in the x direction between the photosensitive material 150 and the exposure head. The displacement sensors 194 and 196 measure the relative position in the y direction between the photosensitive material 150 and the exposure head. In this embodiment, the displacement sensors 192, 194, and 196 are laser measuring instruments, and are fixed to the scanner 162 by an unillustrated indicating member so as to be able to move rigidly.
[0055] 変位センサ 192は、ステージ 152の y方向に平行な側面に設けられたバー状のミラ 一 193に対応する位置に配置され、ミラー 193による反射を利用して位置測定を行う 。変位センサ 194、 196は、それぞれステージ 152の X方向に平行な辺の両端近傍 に設けられた 2つのミラー 195、 197による反射を利用して位置測定を行う。  The displacement sensor 192 is disposed at a position corresponding to the bar-shaped mirror 193 provided on the side surface parallel to the y direction of the stage 152, and performs position measurement using reflection by the mirror 193. The displacement sensors 194 and 196 perform position measurement using reflections by two mirrors 195 and 197 provided near both ends of a side parallel to the X direction of the stage 152, respectively.
[0056] 変位センサ 192、 194、 196は、感光材料 150に対する露光ヘッドの相対位置を測 定し、その測定情報を図 15に示す全体制御部 300へ出力する。測定情報には、 X方 向位置、 2つの y方向位置が含まれる。  The displacement sensors 192, 194, 196 measure the relative position of the exposure head with respect to the photosensitive material 150, and output the measurement information to the overall control unit 300 shown in FIG. The measurement information includes the X position and two y positions.
[0057] 全体制御部 300は、測定情報からステージ 152の X方向及び y方向の位置、ステー ジ 152の姿勢 (z軸周りの回転角)を算出して、感光材料 150に対する露光ヘッドの X 方向及び y方向の相対的な位置のずれを求め、その相対的な位置ずれを補正する ための X方向及び y方向のシフト量を算出する。そして、全体制御部 300は、シフト量 に基づ!/、て、マイクロレンズアレイ駆動装置 305及び/又は光透過平板駆動装置 30 6を制御する。 The overall control unit 300 calculates the position of the stage 152 in the X direction and the y direction and the attitude of the stage 152 (the rotation angle around the z axis) from the measurement information, and the X direction of the exposure head with respect to the photosensitive material 150 Calculate the relative displacement in the y and y directions, and calculate the shift amounts in the x and y directions to correct the relative displacement. The overall control unit 300 then determines the shift amount. Based on the above, the microlens array driving device 305 and / or the light transmission flat plate driving device 306 are controlled.
(画像露光装置の動作)  (Operation of image exposure device)
次に、上記画像露光装置の動作について説明する。スキャナ 162の各露光ヘッド 1 66にお 、て、ファイバアレイ光源 66の合波レーザ光源を構成する GaN系半導体レ 一ザ LD 1〜LD7 (図 11参照)の各々から発散光状態で出射したレーザ光 B 1, B2, B3, B4, B5, B6,および B7の各々は、対応するコリメータレンズ 11〜17によって平 行光化される。平行光化されたレーザ光 B1〜B7は、集光レンズ 20によって集光さ れ、マルチモード光ファイバ 30のコア 30aの入射端面上で収束する。  Next, the operation of the image exposure apparatus will be described. Lasers emitted in a divergent light state from each of the GaN-based semiconductor lasers LD 1 to LD 7 (see FIG. 11) constituting the combined laser light source of the fiber array light source 66 in each exposure head 1 66 of the scanner 162 Each of the lights B1, B2, B3, B4, B5, B6, and B7 is made parallel by the corresponding collimator lenses 11-17. The collimated laser beams B1 to B7 are collected by the condensing lens 20 and converge on the incident end face of the core 30a of the multimode optical fiber 30.
[0058] 本例では、コリメータレンズ 11〜17および集光レンズ 20によって集光光学系が構 成され、その集光光学系とマルチモード光ファイバ 30とによって合波光学系が構成 されている。すなわち、集光レンズ 20によって上述のように集光されたレーザ光 Bl〜 B7力 このマルチモード光ファイバ 30のコア 30aに入射して光ファイバ内を伝搬し、 1本のレーザ光 Bに合波されてマルチモード光ファイバ 30の出射端部に結合された 光ファイバ 31から出射する。  In this example, the collimator lenses 11 to 17 and the condenser lens 20 constitute a condensing optical system, and the condensing optical system and the multimode optical fiber 30 constitute a multiplexing optical system. That is, the laser beam Bl to B7 force condensed as described above by the condensing lens 20 is incident on the core 30a of the multimode optical fiber 30, propagates in the optical fiber, and is combined into one laser beam B. Then, the light is emitted from the optical fiber 31 coupled to the emission end of the multimode optical fiber 30.
[0059] 各レーザモジュールにおいて、レーザ光 B1〜: B7のマルチモード光ファイバ 30へ の結合効率が 0. 9で、 GaN系半導体レーザ LD1〜: LD7の各出力が 50mWの場合 には、アレイ状に配列された光ファイバ 31の各々について、出力 315mW( = 50m WX 0. 9 X 7)の合波レーザ光 Bを得ることができる。したがって、 14本のマルチモー ド光ファイバ 31全体では、 4. 4W( = 0. 315WX 14)の出力のレーザ光 Bが得られ る。  [0059] In each laser module, when the coupling efficiency of laser light B1 ~: B7 to the multimode optical fiber 30 is 0.9 and each output of the GaN-based semiconductor laser LD1 ~: LD7 is 50mW, it is an array For each of the optical fibers 31 arranged in the optical fiber 31, a combined laser beam B having an output of 315 mW (= 50 m WX 0.9 × 7) can be obtained. Therefore, with the entire 14 multi-mode optical fibers 31, a laser beam B with an output of 4.4 W (= 0.315 WX 14) can be obtained.
[0060] 画像露光に際しては、図 15に示す変調回路 301から露光パターンに応じた画像デ ータが DMD50のコントローラ 302に入力され、そのフレームメモリにー且記憶される 。この画像データは、画像を構成する各画素の濃度を 2値 (ドットの記録の有無)で表 したデータである。  In image exposure, image data corresponding to the exposure pattern is input from the modulation circuit 301 shown in FIG. 15 to the controller 302 of the DMD 50 and stored in the frame memory thereof. This image data is data in which the density of each pixel constituting the image is expressed by binary values (whether or not dots are recorded).
[0061] 感光材料 150を表面に吸着したステージ 152は、図 15に示すステージ駆動装置 3 04により、ガイド 158に沿ってゲート 160の上流側から下流側に一定速度で移動され る。ステージ 152がゲート 160下を通過する際に、ゲート 160に取り付けられたセンサ 164により感光材料 150の先端が検出されると、フレームメモリに記憶された画像デ ータが複数ライン分ずつ順次読み出され、データ処理部で読み出された画像データ に基づいて各露光ヘッド 166毎に制御信号が生成される。そして、ミラー駆動制御部 により、生成された制御信号に基づいて各露光ヘッド 166毎に DMD50のマイクロミ ラーの各々がオンオフ制御される。 The stage 152 having the photosensitive material 150 adsorbed on the surface is moved at a constant speed from the upstream side to the downstream side of the gate 160 along the guide 158 by a stage driving device 304 shown in FIG. Sensor attached to gate 160 as stage 152 passes under gate 160 When the leading edge of the photosensitive material 150 is detected by 164, the image data stored in the frame memory is sequentially read out for each of a plurality of lines, and each exposure head 166 is based on the image data read out by the data processing unit. A control signal is generated every time. Then, each of the micromirrors of the DMD 50 is controlled on and off for each exposure head 166 by the mirror drive control unit based on the generated control signal.
[0062] ファイバアレイ光源 66から DMD50にレーザ光 Bが照射されると、 DMD50のマイク 口ミラーがオン状態のときに反射されたレーザ光は、レンズ系 51により感光材料 150 上に結像される。このようにして、ファイバアレイ光源 66から出射されたレーザ光が画 素毎にオンオフされて、感光材料 150が DMD50の使用画素数と略同数の画素単 位 (露光エリア 168)で露光される。また、感光材料 150がステージ 152と共に一定速 度で移動されることにより、感光材料 150がスキャナ 162によりステージ移動方向と反 対の方向に副走査され、各露光ヘッド 166毎に帯状の露光済み領域 170が形成さ れる。  [0062] When the DMD 50 is irradiated with laser light B from the fiber array light source 66, the laser light reflected when the microphone mirror of the DMD 50 is on is imaged on the photosensitive material 150 by the lens system 51. . In this manner, the laser light emitted from the fiber array light source 66 is turned on / off for each pixel, and the photosensitive material 150 is exposed in approximately the same number of pixels (exposure area 168) as the number of pixels used in the DMD 50. In addition, the photosensitive material 150 is moved at a constant speed together with the stage 152, so that the photosensitive material 150 is sub-scanned in the direction opposite to the stage moving direction by the scanner 162, and a strip-shaped exposed area for each exposure head 166. 170 is formed.
[0063] このとき、図 17Aに示すように、光透過平板 80は、露光面に平行に配置されている 。よって、図 5に示すレンズ系 54からの光は、光透過平板 80をそのまま透過して、マ イク口レンズアレイ 55の各マイクロレンズ 55aによって感光材料 150上に結像される。 しかし、外部力 外乱振動が加わると、ステージ 55と光学系にずれが生じてしまい、 露光位置がずれてしまう。  At this time, as shown in FIG. 17A, the light transmission flat plate 80 is disposed in parallel to the exposure surface. Therefore, the light from the lens system 54 shown in FIG. 5 passes through the light transmitting flat plate 80 as it is, and is imaged on the photosensitive material 150 by each microlens 55a of the microphone aperture lens array 55. However, when external force disturbance vibration is applied, the stage 55 and the optical system are displaced, and the exposure position is displaced.
[0064] そこで、図 15に示すマイクロレンズアレイ駆動装置 305は、変位センサ 192、 194、 196の少なくとも 1つが外乱振動による変位を検出すると、図 17Bに示すように、その 外乱振動による露光位置のずれを打ち消す方向にマイクロレンズアレイ 55を平行移 動させる。これにより、露光位置のずれを補正できるので、外乱振動の影響を受ける ことなぐ高画質の画像を形成することができる。  Accordingly, when at least one of the displacement sensors 192, 194, 196 detects displacement due to disturbance vibration, the microlens array driving device 305 shown in FIG. 15 detects the exposure position due to the disturbance vibration as shown in FIG. 17B. The microlens array 55 is moved in parallel in the direction to cancel the displacement. As a result, the deviation of the exposure position can be corrected, and a high-quality image can be formed without being affected by disturbance vibration.
[0065] このとき更に、光透過平板駆動装置 306は、図 17Bに示すように、外乱振動による 露光位置のずれを打ち消す方向に光透過平板 80と露光面とのなす角を変化させな がら、光透過平板 80を傾斜させる。これにより、光透過平板 80に入射した光は、光 透過平板 80内で屈折して、水平方向にシフトした状態で光透過平板 80から出射す る。このため、光透過平板駆動装置 306は、外乱振動による露光位置を打ち消す方 向に光透過平板 80を傾斜移動させることにより、露光位置のずれを補正できる。 [0065] At this time, as shown in FIG. 17B, the light transmission flat plate driving device 306 further changes the angle formed between the light transmission flat plate 80 and the exposure surface in a direction to cancel the deviation of the exposure position due to disturbance vibration. The light transmission flat plate 80 is inclined. Thereby, the light incident on the light transmission flat plate 80 is refracted in the light transmission flat plate 80 and is emitted from the light transmission flat plate 80 in a state shifted in the horizontal direction. For this reason, the light transmission flat plate driving device 306 cancels the exposure position due to disturbance vibration. The displacement of the exposure position can be corrected by tilting the light transmitting flat plate 80 in the direction.
[0066] なお本例では、図 18Aおよび Bに示すように、 DMD50には、主走査方向にマイク 口ミラーが 1024個配列されたマイクロミラー列が副走査方向に 768組配列されてい る力 本例では、コントローラ 302により一部のマイクロミラー列(例えば、 1024個 X 2 56列)だけが駆動するように制御がなされる。 [0066] In this example, as shown in FIGS. 18A and 18B, DMD 50 has a power map in which 768 pairs of micro mirror arrays in which 1024 microphone aperture mirrors are arranged in the main scanning direction are arranged in the sub scanning direction. In the example, the controller 302 controls only a part of the micromirror rows (for example, 1024 × 256 rows).
[0067] この場合、図 18Aに示すように DMD50の中央部に配置されたマイクロミラー列を 使用してもよぐ図 18Bに示すように、 DMD50の端部に配置されたマイクロミラー列 を使用してもよい。また、一部のマイクロミラーに欠陥が発生した場合は、欠陥が発生 していないマイクロミラー列を使用するなど、状況に応じて使用するマイクロミラー列 を適宜変更してもよい。 [0067] In this case, as shown in FIG. 18A, a micromirror array arranged at the end of DMD50 may be used as shown in FIG. 18B. May be. In addition, when a defect occurs in some of the micromirrors, the micromirror array to be used may be appropriately changed depending on the situation, such as using a micromirror array in which no defect has occurred.
[0068] DMD50のデータ処理速度には限界があり、使用する画素数に比例して 1ライン当 りの変調速度が決定されるので、一部のマイクロミラー列だけを使用することで 1ライ ン当りの変調速度が速くなる。一方、連続的に露光ヘッドを露光面に対して相対移動 させる露光方式の場合には、副走査方向の画素を全部使用する必要はない。  [0068] There is a limit to the data processing speed of the DMD50, and the modulation speed per line is determined in proportion to the number of pixels to be used. The modulation speed per hit is increased. On the other hand, in the case of an exposure method in which the exposure head is continuously moved relative to the exposure surface, it is not necessary to use all the pixels in the sub-scanning direction.
[0069] スキャナ 162による感光材料 150の副走査が終了し、センサ 164で感光材料 150 の後端が検出されると、ステージ 152は、ステージ駆動装置 304により、ガイド 158に 沿ってゲート 160の最上流側にある原点に復帰し、再度、ガイド 158に沿ってゲート 1 60の上流側から下流側に一定速度で移動される。  [0069] When the sub-scan of the photosensitive material 150 by the scanner 162 is completed and the rear end of the photosensitive material 150 is detected by the sensor 164, the stage 152 is moved along the guide 158 by the stage driving device 304. The origin returns to the upstream side, and is moved again along the guide 158 from the upstream side of the gate 160 to the downstream side at a constant speed.
[0070] 次に、図 5に示したファイバアレイ光源 66、集光レンズ 71、ロッドインテグレータ 72、 結像レンズ 74、ミラー 69および TIRプリズム 70から構成されて DMD50に照明光とし てのレーザ光 Bを照射する照明光学系について説明する。ロッドインテグレータ 72は 例えば四角柱状に形成された透光性ロッドであり、その内部をレーザ光 Bが全反射し ながら進行するうちに、該レーザ光 Bのビーム断面内強度分布が均一化される。なお 、ロッドインテグレータ 72の入射端面、出射端面には反射防止膜がコートされて、透 過率が高められている。以上のようにして、照明光であるレーザ光 Bのビーム断面内 強度分布を高度に均一化できれば、照明光強度の不均一を無くして、高精細な画像 を感光材料 150に露光可能となる。  [0070] Next, the laser light B as illumination light is provided to the DMD 50, which includes the fiber array light source 66, the condensing lens 71, the rod integrator 72, the imaging lens 74, the mirror 69, and the TIR prism 70 shown in FIG. An illumination optical system that irradiates the light will be described. The rod integrator 72 is, for example, a translucent rod formed in a square columnar shape, and the intensity distribution in the beam cross section of the laser beam B is made uniform while the laser beam B travels while totally reflecting inside the rod integrator 72. Note that the entrance end face and the exit end face of the rod integrator 72 are coated with an antireflection film to increase the transmittance. As described above, if the intensity distribution in the beam cross section of the laser beam B that is illumination light can be made highly uniform, non-uniform illumination light intensity can be eliminated and a high-definition image can be exposed on the photosensitive material 150.
[0071] そして本装置において、図 5に示したマイクロレンズアレイ 55の各マイクロレンズ 55 aは、レンズ系 52, 54によるマイクロミラー 62の結像位置力 外れた、該マイクロミラ 一 62およびレンズ系 52, 54による集光位置に配されているので、 DMD50とマイク 口レンズアレイ 55とが多少位置ずれを起こしても、光利用効率および消光比が高く保 たれる。 In this apparatus, each microlens 55 of the microlens array 55 shown in FIG. a is disposed at the converging position of the micromirror 62 and the lens systems 52 and 54, which are out of the imaging position of the micromirror 62 by the lens systems 52 and 54, so that the DMD 50 and the microphone lens array 55 Even if there is a slight misalignment, the light utilization efficiency and the extinction ratio are kept high.
[0072] 以上のように、第 1の実施形態に係る画像露光装置は、外乱振動によってレーザ光 の露光位置とステージ 152上の位置との間に相対的なずれが生じた場合であっても 、外乱振動に基づいてマイクロレンズアレイ 55を露光面に対して平行に移動させる 共にアパーチャアレイ 59も平行に移動させることにより、露光位置のずれを補正して 感光材料を露光し、高画質の画像を得ることができる。  [0072] As described above, the image exposure apparatus according to the first embodiment is a case where a relative deviation occurs between the exposure position of the laser beam and the position on the stage 152 due to disturbance vibration. The microlens array 55 is moved in parallel to the exposure surface based on disturbance vibrations, and the aperture array 59 is also moved in parallel, thereby correcting the deviation of the exposure position and exposing the photosensitive material to obtain a high-quality image. Can be obtained.
[0073] なお、本実施形態の画像露光装置は、図 5に示す光学系 51に変えて、図 19に示 すような光学系 51を備えてもよい。この光学系 51は、図 19に詳細を示すように、レン ズ系 52, 54からなる第 1光学系と、マイクロレンズアレイ 55と、アパーチャアレイ 59と 力も構成されている。すなわち、光学系 51は、図 5に示す構成に加えて、マイクロレ ンズアレイ 55と感光材料 150との間に設けられたアパーチャアレイ 59を更に備えて いる。  Note that the image exposure apparatus of the present embodiment may include an optical system 51 as shown in FIG. 19 instead of the optical system 51 shown in FIG. As shown in detail in FIG. 19, the optical system 51 includes a first optical system including lens systems 52 and 54, a microlens array 55, and an aperture array 59. That is, the optical system 51 further includes an aperture array 59 provided between the microlens array 55 and the photosensitive material 150 in addition to the configuration shown in FIG.
[0074] アパーチャアレイ 59は、遮光性部材 59bに、マイクロレンズアレイ 55の各マイクロレ ンズ 55aに対応する多数のアパーチャ(開口) 59aが形成されてなるものである。すな わち、アパーチャアレイ 59は、 2次元状に配列された複数の円形アパーチャ(開口) 5 9aを有している。  The aperture array 59 is formed by forming a large number of apertures (openings) 59a corresponding to the microlenses 55a of the microlens array 55 on the light shielding member 59b. In other words, the aperture array 59 has a plurality of circular apertures (openings) 59 a arranged in a two-dimensional manner.
[0075] このようなアパーチャアレイ 59を備えた画像露光装置は、さらにビーム形状を整形 して感光材料を露光して高画質の画像を得ることができる。  The image exposure apparatus provided with such an aperture array 59 can further shape the beam shape and expose the photosensitive material to obtain a high-quality image.
[0076] また、図 19に示す光学系 51に変えて、図 20に示すような光学系 51を備えてもよい 。この光学系 51は、図 20に詳細を示すように、レンズ系 52, 54からなる第 1光学系と 、マイクロレンズアレイ 55と、第 2のマイクロレンズアレイとから構成されている。すなわ ち、この光学系 51は、図 19に示す光学系 51のアパーチャアレイ 59の代わりに、第 2 のマイクロレンズアレイ 81を備えている。  Further, instead of the optical system 51 shown in FIG. 19, an optical system 51 as shown in FIG. 20 may be provided. As shown in detail in FIG. 20, the optical system 51 includes a first optical system including lens systems 52 and 54, a microlens array 55, and a second microlens array. In other words, the optical system 51 includes a second microlens array 81 instead of the aperture array 59 of the optical system 51 shown in FIG.
[0077] これにより、マイクロレンズアレイ 55と露光面との距離が小さぐそれらの間にァパー チヤアレイ 59を設けることができない場合であっても、マイクロレンズアレイ 55と露光 面との間に第 2のマイクロレンズアレイを設けることにより、感光材料 150を露光するこ とがでさる。 [0077] Thereby, even when the aperture array 59 cannot be provided between the microlens array 55 and the exposure surface where the distance is small, the microlens array 55 and the exposure surface are exposed. The photosensitive material 150 can be exposed by providing the second microlens array with the surface.
[0078] [第 2の実施形態]  [Second Embodiment]
つぎに、本発明の第 2の実施形態について説明する。なお、第 1の実施形態と同一 の部位には同一の符号を付し、その詳細な説明は省略する。第 2の実施形態に係る 画像露光装置は、図 19に示したマイクロレンズアレイ 55とアパーチャアレイ 59の配 置位置を入れ替えたものである。  Next, a second embodiment of the present invention will be described. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. In the image exposure apparatus according to the second embodiment, the arrangement positions of the microlens array 55 and the aperture array 59 shown in FIG.
[0079] 具体的には図 21に示すように、アパーチャアレイ 59は、遮光性部材 59bに 2次元 状に配列された複数の円形アパーチャ(開口) 59aを有して 、る。 DMD50の各マイ クロミラー 62の像が各アパーチャ 59aに対応するように、各アパーチャ 59aがァパー チヤアレイ 59に形成されている。このアパーチャアレイ 59は、アパーチャ 59aによつ てビーム形状を整形できる。  Specifically, as shown in FIG. 21, the aperture array 59 has a plurality of circular apertures (openings) 59a arranged in a two-dimensional manner on the light shielding member 59b. Each aperture 59a is formed in the aperture array 59 so that the image of each micromirror 62 of the DMD 50 corresponds to each aperture 59a. The aperture array 59 can shape the beam shape by the aperture 59a.
[0080] なお、アパーチャアレイ 59は、上述した構成に限らず、次のように構成されたもので もよい。例えば図 22に示すように、アパーチャアレイ 59は、光透過基板 59cに、各マ イク口レンズ 55aの外周領域(マイクロレンズ 55aの中心から所定距離の領域を除!ヽ た部分)を遮光するマスク 59bを形成したものでもよい。これにより、アパーチャアレイ 59は、 2次元状に配列された複数の円形アパーチャ 59aを有している。  Note that the aperture array 59 is not limited to the above-described configuration, and may be configured as follows. For example, as shown in FIG. 22, the aperture array 59 is a mask that shields the outer peripheral area of each microphone aperture lens 55a (the part excluding the area of a predetermined distance from the center of the microlens 55a) on the light transmitting substrate 59c. 59b may be formed. Accordingly, the aperture array 59 has a plurality of circular apertures 59a arranged in a two-dimensional shape.
[0081] 一方マイクロレンズアレイ 55は、アパーチャアレイ 59の各アパーチャ 59aに対応す る(つまり DMD50の各マイクロミラー 62に対応する)多数のマイクロレンズ 55aが 2次 元状に配列されている。これらのマイクロレンズ 55aは、それぞれ対応するアパーチャ 59aの部分の像を、感光材料 150上に結像させる。  On the other hand, in the microlens array 55, a large number of microlenses 55a corresponding to each aperture 59a of the aperture array 59 (that is, corresponding to each micromirror 62 of the DMD 50) are arranged in a two-dimensional shape. These microlenses 55a form images of the corresponding portions of the apertures 59a on the photosensitive material 150, respectively.
[0082] このときで、図 23Aに示すように、アパーチャアレイ 59の各アパーチャ 59aを通過し た光は、そのままマイクロレンズアレイ 55の各マイクロレンズ 55aに入射され、各マイ クロレンズ 55aによって感光材料 150上に結像される。  At this time, as shown in FIG. 23A, the light that has passed through each aperture 59a of the aperture array 59 enters the microlens 55a of the microlens array 55 as it is, and the photosensitive material 150 passes through each microlens 55a. Imaged on top.
[0083] そして、変位センサ 192、 194、 196の少なくとも 1つが外乱振動による変位を検出 すると、マイクロレンズアレイ駆動装置 305は、図 23Bに示すように、その外乱振動に よる露光位置のずれを打ち消す方向にマイクロレンズアレイ 55及びアパーチャアレイ 59を共に平行移動させる。これにより、外乱振動によってずれた分の光はアパーチャ アレイ 59によって必ず遮光され、露光位置のずれて 、な 、光のみがマイクロレンズァ レイ 55の各マイクロレンズ 55aに入射される。この結果、露光位置のずれ分を遮光す るので、外乱振動の影響を受けることなく感光材料 150を露光して、高画質の画像を 得ることができる。 [0083] When at least one of the displacement sensors 192, 194, 196 detects displacement due to disturbance vibration, the microlens array driving device 305 cancels the deviation of the exposure position due to the disturbance vibration, as shown in FIG. 23B. The microlens array 55 and the aperture array 59 are both translated in the direction. As a result, the amount of light displaced by disturbance vibrations The light is always shielded by the array 59, and only the light is incident on each microlens 55a of the microlens array 55 without being shifted in the exposure position. As a result, since the deviation of the exposure position is shielded, the photosensitive material 150 can be exposed without being affected by disturbance vibration, and a high-quality image can be obtained.
[0084] なお、マイクロレンズアレイ 55及びアパーチャアレイ 59は、図 22に示す構成に変え て、次のような構成であってもよい。例えば図 24に示すように、マイクロレンズアレイ 5 5に、各マイクロレンズ 55aの外周領域を遮光する第 1のマスク 55bを形成してもよい  Note that the microlens array 55 and the aperture array 59 may have the following configuration instead of the configuration shown in FIG. For example, as shown in FIG. 24, a first mask 55b that shields the outer peripheral area of each microlens 55a may be formed in the microlens array 55.
[0085] また、アパーチャアレイ 59は、本実施形態の態様に限定されるものではなぐマイク 口レンズアレイ 55の光入射側又は光出射側に、当該マイクロレンズアレイ 55と一体に 形成されたものでもよい。 Further, the aperture array 59 is not limited to the aspect of the present embodiment, and may be formed integrally with the microlens array 55 on the light incident side or the light emitting side of the microphone port lens array 55. Good.
[0086] 例えば図 25に示すように、マイクロレンズアレイ 55の光出射側に各マイクロレンズ 5 5aの外周領域を遮光する第 1のマスク 55bを形成すると共に、マイクロレンズアレイ 5 5の光入射側に各マイクロレンズ 55aの外周領域を遮光する第 2のマスク 55cを形成 してもよい。なお、第 1のマスク 55bと第 2のマスク 55cのいずれか一方だけを形成し てもよい。このようなマイクロレンズアレイ 55によって、アパーチャ 59aによってビーム 形状を整形できる。  For example, as shown in FIG. 25, a first mask 55b for shielding the outer peripheral area of each microlens 55a is formed on the light exit side of the microlens array 55, and the light incident side of the microlens array 55 is formed. Further, a second mask 55c that shields the outer peripheral area of each microlens 55a may be formed. Note that only one of the first mask 55b and the second mask 55c may be formed. With such a microlens array 55, the beam shape can be shaped by the aperture 59a.
[0087] [第 3の実施形態]  [0087] [Third Embodiment]
つぎに、本発明の第 3の実施形態について説明する。なお、上述した実施形態と同 一の部位には同一の符号を付し、その詳細な説明は省略する。第 3の実施形態に係 る画像露光装置は、図 26に示すように、図 5又は図 19に示した構成と異なる構成の 結像光学系 51と、結像光学系 51と感光材料 150との間に配置された光路長変更部 材 73と、を備えている。  Next, a third embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the site | part same as embodiment mentioned above, and the detailed description is abbreviate | omitted. As shown in FIG. 26, the image exposure apparatus according to the third embodiment includes an imaging optical system 51 having a configuration different from the configuration shown in FIG. 5 or FIG. 19, an imaging optical system 51, and a photosensitive material 150. And an optical path length changing member 73 disposed between them.
[0088] DMD50の光反射側には、図 26に示すように、 DMD50で反射されたレーザ光 B を、感光材料 150上に結像する結像光学系 51が配置されている。この結像光学系 5 1は、レンズ系 52、 54からなる第 1結像光学系と、レンズ系 57、 58からなる第 2結像 光学系と、これらの結像光学系の間に挿入されたマイクロレンズアレイ 55と、ァパー チヤアレイ 59と、を有している。なお、マイクロレンズアレイ 55及びアパーチャアレイ 5 9は、第 2の実施形態と同様に、図 15に示すマイクロレンズアレイ駆動装置 305によ つて露光面と平行な方向に移動可能になって 、る。 On the light reflection side of the DMD 50, as shown in FIG. 26, an imaging optical system 51 that forms an image on the photosensitive material 150 of the laser light B reflected by the DMD 50 is disposed. This imaging optical system 51 is inserted between the first imaging optical system consisting of lens systems 52 and 54, the second imaging optical system consisting of lens systems 57 and 58, and these imaging optical systems. A microlens array 55 and an aperture array 59. Microlens array 55 and aperture array 5 As in the second embodiment, 9 can be moved in a direction parallel to the exposure surface by the microlens array driving device 305 shown in FIG.
[0089] ファイバアレイ光源 66から射出された光ビームは、 DMD50により変調された後、 結像光学系 51を経て感光材料 150に向力つて射出される。なお同図中において、 感光材料 150は矢印 F方向に副走査送りされる。  The light beam emitted from the fiber array light source 66 is modulated by the DMD 50, and then directed and emitted to the photosensitive material 150 through the imaging optical system 51. In the figure, the photosensitive material 150 is sub-scanned in the direction of arrow F.
[0090] 光路長変更部材 73は、互いに反転した向きで隣接配置されたくさび型プリズム 73 OAおよびくさび型プリズム 730B力もなる。くさび型プリズム 730Aおよびくさび型プリ ズム 730Bは、例えば、ガラスやアクリル等の透明材料カゝらなる平行平板をこの平行 平板の平行平面に対して斜めに傾く平面で切断して得られる 1対のくさび型プリズム を採用することができる。ここでは、上記くさび型プリズム 730A、くさび型プリズム 730 Bは屈折率 1. 51のガラスで形成されたものとする。  [0090] The optical path length changing member 73 also has a wedge-shaped prism 73OA and a wedge-shaped prism 730B force arranged adjacent to each other in an inverted direction. The wedge-shaped prism 730A and the wedge-shaped prism 730B are obtained by, for example, cutting a parallel plate made of a transparent material such as glass or acrylic on a plane inclined obliquely with respect to the parallel plane of the parallel plate. A wedge prism can be used. Here, it is assumed that the wedge prism 730A and the wedge prism 730B are made of glass having a refractive index of 1.51.
[0091] くさび型プリズム 730Aとくさび型プリズム 730Bを組み合わせることで、これらの間 に空気層が形成される。くさび型プリズム 730Aおよびくさび型プリズム 730Bは、この 空気層を介して平行平板が形成されるように、図示しな ヽホルダにマウントされて!/ヽる  [0091] By combining the wedge-shaped prism 730A and the wedge-shaped prism 730B, an air layer is formed between them. The wedge-shaped prism 730A and the wedge-shaped prism 730B are mounted on a ヽ holder (not shown) so that a parallel plate is formed through this air layer!
[0092] このように構成された光路長変更部材 73は、一対のくさび型プリズム 730A、 730B の組み合わせによって形成される平行平板の実質的な厚さ(上記のように形成され た平行平板の厚さから空気層の厚さ tを除いた厚さ)を変更することによって、これに より感光材料 150と結像光学系 51との間の光路長を補正する。なお、光路長は、平 行平板の実質的な厚さに平行平板の屈折率を乗じた値である。 [0092] The optical path length changing member 73 configured as described above has a substantial thickness of a parallel plate formed by a combination of a pair of wedge prisms 730A and 730B (the thickness of the parallel plate formed as described above). Thus, the optical path length between the photosensitive material 150 and the imaging optical system 51 is corrected by changing the thickness excluding the thickness t of the air layer). The optical path length is a value obtained by multiplying the substantial thickness of the parallel plate by the refractive index of the parallel plate.
[0093] なお、本発明は、上述した実施の形態に限定されるものではなぐ特許請求の範囲 に記載された範囲内で設計上の変更をされたものにも適用可能であるのは勿論であ る。  [0093] It should be noted that the present invention is not limited to the above-described embodiments, but can be applied to those modified in design within the scope described in the claims. is there.
[0094] 例えば、第 1及び第 3の実施形態で示したマイクロレンズアレイ 55に、マイクロレン ズ 55aの外周領域を遮光するマスクを形成してもよい。また、図 26に示したァパーチ ャアレイ 59は、図 19に示すように、遮光性部材にアパーチャ 59aを形成したものでも よいし、光透過部材にマスクを形成することによってアパーチャ 59aを形成したもので ちょい。 [0095] また、上述した実施形態では、変位センサは、ステージ周囲に配置されたレーザ測 長器によりステージの振動を検出し、露光ビームの露光面上での光の位置ずれを算 出しているが、これに限定されるものではない。すなわち、露光ヘッドとステージとの 相対的位置関係の変動を検出できるものであれば良ぐ露光ヘッドとステージの両者 の振動を検出してもよい。また直接露光ビームの露光面上での位置ずれを検出する 構成としても良い。 For example, a mask that shields the outer peripheral region of the microlens 55a may be formed on the microlens array 55 shown in the first and third embodiments. In addition, the aperture array 59 shown in FIG. 26 may be one in which an aperture 59a is formed on a light-shielding member as shown in FIG. 19, or an aperture 59a is formed by forming a mask on a light transmitting member. A little. In the above-described embodiment, the displacement sensor detects the vibration of the stage with a laser measuring device arranged around the stage, and calculates the positional deviation of the light on the exposure surface of the exposure beam. However, the present invention is not limited to this. That is, as long as it can detect a change in the relative positional relationship between the exposure head and the stage, vibrations of both the exposure head and the stage may be detected. Further, it is possible to adopt a configuration for detecting the positional deviation of the direct exposure beam on the exposure surface.
符号の説明  Explanation of symbols
[0096] LD1〜LD7 GaN系半導体レーザ [0096] LD1 to LD7 GaN semiconductor laser
30、 31 マルチモード光ファイバ  30, 31 Multimode optical fiber
50、 250 デジタル ·マイクロミラ一'デバイス (DMD)  50, 250 digital micromirror device (DMD)
51 光学系  51 Optical system
52, 54 レンズ系  52, 54 Lens system
55 マイクロレンズアレイ  55 Micro lens array
55a マイクロレンズ  55a micro lens
57, 58 レンズ系  57, 58 lens system
59 アパーチャアレイ  59 Aperture array
59a アパーチャ  59a aperture
62 マイクロミラー  62 Micromirror
66 レーザモジユーノレ  66 Laser module
66 ファイノ アレイ光源  66 Fino Array Light Source
68 レーザ出射部  68 Laser emission part
72 ロッドインテグレータ  72 Rod integrator
150 感光材料  150 photosensitive material

Claims

請求の範囲 The scope of the claims
[1] 照射された光を 2次元状に配列された各々の画素部で変調する空間光変調素子と 前記空間光変調素子に光を照射する光源と、  [1] A spatial light modulation element that modulates the irradiated light in each pixel section arranged in a two-dimensional manner, a light source that irradiates light to the spatial light modulation element,
前記空間光変調素子を経た光を集光して、前記画素部の像をそれぞれ結像する 第 1の光学系と、  A first optical system for condensing the light that has passed through the spatial light modulator and forming an image of the pixel unit, and
前記第 1の光学系を経た前記画素部からの光束を複数 2次元状に配列された各々 のマイクロレンズで感光材料上に結像させるマイクロレンズアレイと、  A microlens array that forms an image on a photosensitive material with a plurality of microlenses arranged in a two-dimensional manner by a plurality of light beams from the pixel unit that have passed through the first optical system;
前記感光材料と前記マイクロレンズアレイ力ゝらの光との相対的な位置ずれを検出す る位置ずれ検出手段と、  A displacement detection means for detecting a relative displacement between the photosensitive material and the light of the microlens array force;
前記位置ずれ検出手段により検出された位置ずれに基づいて、前記マイクロレンズ アレイを移動させるマイクロレンズアレイ移動手段と、  A microlens array moving means for moving the microlens array based on the positional deviation detected by the positional deviation detection means;
を備えた画像露光装置。  An image exposure apparatus comprising:
[2] 前記マイクロレンズアレイによって結像された像を前記感光材料上に結像投影する 第 2の光学系を更に備えた [2] The apparatus further includes a second optical system that projects and projects an image formed by the microlens array onto the photosensitive material.
請求の範囲第 1項に記載の画像露光装置。  The image exposure apparatus according to claim 1.
[3] 前記第 1の光学系からの光を透過して前記マイクロレンズアレイに入射させる光透 過平板と、 [3] a light-transmitting flat plate that transmits light from the first optical system and enters the microlens array;
前記位置ずれ検出手段により検出された位置ずれに基づいて、前記光透過平板と 前記マイクロレンズアレイとのなす角が変化するよう、前記光透過平板を傾斜させる 光透過平板傾斜手段と、を更に備えた  A light transmission flat plate tilting unit that tilts the light transmission flat plate so that an angle formed by the light transmission flat plate and the microlens array is changed based on the positional shift detected by the positional shift detection unit; The
請求の範囲第 1項に記載の画像露光装置。  The image exposure apparatus according to claim 1.
[4] 前記マイクロレンズアレイの各々のマイクロレンズの外周領域を遮光するマスクが形 成されたアパーチャアレイを更に備え、 [4] It further comprises an aperture array in which a mask for shielding the outer peripheral area of each microlens of the microlens array is formed,
前記マイクロレンズアレイ移動手段は、前記位置ずれ検出手段により検出された位 置ずれに基づ 、て、前記マイクロレンズアレイと共に前記アパーチャアレイを移動さ せる  The microlens array moving means moves the aperture array together with the microlens array based on the positional deviation detected by the positional deviation detection means.
請求の範囲第 1項に記載の画像露光装置。 The image exposure apparatus according to claim 1.
[5] 前記アパーチャアレイは、前記マイクロレンズアレイの光入射側又は光出射側に、 前記マイクロレンズアレイと一体に形成されて 、る [5] The aperture array is integrally formed with the microlens array on the light incident side or the light emitting side of the microlens array.
請求の範囲第 4項に記載の画像露光装置。  The image exposure apparatus according to claim 4.
[6] 前記マイクロレンズアレイは、光入射側、光出射側の少なくとも一方に、各々のマイ クロレンズの外周領域を遮光するマスクを形成した [6] In the microlens array, a mask for shielding the outer peripheral area of each microlens is formed on at least one of the light incident side and the light output side.
請求の範囲第 1項に記載の画像露光装置。  The image exposure apparatus according to claim 1.
PCT/JP2006/319420 2005-09-30 2006-09-29 Image exposure apparatus WO2007040165A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-289200 2005-09-30
JP2005289200A JP2007101730A (en) 2005-09-30 2005-09-30 Image exposure device

Publications (1)

Publication Number Publication Date
WO2007040165A1 true WO2007040165A1 (en) 2007-04-12

Family

ID=37906207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319420 WO2007040165A1 (en) 2005-09-30 2006-09-29 Image exposure apparatus

Country Status (3)

Country Link
JP (1) JP2007101730A (en)
TW (1) TWI352879B (en)
WO (1) WO2007040165A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189798A (en) * 2010-10-29 2013-07-03 株式会社V技术 Scanning exposure apparatus using microlens array
WO2016157697A1 (en) * 2015-03-30 2016-10-06 ウシオ電機株式会社 Exposure device and exposure method
JP2020017530A (en) * 2014-11-07 2020-01-30 大日本印刷株式会社 Lighting device
US11024010B2 (en) 2016-11-01 2021-06-01 Capital Normal University Super-resolution image sensor and producing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI548947B (en) * 2009-11-10 2016-09-11 V科技股份有限公司 Exposure apparatus and photomask
US9482963B2 (en) 2010-12-20 2016-11-01 Asml Netherlands B.V. Method of controlling a patterning device in a lithographic apparatus, device manufacturing method and lithographic apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580525A (en) * 1991-09-19 1993-04-02 Asahi Optical Co Ltd Plotting device
JPH06246968A (en) * 1993-02-26 1994-09-06 Fuji Xerox Co Ltd Image recording apparatus
JP2002506230A (en) * 1998-03-02 2002-02-26 マイクロニック レーザー システムズ アクチボラゲット Accurate pattern generator
JP2004126034A (en) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd Image forming apparatus
JP2004284236A (en) * 2003-03-24 2004-10-14 Fuji Photo Film Co Ltd Image recording apparatus
JP2004319899A (en) * 2003-04-18 2004-11-11 Nikon Corp Exposure device and exposure method
JP2005258431A (en) * 2004-02-12 2005-09-22 Fuji Photo Film Co Ltd Pattern forming process

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0580525A (en) * 1991-09-19 1993-04-02 Asahi Optical Co Ltd Plotting device
JPH06246968A (en) * 1993-02-26 1994-09-06 Fuji Xerox Co Ltd Image recording apparatus
JP2002506230A (en) * 1998-03-02 2002-02-26 マイクロニック レーザー システムズ アクチボラゲット Accurate pattern generator
JP2004126034A (en) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd Image forming apparatus
JP2004284236A (en) * 2003-03-24 2004-10-14 Fuji Photo Film Co Ltd Image recording apparatus
JP2004319899A (en) * 2003-04-18 2004-11-11 Nikon Corp Exposure device and exposure method
JP2005258431A (en) * 2004-02-12 2005-09-22 Fuji Photo Film Co Ltd Pattern forming process

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189798A (en) * 2010-10-29 2013-07-03 株式会社V技术 Scanning exposure apparatus using microlens array
JP2020017530A (en) * 2014-11-07 2020-01-30 大日本印刷株式会社 Lighting device
WO2016157697A1 (en) * 2015-03-30 2016-10-06 ウシオ電機株式会社 Exposure device and exposure method
US11024010B2 (en) 2016-11-01 2021-06-01 Capital Normal University Super-resolution image sensor and producing method thereof

Also Published As

Publication number Publication date
TW200745768A (en) 2007-12-16
TWI352879B (en) 2011-11-21
JP2007101730A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4244156B2 (en) Projection exposure equipment
JP2005309380A (en) Image exposure device
JP2004001244A (en) Exposure head and exposure device
JP2006261155A (en) Aligner and exposure method
WO2006137486A1 (en) Image exposure device
KR100742251B1 (en) Method and device for image exposure
JP2004335640A (en) Projection aligner
WO2007040165A1 (en) Image exposure apparatus
JP2005032909A (en) Lighting optical system and aligner using it
JP4588428B2 (en) Image exposure method and apparatus
JP2006195166A (en) Image exposing device and microlens array unit
JP2006337528A (en) Image exposure system
JP4323335B2 (en) Image exposure method and apparatus
JP2005275325A (en) Image exposing device
JP2007004075A (en) Image exposure apparatus
JP2004126034A (en) Image forming apparatus
JP4208141B2 (en) Image exposure method and apparatus
KR100760253B1 (en) Image exposure apparatus
JP4708785B2 (en) Image exposure method and apparatus
JP2006171426A (en) Illumination optical system and exposure apparatus using the same
JP4104949B2 (en) Image forming apparatus
JP2006258852A (en) Structure for attaching microlens array, and image exposure device
JP2006267239A (en) Mounting structure of digital micro-mirror device, and image exposure device
JP2006350011A (en) Image exposure device
JP2006337529A (en) Image exposure system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810826

Country of ref document: EP

Kind code of ref document: A1