WO2007034897A1 - Gテイル配列の長さ測定方法及びそれに用いるキット - Google Patents

Gテイル配列の長さ測定方法及びそれに用いるキット Download PDF

Info

Publication number
WO2007034897A1
WO2007034897A1 PCT/JP2006/318783 JP2006318783W WO2007034897A1 WO 2007034897 A1 WO2007034897 A1 WO 2007034897A1 JP 2006318783 W JP2006318783 W JP 2006318783W WO 2007034897 A1 WO2007034897 A1 WO 2007034897A1
Authority
WO
WIPO (PCT)
Prior art keywords
til
sequence
probe
length
dna
Prior art date
Application number
PCT/JP2006/318783
Other languages
English (en)
French (fr)
Inventor
Hidetoshi Tahara
Toshinori Ide
Original Assignee
Hiroshima University
Fujirebio Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University, Fujirebio Inc. filed Critical Hiroshima University
Priority to US12/067,710 priority Critical patent/US20090298062A1/en
Priority to EP06798222A priority patent/EP1935989B1/en
Priority to JP2007536561A priority patent/JP5514401B2/ja
Publication of WO2007034897A1 publication Critical patent/WO2007034897A1/ja
Priority to US13/361,511 priority patent/US9932627B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6841In situ hybridisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism

Definitions

  • the present invention relates to a method of measuring the length of G-til sequence and a kit used for the method.
  • telomere The end of human chromosomal DNA is a double-stranded DNA consisting of a repeating sequence of 5,-TTAGGG-3, which is called telomere.
  • telomere The end of human chromosomal DNA is a double-stranded DNA consisting of a repeating sequence of 5,-TTAGGG-3, which is called telomere.
  • G-tail hereinafter simply referred to as G-til
  • the G-til is normally in a protected state by forming a loop except when telomerase, which is a telomerase, is accessed or when DNA is replicated (see, for example, Non-Patent Document 1).
  • telomeres that make up the majority of the telomeres are shortened every time cell division is repeated, and the force known to be involved in cell senescence Even if cell division is repeated, the G-til is constant at 75 to 300 bases. The length is maintained. However, even after stopping the cell division by shortening the telomerase double-stranded portion after many cell divisions, that is, G-til usually remains at a fixed length of 75 to 300 bases even when reaching the limited division life. Reported contradictory results have been reported: G-tile shortening with finite split life. This seems to be due to the fact that there was no way to accurately and quantitatively measure the length of G-tile since G-tile is extremely short compared to telomeres.
  • telomerase-binding protein that binds to telomerase
  • TRFl Telomere repeat binding factor
  • TRF2 tumor necrosis factor 2
  • TRF1 and TRF2 have been required to be required for loop formation of G-til.
  • Signals sensitive to DNA damage by various DNA damaging agents and radiation show G-til shortening even if telomer shortening is not observed. This is also apparent from the fact that proteins required for DNA repair (such as ATM, NBS1 and MRN) are being recruited.
  • ATM is the causative gene for vasodilation disease
  • NBS1 is the causative gene for Naimigen syndrome, a rare autosomal recessive genetic disease characterized by high oncogenicity, immunodeficiency, chromosomal instability, and radiosensitivity.
  • Recruiting these to G-Till indicates the relationship with each of the above-mentioned diseases.
  • inhibiting the function of TRF2, which functions as a glue for G-til's loop induces ATM-dependent apoptosis (see, for example, non-patent document 3).
  • anti-cancer agents that specifically act on G-til have also been able to cause shortening of G-til without shortening telomeres, leading to the death of cancer cells (see, for example, Non-Patent Document 4).
  • the tumor suppressor gene product p53 which is known to be mutated in many cancers, is also capable of binding to G-til (see, for example, Non-patent Document 5), and is also a disease associated with cancer and aging. It is clear that G til change is a signal.
  • T-OLA Telomeric-oligonucleotide-Ligation-Axsay
  • PENT Primary's Extension-Z-Nick Translation
  • Overhang 'protection' known See, for example, Non Patent Literature 6 and Non Patent Literature 7).
  • HPA hybridisation 'protection assay
  • Patent Document 1 and Non-patent Document 8 must use chromosomal DNA after denaturation.
  • the length of G-til which is only about 100 times smaller than the total length of the telomer, is within the range of operation error and measurement error and can not be measured.
  • the signal strength of G-til in this method is weak to the noise level and can not be measured quantitatively and accurately, and it is discriminated whether it is a signal specific to G-til. It was also possible to do something.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-95586
  • Non-Patent Document 1 Griffith 'Jay' Dee, Comm ⁇ El, Rosenfield 'Es, Stancell' Ar 'Emm, Bi An' Em, Mos' E H and De 'Lanje' (Griffith JD, Comeau L, Rosenneld S , btansel RM, Bianchi A, Moss H and ae Lange T.), Cell: 97 (1999), 503-14.
  • Non-patent literature 2 van 'Steelsel by, Smogorzeus force ⁇ A and de Lange I., van Steensel B, bmogorzewska A and de Lange Tj, 92 (1998), Cell: 401-13.
  • Non-Patent Document 3 Karl Seda 'Jei, Broccoli' D, Dai 'Y, Hardy' S and 7 ' ⁇ Hunnne Eye (Karlseder J, Broccoli D, Dai Y, Hardy S and de Lange T.), Science: 283 (1999), 1321-5.
  • Non-patent literature 4 Gomez 'Die, Paterski' earl, Remartereu 'tea, Shin-ya' Kay, Mergney Diei 'L and Liu' Diei 'F. (Gomez D, Paterski R, Lemartereu T, Shin-Ya K , Mergny JL and Riou JF.), J Biol Chem: 279 (200 4), 41487-94.
  • Non-Patent Document 5 Stancel R. Ehm, Subrama-Ann Dee and Griffith J. 'D. (Stansel RM, Subramanian D and Griffith JD.), J Biol Chem: 277 (2002), 11625-8.
  • Non Patent Literature 6 Chey, W., Shy, J. W., and Light, W. 1 (Chai, W., Shay, JW & Wright, WE) Mol Cell Biol: 25, 2158-216 8 ( 2005).
  • Non-patent literature 7 S. D. et al., And Reuse, L. G. and T. Tresbol, T. Ho (Saldanha, SN, Andrews, LG & Tollefsbol, TO) Eur J Bioc hem: 270, 389 -403 (2003).
  • Non-Patent Document 8 Nakamura, Y. et al. Clin Chem: 45, 1718-17 24 (1999).
  • the object of the present invention is to use a complex processing operation and do not denature it !, and as it is, the length of the single-stranded overhang (hereinafter referred to simply as G-til) sequence of telomere is specific and sensitive And providing a method and a kit using the same.
  • G-til single-stranded overhang
  • the above-mentioned chemiluminescence is specific to G-tilt by exonuclease treatment, and further the luminescence intensity ratio of the above-mentioned exonuclease treatment and untreated is signal Z noise ("S /" As a ratio (abbreviated as “N”), it has been found that measurement conditions having a large S / N ratio can be detected and measured with high sensitivity. Furthermore, it has also been found that sample concentration conditions can be defined which result in large S / N ratios. The present inventors have completed the present invention based on these findings. That is, the present invention
  • sample is a cell pellet of blood, cultured cells, fresh tissue, frozen storage tissue or formalin fixed tissue.
  • the item [1] or [2] is characterized in that the chemiluminescence is based on a hybrid of the labeled DNA probe and the G-til sequence using an exonuclease. Described method,
  • kits according to the above item [7], which further contains exonuclease as a confirmation reagent, [9] [9] the label is ataridinium ester, luminol, isoluminol, pyrogallol, protohemin, aminobutyl The kit according to the above item [7] or [8], which is based on cetyl-n-isoluminol or aminohexylethenyl-n-ethyl-isoluminol,
  • FIG. 1 is a diagram showing an outline of a G-til measurement method of the present invention.
  • FIG. 2 shows the results of a dose response test of an AE-labeled G-til HPA probe of 29 bases and a single-stranded synthetic G-til 84 bases.
  • FIG. 3 is a diagram showing the results of a specificity confirmation test.
  • FIG. 4 is a graph showing the amount of chemiluminescence based on AE in each combination.
  • FIG. 5 is a graph of genomic DNA pre-treated with Exol before attaching G-til and a graph not pretreated with Exol.
  • FIG. 6-1 is a diagram showing the time-dependent change in the amount of chemiluminescent light of T7 exonuclease treatment of non-denatured DNA.
  • FIG. 6-2 is a graph obtained by converting the rlu value into the average length of G-til using the graph of FIG. 6-1 as the calibration curve.
  • FIG. 7 is a view showing the results of the sensitivity limit (especially the minimum detectable length of G-tilt) confirmation test of the measurement method of the present invention.
  • FIG. 8 is a graph created by plotting chemiluminescence in arbitrary units.
  • FIG. 9 shows the results of direct application of the measurement method of the present invention to a SiHa cancer cell line cell pellet.
  • FIG. 10 shows the result of direct application of the measurement method of the present invention to each cell pellet.
  • FIG. 10 b shows the results of applying the measurement method of the present invention after isolating non-denatured genomic DNA from each cell pellet for comparison and confirmation.
  • FIG. 11a is a view showing the result of measuring G till by the measuring method of the present invention.
  • FIG. 11 is a view showing the result of measuring the total length of telomeres by the measuring method described in JP-A-2001-95586 as a comparative example.
  • FIG. 12 shows the linearity of measurement of G-til length using mouse genomic DNA.
  • Fig. 13 shows G-til lengths in mouse tissues.
  • Fig. 14 1 is a quantitative test of mouse genomic DNA using internal standard probe Ala. It is a figure which shows the linearity in.
  • FIG. 142 shows the linearity in a quantitative test of mouse genomic DNA using internal standard probe Alb.
  • FIG. 14 is a diagram showing the linearity in the quantitative test of mouse genomic DNA using internal standard probe A2a.
  • FIG. 14-4 is a diagram showing the linearity in a quantitative test of mouse genomic DNA using the internal standard probe A2b.
  • FIG. 145 shows the linearity in the test for quantification of mouse genomic DNA using the internal standard probe B2_lb.
  • FIG. 146 shows the linearity in the test for quantification of mouse genomic DNA using the internal standard probe B2_2a.
  • FIG. 147 shows the linearity in the test for quantification of mouse genomic DNA using the internal standard probe B2_2b.
  • FIG. 15 is a diagram showing the measurement of responsiveness between AH-labeled G-til HPA probe and single-stranded synthetic G-til in a 96-well plate.
  • the method for measuring the length of the G-til sequence uses a hybridization detection assay (HPA) method to detect a plurality of labeled probes that are complementary to the Tomerase repetitive sequence constituting the G-til.
  • the length of the G-til sequence is measured using the amount of chemiluminescence of the non-radioactive labeled substance bound to the probe as an indicator.
  • HPA hybridization detection assay
  • the HPA method is a method that uses a non-radioactive labeled substance-labeled oligomer as a probe to detect light emission from the non-radioactive labeled substance when the probe is hybridized to DNA or RNA to be detected. is there.
  • the characteristic is that instead of performing physical separation operations such as washing performed to distinguish between hybridized probes and liberated without hybridizing probes, the labeled substance of the liberated probes is selectively selected. Hydrolyses to inactivate the labeled substance.
  • the target G-til is detected in a short time without using a complicated operation such as amplifying the target G-til by PCR or the like, and the chemiluminescence amount of the labeling substance is detected.
  • the length of the G-til sequence is measured using the
  • a cell pellet containing non-denatured chromosomal DNA can be used as a sample.
  • the above-mentioned cell pellet as a sample refers to a pellet in which cells or tissues are centrifuged (for example, at 1,000 G for 5 minutes) and the recovered cells themselves also become powerful.
  • PBS (-) cold phosphate buffered saline
  • the suspension may be resuspended in a hybridization buffer, which will be described later, and the suspension may be mixed by pipetting and sheared with a 26 G syringe.
  • the number of cells in the specimen is preferably the 1 ⁇ 10 5 ⁇ 3.5 ⁇ 10 6 instrument 3xl0 5 ⁇ 7xl0 5 Gayori I like it.
  • non-denatured chromosomal DNA amount is particularly preferably 0.5 g ⁇ 40 g is preferably tool 1 / ⁇ 20 / ⁇ more preferably tool 3 / ⁇ ⁇ ⁇ 7 / ⁇ ⁇ .
  • the type of cell sample is not particularly limited as long as it contains non-denatured chromosomal DNA.
  • Examples include blood, cultured cells, and various tissues.
  • tissue can be arbitrarily selected regardless of the origin of the organ.
  • tissues of organs such as the cranial nervous system, muscle's skeletal system, digestive system, respiratory system, hematopoietic system, lymphatic system and the like.
  • these tissues may be used in any state such as fresh tissue (immediately obtained by biopsy), cryopreserved tissue or formalin fixed tissue.
  • the measurement method of the present invention is useful for comparative evaluation of the G-til length of blood cells or tissue cells between different tissues in a single individual only by comparative evaluation of G-til length among individuals.
  • G cells such as liver cells, cardiomyocytes, and brain neurons in a single individual
  • file length There is a comparative evaluation of file length.
  • the above-mentioned tissues are not limited to normal ones, and tissues of various diseases (cancer, liver diseases, etc.) can be used.
  • cancer tissues such as colon cancer and liver cancer
  • cancer cells such as cervical cancer, colon cancer, liver cancer, cervical cancer, chronic myelogenous leukemia, glioblastoma, breast cancer, fibrosarcoma
  • cancer origin cancer tissues such as colon cancer and liver cancer
  • cancer cells such as cervical cancer, colon cancer, liver cancer, cervical cancer, chronic myelogenous leukemia, glioblastoma, breast cancer, fibrosarcoma
  • examples thereof include SiHa, K562, MKN1, HeLa, U937, U373MG, T98 G, A172, MCF-7, HT-1080, LoVo, WiDr, SW857, VA-4 and the like.
  • the cell pellet can be used as it is as described above, it is not necessary to purify and use non-denatured chromosomal DNA in cultured cells or human tissue, but purified non-denatured DNA Chromosomal DNA may be used, and it may be used after being dissolved in the hybridization buffer described later. Purification of non-denatured chromosomal DNA may be any method (eg, Tahara 'Hidetoshi et al. "Oncogene” (Tahara H. et al, Oncogene), 15 (1997), 1911-1920).
  • a hybridization buffer that dissolves a sample, a probe described later, etc. is a buffer that dissolves cell membranes, nuclear membranes, etc. from the viewpoint of using cells themselves as a sample.
  • a lithium succinate buffer containing lauryl sulfate, lithium chloride, EDTA and EGTA can be mentioned.
  • the labeled probe used in the present invention is an oligonucleotide having a base sequence represented by (CCCTAA) ( ⁇ represents an integer of 1 to 10), and is an oligo labeled with at least one non-radioactive labeling substance. It is a nucleotide. is more preferably 3 to 5 in which the force 2 to 8 selected as appropriate according to the target chromosomal DNA is preferred.
  • the oligonucleotide used for the probe can be produced by any DNA production method such as the phosphoramidite method using a commercially available DNA synthesizer. At the time of chemical synthesis, it is preferable to introduce an amino linker for labeling with a non-radioactive labeling substance.
  • the phosphoamidite method for example, the following linker one-introducing reagents 1 to 3 can be mentioned as a reagent for introducing an amino linker.
  • the oligonucleotide into which the above amino linker is introduced can be produced, for example, according to the method described in Japanese Patent No. 3483829.
  • the ataridicum 'ester (hereinafter referred to simply as ⁇ ) is a compound represented by the following compound 4-1 (2-succinimidyl carboxy-lethyl) having a phenyl ester group: Ru 10 Methyl ataridi-um 9 Carboxylate.
  • the above AE can be labeled with an oligonucleotide having the above amino linker introduced by the reaction of the amino group of the amino linker introduced as described above with the N-hydroxysuccinimide ester of the AE,
  • the labeled HPA probe used in the present invention is constructed.
  • the labeling method by AE and the operation procedure can be carried out, for example, according to the method described in Japanese Patent No. 3483829.
  • the labeled position of AE or the like can be freely set by the position of the amino linker introduced at the time of DNA synthesis (Japanese Patent Application Laid-Open No. 2-502283).
  • the labeled HPA probe can be obtained, for example, from Gen'Probe Inc., and an AE-labeled G-Tail HPA probe (5 to CCCTAACCCTAACC * CTAACCCTAACCCTA-3 ', SEQ ID NO: 1, 29 bases) can be mentioned as an example. . * Is the AE labeling position, and the amino group 1 amino group of the amino group introduced into the oligonucleotide constructed using the linker introduction reagent 1, 2 or 3 as described above is reacted with N-hydroxysuccinimide ester of SAE It is labeled by.
  • the non-radioactive labeled substance in addition to the above-mentioned AE, luminol (Luminol), isolumino Mononole (Isoluminol), Pyrogallol (Pyrogallol), Protohaemin (Protohaemin), Aminobutyrothioleno- n-Isonoleminonole (Aminobutylethyhi-isoluminol) or Gaminohexanolechinole-n-Echinole-Isonoreminonole Can be mentioned.
  • the non-radioactive labeled substance has a substituent capable of chemically binding to the amino group of aminolinker introduced into the oligonucleotide. Such substituents include, for example, N-hydroxysuccinimide ester groups.
  • X 1 represents a nitrogen atom, a phosphorus atom, a boron atom or an arsenic atom
  • R 1 represents an alkoxy or aryloxy, or a substituted or unsubstituted alkyl, aryl or aryl
  • R 2 represents a hydrogen atom, alkoxy or alkoxy, or substituted or unsubstituted alkyl, alkenyl or aryl.
  • X 2 represents an oxygen atom or a sulfur atom
  • R 2 is the same as the above.
  • Y represents an oxygen atom, a sulfur atom or NH
  • R 3 represents a hydrogen atom, a hydroxyl group containing a hydroxyl group, a thiol, a carboxylic acid, a halogen, a nitro, an alkoxy or an alkoxy, or a substituted or unsubstituted acetyl, an alkyl, an alkyl or an aryl
  • R 4 represents a substituted or unsubstituted Represents alkyl, alkyl or aryl
  • R 3 or At least one of R 4 contains a reactive site capable of chemically binding to the aminolinker. It is also possible to use an atarginine derivative shown by].
  • the alkyl includes those having 1 to 20 carbon atoms, preferably 1 to 5 carbon atoms, such as methyl, ethyl, propyl, butyl and amyl.
  • the alkenyl includes those having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, such as vinyl and aryl. Examples of aryl include phenyl, tolyl, naphthyl and xylyl. Examples of the alkoxy include those having 1 to 10 carbon atoms, preferably 1 to 5 carbon atoms, such as methoxy and ethoxy. Examples of aryloxy include phenoxy and naphthoxy.
  • Fig. 1 shows the outline of the G-til measurement method of the present invention, and the reference numerals in the figure are as follows: 1 is G-til, 2 is telomerase G-chain, 3 is telomerase C-chain, and 4 is double-strand The telomer moiety, 5 is a label (HPA) probe, 6 is an AE, 7 is a nonhybridized probe, and 8 is a hydrolyzed and inactivated probe.
  • G til 1 is located at the end of the G chain of telomere double-stranded portion 4 consisting of telomerase G chain 2 and C chain 3 at the end of chromosomal DNA.
  • the AE-labeled probe 5 used in the present invention is labeled with AE6 and has a sequence complementary to the repeat sequence in G-til, the number of said probes corresponding to the number of repetitions of the repeat sequence is shown in FIG. Hybridize with medium (a) hybridisation.
  • the hybridization of the AE-labeled probe 5 with G-til 1 is performed by adding a hybridization solution containing a probe labeled with AE6 to the cell pellet, for example, at 60 to 65 ° C. It can be carried out by incubating (incubation) for 5 to 30 minutes.
  • the alkali and peroxide hydrogen peroxide can be used.
  • AE can emit chemiluminescence
  • G-til 1 can be measured by quantifying the amount of light emission as shown in FIG. 1 (c).
  • hydrolysis (b) can be carried out by adding a hydrolysis reagent and further incubating at 60 ° C. for 5 to 10 minutes in order to remove chemiluminescence based on unreacted probe.
  • Measurement of the amount of chemiluminescence of AE as shown in FIG. 1 (c) after incubation can be performed using a luminometer (eg, Leader 1 (trade name, manufactured by Gen'Probe)).
  • a 96-well luminometer is preferred for use for no-throughput screening using the measurement method of the present invention.
  • the DNA sample is treated with exonuclease I (ExoI) so as to selectively remove single-stranded nucleotides in the 3 ⁇ 5 ′ direction to selectively remove Gtil sequences. It is preferable to confirm that the chemiluminescence is G-til specific.
  • the ratio of the signal of the sample treated with Exol! /, Or the signal of the sample to the signal of Exol treated sample can be calculated as the SZN ratio. This allows the G-til length to be measured specifically regardless of any contaminants present in the sample.
  • the chemiluminescence is G-til specific by treating with T7 exonuclease, removing telomere C chain 3 in the 5 '-> 3' direction, and increasing G til of telomer G chain 2. Can be recognized.
  • the sequence (5′-TTAGGG-3,) which is a basic unit of the repeat sequence of G til is repeated 24 times, and as a probe (5 ′ -Assuming that the sequence of CCCTAA-3, 4) is repeated four times [5'_ (CCCTAA) -3 '],
  • Probes can be hybridized six in theory. Therefore, the labeling power S for six probes will be detected. If the strength of the label detected when the above probe is hybridized to a DNA standard product having a length of length is previously determined, and a calibration curve is prepared, the length of the G-til sequence is determined. It can be converted.
  • Atalidine derivatives other than AE and other non-radioactive labeling substances eg, luminol, isoluminol, pyrogallol, protohemin, aminobutylethyl-n-isolymolol, aminohydrylethynyl-n-ethy1
  • the amount of chemiluminescence can be similarly quantified to measure the length of G-tile. That is, an appropriate amount of a probe labeled with the atarginine derivative or other non-radioactive labeled substance is added to the cell pellet in an appropriate amount. After completion of the reaction, the reaction is subjected to treatment such as hydrolysis, and then the amount of chemiluminescence is quantified.
  • the kit of the present invention comprises a labeled DNA probe having a sequence (for example, (CCCTAA) (n represents an integer of 1 to 10)) complementary to a non-denatured telomerase repeat sequence, a solution for cell lysis, and hydrolysis. And at least one reagent.
  • a labeled DNA probe having a sequence (for example, (CCCTAA) (n represents an integer of 1 to 10)) complementary to a non-denatured telomerase repeat sequence, a solution for cell lysis, and hydrolysis.
  • a labeled DNA probe include those described above as the labeled HPA probe, and specific examples and preferred ranges thereof are also the same as those described above.
  • Examples of the cell lysis solution include lauryl sulfate, lithium chloride, a conjugate containing EDTA and EGTA, and a lithium citrate buffer.
  • the hydrolyzing reagent includes sodium tetraborate buffer containing Triton X-100.
  • the kit of the present invention preferably contains a standard (for G-til sequence of preferably 20 bases or more, more preferably 30 to 100 bases) for preparing a G-tilt calibration curve.
  • Standard product for standardization of chromosomal DNA amount standardized calibration curve (preferably synthetic DNA of Alu sequence of 20 bases or more, more preferably 30 to 100 bases) and Alu'HPA probe for normalization of chromosomal DNA amount (for example, 5'- More preferred to include TGTAATCCCA * GCACTTTGGGAGGC-3 '; position of * AE tag, SEQ ID NO: 2).
  • exonuclease eg, ExoI, T7 exonuclease, etc., preferably Exol
  • a positive control DNA for example, purified chromosomal DNA of any cancer cell etc. should be included.
  • the Alu sequence has a base sequence represented by 5'- GCCTCCCAAAGTGCTGGGATTACA-3 '(SEQ ID NO: 3), and the amount per chromosomal DNA is known to be constant in cultured cells and tissues. (JD Watson, Molecular Biology of Genes, p668). Therefore, when G til is measured, Alu sequence amount is also measured as an internal standard for each sample, and the ratio of G til sequence to Alu sequence is determined to obtain G til sequence amount per quantitative amount of chromosomal DNA. It can be asked. This makes it possible to calculate the length of the average G-til arrangement.
  • the method of the present invention since no radioactive substance is used, a special disposal facility is not required, and electrophoreses for separating a reaction product and a radioactive substance which has not been incorporated as in the prior art are also unnecessary.
  • G-til can be measured specifically, quantitatively and with high sensitivity in a short length of up to 20 nucleotides in a short time (within 40 minutes) using a single container (eg, test tube). .
  • the measurement results have little variation, the G-tilt length can be measured with good reproducibility, and a large number of samples can be handled easily.
  • the measurement method of the present invention can directly measure not only non-denatured chromosomal DNA but also cells, and can be applied to high throughput 'screening etc. of analysis of a large amount of sample.
  • genomic DNA needs to be collected in an intact (uncleaved) state, it is necessary to use G tilde in cultured cells, fresh tissues, etc., as well as in long-term preserved tissues (eg, formalin-fixed). It becomes possible to measure the length.
  • the method of the present invention provides highly sensitive detection results as compared to conventional detection methods. That is, the sensitivity is about 1000 times that of the Southern method for purified DNA, and several ng of genomic DNA can be measured.
  • G-til is short and specific in length to 20 nucleotides in only 3 steps without denaturing telomeres and without using complicated processing operations. It can measure quantitatively and at high sensitivity. Moreover, since the measurement method of the present invention can directly measure not only non-denatured chromosomal DNA but also the cells themselves as a sample, rapid detection is possible, and can be applied to high throughput screening for analysis of a large amount of samples. .
  • the kit for measuring the length of the G-til sequence of the present invention can measure the length of the G-til sequence of a sample in less than 40 minutes using only one container (for example, a test tube).
  • the measurement method of the present invention can be used clinically for patients with various diseases associated with cancer and aging resulting from G-til loss.
  • the measurement method of the present invention is useful for basic research on the biological effects of cancer, aging and telomerism.
  • the fur dilution solution is an AE-labeled G-til HPA probe (5'-CCCT AACACCTA ACC * CT AACC CTA ACCCTA-3 ', SEQ ID NO: 1, * AE labeled position, 29 bases, chemiluminescence dose 3 x 10 7 relative light units (hereinafter simply referred to as rlu). )
  • rlu chemiluminescence dose 3 x 10 7 relative light units
  • the AE-labeled G-tile probe was prepared by AE-labeling an aminolinker-one-introduced oligonucleotide (SEQ ID NO: 1) produced using the above-mentioned linker-one-introduced reagent 3 according to the method described in Japanese Patent No. 3483829. .
  • EDTA is ethylenediamine tetraacetic acid
  • EGTA is ethylene glycol bis (2-amino ethyl ether) tetraacetic acid.
  • the hydrolysis of AE of the probe that did not hybridize was 300 ⁇ l of hydrolysis buffer 1 (0.6 mol / l sodium tetraborate buffer containing 50 ml / l triton X-100, pH 8.5) for each reaction tube To the mixture, vortexed well, and incubated at 60.degree. C. for 10 minutes.
  • the hybridized probe AE did not hydrolyze under the conditions described above.
  • the tubes were ice-cold for 1 minute or more, and chemiluminescence was measured for 2 seconds per tube with a luminometer (trade name: Leader 1, manufactured by Gen-Probe). ⁇ 1 3> Result
  • FIG. 2 is a diagram showing the results of a dose response test of the above-described 29-base AE-labeled G-til HPA probe and single-stranded synthetic G-til 84 bases. As is apparent from FIG. 2, a linear increase in signal intensity was obtained with increasing oligonucleotide dose over the range of 0.05 fmol to 10 f mol.
  • FIG. 3 shows the results of the specificity confirmation test.
  • WT represents a wild-type single-stranded G-tile sequence
  • Luoligo D is 5,-(TTAGGC) -3, and NC is a negative control. NC is
  • Al chemiluminescence requires a number of complete nucleotide base pairs in the hybridization between G-til and AE-labeled G-til HPA probe (29 bases), and alkali treatment resistance A confirmation test was conducted.
  • FIG. 4 is a graph showing the amount of chemiluminescence based on AE in each combination.
  • the mismatch (iv) at the AE labeling position and the mismatch (iii) at a position apart from the AE labeling position almost no chemiluminescence was detected.
  • the mismatches (Gi) and (V) at a point 5 bases away from the AE labeling position were slightly reduced in chemiluminescence. Therefore, it was found that a mismatch at a position about 6 bases away from the AE labeling position does not affect HPA fluorescence.
  • non-denatured genomic DNA 1 g, 3 g, 5 g, 10 g and 20 ⁇ g derived from SiHa cancer cell line were used.
  • Hybridization was performed with 3 ⁇ 10 6 rlu of the AE-labeled G-tile probe. That is, the total amount of DNA solution in Falcon 352053 tube (trade name) for detection of telomerase 3 and overhang (G til) in genome DN ⁇ , sterile water or TE buffer (10 mM Tris / HCU ImM EDTA, pH 8) Adjusted to 100 ⁇ l with .0).
  • the AE-labeled G-til HPA probe of 3 ⁇ 10 6 rlu in 100 ⁇ L of the above-mentioned hybrid medium 'buffer' was added to the DNA solution, well stirred with a vortex mixer, and incubated at 60 ° C. for 20 minutes. Also, the hydrolysis and chemiluminescence detection of AE of the hybridized probe were performed under the same conditions as in the above ⁇ 12>.
  • non-denatured genomic DNA need not be isolated and used, but as non-denatured genomic DNA used in the above ⁇ 4-1> confirmation test, one isolated as described below was used.
  • Non-denatured genomic DNA used for G-til length measurement was isolated from each cell line using the phenol-chromium-form extraction method. That is, cells were pelleted into micro'tubes by centrifugation for 5 minutes at 4 ° C. and 6000 rpm in an Eppendorf microfuge. The pellet was washed once with PBS (-), and resuspended in an extraction buffer containing 10 mM Tris buffer (pH 7.6), 150 mM NaCl and NP-40 to a final concentration of 0.5%. After proteinase K treatment, phenol-clotting form extraction was performed twice. Genomic DNA is ethanol After being treated with RNase A, it was dissolved in TE buffer.
  • Exonuclease I Treatment with non-denatured genomic DNA with Exonuclease I (Exo I), which selectively removes single-stranded nucleotides in the 3 ' ⁇ 5' direction, selectively removes G-til sequences. Confirmed that it was Exonuclease I treatment of non-denatured genomic DNA was performed as follows. 2 hours at 37 ° C. in lx exonuclease 'buffer (67 mM glycine-KOH (pH 9.5), 6.7 mM MgCl, 10 mM 2-mercaptoethanol)
  • the cells were treated with Biolabs (0.2 U / g DNA) and heat-inactivated at 80 ° C. for 20 minutes before assaying the G-tile.
  • Figure 5 shows a graph of the results for genomic DNA pre-treated with Exol prior to assaying G-til and a graph of the results without pre-treatment with Exol.
  • linear responses were obtained in the concentration range of 1 ⁇ g to 20 g of non-denatured genomic DNA.
  • the results show that 5 g of non-modified genomic DNA can typically be used. From FIG.
  • the non-denatured genomic DNA is treated with T7 exonuclease, the telomerase C strand is removed in the 5 ' ⁇ 3' direction, and the chemiluminescence is G tile specific by increasing the G tail of the telomerase G strand. It was confirmed.
  • Non-denatured genomic DNA (5 / zg) derived from the SiHa cancer cell line was treated with T7 hexonase as follows.
  • FIG. 6-1 is a diagram showing the time-dependent change in luminescence of T7 exonuclease treatment of non-denatured DNA. From the comparison of the Exol-treated graph and the Exol-pretreated graph, it can be seen that the signal exhibits an extremely large S / N ratio.
  • FIG. 6-2 is a diagram showing a graph obtained by converting the rlu value into the average length of the G-tilt using the graph of FIG. 6-1 as a calibration curve. As is clear from FIG. 6-1, the amount of chemiluminescence increases in a time-dependent manner by treating with T7 exonuclease and removing the telomere C chain in the 5 ' ⁇ 3' direction, and the G-til sequence increases. I understand that I did.
  • the SiHa cancer cell line usually has a G-til sequence of about 220 nt (nt is the number of nucleotides) in average length.
  • nt is the number of nucleotides
  • the amount of chemiluminescence increased when T7 exonuclease treatment of non-denatured genomic DNA from the SiHa cancer cell line was increased for 90 seconds, and the observed rlu value was about an average of 1,600 nt as shown in Fig. 6-2. Indicates that the G-til has been produced.
  • the measurement method of the present invention can specifically measure the length of the G-til sequence.
  • the sensitivity limits of the measurement method of the present invention can be detected using synthetic telomer end constructs (T7 TEL Gt10, Gt20, Gt26, Gt43 and Gt62) having the following 10 nt, 20 nt, 26 nt, 43 nt and 62 nt G-tils.
  • the minimum length of was determined.
  • 0.5, 1.0, 5.0 and 10 fmoles of synthetic telomeric end constructs were used for each test (2 measurements each).
  • each synthetic telomer end construct was prepared by annealing the DNA of SEQ ID NO: 8 and the DNA of SEQ ID NOs: 9 to 13 (all manufactured by Proligo) and purifying by gel electrophoresis.
  • FIG. 7 is a graph showing the results of the sensitivity limit confirmation test.
  • the total amount of genomic DNA can be normalized using the Alu DNA sequence as an internal standard.
  • non-denatured DNA used in the measurement test of the present invention was heat-denatured and hybridized using an A1 u 'HPA probe.
  • Alu'HPA probe used 5'- TGTAATCCCA * GCACTTTGGGAGGC-3 '(position of the * AE tag, SEQ ID NO: 2).
  • the Alu 'HPA probe is prepared by AE-labeling an aminolinker-introduced oligonucleotide (SEQ ID NO: 2) produced using the above-mentioned linker-introducing reagent 3 according to the method described in Japanese Patent No. 3483829. did.
  • Fig. 8 is a graph created by plotting the amount of chemiluminescence in arbitrary units (three measurements). As is clear from FIG. 8, linear responses were obtained with genomic DNA at a concentration of 0.005 ⁇ g to 1 ⁇ g for the amount of luminescence by Alu DNA sequences.
  • a cell pellet of SiHa cancer cell line prepared as shown in the following ⁇ 8-2> for measuring G-til length in cell pellet was resuspended in 100 L of the above-mentioned hybrid solution 'buffer 1 and suspended. Were mixed by pipetting and sheared using a 26 G syringe. Incubation and hybridization of 3 ⁇ 106 rlu of the AE-labeled G-til HPA probe with the cell pellet were performed under the same conditions as in ⁇ 4-1>. In addition, the hydrolysis of the AE and hybridization luminescence detection of the hybridization probe were performed under the same conditions as in ⁇ 1-2> above.
  • the cell pellet (1/10 volume) was denatured in the same manner as in ⁇ 7-1> above, and the cell pellet (1/10 volume) was hybridized with an AE-labeled Alu probe of 3 ⁇ 10 6 rlu to normalize the total amount of genomic DNA.
  • the SiHa cancer cell line cell pellet was prepared by centrifuging and collecting the SiHa cancer cell line at 1,000 G for 5 minutes, washing twice with cold PBS (-), and rapidly freezing in liquid nitrogen. And stored at -80 ° C until use.
  • FIG. 9 shows the results of direct application of the measurement method of the present invention to SiHa cancer cell line cells pellet (twice of measurement number).
  • the average length of G tilt of the SiHa cancer cell line was 220 nt. Also, as apparent from FIG. 9, since the measurement method of the present invention showed good linearity in the range of 1 ⁇ 10 5 to 3.5 ⁇ 10 6 cells, a cell pellet of about 5 ⁇ 10 5 cells was measured for the measurement of G Till. It is important to note that it can typically be used.
  • non-denatured genomic DNA is isolated from each cell pellet (various TIG-3 human fibroblasts, various SV40 transformed cells and various SiHa cancer cells) by the same method as above ⁇ 42>. After separation, the measurement method of the present invention was applied to non-denatured genomic DNA of each cell.
  • telomere reverse transcriptase (hTERT) human cervical carcinoma cell line SiHa
  • Retrovirus packaging cell line PT67 was cultured and stored in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal calf serum (Hyclone).
  • DMEM Dulbecco's modified Eagle's medium
  • the supernatant was collected, added with polybrene to a final concentration of 6 g / ml, and then passed through a 0.22 m filter (manufactured by Millipore). The filtered supernatant was used for infection of the SiHa cancer cell line. The next day, the medium was replaced with fresh puromycin (0.5 ⁇ g / ml) -containing complete medium, culture was continued for 4 days, and a TRF2 ABAM- infected SiHa cell line was prepared.
  • FIG. 10a shows the results of direct application of the measurement method of the present invention to each cell pellet.
  • FIG. 10 b shows the results of applying the measurement method of the present invention after isolating non-denatured genomic DNA from each cell pellet for comparison and confirmation.
  • the bar graph on the right is a graph showing the results of Exol treatment before G-til measurement to confirm that chemiluminescence is specifically induced by Telomere G, and the bar graph on the left is Exol. It is a graph that was not pretreated.
  • TIG-3 (Y) refers to healthy and young cells with a cell population doubling number (P DL) of 28
  • TRF2 a cell population doubling number
  • TRF2 dominant 'negative allele
  • the average length of telomer G is particularly the SV40 trait. It is known that reduction occurs in the cells at the time of catastrophic failure, and it is understood that it is consistent with the conventional finding (see, for example, non-patent document 6) that human telomerase is reduced at the time of catastrophic failure. In addition, reduction of G-til was not observed in hT ERT expressing TIG-3 cells. Also, it is known that the dominant 'negative allele of TRF2 (TRF2 AB AM ) reduces the length of G til (see, for example, non-patent document 2), but from the results of SiHa cells, The expected reduction was confirmed in Till. From the above results, the measurement method of the present invention can directly measure the length of G till using cell pellets, and the difference between the cells of the measured G till length can be evaluated by biological evaluation. it can.
  • Dominant 'negative allele in various cells (HeLa cancer cells, SiHa cancer cells, MCF-7 cancer cells, MRC-5-hTERT normal fibroblasts, and 90p normal mammary epithelial cells) by the same procedure as the above ⁇ 93>.
  • TRF2 ABAM After infection with the gene (TRF2 ABAM ), the above-mentioned cells (HeLa cancer cells, SiH a cancer cells, MCF-7 cancer cells, MRC-5-hTERT normal fibroblasts, and 90p normal mammary epithelial cells) were infected with the above.
  • Non-denatured DNA is isolated by the same procedure as 4 2>, each non-denatured DNA (5 ⁇ g) is applied to the G-til measurement method of the present invention, G-til length of each cell is measured, and as a comparative example The measurement method described in JP-A-2001-95586 was applied to each denatured DNA (0.5 g) to measure the total length of telomeres.
  • the Exol treatment is the same as the procedure described in the above ⁇ 3 3>, and the culture of the cells used is the same as the procedure described in the above ⁇ 92>.
  • FIG. 11 a is a view showing the result of measuring G till by the measuring method of the present invention.
  • FIG. 11 b is a view showing the result of measuring the total length of telomeres by the measuring method described in JP-A-2001-95586 as a comparative example.
  • Fig. 1 In la, “C” indicates control, “T” indicates cells treated with G-shorting drug telomestatin 5 ⁇ for 48 hours, + indicates cells treated with Exol, one not treated Indicates It can be seen that the contrast between the graph treated with Exol and the graph treated without pretreatment with Exol is also extremely large, indicating an SZN ratio.
  • Fig. 1 In la, “C” indicates control, “T” indicates cells treated with G-shorting drug telomestatin 5 ⁇ for 48 hours, + indicates cells treated with Exol, one not treated Indicates It can be seen that the contrast between the graph treated with Exol and the graph treated without pretreatment with Exol is also extremely large, indicating an S
  • FIG. 11a uses 5 / zg of non-denatured DNA, while FIG. 11a is a drag using 0.5 g, so it will be only about 1/350 at the same concentration.
  • the length of the G-til is the signal intensity of the noise level in the range of the operation error and the measurement error. It turns out that Till can not be measured.
  • the vertical axis of each graph in FIG. 11a is converted to the average length of G till using FIG. 2 as a test line, and the vertical axis of each graph in FIG. As a result, the results shown in Table 4 below were obtained.
  • the length of G till is 75 to 300 bases as compared to the length of telomeres having a total length of 4 kbp to several tens of kbp. Even if G-tail shortening of about 100 bases is observed when G-tail at the chromosome end is forcibly shortened by telomestatin, Patent Document 1 (Japanese Patent Application Laid-Open No. 2001-95586) is a conventional telomerase HPA method. In the measurement method described in, no difference was observed. On the other hand, as shown in Table 3 and FIG.
  • HeLa cancer cells, SiHa cancer cells, and MCF-7 cancer cells had G tilt shortened by dnTR F2, It can be seen that even differences in bases can be measured. Also, it can be seen that MRC-5-hTERT normal fibroblasts and 90p normal mammary epithelial cells do not shorten by dnTRF2.
  • non-denatured genomic DNA need not be isolated and used, but as non-denatured genomic DNA used in the following ⁇ 11-2> confirmation test, one isolated as follows was used.
  • Non-denatured genomic DNA used for G-til length measurement was isolated from each cell line using the phenol-chromium-form extraction method. That is, cells were pelleted into micro tubes by centrifugation in an Eppendorf microfuge at 6000 rpm for 5 minutes at 4 ° C. The pellet was washed once with PBS ( ⁇ ) and resuspended in extraction buffer containing 10 mM Tris buffer (pH 7.6), 150 mM NaCl and NP-40 to a final concentration of 0.5%. After proteinase K treatment, phenol-clotting form extraction was performed twice. Genomic DNA was ethanol precipitated, and after treatment with RNase A, it was dissolved in TE buffer.
  • various amounts of non-denatured genomic DNA derived from NIH 3T3 mouse fibroblast (0.001 ⁇ g, 0.003 ⁇ g, 0.005 ⁇ g, 0.01 ⁇ g ⁇ ) 0.03 mu g ⁇ 0.05 g, 0.1 g ⁇ 0.3 g, was Haiburidizu and 0.5 g, 1 g, 3 g , 5 g and 10 mu g) and 3xl0 6 rlu the AE-labeled G til HPA probe.
  • the total amount of DNA solution in Falcon 352053 tube is sterile water or TE buffer (10 mM Tris / HCl, ImM)
  • the pH was adjusted to 100 ⁇ l with EDTA, pH 8.0. This is heated in a water bath at 65 ° C. for 5 minutes, and the 100 ⁇ L of the label-labeled G-tile probe of 3 ⁇ 10 6 rlu in 100 ⁇ l of the hybridization buffer is added to the DNA solution, Stir well with a vortex mixer and incubate at 60 ° C. for 20 minutes. Also, the hydrolysis and chemical emission detection of AE of the probe that did not hybridize were performed under the same conditions as the above ⁇ 12> of the example.
  • G-til was measured using 5 ⁇ g of 1 ⁇ g force of Nom DNA.
  • non-denatured genomic DNA need not be isolated and used, but as non-denatured genomic DNA used in the above ⁇ 12-1> confirmation test, one isolated as described below was used.
  • Non-denatured genomic DNA used for G-til length measurement was isolated from each tissue using the phenol-clonal-form extraction method. That is, the tissue was frozen at 80 ° C. or homogenized immediately after isolation, and was extracted into an extraction buffer containing 10 mM Tris buffer (pH 7.6), 150 mM NaCl and NP-40. Resuspend to a final concentration of 0.5%. After treatment with proteinase K, phenol-clotting form extraction was performed twice. Genomic DNA was ethanol precipitated and dissolved in TE buffer after treatment with RNase A.
  • telomere 3 'overhang (G til) in genomic DNA the total amount of DNA solution in Falcon 352053 tube (trade name) is sterile water or TE buffer (10 mM Tris / HCU ImM EDTA, pH 8). Adjusted to ⁇ L with .0).
  • G-til signal could be detected by this measurement method in tissues such as small intestine, large intestine and testis. A long G-til has been detected in the small intestine and testis, but the large intestine is relatively short. From FIG. 13 it can be seen that all samples are Exol sensitive, the detected fluorescence is confirmed to be specific for single-stranded G-tile, and the graph pretreated with Exol and Exol Also, the contrast of the graph can be measured on the mouse tissue, but the G-til can be sufficiently measured.
  • Ala probe 5'-GAA CAG TGT ATA T * C AAT GAG TTA CAA T-3, (SEQ ID NO: 14), Alb probe: 5'-GAA CAG TGT for the Al, ⁇ 2 or ⁇ 2 ⁇ ⁇ probe to be used ATA TCA A * T GAG TTA CAA T-3, (SEQ ID NO: 15), A2a probe: 5, — CGT TGG AA * ACG GGA TTT GTA GAA CA-3, (SEQ ID NO 16), A2b probe: 5'-CGT TGG AAA CGG GA * TTTG TA GAA CA-3, (SEQ ID NO: 17), B2-lb probe: 5,-GTC TGA AGA CA * GC T ACA GTG TA-3, (SEQ ID NO 18), B2-2a probe : 5, — CCG ACT G * C TCT TCT GAA GGT C— 3, (SEQ ID NO: 19), B2— 2b probe: 5 '-CCG ACT GCT C TT C * T G
  • the Al, A2 or B1 ⁇ ⁇ probe is prepared by using amino-linker mono-introduced oligonucleotide 3 (SEQ ID NO: 2), which was produced using the above-mentioned linker-introducing reagent 3 according to the method described in ) was prepared by ⁇ labeling.
  • SEQ ID NO: 2 amino-linker mono-introduced oligonucleotide 3
  • Fig. 14-1 to 14-7 are graphs created by plotting the chemiluminescence amount in arbitrary units (three measurements).
  • Figure 14 1 ⁇ 14- 7 As is apparent from Al, the emission amount by ⁇ 2 or B2DNA sequences, linear response was obtained with genomic DNA at a concentration of 0.5 / ⁇ ⁇ ⁇ 10 g.
  • the hydrolysis of the AE of the probe that did not hybridize was 90 ⁇ l of Hydrolysis Buffer 1 (0.6 mol / l sodium tetraborate buffer containing 50 ml / l Triton X-100, pH 8.5) with each reaction tube To the plate, stirred well, and incubated at 70 ° C. for 25 minutes with a plate block heater.
  • the hybridized probe AE did not hydrolyze under the conditions described above.
  • the tubes are left at room temperature for about 2 minutes, and a 96-well plate compatible luminometer (a type that can hold two reagents simultaneously, Glo MaxTM 9b Microplate Luminometer w / Dual Injectors Product Name) 2) Add 60 L of Reader I solution, and after 2 seconds, 60 L of Reader II solution, and measure the luminescence with a measurement time of 2 seconds.
  • a 96-well plate compatible luminometer a type that can hold two reagents simultaneously, Glo MaxTM 9b Microplate Luminometer w / Dual Injectors Product Name
  • Fig. 15 shows the results of dose response test for G-til measurement using the 96-well plate with the above-mentioned 29-base AE-labeled G-til HPA probe and single-stranded synthetic G-til 84 groups.
  • the length of the single strand overhang (G til) sequence of telomere is measured in a specific, sensitive and rapid manner. Methods and their measurement kits.
  • the measurement method of the present invention is useful as a test reagent for patients with cancer and various diseases associated with aging, which are considered to be diseases with G-til loss. Also, age-related diseases, cancer, terrorism It is useful for regular physiological basic research.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 検体における非変性染色体DNA中のGテイルと、テロメア反復配列に相補的な配列を有する標識DNAプローブとをハイブリダイズさせ、該ハイブリダイズしたDNAプローブの化学発光を定量し、その測定値からGテイル配列の長さを求めるGテイル配列の長さ測定方法、及びそれに用いるキット。

Description

明 細 書
Gティル配列の長さ測定方法及びそれに用いるキット 技術分野
[0001] 本発明は、 Gティル配列の長さ測定方法及び該方法に使用するキットに関する。
背景技術
[0002] ヒトの染色体 DNAの末端は、テロメァとよばれる 5, - TTAGGG-3,の繰り返し配列か らなる二本鎖 DNAである。しかし、テロメァの最末端は、 3'末端が突出した構造をして いて、 75〜300塩基の一本鎖 DNA部分(G-tail;以下単に Gティルという。)を形成して いる。前記 Gティルは、通常はテロメァ延長酵素であるテロメラーゼがアクセスする場 合や DNAの複製時以外は、ループを形成して保護された状態となって 、る (例えば、 非特許文献 1参照)。
大部分を占めるテロメァ 2本鎖部分は、細胞分裂が繰り返される度に短くなり細胞 老化に関与することが知られている力 細胞分裂が繰り返されても前記 Gティルは 75 〜300塩基の一定の長さに維持されている。ところが、多数回の細胞分裂後のテロメ ァ 2本鎖部分の短縮による細胞分裂の停止、すなわち有限分裂寿命に至っても、通 常 Gティルは 75〜300塩基の一定の長さのままであるという報告と有限分裂寿命で G ティルが短縮するという相反した結果が報告された。これは、 Gティルがテロメァに比 ベて極めて短いため、当時、 Gティルの長さを正確かつ定量的に測定する方法がな 力 たためであると思われる。
一方、二本鎖テロメァ DNAには結合しな 、が Gティルには結合するタンパク質 POT 1やそれらに結合するタンパク質 PIP1などの発見により、テロメァの Gティル力 2本鎖 部分とは全く異なる機能、例えば、下記のように細胞死の直接的シグナルや様々な 細胞応答等に関係していることが近年明らかになつてきた。
[0003] テロメァにはそれに結合するテロメァ結合タンパク質が存在し、該テロメァ結合タン パク質は、 TRFl(Telomere repeat binding factor)および TRF2が知られているが、 癌細胞では、 TRF2がないと、 Gティルのループ形成ができなくなり、 Gティルの短縮 が起こることが明らかになった (例えば、非特許文献 2参照)。この場合、重要なのは テロメァ全長には変化が見られないにもかかわらず、 Gティルの短縮がみられ、さらに は染色体末端の融合を引き起こして ヽることである。
正常細胞の場合も、 TRF2の機能を細胞内で消失させると Gティルの短縮がおこり 細胞増殖が停止して、老化してしまう(例えば、非特許文献 2参照)。この場合も、テロ メァ全長は変化しな 、ことから、 Gティルの短縮が老化の弓 Iき金になって 、ると考えら れる。
[0004] 上記 TRF1や TRF2のみならず、 ATM、 NBS1、 MRNなど様々なタンパク質が Gティル のループ形成に要求されることが分力つてきた。様々な DNA傷害剤や放射線による D NAの傷害に感受性のシグナルでは、テロメァの短縮が見られなくても Gティルの短 縮がみられる。これは、 DNAの修復に必要なタンパク質 (ATM、 NBS1及び MRNなど) 力 Sリクルートされてくることからも明らかである。
ATMは、血管拡張性疾患の原因遺伝子、 NBS1は、ナイミーヘン症候群の原因遺 伝子で高発ガン性、免疫不全、染色体不安定性、放射線感受性を特徴とする稀な 常染色体劣性遺伝疾患であり、これらが Gティルにリクルートされることは、上記各疾 患との関わりを示している。実際に、 Gティルのループののり付けとして機能している TRF2の機能を阻害すると、 ATMに依存したアポトーシスが誘導される(例えば、非特 許文献 3参照)。
また、 Gティルに特異的に作用する抗癌剤は、テロメァの短縮を伴わず Gティルの 短縮を引き起こし、癌細胞を死に至らしめることもわ力 てきた (例えば、非特許文献 4参照)。
これらの結果から、 DNA障害をもたらす薬剤やストレス力 Gティルを介して細胞に シグナルを伝え、様々な細胞応答を引き起こしているものと考えられる。
また、多くの癌で変異が知られている癌抑制遺伝子産物 p53は、 Gティルに結合し ていることもわ力つており(例えば、非特許文献 5参照)、癌および老化に伴う疾患で も Gティルの変化がシグナルとなっていることが明らかである。
[0005] ところで、その後、 Gティルの長さを測定する方法が開発され、これまで、 T-OLA ( テロメァ-オリゴヌクレオチド .ライゲーシヨン ·アツセィ)、 PENT (プライマ一'ェクステン シヨン Zニックトランスレーション)、 3,オーバーハング 'プロテクション 'アツセィ等が知 られている (例えば、非特許文献 6、非特許文献 7参照)。
しかし、表 1を用いて後述するように、いずれも取扱いが面倒な放射性標識 (32P等) のオートラジオグラフィーゃゲル作製、泳動分離に時間を要する電気泳動を必要と する。そのため、いずれも完了するのに少なくとも 2日要する煩雑なアツセィとなる。こ のことは、特にリアルタイムの分析が求められる癌の進行や予後を迅速に診断するに は不適当であった。加えて、それら方法は、大量の試料の分析のハイスループット' スクリーニングに適用するのは困難であった。
[0006] また、従来のハイブリダィゼーシヨン 'プロテクション ·アツセィ(Hybridization Protec tion Assay (HPA);例えば、特許文献 1、非特許文献 8参照)は、染色体 DNAを変性 後に使用しなければならな力つたので、テロメァ全長に比べ約 100分の 1以下の長さ しかない Gティルの長さは操作誤差及び測定誤差の範囲であり測定できな力つた。 具体的には、この方法での Gティルのシグナル強度はノイズレベル程度に弱 、もの であり定量的かつ正確に測定することができず、 Gティルに特異的なシグナルである か否かを識別することもできな力つた。
[0007] 特許文献 1:特開 2001-95586公報
非特許文献 1 :グリフィス'ジエイ'ディー,コミュ^ エル,ローゼンフィールド 'エス,ス タンセル 'アール'ェム,ビアンチ'エー,モス'エイチ及びデ'ランジェ'ティ (Griffith J D, Comeau L, Rosenneld S, btansel RM, Bianchi A, Moss H and ae Lange T.) , Cell: 97(1999), 503—14.
非特許文献 2:ファン'スティーンセル ·ビィ,スモゴルゼウス力 ·エイ及びデ ·ランジェ · アイ. 、van Steensel B, bmogorzewska A and de Lange Tj , 92(1998), Cell :4 01-13.
非特許文献 3 :カールセダ一'ジエイ,ブロッコリ 'ディ,ダイ'ワイ,ハーディ 'エス及び 7" ·フンンェ ·アイ. (Karlseder J, Broccoli D, Dai Y, Hardy S and de Lange T. ) , Science: 283(1999), 1321—5.
非特許文献 4 :ゴメス'ディー,パテルスキ'アール,レマルテリュ一'ティー,シン-ャ' ケィ,メルグニー ジエイ'エル及びリュォゥ 'ジエイ'エフ. (Gomez D, Paterski R, L emarteleur T, Shin— Ya K, Mergny JL and Riou JF. ) , J Biol Chem: 279(200 4), 41487-94.
非特許文献 5:スタンセル ·アール ·ェム,サブラマ-アン ·ディー及びグリフィス ·ジエイ 'ディー. (Stansel RM, Subramanian D and Griffith JD.), J Biol Chem: 277( 2002), 11625-8.
非特許文献 6 :チヤィ,ダブリュー. ,シャイ,ジエイ.ダブリュー.及びライト,ダブリュ 一.ィー. (Chai, W., Shay, J.W. & Wright, W.E.) Mol Cell Biol: 25, 2158—216 8(2005).
非特許文献 7 :サルダンノヽエス.ェヌ. ,アンドリユース,エル.ジー.及びトレフスボ ル,ティー.ォー. (Saldanha, S.N., Andrews, L.G. & Tollefsbol, T.O.) Eur J Bioc hem : 270, 389-403(2003).
非特許文献 8 :ナカムラ,ワイら(Nakamura, Y. et al. ) Clin Chem: 45, 1718-17 24(1999).
発明の開示
[0008] 本発明の課題は、煩雑な処理操作を用いず、変性しな!、で、そのままテロメァの一 本鎖突出部(以下単に Gティルという。)配列の長さを特異的、高感度かつ迅速に測 定する方法及びそれを用いるキットを提供することにある。
[0009] 本発明者らは、上記課題を解決するため鋭意研究を行った結果、検体中の染色体 DNAを変性させることなぐ特定の HPA法により化学発光強度を測定し得ること、とり わけ Gティルオリゴマー標準品を用いて検量線を作成し Gティル長さを定量ィ匕するこ とにより、迅速に Gティルの長さを測定し得ることを見出した。
また、上記化学発光がェキソヌクレアーゼ処理により Gティルに特異的であることを 確認し得ること、さら〖こは、前記ェキソヌクレアーゼ処理及び未処理の発光強度比を シグナル Zノイズ (「S/N」と略す。)比として、 S/N比の大きい測定条件を探知し高感度 に測定し得ることを見出した。さらに、大きな S/N比となる試料濃度条件を規定し得る ことも見出した。本発明者らは、これら知見に基づき本発明を完成するに至った。 すなわち、本発明は、
〔1〕検体における非変性染色体 DNA中の Gティルと、テロメァ反復配列に相補的な 配列を有する標識 DNAプローブとをハイブリダィズさせ、該ハイブリダィズした DNAプ ローブの化学発光を定量し、その測定値力 Gティル配列の長さを求めることを特徴 とする Gティル配列の長さ測定方法、
〔2〕前記検体が、血液、培養細胞、新鮮組織、凍結保存組織もしくはホルマリン固定 組織の細胞ペレットである前記項目〔1〕記載の方法、
〔3〕前記化学発光が、前記標識 DNAプローブと Gティル配列とのハイブリダィズに基 づくものであることをェキソヌクレアーゼを用いて確認することを特徴とする前記項目〔 1〕又は〔2〕に記載の方法、
[0010] 〔4〕前記ェキソヌクレア一ゼがェキソヌクレアーゼ Iである、前記項目〔3〕に記載の方 法、
〔5〕前記標識が、アタリジ-ゥムエステル、ルミノール、イソルミノール、ピロガロール、 プロトへミン、アミノブチルェチル -n-イソルミノール又はァミノへキシルェチル -n-ェチ ル-イソルミノールによるものである前記項目〔1〕〜〔4〕のいずれかに記載の方法、 〔6〕前記テロメァ反復配列に相補的な配列が、 (CCCTAA) (nは 1〜10の整数を表 す。)で示される塩基配列である前記項目〔1〕〜〔5〕の ヽずれかに記載の方法、
[0011] 〔7〕非変性テロメァ反復配列に対し相補的な配列を有する標識 DNAプローブと、細 胞溶解用液と、加水分解用試薬とを少なくとも有するセットとする Gティル配列の長さ 測定用キット、
〔8〕確認試薬としてェキソヌクレアーゼをさらに含む、前記項目〔7〕に記載のキット、 [0012] 〔9〕前記標識が、アタリジ-ゥムエステル、ルミノール、イソルミノール、ピロガロール、 プロトへミン、アミノブチルェチル -n-イソルミノール又はァミノへキシルェチル -n-ェチ ル-イソルミノールによるものである前記項目〔7〕又は〔8〕に記載のキット、
〔10〕前記テロメァ反復配列に相補的な配列が、(CCCTAA) (nは 1〜10の整数を表 す。)で示される塩基配列である前記項目〔7〕〜〔9〕いずれかに記載の測定用キット、 及び
〔11〕前記検体が、ヒト又はマウス由来の検体である前記項目〔1〕〜〔7〕のいずれか に記載の方法、
を提供するものである。
本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記 載力もより明らかになるであろう。
図面の簡単な説明
[0013] [図 1]図 1は、本発明の Gティル測定方法の概要を示す図である。
[図 2]図 2は、 29塩基の AE標識 Gティル HPAプローブと一本鎖合成 Gティル 84塩基と の用量応答性試験の結果を示す図である。
[図 3]図 3は、特異性確認試験結果を示す図である。
[図 4]図 4は、各組み合わせにおける AEに基づく化学発光量を示したグラフである。
[図 5]図 5は、 Gティルをアツセィする前に Exolで前処理したゲノム DNAについてのグ ラフと、 Exolで前処理していないグラフである。
[図 6-1]図 6— 1は、非変性 DNAの T7ェキソヌクレアーゼ処理時間依存性化学発光量 変化を示す図である。
[図 6-2]図 6— 2は、図 6—1のグラフを前記図 2を検量線として用いて rlu値を Gティル の平均長さに変換したグラフである。
[0014] [図 7]図 7は、本発明の測定方法の感度限界 (特に検出できる Gティルの最小の長さ) 確認試験の結果を示す図である。
[図 8]図 8は、化学発光量を任意単位でプロットして作成したグラフである。
[図 9]図 9は、 SiHa癌細胞系細胞ペレットに本発明の測定方法を直接適用した結果を 示す図である。
[0015] [図 10]図 10aは、各細胞ペレットに本発明の測定方法を直接適用した結果を示す図 である。図 10bは、比較 ·確認のため、各細胞ペレットから非変性ゲノム DNAを単離し た後、本発明の測定方法を適用した結果を示す図である。
[図 11]図 11aは、本発明の測定方法により Gティルを測定した結果を示す図である。 図 l ibは、比較例として特開 2001-95586公報に記載の測定方法によりテロメァ全長 を測定した結果を示す図である。
[0016] [図 12]図 12は、マウスゲノム DNAを用いた Gティル長を測定の直線性を示す図であ る。
[図 13]図 13は、マウス組織での Gティル長を示す図である。
[0017] [図 14-1]図 14 1は、内部標準プローブ Alaを用いた、マウスゲノム DNAの定量試験 における直線性を示す図である。
[図 14-2]図 14 2は、内部標準プローブ Albを用いた、マウスゲノム DNAの定量試験 における直線性を示す図である。
[図 14-3]図 14 3は、内部標準プローブ A2aを用いた、マウスゲノム DNAの定量試験 における直線性を示す図である。
[図 14-4]図 14— 4は、内部標準プローブ A2bを用いた、マウスゲノム DNAの定量試験 における直線性を示す図である。
[図 14-5]図 14 5は、内部標準プローブ B2_lbを用いた、マウスゲノム DNAの定量試 験における直線性を示す図である。
[図 14-6]図 14 6は、内部標準プローブ B2_2aを用いた、マウスゲノム DNAの定量試 験における直線性を示す図である。
[図 14-7]図 14 7は、内部標準プローブ B2_2bを用いた、マウスゲノム DNAの定量試 験における直線性を示す図である。
[図 15]図 15は、 96ゥエルプレートでの AH標識 Gティル HPAプローブと一本鎖合成 G ティルとの応答性を測定した図である。
発明を実施するための最良の形態
以下、本発明を詳細に説明する。
本発明の Gティル配列の長さ測定方法は、ハイブリダィゼーシヨン'プロテクション' アツセィ(Hybridization Protection Assay; HPA)法を用いて、 Gティルを構成するテ ロメァ反復配列に相補的な標識プローブ複数を Gティルにノ、イブリダィズさせ、プロ ーブに結合した非放射性標識物質の化学発光量を指標として Gティル配列の長さを 測定するものである。
一般的に HPA法とは、非放射性標識物質でラベルしたオリゴマーをプローブとして 用い、該プローブが検出の対象となる DNA又は RNAにハイブリダィズしたときの当該 非放射性標識物質からの発光を検出する手法である。その特徴は、ハイブリダィズし たプローブとハイブリダィズせずに遊離して 、るプローブとを区別するために行われ る洗浄などの物理的な分離操作を行う代わりに、遊離のプローブの標識物質を選択 的に加水分解させ、その標識物質を失活させてしまうことにある。 したがって、前記 HPA法を適用した本発明は、ターゲットである Gティルを PCR等に より増幅させるような煩雑な操作を用いず、短時間で目的の Gティルを検出し、標識 物質の化学発光量を指標として Gティル配列の長さを測定するものである。
[0019] 以下、非変性 DNA含有細胞ペレットの調製について説明する。
本発明の測定方法は、二本鎖染色体 DNAの一本鎖部分である Gティルがターゲッ トであるから、非変性染色体 DNAを含有する細胞ペレットを検体とすることができる。 本発明において、検体となる上記細胞ペレットとは、細胞もしくは組織を遠心分離( 例えば、 1,000Gで 5分間)し、回収した細胞そのもの力もなるペレットをいう。
さらに、冷リン酸緩衝食塩水(PBS(-))で 2回洗浄し、液体窒素中で急速凍結し、そ して使用まで液体窒素中で急速凍結しそのまま低温 (例えば- 80°C)で保存したペレ ットであってもよい。
使用時には、例えば、後述するハイブリダィゼーシヨンバッファ一中に再懸濁し、懸 濁液をピペッティングによって混合し、 26Gシリンジでせん断したものを使用すること ができる。
本発明において、 S/N比の大きい条件で実施する観点から、細胞ペレットを検体と する場合には、検体中の細胞数は 1χ105〜3.5χ106が好ましぐ 3xl05〜7xl05がより好 ましい。
また、非変性染色体 DNAを用いる場合、非変性染色体 DNA量は 0.5 g〜40 gが 好ましぐ1 /^〜20 /^がさらに好ましぐ 3 /ζ §〜7 /ζ §が特に好ましい。
[0020] 細胞検体の種類は非変性染色体 DNAを含有する限り特に制限されるものではな ヽ 力 血液、培養細胞、各種組織を挙げることができる。
上記組織は、器官の由来を問わず、任意に選択することができる。例えば、脳神経 系、筋肉'骨格系、消化器系、呼吸器系、造血系、リンパ系などの器官の組織が挙げ られる。また、これらの組織は新鮮組織 (生検により得られた直後もの)、凍結保存組 織又はホルマリン固定組織などあらゆる状態のものを使用することができる。
本発明の測定方法は、個体間の Gティル長さの比較評価だけでなぐ単一個体内 における異なる組織間の血液細胞もしくは組織細胞の Gティル長さの比較評価に有 用である。例えば、単一個体内における肝臓細胞、心筋細胞、脳神経細胞等の Gテ ィル長さの比較評価が挙げられる。
[0021] さらに、上記組織は正常のものに限定されず、各種疾患 (癌、肝疾患など)の組織 を使用することができる。例えば、癌由来のものとして、大腸癌、肝臓癌などの癌組織 のほか、頸管癌、大腸癌、肝臓癌、子宮頸癌、慢性骨髄性白血病、膠芽腫、乳癌、 繊維肉腫などの癌細胞系、例えば SiHa、 K562、 MKN1、 HeLa、 U937、 U373MG, T98 G、 A172、 MCF-7、 HT-1080、 LoVo、 WiDr、 SW857、 VA-4等が挙げられる。
[0022] 本発明の測定方法において、前述のように細胞ペレットをそのまま用いることができ るので、培養細胞又はヒト組織力も非変性染色体 DNAを精製して使用する必要はな いが、精製非変性染色体 DNAを使用してもよぐ後述のハイブリダィゼーシヨンバッフ ァ一に溶解して使用する。非変性染色体 DNAの精製は、任意の方法であってよい( 例えば、タハラ'ヒデトシら"オンコジーン"(Tahara H. et al, Oncogene) , 15(1997) , 1911-1920)。
[0023] 本発明にお 、て、検体、後述するプローブ等を溶解するハイブリダィゼーシヨンバッ ファーは、細胞そのものを検体とする観点から、細胞膜、核膜等を溶解するバッファ 一であることが好ましい。例えば、ラウリル硫酸塩、塩化リチウム、 EDTA及び EGTAを 含むコハク酸リチウムバッファ一等を挙げることができる。
[0024] 以下、本発明に用いる標識 ΗΡΑプローブについて説明する。
本発明に用いる標識 ΗΡΑプローブとしては、(CCCTAA) (ηは 1〜10の整数を表す 。)で示される塩基配列を有するオリゴヌクレオチドであって、少なくとも 1つの非放射 性標識物質でラベルしたオリゴヌクレオチドである。 ηは、 目的とする染色体 DNAに応 じて適宜選択される力 2〜8が好ましぐ 3〜5がさらに好ましい。
プローブに用いるオリゴヌクレオチドは、ホスホアミダイト法等任意の DNA製造法に より市販の DNA合成機を用いて製造することができる。なお、化学合成の際に、非放 射性標識物質により標識するためのァミノリンカ一を導入しておくのが好ましい。 ホスホアミダイト法を用いた場合、ァミノリンカ一を導入する試薬として、例えば、下 記リンカ一導入試薬 1〜3を挙げることができる。
[0025] [化 1] 入^¾薬 1
Figure imgf000011_0001
li -fl
O
it ■' ρ'
o,, リンカー: S入 ¾薬 z
Figure imgf000011_0002
[0026] 前記ァミノリンカ一を導入したオリゴヌクレオチドは、例えば、特許第 3483829号公報 に記載の方法に準じて製造することができる。
[0027] 本発明において、アタリジ-ゥム 'エステル(以下単に ΑΕという。)とは、フエ-ルエス テル基を有する下記化合物 4一(2—スクシンィミジルォキシカルボ-ルェチル)フエ 二ルー 10 メチルアタリジ -ゥム 9 カルボキシレートをいう。
[0028] [化 2]
Figure imgf000012_0001
[0029] 前記 AEは、前述のように導入したァミノリンカ一のアミノ基と、 AEの N-ヒドロキシスク シンイミドエステルとの反応により前記ァミノリンカ一を導入したオリゴヌクレオチドを標 識することができ、これにより本発明に用いる標識 HPAプローブが構築される。
AEによる標識方法及び操作手順については、例えば、特許第 3483829号公報に記 載の方法に準じて行なうことができる。
AE等の標識位置は、 DNA合成時に導入するァミノリンカ一の位置によって自由に 設定することができる(特表平 2-502283号公報)。
[0030] 前記標識 HPAプローブは、例えば、ジェン 'プローブ社から入手でき、 AE標識 Gテ ィル HPAプローブ (5し CCCTAACCCTAACC*CTAACCCTAACCCTA- 3'、配列番 号 1、 29塩基)が例として挙げられる。 *は AE標識位置であり、前述のようにリンカ一導 入試薬 1、 2又は 3を用いて構築されたオリゴヌクレオチドに導入されたァミノリンカ一 のアミノ基カ SAEの N-ヒドロキシスクシンイミドエステルとの反応により標識されている。
[0031] 前記非放射性標識物質としては、前記 AEの他に、ルミノール (Luminol)、イソルミノ 一ノレ (Isoluminol)、ピロガローノレ (Pyrogallol)、プロトへミン (Protohaemin)、アミノブチノレ ェチノレ- n-イソノレミノーノレ (Aminobutylethyhi- isoluminol)又はァミノへキシノレェチノレ- n —ェチノレ—イソノレミノーノレ (Aminohexylethyhi— ethyHsoluminol)が挙げられる。前記非 放射性標識物質はオリゴヌクレオチドに導入されたァミノリンカ一のアミノ基と化学結 合しうる置換基を有する。そのような置換基として、例えば、 N-ヒドロキシスクシンイミド エステル基が挙げられる。
なお、上記標識物質に限定されるものではなぐ例えば、下記一般式 (I) :
[0032] [化 3]
Figure imgf000013_0001
([一般式 I中、 Xはハロゲン又は下記一般式 (II) :
[0033] [化 4] 一 X1— R2
(II)
R1
[0034] (式 (II)中、 X1は窒素原子、リン原子、ホウ素原子又はヒ素原子を表し、 R1はアルコキ シ若しくはァリールォキシ、又は置換若しくは非置換のアルキル、ァルケ-ル若しくは ァリールを表し、 R2は水素原子、アルコキシ若しくはァリールォキシ、又は置換若しく は非置換のアルキル、ァルケ-ル若しくはァリールを表す。)
若しくは下記一般式 (III):
X2 - R2 (III)
(一般式 (III)中、 X2は酸素原子又は硫黄原子を表し、 R2は前記と同様である。)で示 される基を表し、 Yは酸素原子、硫黄原子又は NHを表し、 R3は水素原子、アミ入ヒド 口キシ、チオール、カルボン酸、ハロゲン、ニトロ、アルコキシ若しくはァリールォキシ 、又は置換若しくは非置換のァセチル、アルキル、ァルケ-ル若しくはァリールを表し 、 R4は置換又は非置換のアルキル、ァルケ-ル又はァリールを表し、 R3又は R4の少なくとも 1つは前記ァミノリンカ一と化学結合できる反応性部位を含む。 ])で示 されるアタリジン誘導体を使用することもできる。
[0035] ここで、ハロゲンとしては、例えばフッ素、塩素、臭素、ヨウ素又はアスタチンが挙げ られる。アルキルとしては炭素数 1〜20、好ましくは 1〜5のもの、例えばメチル、ェチ ル、プロピル、ブチル、ァミル等が挙げられる。ァルケ-ルとしては炭素数 1〜10、好 ましくは 1〜5のもの、例えばビニル、ァリル等が挙げられる。ァリールとしては、例え ばフエニル、トリル、ナフチル、キシリル等が挙げられる。アルコキシとしては、炭素数 1〜10、好ましくは 1〜5のもの、例えばメトキシ、エトキシ等が挙げられ、ァリールォキ シとしては、例えばフエノキシ、ナフトキシ等が挙げられる。
[0036] 図 1を参照して本発明の Gティル配列の長さ測定方法について説明する。
図 1は本発明の Gティル測定方法の概要を示す図であり、図中の符番について説 明すると、 1は Gティル、 2はテロメァ G鎖、 3はテロメァ C鎖、 4は 2本鎖テロメァ部分、 5は標識(HPA)プローブ、 6は AE、 7はハイブリダィズしなかったプローブ、 8は加水 分解して失活したプローブ、を各々意味する。 Gティル 1は染色体 DNA末端のテロメ ァ G鎖 2及び C鎖 3からなるテロメァ 2本鎖部分 4の G鎖末端に位置する。
[0037] 本発明に用いる AE標識プローブ 5は AE6で標識されており、 Gティルにおける反復 配列と相補的な配列を有するため、反復配列の反復回数に応じた数の前記プロ一 ブが図 1中(a)のハイブリダィゼーシヨンによりハイブリダィズする。
前記 AE標識プローブ 5と Gティル 1とのハイブリダィゼーシヨンは、具体的には AE6 で標識されたプローブを含むハイブリダィゼーシヨン溶液を細胞ペレットに加え、例え ば 60〜65°Cで 5〜30分間インキュベート(保温保持)することにより行うことができる。
Gティル 1とハイブリダィズした AE標識プローブ 5は、 AEが安定化し、図 1中(b)の 一定時間加水分解を行っても AEのエステル結合は保護されるため、アルカリ及び過 酸ィ匕水素を加えることで AEは化学発光することができ、その発光量を図 1中(c)のよ うに定量することにより Gティル 1の長さを測定することができる。
[0038] 一方、プローブと Gティノレ 1とハイブリダィズしなかったプローブ 7にお!/、て、 AEは安 定化しな ヽ。この状態で (b)の加水分解を行うと AEのエステル結合は加水分解を受 け失活したプローブ 8となり、化学発光は全く起こらず、失活したプローブ 8は検出さ れない。
未反応のプローブに基づく化学発光を除くため加水分解 (b)について具体的には 、加水分解試薬を加え、さらに 60°Cで 5〜10分間インキュベートすることにより行なうこ とができる。インキュベート後の図 1中(c)のような AEの化学発光量の測定は、ルミノメ 一ター(例えば Leader 1 (商品名、ジェン 'プローブ社製))を用いて行なうことができ る。特に 96ウェルルミノメーターは、本発明の測定方法を用いたノヽィスループット'スク リー-ングのために使用するのに好まし 、。
[0039] 本発明の測定方法において、 DNA試料を 3,→5 '方向に一本鎖ヌクレオチドを選択 的に除去するようにェキソヌクレアーゼ I(ExoI)で処理し Gティル配列を選択的に削除 し前記化学発光が Gティル特異的であることを確認することが好ましい。
また、 Exolで処理して!/、な!/、試料のシグナルと Exolで処理した試料のシグナルの比 を SZN比として算出することもできる。これにより検体中にいかなる夾雑物が存在し ていても Gティル長さを特異的に測定することができる。
さらに、 T7ェキソヌクレアーゼで処理し、 5 '→3 '方向にテロメァ C鎖 3を除去し、テロ メァ G鎖 2の Gティルを増加させることで前記化学発光が Gティル配列特異的である ことを ½認することちできる。
[0040] 以上説明した本発明の方法にぉ 、て、例えば、 Gティルの反復配列の基本単位と なる配列(5'- TTAGGG- 3,)が 24回反復しており、プローブとして (5'- CCCTAA- 3,)の 配列を 4回反復させたもの〔5'_(CCCTAA) -3']を使用すると仮定すると、 Gティルには
4
プローブが理餘上 6個ハイブリダィズすることができる。従って、プローブ 6個分の標識 力 S検出されることとなる。長さの分力つている DNA標準品に上記プローブをノヽイブリダ ィズさせたときに検出される標識の強度を予め求めておいて検量線を作成しておけ ば、 Gティル配列の長さに換算することができる。
[0041] 標識として AE以外のアタリジン誘導体、その他の非放射性標識物質 (例えば、ルミ ノール、イソルミノール、ピロガロール、プロトへミン、アミノブチルェチル- n-イソルミノ ール、ァミノへキシルェチル -n-ェチル-イソルミノール)を用いた場合も同様に化学 発光量を定量し Gティル長さを測定することができる。すなわち、細胞ペレットに前記 アタリジン誘導体もしくはその他の非放射性標識物質で標識したプローブを適量カロ えて反応させ、反応終了後、加水分解等の処理を行った後、化学発光量を定量する ものである。
[0042] 以下、本発明の Gティル配列の長さ測定用キットについて説明する。
本発明のキットは、非変性テロメァ反復配列に相補的な配列(例えば、(CCCTAA) (nは 1〜10の整数を表す。))を有する標識 DNAプローブと、細胞溶解用液と、加水 分解用試薬とを少なくとも有するセットとするものである。このような標識 DNAプローブ は、標識 HPAプローブとして前述したものが挙げられ、具体例、好ましい範囲とも前 述したものと同様である。
前記細胞溶解用液としてラウリル硫酸塩、塩化リチウム、 EDTA及び EGTAを含むコ ノ、ク酸リチウムバッファーが挙げられる。前記加水分解用試薬としては、トリトン X-100 を含む四ホウ酸ナトリウムバッファーが挙げられる。
[0043] 本発明のキットには、 Gティル長さ検量線作成用の標準品 (好ましくは 20塩基以上、 より好ましくは 30〜100塩基の Gティル配列)を含めることが好ましい。
染色体 DNA量標準化検量線作成用の標準品 (好ましくは 20塩基以上、より好ましく は 30〜100塩基の Alu配列の合成 DNA)及び染色体 DNA量標準化用 Alu'HPAプロ一 ブ(例えば、 5'- TGTAATCCCA*GCACTTTGGGAGGC- 3' ;*AE標識の位置、配列 番号 2)を含めることがより好ま U、。
確認試薬としてェキソヌクレアーゼ (例えば、 ExoI、 T7ェキソヌクレアーゼ等が挙げ られ、好ましくは Exol)を含めることがさらに好ましい。
さらにポジティブコントロール DNAとして、例えば任意の癌細胞の精製染色体 DNA 等ち含めることちでさる。
[0044] Alu配列とは、 5'- GCCTCCCAAAGTGCTGGGATTACA-3' (配列番号 3)で示され る塩基配列を有し、染色体 DNAあたりの量は培養細胞でも組織でも一定であることが 知られている (J.D.ワトソン著、遺伝子の分子生物学、 p668)。そこで、 Gティルを測定 する際に各サンプルごとに内部標準として Alu配列量も測定し、 Gティル配列と Alu配 列との測定比を求めることにより、染色体 DNA—定量あたりの Gティル配列量を求め ることができる。これにより平均 Gティル配列の長さを算出することができる。
[0045] [表 1] 表 1 本発明の測定方法と従来の測定方法の比較
方法 検出範囲(in) 検出時間 iy (a) 細胞からの直接法 S気泳動 G-tails長さの分布 ハイスループット
T-OLA 24-650 2曰問 必要 できない 必要 可能 できない
PENT 130-210 2 Η問 必要 できない 必要 可能 できない 電 ϊ·顕微箱法 225-650 2 u rn 必要 できない 必要 可能 できない
3'
45-384 2 H閱 必要 できない 必要 できない できない 本発 RU 測定方法 20-1600 < 40分 必要なし 可能 必要なし できない 適用できる
(a): KIとは、ラジオアイソトープ (b): 96マレチプレートスクリーニング
[0046] 上記表 1を参照して本発明の測定方法と従来法と比較を示す。
表 1から明らかなように、従来法は!ヽずれも取扱!ヽが面倒な放射性標識 (RI)やゲル 作製、泳動分離に時間を要する電気泳動を必要とし、いずれも完了するのに少なくと も 2日要する煩雑なアツセィであり、細胞をそのまま測定に用いることもできない。また 、それら従来方法は、大量の試料の分析のハイスループット 'スクリーニングに適用で きない。
一方、本発明の方法では、放射性物質を使用しないため特殊な廃棄処理設備を必 要とせず、従来のように反応産物と取り込まれなかった放射性物質とを分離させる電 気泳動等も必要ない。また、僅か 1つの容器 (例えば、試験管)を用いて、組織採取 力 短時間(40分以内程度)に 20ヌクレオチドまで短い長さの Gティルを特異的、定 量的かつ高感度に測定できる。さらに、測定結果にばらつきが少ないため、再現性よ く Gティル長を測定することができ、大量のサンプルを容易に取り扱うことができる。さ らに本発明の測定方法は、非変性染色体 DNAだけでなく細胞を直接測定でき、大量 の試料の分析のハイスループット'スクリ一ユング等に適用できる。
[0047] また、ゲノム DNAをインタタト (未切断)な状態で採取する必要がな 、ため、培養細 胞、新鮮組織などのほか、長期保存された組織 (例えばホルマリン固定されたもの) における Gティル長を測定することが可能となる。さらに、本発明の方法により、従来 の検出方法と比較して高感度の検出結果が得られる。すなわち、感度は精製 DNAで はサザン法の約 1000倍であり、数 ngのゲノム DNAを測定することができる。
[0048] 本発明の効果について以下に説明する。本発明の Gティル配列の長さ測定方法に よれば、テロメァを変性せずに、かつ煩雑な処理操作を用いず、僅か 3工程で 20ヌク レオチドまで短 、長さの Gティルを特異的、定量的かつ高感度に測定できる。 また、本発明の測定方法は、非変性染色体 DNAだけでなく細胞そのものを検体とし て直接測定できるので迅速ィ匕が可能となり、大量の試料の分析のハイスループット' スクリーニング等に適用することができる。
[0049] さらに、 5xl05細胞数以下の少量の細胞をそのまま直接的に測定できるので、試料 調製により染色体 DNAを損失することがなぐ例えば、血液検査、微穿刺吸引もしく は尿中癌細胞力 の臨床試料等に起こり得るような入手細胞数に限界がある場合に 有用である。
本発明の Gティル配列の長さ測定用キットは、僅か 1つの容器 (例えば、試験管)を 用いて検体の Gティル配列の長さを 40分未満で測定できる。
本発明の測定方法は、 Gティル損失の結果として生じる、癌や老化に伴う様々な疾 患の患者に対して臨床的に使用できる。
本発明の測定方法は癌、加齢、テロメァ異常の生物学的影響についての基礎研究 に有用である。
実施例
[0050] 以下、実施例に基づいて本発明をより詳細に説明する力 本発明はこれらにより限 定されるものではない。
〔実施例 1〕
〈1 1〉一本鎖合成 Gティル用量応答性確認試験
本発明の測定方法の用量応答性を確認するために、一本鎖合成 Gティル 84塩基、 5, - (TTAGGG) -3,(プロリゴ社製)の種々の濃度の下記ハイブリダィゼーシヨンバッ
14
ファー希釈液を、化学発光量 3xl07 relative light units (以下単に rluという。)の AE 標識 Gティル HPAプローブ (5'-CCCTAACCCTAACC*CTAACCCTAACCCTA-3 ' 、配列番号 1、 *AE標識の位置、 29塩基)とともに下記ハイブリダィゼーシヨンバッファ 一 100 μ L中 60°Cで 20分間インキュベートし、ハイブリダィズした。
前記 AE標識 Gティルプローブは、特許第 3483829号公報に記載の方法に準じて、 前記リンカ一導入試薬 3を用いて製造したァミノリンカ一導入オリゴヌクレオチド (配列 番号 1)を AE標識することにより調製した。
[0051] [表 2] 表 2 ハイブリダィゼイシヨンバッファーの組成
0. lmol/L コハク酸リチウムバッファ一、 H4, 7
200g/L ラウリル硫酸リチウム
1.2raol/L 塩化リチウム
20mmol/L EDTA なお、 EDTAはエチレンジァミン四酢酸、 EGTAはエチレングリコールビス(2-ァミノ ェチルエーテル)四酢酸である。
[0052] 〈1— 2〉ハイブリダィズしな力つたプローブの加水分解及びィ匕学発光検出
ハイブリダィズしなかったプローブの AEの加水分解は、 300 μ Lの加水分解バッファ 一 (50mL/Lのトリトン X- 100を含有する 0.6mol/L四ホウ酸ナトリウムバッファー、 pH8.5) を各反応チューブに添加し、ボルテックス ミキサーでよく撹拌し、 60°Cで 10分間イン キュペートすることにより行なわれた。ハイブリダィズしたプローブの AEは、上記条件 では加水分解しなカゝつた。それらチューブは、 1分以上氷冷し、化学発光はルミノメー ター (商品名 Leader 1、ジェン-プローブ社製)で 1つのチューブ当り 2秒間測定した。 〈1 3〉結果
図 2は上記 29塩基の AE標識 Gティル HPAプローブと一本鎖合成 Gティル 84塩基と の用量応答性試験の結果を示す図である。図 2から明らかなように 0.05fモル〜 10fモ ルの範囲にわたるオリゴヌクレオチド用量の増加に伴って、シグナル強度の直線的増 加が得られた。
[0053] 〈2— 1〉特異性確認試験
前記 29塩基の AE標識 Gティル HPAプローブ力 Gティルを構成する 5, - TTAGGG- 3'反復配列を特異的に検出することを確認した。 WT (野生型)に一塩基を置換させ た次に示す種々の 84塩基の Gティル一本鎖 DNA(10fモル)を前記 29塩基の AE標識 Gティル HPAプローブで前記〈1 1〉と同様な条件でハイブリダィズした。: WT[5, - (T TAGGG) - 3,]、変異 Gティルオリゴ A[5,- (TTGGGG) - 3,]、 Gティル変異オリゴ B[5
14 14 ,
-(TTAAGG) - 3,]、 Gティル変異オリゴ C[5,- (TTCGGG) -3,]、及び Gティル変異ォ
14 14
リゴ D[(5, - (TTAGGC) -3, ] (各 Gティル DNAは 、ずれもプロリゴ社製である。 )。また 、ノ、イブリダィズしな力つたプローブの AEの加水分解及びィ匕学発光検出は、前記〈1 —2〉と同様な条件で行なった。
〈2— 2〉結果
図 3は、特異性確認試験結果を示す図である。図 3中、 WTは野生型一本鎖 Gティ ル配列を、変異 Gティルオリゴ Aは 5, - (TTGGGG) -3,を、変異 Gティルオリゴ Bは 5, -
14
(TTAAGG) -3,を、変異 Gティルオリゴ Cは 5, - (TTCGGG) -3,を、及び変異 Gティ
14 14
ルオリゴ Dは 5,- (TTAGGC) -3,を、 NCはネガティブコントロールを示している。 NCは
14
この試験におけるバックグラウンドシグナルレベルを示す。図 3から明らかなように、本 発明に用いる HPAプローブは、 目的の哺乳類 Gティル配列を特異的にかつ高い SZ N比で検出することがわかる。
[0054] 〈3— 1〉AEのアルカリ処理抵抗性確認試験
AEの化学発光には Gティルと AE標識 Gティル HPAプローブ(29塩基)の間のハイ ブリダィゼーシヨンにぉ 、て何個の完全なヌクレオチド塩基対が必要カゝ、アルカリ処 理抵抗性確認試験を行なった。 前記 AE標識 Gティル HPAプローブと同様な塩基長 29塩基の一本鎖 Gティル (WT)と、前記プローブ側標識位置から 5塩基離れた位置 に点変異を有する 29塩基の下記変異 Gティル (Mu)と、通常の前記 AE標識 Gティル HPAプローブと、下記 3種の変異 AE標識 Gティル HPAプローブ(Mutl、 Mut2及び Mut3)とを用いて図 4に示した組み合わせ (i)、G0、(iii)、 (iv)及び (v)で前記〈1— 1〉 と同様な条件でハイブリダィズし AEに基づく化学発光量を測定した。また、ハイブリダ ィズしなかったプローブの AEの加水分解及びィ匕学発光検出は、前記〈1 2〉と同様 な条件で行なった。
[0055] Mu: 5 -TAGGGTTAGGGTTAGGGTTAGGGTTAGGG -3' (配列番号 4、変異 G ティル)
Mutl: 5'-CCCTAAC*CATAACCCTAACCCTAACCCTA-3 ' (配列番号 5、 *AE 標識の位置、下線が点変異位置、 29塩基)
Mut2: 5'-CCCTAACCA*TAACCCTAACCCTAACCCTA-3 ' (配列番号 6、 *AE 標識の位置、下線が点変異位置、 29塩基)
Mut3: 5'-CCCTAACCATAACC*CTAACCCTAACCCTA-3 ' (配列番号 7、 *AE 標識の位置、下線が点変異位置、 29塩基)
[0056] 〈3— 2〉結果
図 4は各組み合わせにおける AEに基づく化学発光量を示したグラフである。 図 4 から明らかなように、 AE標識位置がミスマッチ (iv)及び AE標識位置から 1塩基離れた 箇所がミスマッチ (iii)の組み合わせでは、化学発光がほとんど検出されな力つた。ま た、 AE標識位置から 5塩基離れた箇所のミスマッチ (Gi)及び (V))は若干化学発光が低 下した程度であった。よって AE標識位置から 6塩基程度離れた箇所のミスマッチは H PAィ匕学発光に影響しないことがゎカゝつた。
[0057] 〈4 1〉非変性ゲノム DNA用量応答性及び Gティル特異性確認試験(1)
本発明の測定方法の非変性ゲノム DNA用量応答性を確認するために、種々の量 の SiHa癌細胞系由来非変性ゲノム DNA(1 g、 3 g、 5 g、 10 g及び 20 μ g)と 3χ106 rluの前記 AE標識 Gティル ΗΡΑプローブとをハイブリダィズした。すなわち、ゲノム DN Α中テロメァ 3,突出部(Gティル)の検出のため、ファルコン 352053チューブ(商品名) 中の DNA溶液の総量は、滅菌水もしくは TEバッファー(10mM Tris/HCU ImM EDT A、 pH8.0)で 100 μ Lに調節した。 100 μ Lの前記ハイダブリゼーシヨン'バッファ一中 の 3xl06rluの前記 AE標識 Gティル HPAプローブを DNA溶液に添カ卩し、ボルテックス ミキサーでよく撹拌し、 60°Cで 20分間インキュベートした。また、ハイブリダィズしなか つたプローブの AEの加水分解及び化学発光検出は、前記〈1 2〉と同様な条件で 行なった。
[0058] 〈4 2〉非変性ゲノム DNAの単離
本発明において、非変性ゲノム DNAを単離して用いる必要はないが、上記〈4—1〉 確認試験に使用した非変性ゲノム DNAとしては下記のように単離したものを使用した 。 Gティル長さ測定に使用する非変性ゲノム DNAは、フエノール-クロ口ホルム抽出法 を用いて各細胞系から単離した。すなわち、細胞は、エツペンドルフ ·マイクロ遠心管 中 6000rpm、 4°Cで 5分間遠心分離することによりマイクロ 'チューブ中にペレツトイ匕し た。ペレットは PBS (-)で 1回洗浄し、 10mMトリスバッファー (pH7.6)、 150mMNaCl及び N P-40を含有する抽出ノ ッファーに最終濃度が 0.5%となるように再懸濁した。プロティ ナーゼ K処理後、フエノール-クロ口ホルム抽出は 2回行なった。ゲノム DNAはエタノー ル沈殿し、 RNァーゼ Aで処理後 TEバッファー中に溶解した。
[0059] 〈4 3〉 Gティル特異性確認のためのェキソヌクレアーゼ I処理
非変性ゲノム DNAを 3 '→5 '方向に一本鎖ヌクレオチドを選択的に除去するェキソヌ クレアーゼ I(ExoI)で処理し、 Gティル配列を選択的に削除しィ匕学発光が Gティル特 異的であることを確認した。非変性ゲノム DNAのェキソヌクレアーゼ I処理は下記のよ うに行なった。 lxェキソヌクレアーゼ 'バッファー (67mMグリシン- KOH(pH9.5)、 6.7m M MgCl、 lOmM 2-メルカプトエタノール)中 37°Cで 2時間 ExoI(-ユ^ ~ ·イングランド'
2
バイオラボズ社製、 0.2U/ gDNA)で処理し、そして Gティルをアツセィする前に 80°C で 20分間熱失活させた。
[0060] 〈4 4〉結果
図 5に Gティルをアツセィする前に Exolで前処理したゲノム DNAについての結果の グラフと、 Exolで前処理していない結果のグラフを示す。後述の方法により各量の 1/2 0量の非変性ゲノム DNAを変性させ、 3xl06rluの AE標識 Aluプローブでハイブリダィズ しゲノム DNA総量をノーマライズして任意単位をプロットして得られたグラフである。図 5から明らかなように非変性ゲノム DNA1 μ g〜20 gの濃度範囲における直線的応答 を得た。この結果から、非変性ゲノム DNA5 gを典型的に使用できることが分かる。 図 5から全ての試料は Exol感受性であることが分かり、検出された化学発光が一本鎖 Gティルに特異的であることが確認され、かつ Exolで前処理したグラフと、 Exolで前処 理して ヽな 、グラフの対比力 上記測定範囲内であれば、極めて大き!/、SZN比を 示すことが分かる。
[0061] 〈5— 1〉 Gティル特異性確認試験(2)及び Gティル配列の長さ測定
まず、非変性ゲノム DNAを T7ェキソヌクレアーゼで処理し、 5'→3 '方向にテロメァ C 鎖を除去し、テロメァ G鎖の Gティルを増加させることで化学発光が Gティル特異的で あることを確認した。 SiHa癌細胞系由来非変性ゲノム DNA(5 /z g)は下記のように T7ェ キソヌクレアーゼ処理した。 lxNEBuffer4 (50mM酢酸カリウム、 20mMトリス酢酸、 10mM 酢酸マグネシウム、 ImMジチオスレィトール、 pH7.9)中 25°Cで図中に示した時間、 T7 ェキソヌクレアーゼ (ニュー'イングランド 'バイオラボズ社製、 1U/ gDNA)とインキュ ペートした。反応は、 25mMの最終濃度となるように EDTA(pH8.0)を添加することにより 停止した。
〈5— 2〉 Gティルの検出のための前記ハイダブリゼーシヨン'バッファ一中での前記 AE 標識 Gティル HPAプローブと非変性 DNAとのインキュベーション及びハイブリダィゼ ーシヨンは、前記〈4—1〉と同様な条件で行なった。また、ハイブリダィズしなかったプ ローブの AEの加水分解及びィ匕学発光検出は、前記〈1 2〉と同様な条件で行なつ た。
〈5— 3〉結果
[0062] 図 6— 1は非変性 DNAの T7ェキソヌクレアーゼ処理時間依存性ィ匕学発光量変化を 示す図である。 Exol処理をしたグラフと Exolで前処理をしな力つたグラフとの対比から 、極めて大きい S/N比を示すことが分かる。図 6— 2は、図 6—1のグラフを前記図 2を 検量線として用いて rlu値を Gティルの平均長さに変換したグラフを示す図である。図 6—1から明らかなように、 T7ェキソヌクレアーゼで処理し、 5'→3 '方向にテロメァ C鎖 を除去することで時間依存的に化学発光量が増加し、 Gティル配列が増カロしたことが 分かる。
図 6— 2から明らカなように SiHa癌細胞系は通常約 220nt (ntはヌクレオチド数)の平 均長さの Gティル配列を有することが分かる。また、 SiHa癌細胞系由来非変性ゲノム DNAを T7ェキソヌクレアーゼ処理すると化学発光量が増加した 90秒で、観察された rl u値は、図 6— 2から明らかなようにほぼ平均 1600ntの長さを有する Gティルが生成し たことを示している。
これら結果から、本発明の測定方法が特異的に Gティル配列の長さを測定できるこ とがわかる。
[0063] 〈6— 1〉本発明の感度限界確認試験
下記 10nt、 20nt、 26nt、 43nt及び 62ntの Gティルを有する合成テロメァ末端構築物( T7 TEL Gtl0、 Gt20、 Gt26、 Gt43及び Gt62)を用いて本発明の測定方法の感度限 界、特に検出できる Gティルの最小の長さを決定した。 0.5、 1.0、 5.0及び 10fモルの合 成テロメァ末端構築物を各試験に用いた (測定回数各 2回)。なお、各合成テロメァ末 端構築物は配列番号 8の DNAと、配列番号 9〜 13の DNA (いずれもプロリゴ社製)を アニーリングし、ゲル電気泳動で精製することで調製した。 [0064] [化 5]
T7 TEL Gt10 Gt=10
3
8 )
10 )
T7..TEL— G 0 5 :5g?S@Kg¾5S¾ffi"??TA;ig9nA;,!;i:TTAa39-3 ' Gt=20
11 )
T7 jEL„Gt26 ^^^^^Χ^&^^^^^-' ' Gt=26
12 ) 13 ) __ __ __ __ __ _ __ _
tR9
[0065] なお、 Gティルの検出のための前記ハイダブリゼーシヨン'バッファ一中での前記 AE 標識 Gティル HPAプローブと非変性 DNAとのインキュベーション及びハイブリダィゼ ーシヨンは、前記〈4—1〉と同様な条件で行なった。また、ハイブリダィズしなかったプ ローブの AEの加水分解及びィ匕学発光検出は、前記〈1 2〉と同様な条件で行なつ た。
〈6— 2〉結果
図 7は、感度限界確認試験の結果を示すグラフである。
図 7から明らかなように、 HPAプローブが 29塩基の長さを有するにもかかわらず、 G ティル DNA29塩基よりも短!、Gティル DNAを用いたとき、すなわち 10ntの Gティルも検 出できたが、直線性は 20nt 62ntにおいて得られ、本発明の測定方法は 20nt以上の Gティル長を定量的に測定できることが分かる。
[0066] (7- 1)内部標準試験(ゲノム DNA総量の標準化(normalization) )
本発明の測定方法を実施する前に細胞数を調整したときでも、 AluDNA配列を内部 標準として用いてゲノム DNA総量をノーマライズすることができる。 Gティルと Aluとの 測定比を求めるために、本発明の測定試験に使用する非変性 DNAを熱変性させ、 A1 u'HPAプローブを用いハイブリダィズした。使用する Alu'HPAプローブについては、 5 '- TGTAATCCCA*GCACTTTGGGAGGC- 3'(*AE標識の位置、配列番号 2)である。 なお、前記 Alu' HPAプローブは、特許第 3483829号公報に記載の方法に準じて、前 記リンカ 導入試薬 3を用いて製造したァミノリンカ 導入オリゴヌクレオチド (配列番 号 2)を AE標識することにより調製した。
〈7— 2〉結果 図 8は化学発光量を任意単位でプロットして作成したグラフである (測定回数 3回)。 図 8から明らかなように AluDNA配列による発光量について、 0.005 μ g〜l μ gの濃度 のゲノム DNAで直線的応答が得られた。
[0067] 〔実施例 2〕
〈8— 1〉細胞ペレットを直接用いた Gティル配列の長さ測定(1)
細胞ペレット中の Gティル長さを測定するための下記〈8— 2〉のように調製した SiHa 癌細胞系細胞ペレットは 100 Lの前記ハイダブリゼーシヨン'バッファ一中再懸濁し、 懸濁液をピペッティングによって混合し、 26Gシリンジでせん断して使用した。 3xl06rlu の前記 AE標識 Gティル HPAプローブと細胞ペレットとのインキュベーション及びハイ ブリダィゼーシヨンは、前記〈4—1〉と同様な条件で行なった。また、ハイブリダィズし な力つたプローブの AEの加水分解及びィ匕学発光検出は、前記〈1— 2〉と同様な条件 で行なった。さらに前記〈7— 1〉と同様に変性して細胞ペレット (1/10体積)を 3xl06rlu の AE標識 Aluプローブでハイブリダィズして、ゲノム DNA総量をノーマライズした。
[0068] 〈8— 2〉細胞ペレットの調製
前記 SiHa癌細胞系細胞ペレットは、 SiHa癌細胞系を 1,000Gで 5分間遠心分離し回 収し、冷 PBS (-)で 2回洗浄し、液体窒素中で急速凍結し調製した。そして使用まで- 8 0° Cで保存した。
〈8— 3〉結果
図 9は、 SiHa癌細胞系細胞ペレツトに本発明の測定方法を直接適用した結果を示 す図である (測定回数 2回)。
[0069] 図 9のグラフの rlu値を前記図 2を検量線として用いて Gティルの平均長さに変換し たところ、 SiHa癌細胞系の Gティルの平均長さは 220ntであった。また、図 9から明ら かなように、本発明の測定方法は 1χ105〜3.5χ106細胞の範囲で良い直線性を示した ことから、 Gティルの測定に 5xl05程度の細胞数の細胞ペレットが典型的に使用できる ことが分力ゝる。
[0070] 〈9 1〉細胞ペレットを直接用いた Gティル配列の長さ測定(2)
各々 5xl05細胞数の種々の細胞ペレット(各種 TIG-3ヒトフイブロブラスト、各種 SV40 形質転換細胞及び各種 SiHa癌細胞)へ本発明の Gティル測定方法に直接適用し、 各細胞の Gティル長さを測定しかつ各細胞間 Gティル長さの差力 生物学的評価を 行なった。前記〈8— 2〉と同様にして調製した各細胞ペレット (5xl05細胞)は 100 しの 前記ハイブリダィゼーシヨン'バッファ一中に再懸濁し、懸濁液をピペッティングによつ て混合し、 26Gシリンジでせん断して使用した。
[0071] 3xl06rluの前記 AE標識 Gティル HPAプローブと細胞ペレットとのインキュベーション 及びハイブリダィゼーシヨンは、前記〈4—1〉と同様な条件で行なった。また、ハイプリ ダイズしなカゝつたプローブの AEの加水分解及びィ匕学発光検出は、前記〈1 2〉と同 様な条件で行なった。さらに前記〈7— 1〉と同様に変性して細胞ペレット (1/10体積)を 3xl06rluの AE標識 Aluプローブでハイブリダィズして、ゲノム DNA総量をノーマライズ した。また、比較 '確認のため、各細胞ペレット(各種 TIG-3ヒトフイブロブラスト、各種 S V40形質転換細胞及び各種 SiHa癌細胞)から前記〈4 2〉と同様な方法によって非 変性ゲノム DNAを単離した後、各細胞の非変性ゲノム DNAにつ ヽても本発明の測定 方法を適用した。
[0072] 〈9 2〉使用細胞の培養
本発明の測定方法を適用した各細胞は下記のように培養保存して!/ヽるものを使用 した。
通常ヒトフイブロブラスト TIG- 3、 SVts9-3(SV40形質転換 TIG-3)、 TIG-3-hTERT (ヒ トテロメラーゼ逆転写酵素(hTERT) cDNA感染 TIG-3)、ヒト頸管癌細胞系 SiHa及びレ トロウィルスパッケージング細胞系 PT67は、 10%ゥシ胎児仔血清 (ハイクローン社製)で 補足したダルベッコ改変イーグル培地 (DMEM)中で培養保存した。
〈9— 3〉ドミナント ·ネガティブ対立遺伝子 (TRF2 ΔΒΔΜ)を感染させた SiHa細胞の調製 本発明の測定方法を適用した細胞のうち、 (TRF2ABAM)を感染させた SiHa細胞 (Si Ha dn TRF2)の調製については、まず、レトロウイルス上清作製のため、 pBabe-N- mycTRF2ABAMレトロウイルス構築物(Titia de Langeロックフェラー大学教授力ら譲 受した。その製造方法は、ファン'スティーンセル'ビィ,スモゴルゼウス力'エイ及びデ •フンンェ,アイ. 'セノレ '、 van Steensel B, ¾mogorzewska A and de Lange T. し ell) , 92(1998), 401-13に記載の方法に準じて行なった。)は PT67パッケージング細 胞系 (BDクロンテック社製)にフュージエーン 6トランスフエクシヨン試薬 (ロシュ社製)に よりトランスフエクシヨンした。 2日後、上清を回収し、 6 g/mlの最終濃度になるようポ リブレン添加後 0.22 mフィルター (ミリポア社製)に通した。ろ過した上清は SiHa癌細 胞系の感染に用いた。翌日、培地を新鮮なピューロマイシン (0.5 μ g/ml)含有コンプリ ート培地に置き換え、 4日間培養を続け TRF2ABAMを感染させた SiHa細胞系を調製し た。
[0073] 〈9 4〉結果
図 10aは、各細胞ペレットに本発明の測定方法を直接適用した結果を示す図であ る。一方、図 10bは、比較 ·確認のため、各細胞ペレットから非変性ゲノム DNAを単離 した後、本発明の測定方法を適用した結果を示す図である。図 10b中、右の棒グラフ はテロメァ Gティル特異的に化学発光して ヽることを確認するために Gティル測定を する前に Exol処理をした結果を示すグラフであり、左の棒グラフは Exolで前処理をし なかったグラフである。図 10a及び 10bにおいて、「TIG-3(Y)」は細胞集団倍ィ匕数 (P DL) 28の健常で若い細胞を、「TIG-3(S)」は 81PDLの老化細胞を、「TIG-3-hTERT」 は hTERT導入細胞をそれぞれ意味し、「SVts9- 3(50)」は 50PDLの若い SV40形質転 換細胞を、「SVts9-3(121)」は 121PDLの破局状態の細胞を意味し、及び「SiHa」はコ ントロールベクターを感染させた SiHa細胞を、「SiHa dn TRF2」はドミナント 'ネガティ ブ対立遺伝子 (TRF2ABAM)を感染させた SiHa細胞を意味する。
[0074] 図 10a及び 10bから明らかなように、細胞ペレットからのデータは精製ゲノム DNAか らのデータと整合していた。また、 Exol処理をしたグラフと Exolで前処理をしな力つた グラフとの対比から、極めて大きい SZN比を示すことが分かる。図 10aの各グラフの 縦軸を前記図 2を検量線として用いて Gティルの平均長さに変換したところ、下記表 3のような結果が得られた。
[0075] [表 3]
表 3 Gティ^^長の測定
Figure imgf000027_0001
図 10及び表 3から明らかなようにテロメァ Gティルの平均の長さが特に SV40形質転 換破局時細胞で縮小することが分かり、破局時にヒトテロメァ Gティルが縮小するとい う従来の知見 (例えば、非特許文献 6を参照。)と整合していることが分かる。なお、 hT ERT発現 TIG-3細胞において、 Gティルの縮小は観察されなかった。また、 TRF2のド ミナント'ネガティブ対立遺伝子 (TRF2AB AM)は Gティルの長さを縮小することが知ら れている(例えば、非特許文献 2、参照。)が、 SiHa細胞の結果から、 Gティルにおい て予想された縮小が確認された。以上の結果から本発明の測定方法は細胞ペレット を用いて直接的に Gティルの長さを測定でき、その測定された Gティルの長さの細胞 間の差力 生物学的評価を行なうことができる。
[0077] 〔実施例 3〕
〈10— 1〉本発明の測定方法と特開 2001-95586公報に記載の測定方法との比較試 験
種々の細胞(HeLa癌細胞、 SiHa癌細胞、 MCF-7癌細胞、 MRC-5-hTERT正常線維 芽細胞、及び 90p正常乳腺上皮細胞)に前記〈9 3〉と同様な手順によりドミナント' ネガティブ対立遺伝子 (TRF2ABAM)を感染させた後、各々の細胞 (HeLa癌細胞、 SiH a癌細胞、 MCF-7癌細胞、 MRC-5-hTERT正常線維芽細胞、及び 90p正常乳腺上皮 細胞)から前記〈4 2〉と同様な手順により非変性 DNAを単離し、各非変性 DNA (5 μ g)を本発明の Gティル測定方法に適用し、各細胞の Gティル長さを測定しかつ比較 例として特開 2001-95586公報に記載の測定方法を各変性 DNA (0.5 g)に適応し、 テロメァ全長の測定を行なった。なお、 Exol処理については前記〈4 3〉に記載の手 順、使用細胞の培養については前記〈9 2〉に記載の手順と同様である。
[0078] 図 11aは、本発明の測定方法により Gティルを測定した結果を示す図である。図 11 bは、比較例として特開 2001-95586公報に記載の測定方法によりテロメァ全長を測 定した結果を示す図である。図 1 la中「C」はコントロールを示し、「T」は Gティルを短 縮させる薬剤テロメスタチン 5 Μで 48時間処理した細胞を示し、 +は、 Exol処理した 細胞、一は処理していない細胞を示す。 Exol処理をしたグラフと Exolで前処理をしな 力つたグラフとの対比力も極めて大き 、SZN比を示すことが分かる。図 1 lb中「C」は コントロールを示し、「T」は Gティルを短縮させる薬剤テロメスタチン 5 μ Μで 48時間処 理した細胞を示す。 [0079] まず、図 11a及び l ibについて概観する。縦軸の任意単位は同一のプローブ及び 同一の装置を用いて測定された発光強度を内部標準としての Alu配列に対する比と して表したグラフであるから、図 11a及び l ibを比較評価することができる。図 11a及 び図 l ibを比較すると、図 11aはおおよそ任意強度 2程度である一方、図 l ibは任 意強度 70程度であり、図 1 laのシグナル強度は図 1 lbの約 1/35程度しかな!/、こと力 S わかる。さらに、図 11aは非変性 DNAを 5 /z g用いた一方、図 11aは 0.5 g用いたダラ フであるので、同一濃度とした場合は約 1/350程度しかないことになる。
[0080] よって、特許文献 1 (特開 2001-95586公報)に記載の測定方法にお!、ては Gティル の長さは操作誤差及び測定誤差の範囲のノイズレベル程度のシグナル強度であり G ティルは測定できないことが分かる。次に、図 11aの各グラフの縦軸を前記図 2を検 量線として用いて Gティルの平均長さに変換し、図 1 lbの各グラフの縦軸にっ ヽては テロメァ全長に変換したところ、下記表 4のような結果が得られた。
[0081] [表 4]
表 4 各種細胞の Gティル長とテロメァ全長
Figure imgf000029_0001
[0082] 表 3及び図 l ibから明らかなように、全体の長さが 4kbpから数十 kbpであるテロメァ の長さに比べて、 Gティルの長さは、 75〜300塩基であるため、テロメスタチンで強制 的に染色体末端の Gティルを短縮させた場合に、 100塩基ほどの Gティルの短縮が みられたとしても、従来のテロメァ HPA法である特許文献 1 (特開 2001-95586公報)に 記載の測定方法では差が観察されな力つた。一方、表 3及び図 11aから明らかなよう に、本発明の測定方法によれば HeLa癌細胞、 SiHa癌細胞、 MCF-7癌細胞は、 dnTR F2により Gティルが短縮されたことが分かり、 20塩基の違いでも測定できることが分か る。また、 MRC-5-hTERT正常線維芽細胞、 90p正常乳腺上皮細胞は、 dnTRF2で短 縮しないことが分かる。
[0083] 〔実施例 4〕マウスの培養細胞を用いた Gティル長さ測定 〈11 1〉非変性ゲノム DNAの単離
本発明において、非変性ゲノム DNAを単離して用いる必要はないが、下記〈11— 2 〉確認試験に使用した非変性ゲノム DNAとしては下記のように単離したものを使用し た。 Gティル長さ測定に使用する非変性ゲノム DNAは、フエノール-クロ口ホルム抽出 法を用いて各細胞系から単離した。すなわち、細胞は、エツペンドルフ ·マイクロ遠心 管中 6000rpm、 4°Cで 5分間遠心分離することによりマイクロ ·チューブ中にペレツトイ匕 した。ペレットは PBS (-)で 1回洗浄し、 10mMトリスバッファー (pH7.6)、 150mMNaCl及び NP-40を含有する抽出バッファーに最終濃度が 0.5%となるように再懸濁した。プロティ ナーゼ K処理後、フエノール-クロ口ホルム抽出は 2回行なった。ゲノム DNAはエタノー ル沈殿し、 RNァーゼ Aで処理後 TEバッファー中に溶解した。
[0084] 〈 11 2〉非変性ゲノム DNA用量応答性及び Gティル特異性確認試験
本発明の測定方法の非変性ゲノム DNA用量応答性を確認するために、種々の量 の NIH3T3マウス繊維芽細胞由来非変性ゲノム DNA(0.001 μ g、 0.003 μ g、 0.005 μ g、 0.01 μ gゝ 0.03 μ gゝ 0.05 g、 0.1 gゝ 0.3 g、 0.5 g、 1 g、 3 g、 5 g及び 10 μ g)と 3xl06rluの前記 AE標識 Gティル HPAプローブとをハイブリダィズした。すなわち、ゲノ ム DNA中テロメァ 3,突出部(Gティル)の検出のため、ファルコン 352053チューブ(商 品名)中の DNA溶液の総量は、滅菌水もしくは TEバッファー(10mM Tris/HCl、 ImM
EDTA、 pH8.0)で 100 μ Lに調節した。これを 65°Cの水浴中で 5分間加温し、 100 μ L の前記ハイダブリゼーシヨン'バッファ一中の 3xl06rluの前記 ΑΕ標識 Gティル ΗΡΑプロ ーブを DNA溶液に添カロし、ボルテックス ミキサーでよく撹拌し、 60°Cで 20分間インキ ュペートした。また、ハイブリダィズしなかったプローブの AEの加水分解及び化学発 光検出は、実施例の前記〈1 2〉と同様な条件で行なった。
[0085] 〈11 3〉結果
図 12から明らかなように非変性ゲノム DNA 0.001 μ §〜10 gの濃度範囲における 直線的応答を得た。この結果から、非変性ゲノム DNA 0.01 μ gを典型的に使用でき ることが分力ゝる。
[0086] 〈12— 1〉 マウス組織を用いた Gティル長さ測定
マウスの組織、例えば肝臓、腎臓、胃、大腸、胸腺など力 ゲノム DNAを単離し、ゲ ノム DNAを 1 μ g力ら 5 μ g用いて Gティルを測定した。
〈 12— 2〉非変性ゲノム DNAの単離
本発明において、非変性ゲノム DNAを単離して用いる必要はないが、上記〈12—1 〉確認試験に使用した非変性ゲノム DNAとしては下記のように単離したものを使用し た。
Gティル長さ測定に使用する非変性ゲノム DNAは、フ ノール-クロ口ホルム抽出法 を用いて各組織から単離した。すなわち、組織は、 80°Cにて凍結させたものあるい は糸且織単離後すぐにホモジナイズし、 10mMトリスバッファー (pH7.6)、 150mMNaCl及 び NP-40を含有する抽出ノ ッファーに最終濃度が 0.5%となるように再懸濁した。プロ ティナーゼ K処理後、フエノール-クロ口ホルム抽出は 2回行なった。ゲノム DNAはエタ ノール沈殿し、 RNァーゼ Aで処理後 TEバッファー中に溶解した。
[0087] 〈 12— 3〉非変性ゲノム DNA用量応答性及び Gティル特異性確認試験
本発明の測定方法の非変性ゲノム DNA用量応答性を確認するために、種々のマウ ス組織由来非変性ゲノム DNA0.5 μ gと 3xl06rluの前記 ΑΕ標識 Gティル ΗΡΑプローブ とをノヽイブリダィズした。すなわち、ゲノム DNA中テロメァ 3'突出部(Gティル)の検出 のため、ファルコン 352053チューブ(商品名)中の DNA溶液の総量は、滅菌水もしく は TEバッファー(10mM Tris/HCU ImM EDTA、 pH8.0)で ΙΟΟ Lに調節した。これ を 65°Cの水浴中で 5分間加温し、 100 μ Lの前記ハイダブリゼーシヨン'バッファ一中 の 3xl06rluの前記 ΑΕ標識 Gティル ΗΡΑプローブを DNA溶液に添カ卩し、ボルテックス ミキサーでよく撹拌し、 60°Cで 20分間インキュベートした。また、ハイブリダィズしなか つたプローブの AEの加水分解及び化学発光検出は、前記〈1 2〉と同様な条件で 行なった。
[0088] 〈12— 4〉結果
小腸、大腸、精巣などの組織で本測定方法で Gティルのシグナルが検出できた。 小腸や精巣では長い Gティルが検出されたが、大腸はそれに比べて短い。図 13から 全ての試料は Exol感受性であることが分かり、検出されたィ匕学発光が一本鎖 Gティ ルに特異的であることが確認され、かつ Exolで前処理したグラフと、 Exolで前処理し て!、な 、グラフの対比力もマウス組織にぉ 、ても Gティルが十分に測定できる。 [0089] 〈13— 1〉マウスを用いた場合の内部標準試験 (ゲノム DNA総量の標準化) 本発明の測定方法を実施する前に細胞数を調整したときでも、マウスに存在する繰 り返し配列 A1または B2を内部標準として用いてマウスゲノム DNA総量をノーマライズ することができる。 Gティルと Al、 A2または B2との測定比を求めるために、本発明の 測定試験に使用する非変性 DNAを熱変性させ、 Al、 A2または Β2·ΗΡΑプローブを用 いハイブリダィズした。使用する Al、 Α2または Β2·ΗΡΑプローブについては Ala pro be : 5' -GAA CAG TGT ATA T*C AAT GAG TTA CAA T— 3,(配列番号 1 4)、 Alb probe : 5' -GAA CAG TGT ATA TCA A*T GAG TTA CAA T— 3 ,(配列番号 15)、 A2a probe : 5,— CGT TGG AA* ACG GGA TTT GTA GAA CA— 3,(配列番号 16)、 A2b probe: 5' -CGT TGG AAA CGG GA* TTT G TA GAA CA— 3,(配列番号 17)、 B2— lb probe : 5,— GTC TGA AGA CA* GC T ACA GTG TA— 3,(配列番号 18)、 B2- 2a probe : 5,— CCG ACT G*C TCT TCT GAA GGT C— 3,(配列番号 19)、 B2— 2b probe : 5' -CCG ACT GCT C TT C*T GAA GGT C 3' (配列番号 20) (配列中の「*」印は、 AE標識の位置を 示す。 ),である。
[0090] なお、前記 Al、 A2または B1 ·ΗΡΑプローブは、特許第 3483829号公報に記載の方 法に準じて、前記リンカ一導入試薬 3を用いて製造したァミノリンカ一導入オリゴヌク レオチド (配列番号 2)を ΑΕ標識することにより調製した。
[0091] 〈13— 2〉結果
図 14— 1〜図 14— 7は化学発光量を任意単位でプロットして作成したグラフである (測定回数 3回)。図 14— 1〜14— 7より明らかなように Al、 Α2または B2DNA配列に よる発光量について、 0.5 /ζ §〜10 gの濃度のゲノム DNAで直線的応答が得られた。
[0092] 〔実施例 5〕 96ゥエルプレートを用いた Gティル長の測定
〈14— 1〉96マルチウエルプレートでの一本鎖合成 Gティル用量応答性確認試験 本発明の測定方法の用量応答性を確認するために、一本鎖合成 Gティル 84塩基、 5, - (TTAGGG) -3,(プロリゴ社製)の種々の濃度のハイブリダィゼーシヨンバッファー
14
希釈液(30 /z L)を、化学発光量 3xl06 relative light units (以下単に rluという。)の AE標識 Gティル HPAプローブ(5し CCCTAACCCTAACC*CTAACCCTAACCCTA - 3'、配列番号 1、 *AE標識の位置、 29塩基)とともに実施例 1〈1 1〉項に記載のハイ ブリダィゼーシヨンバッファー 30 μ L中 70°Cで 30分間、プレート用ブロックヒーターでィ ンキュペートし、ハイブリダィズした。例えば、サーモミキサーコンフォート(エツベンド ルフ株式会社)。使用する機器によって温度、時間は変更可能である。
[0093] 前記 AE標識 Gティルプローブは、特許第 3483829号公報に記載の方法に準じて、 前記リンカ一導入試薬 3を用いて製造したァミノリンカ一導入オリゴヌクレオチド (配列 番号 1)を AE標識することにより調製した。
[0094] 〈14 2〉ハイブリダィズしなかったプローブの加水分解及び化学発光検出
ハイブリダィズしなかったプローブの AEの加水分解は、 90 μ Lの加水分解バッファ 一 (50mL/Lのトリトン X- 100を含有する 0.6mol/L四ホウ酸ナトリウムバッファー、 pH8.5) を各反応チューブに添加し、よく撹拌し、 70°Cで 25分間、プレート用ブロックヒーター でインキュベートすることにより行なわれた。ハイブリダィズしたプローブの AEは、上 記条件では加水分解しな力つた。それらチューブは、室温に 2分程度放置し、 96ゥェ ルプレート対応型ルミノメーター(2つの試薬を同時にカ卩えることのできるタイプ、 Glo Max (商標) 9b Microplate Luminometer w/Dual Injectors 商品名ノ、 Promega社 製)で、 60 Lのリーダー I液をカ卩えてその 2秒後に 60 Lのリーダー II液をカ卩え、測定 時間 2秒で、その発光を測定する。
[0095] 〈14 3〉結果
図 15は、上記 29塩基の AE標識 Gティル HPAプローブと一本鎖合成 Gティル 84塩 基との 96ゥエルプレートを用いた方法での Gティル測定にぉ 、て、用量応答性試験 の結果を示す図である。図 15から明らカなように 0.05fモル〜 10f= ルの範囲にわたる オリゴヌクレオチドの用量の増加に伴って、シグナル強度の直線的増加が得られた。 産業上の利用可能性
[0096] 本発明によれば、煩雑な処理操作を用いず、変性しな!、で、そのままテロメァの一 本鎖突出部 (Gティル)配列の長さを特異的、高感度かつ迅速に測定する方法、及 びその測定キットを提供する。
本発明の測定方法は、 Gティル損失を伴う疾患とされている、癌、老化に伴う種々 の疾患の患者の検査試薬として有用である。また、加齢に伴う疾患、癌、テロメァ異 常の生理的基礎研究に有用である。
本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明 を説明のどの細部においても限定しょうとするものではなぐ添付の請求の範囲に示 した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。

Claims

請求の範囲
[I] 検体における非変性染色体 DNA中の Gティルと、テロメァ反復配列に相補的な配 列を有する標識 DNAプローブとをハイブリダィズさせ、該ハイブリダィズした DNAプロ ーブの化学発光を定量し、その測定値力 Gティル配列の長さを求めることを特徴と する Gティル配列の長さ測定方法。
[2] 前記検体が、血液、培養細胞、新鮮組織、凍結保存組織もしくはホルマリン固定組 織の細胞ペレットである請求項 1記載の方法。
[3] 前記化学発光が、前記標識 DNAプローブと Gティル配列とのハイブリダィズに基づ くものであることをェキソヌクレアーゼを用いて確認することを特徴とする請求項 1又 は 2に記載の方法。
[4] 前記ェキソヌクレア一ゼがェキソヌクレアーゼ Iである、請求項 3に記載の方法。
[5] 前記標識が、アタリジ-ゥム ·エステル、ルミノール、イソルミノール、ピロガロール、 プロトへミン、アミノブチルェチル -n-イソルミノール又はァミノへキシルェチル -n-ェチ ル-イソルミノールによるものである請求項 1〜4のいずれ力 1項に記載の方法。
[6] 前記テロメァ反復配列に相補的な配列が、 (CCCTAA) (nは 1〜10の整数を表す。
)で示される塩基配列である請求項 1〜5のいずれ力 1項に記載の方法。
[7] 非変性テロメァ反復配列に対し相補的な配列を有する標識 DNAプローブと、細胞 溶解用液と、加水分解用試薬とを少なくとも有するセットとする Gティル配列の長さ測 定用キット。
[8] 確認試薬としてェキソヌクレアーゼをさらに含む、請求項 7記載のキット。
[9] 前記標識が、アタリジ-ゥムエステル、ルミノール、イソルミノール、ピロガロール、プ ロトへミン、アミノブチルェチル -n-イソルミノール又はァミノへキシルェチル -n-ェチ ル-イソルミノールによるものである請求項 7又は 8に記載のキット。
[10] 前記テロメァ反復配列に相補的な配列が、(CCCTAA) (nは 1〜10の整数を表す。 ) で示される塩基配列である請求項 7〜9いずれか 1項に記載の測定用キット。
[II] 前記検体が、ヒト又はマウス由来の検体である請求項 1〜7のいずれか 1項に記載の 方法。
PCT/JP2006/318783 2005-09-21 2006-09-21 Gテイル配列の長さ測定方法及びそれに用いるキット WO2007034897A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US12/067,710 US20090298062A1 (en) 2005-09-21 2006-09-21 Method for determination of the length of the g-tail sequence and kit for the method
EP06798222A EP1935989B1 (en) 2005-09-21 2006-09-21 Method for determination of the length of g-tail sequence
JP2007536561A JP5514401B2 (ja) 2005-09-21 2006-09-21 Gテイル配列の長さ測定方法及びそれに用いるキット
US13/361,511 US9932627B2 (en) 2005-09-21 2012-01-30 Method for determination of the length of the G-tail sequence and kit for the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005274523 2005-09-21
JP2005-274523 2005-09-21

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/067,710 A-371-Of-International US20090298062A1 (en) 2005-09-21 2006-09-21 Method for determination of the length of the g-tail sequence and kit for the method
US13/361,511 Division US9932627B2 (en) 2005-09-21 2012-01-30 Method for determination of the length of the G-tail sequence and kit for the method

Publications (1)

Publication Number Publication Date
WO2007034897A1 true WO2007034897A1 (ja) 2007-03-29

Family

ID=37888940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318783 WO2007034897A1 (ja) 2005-09-21 2006-09-21 Gテイル配列の長さ測定方法及びそれに用いるキット

Country Status (4)

Country Link
US (2) US20090298062A1 (ja)
EP (1) EP1935989B1 (ja)
JP (2) JP5514401B2 (ja)
WO (1) WO2007034897A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129457A1 (ja) * 2012-02-27 2013-09-06 東レ株式会社 核酸の検出方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039485A2 (en) * 1997-03-05 1998-09-11 The Regents Of The University Of Michigan Compositions and methods for analysis of nucleic acids
JP2001095586A (ja) * 1999-09-30 2001-04-10 Toshinori Ide テロメアサイズの測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0638807B1 (en) 1987-09-21 2002-07-17 Gen-Probe Incorporated Protection assay
PT88665B (pt) 1987-10-05 1992-12-31 Ml Tecnology Ventures Lp Metodo para a marcacao com ester de acridinio e purificacao de sondas nucleotidicas
WO2001098478A2 (en) 2000-06-22 2001-12-27 Mcgill University Clk-2, cex-7 and coq-4 genes, and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039485A2 (en) * 1997-03-05 1998-09-11 The Regents Of The University Of Michigan Compositions and methods for analysis of nucleic acids
JP2001095586A (ja) * 1999-09-30 2001-04-10 Toshinori Ide テロメアサイズの測定方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHAI W. ET AL.: "Human telomeres maintain their overhang length at senescence", MOL. CELL BIOL., vol. 25, no. 6, March 2005 (2005-03-01), pages 2158 - 2168, XP003009651 *
DIONNE I. AND WELLINGER R.J.: "Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase", PROC. NATL. ACAD. SCI. USA, vol. 93, 1996, pages 13902 - 13907, XP003009650 *
HEMANN M.T. AND GREIDER C.W.: "G-strand overhangs on telomeres in telomerase-deficient mouse cells", NUCLEIC ACIDS RES., vol. 27, no. 20, 1999, pages 3964 - 3969, XP003009647 *
KUSONIKI M. ET AL.: "G-tail telomere HPA: simple measurement of human single-stranded telomeric overhangs", ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN, November 2005 (2005-11-01), pages 518, ABSTR. NO. 2P-1017, XP003009649 *
MAKAROV V.L. ET AL.: "Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening", CELL, vol. 88, 1997, pages 657 - 666, XP002072775 *
NAKAMURA, Y. ET AL., CLIN. CHEM., vol. 45, 1999, pages 1718 - 1724
SALDANHA, S.N.; ANDREWS, L.G.; TOLLEFSBOL, T.O., EUR. J. BIOCHEM., vol. 270, 2003, pages 389 - 403
See also references of EP1935989A4 *
TAHARA H. ET AL.: "G-tail telomere HPA: simple measurement of human single-stranded telomeric overhangs", NATURE METHODS, vol. 2, no. 11, November 2005 (2005-11-01), pages 829 - 831, XP003009648 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129457A1 (ja) * 2012-02-27 2013-09-06 東レ株式会社 核酸の検出方法

Also Published As

Publication number Publication date
JP2014050407A (ja) 2014-03-20
US9932627B2 (en) 2018-04-03
EP1935989A4 (en) 2009-11-11
US20090298062A1 (en) 2009-12-03
US20120190022A1 (en) 2012-07-26
EP1935989B1 (en) 2012-09-12
JP5514401B2 (ja) 2014-06-04
JPWO2007034897A1 (ja) 2009-03-26
EP1935989A1 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
JP5095888B2 (ja) 特異的lnaプライマによる遺伝子内における突然変異の検出
US20070042365A1 (en) Assay for detecting methylation changes in nucleic acids using an intercalating nucleic acid
US20140364333A1 (en) Methods for Live Imaging of Cells
CN107109401A (zh) 使用crispr‑cas系统的多核苷酸富集
JPH05504477A (ja) 特定のヌクレオチド変異の決定のための方法および試薬
AU3274600A (en) One step sample preparation and detection of nucleic acids in complex biologicalsamples
JP2022531421A (ja) サンプル中の1つ以上の標的核酸分析物を検出するためのキットならびにそれを作製および使用する方法
US11155858B2 (en) Polynucleotide barcodes for long read sequencing
JP2023539360A (ja) サンプル中の1つ以上の標的分析物を検出するためのキット並びにそれを作製及び使用する方法
CN105473736A (zh) 基于纳米探针的遗传学检验
WO2007105673A1 (ja) 変異遺伝子の検出方法
WO2007034897A1 (ja) Gテイル配列の長さ測定方法及びそれに用いるキット
CN107109398B (zh) 单核苷酸多态性检测用寡核苷酸探针及单核苷酸多态性检测方法
Sanders et al. Germline loss of MBD4 predisposes to leukaemia due to a mutagenic cascade driven by 5mC
US20140349879A1 (en) Method for detecting nucleotide mutation, and detection kit
CN110396540B (zh) 一种血友病基因突变位点的检测方法
AU2004206037B2 (en) Assay for detecting methylation changes in nucleic acids using an intercalating nucleic acid
WO2005045033A1 (ja) 遺伝子多型の検出方法
US6808883B1 (en) Automatable rapid test for detection of cancer, based on telomerase (hTC) mRNA with specific primers and probes
JP2001095586A (ja) テロメアサイズの測定方法
Ghosh Modified Nucleotides and Nucleic Acids as Molecular Probes
US20030124547A1 (en) Hybridization assays for gene dosage analysis
Blömeke Detection of Three Major Polymorphisms in the N-Acetyltransferase 2 Gene by Melting Peak Analysis Using Fluorogenic Hybridization Probes
KR20100084760A (ko) PLCG1 및 RasGRP3 유전자로부터 유래된 단일염기다형을 포함하는 폴리뉴클레오티드, 이를 포함하는마이크로어레이 및 진단키트, 및 이를 이용한 분석방법

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007536561

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006798222

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12067710

Country of ref document: US