WO2007039993A1 - 揮発性有機化合物の回収方法及び揮発性有機化合物の回収システム - Google Patents

揮発性有機化合物の回収方法及び揮発性有機化合物の回収システム Download PDF

Info

Publication number
WO2007039993A1
WO2007039993A1 PCT/JP2006/316492 JP2006316492W WO2007039993A1 WO 2007039993 A1 WO2007039993 A1 WO 2007039993A1 JP 2006316492 W JP2006316492 W JP 2006316492W WO 2007039993 A1 WO2007039993 A1 WO 2007039993A1
Authority
WO
WIPO (PCT)
Prior art keywords
crude oil
volatile organic
organic compound
absorption tower
gas
Prior art date
Application number
PCT/JP2006/316492
Other languages
English (en)
French (fr)
Inventor
Wataru Sahara
Shunji Nario
Ichirou Nakagama
Koichi Iwamoto
Original Assignee
Nippon Oil Corporation
Nippon Oil Staging Terminal Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corporation, Nippon Oil Staging Terminal Company, Limited filed Critical Nippon Oil Corporation
Priority to US11/992,732 priority Critical patent/US7947169B2/en
Priority to NO20082021A priority patent/NO347234B1/no
Publication of WO2007039993A1 publication Critical patent/WO2007039993A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G5/00Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas
    • C10G5/04Recovery of liquid hydrocarbon mixtures from gases, e.g. natural gas with liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a volatile organic compound recovery method and a volatile organic compound recovery system.
  • VOC volatile organic compounds
  • hydrocarbons generate crude oil tanker power when, for example, crude oil is loaded from a crude oil tank on the ground into an offshore crude oil tanker. Crude oil When a crude oil is loaded into a tanker, the gas in the crude oil tanker is pushed out. The gas in the crude oil tanker is a gas generated from crude oil and contains volatile organic compounds. Gases containing volatile organic compounds are usually released into the chimney atmosphere, called the “vent” of crude oil tankers.
  • Incinerators that incinerate gas containing volatile organic compounds are known!
  • Examples of the incinerator include a flare stack and a ground flare (see Non-Patent Document 1).
  • Non-Patent Document 1 Edited by Nippon Oil Co., Ltd., “Oil Handbook”, 1988, p. 462
  • the present invention provides a volatile organic compound recovery method and a volatile organic compound recovery system that can suppress the release of volatile organic compounds into the atmosphere and can effectively use resources.
  • the purpose is to do.
  • the method for recovering a volatile organic compound of the present invention supplies a gas containing a volatile organic compound generated from the first raw oil and the second crude oil to the absorption tower. In this way, the second crude oil absorbs the volatile organic compound contained in the gas.
  • the second crude oil can absorb the volatile organic compound in the absorption tower. For this reason, it is possible to suppress the release of volatile organic compounds into the atmosphere and to effectively use resources.
  • the method for recovering a volatile organic compound further includes a step of circulating the second crude oil between the absorption tower and a crude oil supply source for supplying the second crude oil. This is preferred. In this case, the second crude oil can be used effectively.
  • the API degree of the second crude oil is preferably 18 to 45.
  • the API degree is expressed by the following formula (1).
  • the API degree exceeds 45, the soft fraction in the second crude oil becomes too much, and the absorption efficiency of volatile organic compounds tends to decrease.
  • the API degree is less than 18, the profitability tends to decrease.
  • API degree 141. 5 / G- 131.5 (1)
  • G represents the specific gravity of petroleum at 15.6 ° C (60 ° F).
  • Specific gravity means the specific gravity measured according to “Density test method and density / mass' capacity conversion table for crude oil and petroleum products” specified in JIS K 2249.
  • the volatile organic compound recovery system of the present invention provides a volatile organic compound generated by supplying a gas containing a volatile organic compound generated from a first crude oil and a second crude oil.
  • An absorption tower is provided in which the organic compound is absorbed by the second crude oil.
  • the volatile organic compound recovery system of the present invention the volatile organic compound can be absorbed by the second crude oil in the absorption tower. For this reason, it is possible to suppress the release of volatile organic compounds into the atmosphere and to effectively use resources.
  • FIG. 1 schematically shows a volatile organic compound recovery system according to an embodiment.
  • FIG. 1 is a block diagram schematically showing a volatile organic compound recovery system according to an embodiment.
  • the volatile organic compound include hydrocarbons having 1 to 7 carbon atoms.
  • the volatile organic compound recovery system 10 shown in FIG. 1 (hereinafter simply referred to as the recovery system 10) includes an absorption tower 16.
  • the absorption tower 16 is supplied with a gas (hereinafter referred to as “gas G”) generated from the first crude oil and containing a volatile organic compound, for example, from the crude oil tanker 2.
  • gas G gas generated from the first crude oil and containing a volatile organic compound, for example, from the crude oil tanker 2.
  • the first crude oil include Arabian light crude oil, Sumatralite crude oil, and Ira-an heavy crude oil.
  • the composition ratio of the volatile organic compound in the gas G is as follows.
  • the second crude oil is supplied to the absorption tower 16 from, for example, a crude oil tank 30 (crude oil supply source).
  • a crude oil tank 30 crude oil supply source
  • the volatile organic compound contained in the gas G is absorbed by the second crude oil in the absorption tower 16.
  • second crude oil include Arabian light crude oil and Sumatra light. Examples include crude oil and Ira-Anheavy crude oil.
  • the API degree of the second crude oil is preferably 18 to 45, more preferably 19 to 42, and most preferably 20 to 40.
  • the API degree is expressed by the following formula (1). If the API degree exceeds 45, the amount of soft fractions in the crude oil will increase, and the absorption efficiency of volatile organic compounds will tend to decrease. On the other hand, if the API degree is less than 18, the profitability of crude oil tends to decline.
  • API degree 141. 5 / G- 131.5 (1)
  • G represents the specific gravity of petroleum at 15.6 ° C (60 ° F).
  • Specific gravity means the specific gravity measured according to “Density test method and density / mass' capacity conversion table for crude oil and petroleum products” specified in JIS K 2249.
  • a packing 16a such as a glass, ceramic or stainless steel Raschig ring is accommodated. Glass or ceramic Raschig rings are excellent in corrosion resistance, and stainless steel Raschig rings are hard to break and have excellent mechanical strength. Gas G and the second crude oil come into gas-liquid contact in packing 16a. Gas G and the second crude oil may travel in the same direction or in the opposite direction.
  • the contact time is preferably 10 seconds to 10 minutes, more preferably 15 seconds to 8 minutes, more preferably 20 seconds to 5 minutes. If the contact time is less than 10 seconds, the absorption efficiency of volatile organic compounds tends to decrease. On the other hand, if the contact time exceeds 10 minutes, the construction cost of the absorber 16 tends to increase.
  • the gas-liquid ratio (volume of the second crude oil at 15 ° C, volume of Z gas G in the standard state (0 ° C, latm)) is preferably 10-200LZNm 3 180 LZNm 3 is more preferred. 15 to 150 LZNm 3 is particularly preferred. If the gas-liquid ratio is less than lOLZNm 3 , the absorption efficiency tends to decrease. On the other hand, when the gas-liquid ratio exceeds 200 LZNm 3 , the construction cost of the absorption tower 16 tends to increase.
  • the temperature in the absorption tower 16 is preferably 40 ° C or lower, more preferably 38 ° C or lower, and most preferably 35 ° C or lower.
  • the absorption efficiency tends to decrease due to gasification of a part of the second crude oil.
  • the pressure in the absorption tower 16 is preferably 9.8 x 10 4 Pa (lkgfZcm 2 ) or more. 1.1 X 10 5 Pa or higher is more preferable. 1.2 X 10 5 Pa or higher is particularly preferable.
  • the pressure in the absorption tower 16 is less than 9.8 ⁇ 10 4 Pa, the absorption tower 16 is depressurized and a part of the second raw oil is gasified, so that the absorption efficiency tends to decrease.
  • the gas G containing a volatile organic compound is pushed out from the crude oil tank 1.
  • the gas G is generated from the first crude oil such as crude oil previously stored in the crude oil tanker 2 and loaded into the crude oil tanker 2, for example.
  • the crude oil tanker 2 is preferably connected to the loading arm 4 in a closed system by a pipe L2. In this case, gas G does not leak into the atmosphere.
  • the loading arm 4 is preferably connected to the absorption tower 16 by a pipe L4.
  • the crude oil tank 30 is preferably connected to the absorption tower 16 by a pipe L34.
  • the second crude oil stored in the crude oil tank 30 is supplied to the absorption tower 16 through the pipe L34.
  • the crude oil tank 30 is preferably connected to the absorption tower 16 by a pipe L36 for collecting the second crude oil that has absorbed the volatile organic compound.
  • the second crude oil can be circulated between the absorption tower 16 and the crude oil tank 30, so that the second crude oil can be used effectively.
  • the absorption tower 16 is connected to a pipe L14 for releasing the gas after the volatile organic compound is absorbed.
  • the second crude oil can absorb the volatile organic compound in the absorption tower 16. For this reason, it is possible to suppress the release of volatile organic compounds into the atmosphere and to effectively use resources.
  • the content of volatile organic compounds in the second crude oil is preferably smaller than the content of volatile organic compounds in the first crude oil. This improves the absorption efficiency of volatile organic compounds.
  • the method for recovering a volatile organic compound according to the present embodiment is preferably implemented using the above-described recovery system 10.
  • the gas G generated from the crude oil tanker 2 and the second crude oil supplied from the crude oil tank 30 are supplied to the absorption tower 16, whereby the volatile organic compounds contained in the gas G are secondly added. Absorb in crude oil. Increase the pressure in the absorption tower 16
  • the volatile organic compound can be efficiently absorbed by the second crude oil by cooling.
  • the inside of the absorption tower 16 may be at normal temperature and pressure.
  • Gas G and the second crude oil are supplied to the absorption tower 16 as follows, for example.
  • the gas G reaches the loading arm 4 through the pipe L2. Thereafter, the gas G is supplied to the absorption tower 16 through the pipe L4.
  • the concentration of the volatile organic compound in the gas G passing through the pipe L4 is, for example, 22.7% by volume. This concentration can be measured using, for example, gas chromatography.
  • the second crude oil is supplied to the absorption tower 16 through the pipe L34.
  • the volatile organic compound can be absorbed by the second crude oil in the absorption tower 16. For this reason, it is possible to suppress the release of volatile organic compounds into the atmosphere and to effectively use resources.
  • the gas released from the absorption tower 16 through the pipe L14 is preferably subjected to further treatment such as absorption, incineration, adsorption and the like by crude oil.
  • concentration of volatile organic compounds in the gas passing through pipe L14 is, for example, 4% by volume.
  • the second crude oil can be used effectively.
  • the second crude oil is supplied from the crude oil tank 30 through the pipe L34 to the absorption tower 16, and then returns from the absorption tower 16 through the pipe L36 to the crude oil tank 30.
  • the time required for the second crude oil to return from the absorber 16 to the crude oil tank 30 is preferably 7 minutes or less, more preferably 6 minutes or less, and more preferably 5 minutes or less. Is particularly preferred. When this time exceeds 7 minutes, the volatile organic compounds absorbed by the second crude oil tend to vaporize again.
  • the number of days to use the second crude oil is preferably 15 to 60 days, more preferably 17 to 55 days. Particularly preferred is 52 days. If this number of days exceeds 60 days, the absorption efficiency of volatile organic compounds tends to decrease. On the other hand, if the number of days is less than 15 days, the amount of second crude oil used will increase, and costs will tend to increase.
  • the preferred embodiments of the present invention have been described above in detail, but the present invention is not limited to the above embodiments.
  • the volatile organic compound recovery system and the volatile organic compound recovery method according to the above-described embodiment are preferably used, for example, in an oil storage base or a crude oil shipping base.
  • oil stockpiling bases bases that do not have refineries in the vicinity (also referred to as “refinery unconnected bases”) are more preferable.
  • the second crude oil when used, the crude oil stored in the oil storage base or the like can be used.
  • the second crude oil that has absorbed volatile organic compounds only needs to undergo a normal refining process at the refinery where it is originally intended to be transported. Therefore, there is no special cost and it is economical.
  • Example 1 By supplying gas G containing volatile organic compounds and crude oil 1 to the absorption tower 16, the volatile organic compounds were recovered.
  • the volatile organic compound was recovered in the same manner as in Example 1 except that crude oil 2 was used instead of crude oil 1.
  • VOC1 and VOC2 shown in Table 3 were prepared and experiments were conducted.
  • composition ratio Composition ratio
  • the volatile organic compound was recovered by supplying the gas G and Arabian light containing VOC1 shown in Table 3 as a volatile organic compound to the absorption tower 16.
  • the absorption tower 16 temperature is 23 ° C
  • the absorption tower 16 pressure is 9.8 X 10 4 Pa
  • the contact time is 60 seconds
  • the gas-liquid ratio is lOOLZNm 3
  • the Arabian light used was 20 days after the crude oil tank 30 was replaced.
  • a volatile organic compound was recovered in the same manner as in Example 4 except that Latawi was used instead of Arabian light and the temperature in the absorption tower 16 was changed to 34 ° C.
  • the volatile organic compound was recovered in the same manner as in Example 4 except that the time required for returning from the absorption tower 16 to the crude oil tank 30 was 4 minutes.
  • a volatile organic compound was recovered in the same manner as in Example 4 except that gas G containing VOC2 as a volatile organic compound instead of VOC1 was used and the contact time was 30 seconds.
  • the volatile organic compound was recovered in the same manner as in Example 4 except that the Arabian light used was 35 days after the crude oil tank 30 was replaced.
  • the volatile organic compound was recovered in the same manner as in Example 4 except that the time required for returning from the absorption tower 16 to the crude oil tank 30 was 10 minutes.
  • the volatile organic compound was recovered in the same manner as in Example 4 except that the Arabian light used was 90 days after the crude oil tank 30 was replaced.
  • a volatile organic compound was recovered in the same manner as in Example 4 except that the contact time was 5 seconds and the gas-liquid ratio was 5 LZNm 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Treating Waste Gases (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

 第1の原油から発生し揮発性有機化合物を含むガスと、第2の原油とを吸収塔16に供給することにより、ガスに含まれる揮発性有機化合物を第2の原油に吸収させる。

Description

明 細 書
揮発性有機化合物の回収方法及び揮発性有機化合物の回収システム 技術分野
[0001] 本発明は、揮発性有機化合物の回収方法及び揮発性有機化合物の回収システム に関する。
背景技術
[0002] 炭化水素等の揮発性有機化合物 (VOC)を含むガスは、例えば、地上の原油タン クから海上の原油タンカーに原油を積み込む際に原油タンカー力 発生する。原油 タンカーに原油を積み込むと原油タンカー内のガスが押し出される。原油タンカー内 のガスは、原油から発生したガスであり、揮発性有機化合物を含む。揮発性有機化 合物を含むガスは、通常、原油タンカーの「ベント」と呼ばれる煙突力 大気中に放 出される。
[0003] また、揮発性有機化合物を含むガスを焼却処理する焼却装置が知られて!/ヽる。焼 却装置としては、例えばフレアスタック、グランドフレア等が挙げられる(非特許文献 1 参照)。
非特許文献 1 :日本石油株式会社編集、「石油便覧」、 1988年、 p. 462
発明の開示
発明が解決しょうとする課題
[0004] しかしながら、揮発性有機化合物を含むガスを大気中に放出すると、異臭等の問題 が生じるおそれがある。また、揮発性有機化合物を含むガスを全て焼却することは、 資源の有効利用の観点からは好ましくない。さらに、温暖化ガスである二酸ィ匕炭素( CO )、及び大気汚染物質である窒素酸ィ匕物 (NO )が大量に発生するおそれがある
2
[0005] そこで本発明は、揮発性有機化合物が大気中に放出されることを抑制できると共に 資源の有効活用を図ることができる揮発性有機化合物の回収方法及び揮発性有機 化合物の回収システムを提供することを目的とする。
課題を解決するための手段 [0006] 上述の課題を解決するため、本発明の揮発性有機化合物の回収方法は、第 1の原 油から発生し揮発性有機化合物を含むガスと、第 2の原油とを吸収塔に供給すること により、前記ガスに含まれる揮発性有機化合物を前記第 2の原油に吸収させる工程 を含む。
[0007] 本発明の揮発性有機化合物の回収方法によれば、吸収塔において揮発性有機化 合物を第 2の原油に吸収させることができる。このため、揮発性有機化合物が大気中 に放出されることを抑制できると共に資源の有効活用を図ることができる。
[0008] また、上記揮発性有機化合物の回収方法は、前記第 2の原油を、前記吸収塔と、 前記第 2の原油を供給するための原油供給源との間で循環させる工程を更に含むこ とが好ましい。この場合、第 2の原油を有効利用することができる。
[0009] また、前記第 2の原油の API度が 18〜45であることが好ましい。ここで、 API度は、 下記式(1)で表される。 API度が 45を超えると、第 2の原油中の軟質留分が多くなり 過ぎるため、揮発性有機化合物の吸収効率が低下する傾向にある。一方、 API度が 18未満であると、採算性が低下する傾向にある。
API度 = 141. 5/G- 131. 5 (1)
[0010] 式(1)中、 Gは、 15. 6°C (60° F)における石油の比重を示す。「比重」とは、 JIS K 2249に規定される「原油及び石油製品の密度試験方法ならびに密度 ·質量 '容 量換算表」に準拠して測定される比重を意味する。
[0011] 本発明の揮発性有機化合物の回収システムは、第 1の原油から発生し揮発性有機 化合物を含むガスと、第 2の原油とが供給されることにより、前記ガスに含まれる揮発 性有機化合物が前記第 2の原油に吸収される吸収塔を備える。
[0012] 本発明の揮発性有機化合物の回収システムによれば、吸収塔において揮発性有 機化合物を第 2の原油に吸収させることができる。このため、揮発性有機化合物が大 気中に放出されることを抑制できると共に資源の有効活用を図ることができる。
発明の効果
[0013] 本発明によれば、揮発性有機化合物が大気中に放出されることを抑制できると共 に資源の有効活用を図ることができる揮発性有機化合物の回収方法及び揮発性有 機化合物の回収システムが提供される。 図面の簡単な説明
[0014] [図 1]実施形態に係る揮発性有機化合物の回収システムを模式的に示- である。
符号の説明
[0015] 2…原油タンカー、 10· ··揮発性有機化合物の回収システム、 16…吸収塔、 30· ·· 原油タンク (原油供給源)。
発明を実施するための最良の形態
[0016] 以下、添付図面を参照しながら本発明の実施形態を詳細に説明する。なお、図面 の説明において、同一又は同等の要素には同一符号を用い、重複する説明を省略 する。
[0017] 図 1は、実施形態に係る揮発性有機化合物の回収システムを模式的に示すブロッ ク図である。揮発性有機化合物としては、例えば、炭素数 1〜7の炭化水素等が挙げ られる。図 1に示される揮発性有機化合物の回収システム 10 (以下、単に回収システ ム 10という。)は吸収塔 16を備える。吸収塔 16には、第 1の原油から発生し揮発性有 機化合物を含むガス (以下、「ガス G」という。)が例えば原油タンカー 2から供給され る。第 1の原油としては、例えば、アラビアンライト原油、スマトラライト原油、イラ-アン ヘビー原油等が挙げられる。一実施例において、ガス G中の揮発性有機化合物の組 成比は下記の通りである。
CH : 0. 7体積0 /0
4
C H :4. 8体積0 /0
2 6
C H : 26. 9体積0 /0
3 8
C H : 39. 4体積0 /0
4 1(
C H 21. 2体積0 /0
5 1:
C H : 6. 7体積0 /0
6 1'
C H : 0. 3体積0 /0
[0018] また、吸収塔 16には、例えば原油タンク 30 (原油供給源)から第 2の原油が供給さ れる。これにより、吸収塔 16において、ガス Gに含まれる揮発性有機化合物が第 2の 原油に吸収される。第 2の原油としては、例えば、アラビアンライト原油、スマトラライト 原油、イラ-アンヘビー原油等が挙げられる。
[0019] 第 2の原油の API度は、 18〜45であることが好ましぐ 19〜42であることがより好ま しぐ 20〜40であることが特に好ましい。ここで、 API度は、下記式(1)で表される。 A PI度が 45を超えると、原油中の軟質留分が多くなり過ぎるため、揮発性有機化合物 の吸収効率が低下する傾向にある。一方、 API度が 18未満であると、原油の採算性 が低下する傾向にある。
API度 = 141. 5/G- 131. 5 (1)
[0020] 式(1)中、 Gは、 15. 6°C (60° F)における石油の比重を示す。「比重」とは、 JIS K 2249に規定される「原油及び石油製品の密度試験方法ならびに密度 ·質量 '容 量換算表」に準拠して測定される比重を意味する。
[0021] 吸収塔 16内には、例えばガラス製、セラミック製又はステンレス製のラシヒリング等 の充填物 16aが収容されている。ガラス製又はセラミック製のラシヒリングは、耐腐食 性に優れ、ステンレス製のラシヒリングは、破損し難く機械的強度に優れる。充填物 1 6aにおいてガス Gと第 2の原油とが気液接触する。ガス Gと第 2の原油とは、同方向 に進行してもよいし、逆方向に進行してもよい。
[0022] 接触時間は、 10秒〜 10分であることが好ましぐ 15秒〜 8分であることがより好まし ぐ 20秒〜 5分であることが特に好ましい。接触時間が 10秒未満であると、揮発性有 機化合物の吸収効率が低下する傾向にある。一方、接触時間が 10分を越えると、吸 収塔 16の建設費が上昇する傾向にある。
[0023] 気液比(第 2の原油の 15°Cでの体積 Zガス Gの標準状態 (0°C、 latm)での体積) は、 10〜200LZNm3であることが好ましぐ 12〜180LZNm3であることがより好ま しぐ 15〜150LZNm3であることが特に好ましい。気液比が lOLZNm3未満である と、吸収効率が低下する傾向にある。一方、気液比が 200LZNm3を超えると、吸収 塔 16の建設費が上昇する傾向にある。
[0024] 吸収塔 16内の温度は、 40°C以下であることが好ましぐ 38°C以下であることがより 好ましぐ 35°C以下であることが特に好ましい。吸収塔 16内の温度が 40°Cを超える と、第 2の原油の一部がガス化することにより吸収効率が低下する傾向にある。
[0025] 吸収塔 16内の圧力は、 9. 8 X 104Pa(lkgfZcm2)以上であることが好ましぐ 1. 1 X 105Pa以上であることがより好ましぐ 1. 2 X 105Pa以上であることが特に好ましい 。吸収塔 16内の圧力が 9. 8 X 104Pa未満であると、吸収塔 16が減圧になり第 2の原 油の一部がガス化するために吸収効率が低下する傾向にある。
[0026] 回収システム 10では、例えば、原油タンカー 2に原油を積み込む際に、原油タン力 一 2から揮発性有機化合物を含むガス Gが外に押し出される。ガス Gは、例えば、原 油タンカー 2に以前収容されて 、た原油、又は原油タンカー 2に積み込んで 、る原油 等の第 1の原油から発生する。
[0027] 原油タンカー 2は、配管 L2によってローデイングアーム 4に密閉系で接続されてい ることが好ましい。この場合、ガス Gが大気中に漏れ出すことはない。また、ローデイン グアーム 4は、配管 L4によって吸収塔 16に接続されていることが好ましい。
[0028] 一方、原油タンク 30は、配管 L34によって吸収塔 16に接続されていることが好まし い。これにより、原油タンク 30内に備蓄された第 2の原油が配管 L34を通って吸収塔 16に供給される。また、原油タンク 30は、揮発性有機化合物を吸収した第 2の原油 を回収するための配管 L36によって吸収塔 16に接続されていることが好ましい。これ により、第 2の原油を、吸収塔 16と原油タンク 30との間で循環させることができるので 、第 2の原油を有効利用することができる。
[0029] さら〖こ、吸収塔 16には、揮発性有機化合物が吸収された後のガスを放出するため の配管 L 14が接続されて 、ることが好ま 、。
[0030] 本実施形態の回収システム 10によれば、吸収塔 16において揮発性有機化合物を 第 2の原油に吸収させることができる。このため、揮発性有機化合物が大気中に放出 されることを抑制できると共に資源の有効活用を図ることができる。第 2の原油におけ る揮発性有機化合物の含有割合は、第 1の原油における揮発性有機化合物の含有 割合よりも小さいことが好ましい。これにより、揮発性有機化合物の吸収効率が向上 する。
[0031] 本実施形態に係る揮発性有機化合物の回収方法は、上述の回収システム 10を用 いて好適に実施される。この回収方法では、原油タンカー 2から発生したガス Gと、原 油タンク 30から供給される第 2の原油とを吸収塔 16に供給することにより、ガス Gに 含まれる揮発性有機化合物を第 2の原油に吸収させる。吸収塔 16内の圧力を高め ると共に冷却することにより、揮発性有機化合物を効率良く第 2の原油に吸収させる ことができる。なお、吸収塔 16内を常温常圧としてもよい。ガス Gと第 2の原油とは、例 えば以下のようにして吸収塔 16に供給される。
[0032] ガス Gは、配管 L2を通ってローデイングアーム 4に到達する。その後、ガス Gは、配 管 L4を通って吸収塔 16に供給される。配管 L4を通るガス G中における揮発性有機 化合物の濃度は、例えば 22. 7体積%である。この濃度は、例えばガスクロマトグラフ ィーを用いて測定可能である。一方、第 2の原油は、配管 L34を通って吸収塔 16に 供給される。
[0033] 本実施形態に係る揮発性有機化合物の回収方法によれば、吸収塔 16において揮 発性有機化合物を第 2の原油に吸収させることができる。このため、揮発性有機化合 物が大気中に放出されることを抑制できると共に資源の有効活用を図ることができる
[0034] また、吸収塔 16から配管 L14を通って放出されるガスには、例えば、更なる原油に よる吸収、焼却、吸着等の処理が施されることが好ましい。配管 L14を通るガス中に おける揮発性有機化合物の濃度は、例えば 4体積%である。
[0035] また、第 2の原油を、吸収塔 16と原油タンク 30との間で循環させることが好ましい。
この場合、第 2の原油を有効利用することができる。第 2の原油は、原油タンク 30から 配管 L34を通って吸収塔 16に供給された後、吸収塔 16から配管 L36を通って原油 タンク 30に戻る。
[0036] 第 2の原油が吸収塔 16から原油タンク 30に戻るのに要する時間は、 7分以下であ ることが好ましぐ 6分以下であることがより好ましぐ 5分以下であることが特に好まし い。この時間が 7分を超えると、第 2の原油に吸収された揮発性有機化合物が再び気 化する傾向にある。
[0037] また、第 2の原油を循環させる場合に、第 2の原油を使用する日数は、 15〜60日で あることが好ましぐ 17〜55日であることがより好ましぐ 19〜52日であることが特に 好ましい。この日数が 60日を越えると、揮発性有機化合物の吸収効率が低下する傾 向にある。一方、この日数が 15日未満であると、第 2の原油の使用量が増大するため 、コストが上昇する傾向にある。 [0038] 以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施 形態に限定されない。
[0039] 上記実施形態に係る揮発性有機化合物の回収システム及び揮発性有機化合物の 回収方法は、例えば、石油備蓄基地又は原油出荷基地において用いられることが好 ましい。石油備蓄基地の中でも、周辺に製油所がない基地(「製油所非連結型の基 地」ともいう。)がより好ましい。
[0040] 石油備蓄基地又は原油出荷基地において、従来よく用いられている吸収剤(例え ば灯油等)を用いると、製油所から吸収剤を大量に輸送しなければならない。また、 揮発性有機化合物を吸収させた吸収剤は性状がスペックアウトして製品として使用 できないため、吸収剤を再度製油所へタンカーで輸送し、製油所において再び精製 処理する必要がある。よって、輸送費、精製処理費等が発生するため経済性が悪く なる。
[0041] 一方、第 2の原油を用いると、石油備蓄基地等に備蓄されている原油を活用できる 。また、揮発性有機化合物を吸収させた第 2の原油は、本来輸送させる予定の製油 所で通常の精製処理をするだけで済む。よって、特別な費用が発生しないため経済 性に優れる。
実施例
[0042] 以下、実施例に基づいて本発明をより具体的に説明する力 本発明は以下の実施 例に限定されるものではない。
[0043] まず、表 1に示す原油 1〜原油 3を準備して、実験を行った。
[0044] [表 1]
Figure imgf000009_0001
[0045] (実施例 1) 揮発性有機化合物を含むガス Gと原油 1とを吸収塔 16に供給することにより、揮発 性有機化合物を回収した。
[0046] (実施例 2)
原油 1に代えて原油 2を用いたこと以外は実施例 1と同様にして、揮発性有機化合 物を回収した。
[0047] (実施例 3)
原油 1に代えて原油 3を用いたこと以外は実施例 1と同様にして、揮発性有機化合 物を回収した。
[0048] (実験結果)
実施例 1〜3の実験結果を表 2に示す。
[0049] [表 2]
Figure imgf000010_0001
[0050] 次に、表 3に示す VOC1及び VOC2を準備して、実験を行った。
[0051] [表 3] VOC 1 VOC2
組成比 組成比
[体積%] [体積%]
C H 4 0.1 0.9
C 2 H 6 0.3 1 .5
C 3 H 8 3.6 8.9
C 4 H 1 o 28.4 30.2
C 5 H 1 2 54.2 45.9
C 6 H 1 4 1 2.4 1 1 .6
C 7 H 1 6 1 .0 1 .0
[0052] (実施例 4)
表 3に示す VOC1を揮発性有機化合物として含むガス Gとアラビアンライトとを吸収 塔 16に供給することにより、揮発性有機化合物を回収した。吸収塔 16内の温度を 2 3°C、吸収塔 16内の圧力を 9. 8 X 104Pa、接触時間を 60秒、気液比を lOOLZNm3 、吸収塔 16から原油タンク 30に戻るのに要する時間を 2分とした。アラビアンライトと しては、原油タンク 30を置換してから 20日経過したものを用いた。
[0053] (実施例 5)
アラビアンライトに代えてラタウイ一を用いて、吸収塔 16内の温度を 34°Cとしたこと 以外は実施例 4と同様にして、揮発性有機化合物を回収した。
[0054] (実施例 6)
吸収塔 16から原油タンク 30に戻るのに要する時間を 4分としたこと以外は実施例 4 と同様にして、揮発性有機化合物を回収した。
[0055] (実施例 7)
VOC1に代えて VOC2を揮発性有機化合物として含むガス Gを用いて、接触時間 を 30秒としたこと以外は実施例 4と同様にして、揮発性有機化合物を回収した。
[0056] (実施例 8)
アラビアンライトとして、原油タンク 30を置換してから 35日経過したものを用いたこと 以外は実施例 4と同様にして、揮発性有機化合物を回収した。
[0057] (実施例 9)
アラビアンライトに代えてノースウェストコンデンセート (API度: 60. 7)を用いたこと 以外は実施例 4と同様にして、揮発性有機化合物を回収した。
[0058] (実施例 10)
吸収塔 16から原油タンク 30に戻るのに要する時間を 10分としたこと以外は実施例 4と同様にして、揮発性有機化合物を回収した。
[0059] (実施例 11)
アラビアンライトとして、原油タンク 30を置換してから 90日経過したものを用いたこと 以外は実施例 4と同様にして、揮発性有機化合物を回収した。
[0060] (実施例 12)
接触時間を 5秒、気液比を 5LZNm3としたこと以外は実施例 4と同様にして、揮発 性有機化合物を回収した。
[0061] (実験結果)
実施例 4〜8の実験結果を表 4に示す。
[0062] [表 4]
実施例 実施例 実施例 実施例 実施例
4 5 6 7 8 吸収塔 16入口の VOC濃度
36.5 36.5 36.5 36.5 36.5
[体積%]
吸収塔 16内の温度
23 34 23 23 23
[°C]
吸収塔 16内の圧力
9.8x104 9.8x104 9.8x104 9.8x104 9.8x104 [Pa]
接触時間
60 60 60 30 60 [秒]
s液比
100 100 100 70 100 [L/Nm3]
吸収塔 16出口の VOC濃度
21.1 23.4 24.3 25.0 24.8
[体積%]
吸収塔 16から原油タンク 30に
戻るのに要する時間 2 2 4 2 2
[分]
原油タンク 30を置換してから
原油を使用した日数 20 20 20 20 35 [曰 ]
VOC回収率
42.2 36.0 33.3 31.5 32.0
[%]
VOC回収量
9850 8390 7760 7340 7460
[トン]
[0063] 実施例 9〜 12の実験結果を表 5に示す。
[0064] [表 5]
実施例 実施例 実施例 実施例
9 10 11 12 吸収塔 16入口の V O C濃度
36.5 36.5 36.5 36.5 [体積。 /o]
吸収塔 16内の温度
23 23 34 23
[°c]
吸収塔 16内の圧力
9.8x104 9.8x104 9.8x104 9.8x104 [Pa]
接触時間
60 60 60 5 [秒]
5 ;夜比
100 100 100 5
[L/Nm3]
吸収塔 16出口の VOC濃度
36.1 28.3 30.1 33.7 [体積。 /0]
吸収塔 16から原油タンク 30に
戻るのに要する時間 2 10 2 2
[分]
原油タンク 30を置換してから
原油を使用した日数 20 20 90 20
[曰]
VOC回収率
1.2 22.5 17.6 7.8
[%]
VOC回収量
280 5240 4100 1820
[トン]

Claims

請求の範囲
[1] 第 1の原油から発生し揮発性有機化合物を含むガスと、第 2の原油とを吸収塔に供 給することにより、前記ガスに含まれる揮発性有機化合物を前記第 2の原油に吸収さ せる工程を含む、揮発性有機化合物の回収方法。
[2] 前記第 2の原油を、前記吸収塔と、前記第 2の原油を供給するための原油供給源と の間で循環させる工程を更に含む、請求項 1に記載の揮発性有機化合物の回収方 法。
[3] 前記第 2の原油の API度が 18〜45である、請求項 1又は 2に記載の揮発性有機化 合物の回収方法。
[4] 第 1の原油から発生し揮発性有機化合物を含むガスと、第 2の原油とが供給される ことにより、前記ガスに含まれる揮発性有機化合物が前記第 2の原油に吸収される吸 収塔を備える、揮発性有機化合物の回収システム。
PCT/JP2006/316492 2005-09-30 2006-08-23 揮発性有機化合物の回収方法及び揮発性有機化合物の回収システム WO2007039993A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/992,732 US7947169B2 (en) 2005-09-30 2006-08-23 Method of recovering volatile organic compound and volatile organic compound recovery system
NO20082021A NO347234B1 (no) 2005-09-30 2006-08-23 Fremgangsmåte for gjenvinning av flyktige organiske forbindelser og system for gjenvinning av flyktige organiske forbindelser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005288353A JP5364229B2 (ja) 2005-09-30 2005-09-30 揮発性有機化合物の回収方法及び揮発性有機化合物の回収システム
JP2005-288353 2005-09-30

Publications (1)

Publication Number Publication Date
WO2007039993A1 true WO2007039993A1 (ja) 2007-04-12

Family

ID=37906037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316492 WO2007039993A1 (ja) 2005-09-30 2006-08-23 揮発性有機化合物の回収方法及び揮発性有機化合物の回収システム

Country Status (4)

Country Link
US (1) US7947169B2 (ja)
JP (1) JP5364229B2 (ja)
NO (1) NO347234B1 (ja)
WO (1) WO2007039993A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175594A (ja) * 2005-12-27 2007-07-12 Ishikawajima Plant Construction Co Ltd 大気放出ガスの回収と臭気成分の除去設備
JP4947594B2 (ja) * 2007-09-06 2012-06-06 Jx日鉱日石エネルギー株式会社 桟橋設備、及び炭化水素回収システム
JP5221087B2 (ja) * 2007-09-11 2013-06-26 Jx日鉱日石エネルギー株式会社 炭化水素回収システム及びそれに用いる脱気装置、並びに炭化水素回収方法。
NL2004220C2 (en) * 2010-02-10 2011-08-15 Stichting Energie Liquid based scavenging of aerosols.
KR101148070B1 (ko) 2010-06-17 2012-05-24 삼성중공업 주식회사 Voc 회수 방법, voc 회수 시스템 및 이를 포함하는 선박
JP5901671B2 (ja) * 2014-02-25 2016-04-13 三菱重工業株式会社 排ガス再循環システム及びそれを備えた船用ボイラ、並びに排ガス再循環方法
JP5780374B1 (ja) * 2015-02-27 2015-09-16 Jfeエンジニアリング株式会社 原油組成推定方法、吸収液化設備の吸収プロセスシミュレーション方法、および、回収設備のプロセスシミュレーション方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090606A (ja) * 1973-12-17 1975-07-19

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1464050A (en) * 1973-11-30 1977-02-09 Idemitsu Kosan Co Process for removing nitrogen oxides from combustion waste gas
NO941704L (no) * 1994-05-06 1995-11-07 Kvaerner Process Systems As Fjerning og gjenvinning av flyktige organiske bestanddeler, f.eks. ved lasting av råolje

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5090606A (ja) * 1973-12-17 1975-07-19

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUGLEN ET AL.: "Reducing VOC Emission from Large Crude Carriers", PROC. ANNU. OFFSHORE TECHNOL. CONF., vol. 3, 2001, pages 563 - 570, XP003011512 *
MARUZEN CO., LTD.: "Sekiyu Jiten", 1989, XP003011513 *

Also Published As

Publication number Publication date
JP5364229B2 (ja) 2013-12-11
NO20082021L (no) 2008-06-30
US20090294331A1 (en) 2009-12-03
JP2007099817A (ja) 2007-04-19
US7947169B2 (en) 2011-05-24
NO347234B1 (no) 2023-07-17

Similar Documents

Publication Publication Date Title
WO2007039993A1 (ja) 揮発性有機化合物の回収方法及び揮発性有機化合物の回収システム
JP7064041B2 (ja) 都市固形廃棄物(msw)原料に由来する高生物起源濃度のフィッシャー-トロプシュ液体の製造プロセス
Porter et al. The range and level of impurities in CO2 streams from different carbon capture sources
US20140252270A1 (en) Particle-based systems for removal of pollutants from gases and liquids
US11731078B2 (en) SOx capture using carbonate absorbent
US9328919B2 (en) Method and system for separating and destroying sour and acid gas
Bahadori Pollution control in oil, gas and chemical plants
JP5099326B2 (ja) 揮発性有機化合物の排出、回収、処理方法、タンクコンテナ内の洗浄処理方法及びタンクコンテナ内の洗浄処理装置表示具保持装置
KR20110073468A (ko) 연소 가스 스트림으로부터 수은 배출물을 감소시키기 위한 흡착제 조성물 및 방법
Umar et al. An outlook on tar abatement, carbon capture and its utilization for a clean gasification process
CN108455609B (zh) 用于生产二氧化碳的系统和方法
Bridgwater et al. The nature and control of solid, liquid and gaseous emissions from the thermochemical processing of biomass
US7052661B1 (en) Method for abatement of mercury emissions from combustion gases
JP2010229248A (ja) 消化ガスの脱酸素方法及び装置
JP5221087B2 (ja) 炭化水素回収システム及びそれに用いる脱気装置、並びに炭化水素回収方法。
EP3944890B1 (fr) Procédé et système de prétraitement d'effluent gazeux pour le captage de co2 en post combustion
EP1496101B1 (en) Method for manufacturing gasified fuel and method and apparatus for heat recovery in manufacturing gasified fuel
JP2009061402A (ja) 桟橋設備、及び炭化水素回収システム
US10442996B1 (en) Production and use of ultra-clean carbon compounds and uniform heat from carbon-based feedstocks
RU2533133C2 (ru) Новый способ рекуперации co2, выделяющегося дымовыми газами, образующимися в зоне регенерации установки каталитического крекинга
Wu et al. Effects of CaO‐K2CO3 on combustion behavior and emission properties of SO2 and NOX during coal sludge combustion
CN106582598B (zh) 用于h2s的催化氧化的含有碱性基团的碳材料及其制备方法
JPS61249600A (ja) 油貯蔵タンクスラツジの処理方法
US20230357031A1 (en) Production of green ammonia from thermolyzer gas
Lefebvre et al. SO x capture using carbonate absorbent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782945

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11992732

Country of ref document: US