WO2007034799A1 - Flat organic electrolyte battery - Google Patents

Flat organic electrolyte battery Download PDF

Info

Publication number
WO2007034799A1
WO2007034799A1 PCT/JP2006/318566 JP2006318566W WO2007034799A1 WO 2007034799 A1 WO2007034799 A1 WO 2007034799A1 JP 2006318566 W JP2006318566 W JP 2006318566W WO 2007034799 A1 WO2007034799 A1 WO 2007034799A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
negative electrode
battery
organic electrolyte
lithium
Prior art date
Application number
PCT/JP2006/318566
Other languages
French (fr)
Japanese (ja)
Inventor
Shinji Fujii
Susumu Yamanaka
Toshihiko Ikehata
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007034799A1 publication Critical patent/WO2007034799A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/109Primary casings; Jackets or wrappings characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte

Definitions

  • the present invention relates to a flat organic electrolyte battery using lithium metal or lithium alloy as a negative electrode active material and graphite fluoride as a positive electrode active material.
  • an organic electrolyte battery has a high energy density, is excellent in reliability such as storability and leakage resistance, and can be reduced in size and weight. For this reason, demand is increasing year by year as a main power source for various electronic devices and as a memory backup power source.
  • lithium metal is used for the negative electrode
  • manganese dioxide, graphite fluoride, titanium chloride, silver chromate, etc. are used for the positive electrode.
  • typical secondary batteries use lithium metal and lithium occluding / releasing alloys for the negative electrode, carbon metal oxides, polyacene, and materials that form intercalation compounds with lithium ions for the positive electrode. .
  • positive electrode active materials include metal oxides such as niobium pentoxide, vanadium pentoxide, and manganese dioxide, composite oxides of lithium and metal oxides, titanium disulfide, molybdenum disulfide, and the like.
  • metal oxides such as niobium pentoxide, vanadium pentoxide, and manganese dioxide
  • composite oxides of lithium and metal oxides titanium disulfide, molybdenum disulfide, and the like.
  • conductive polymers such as polyaline and polyacene.
  • the main shape of the battery is a cylindrical shape or a flat shape.
  • a flat-type lithium graphite fluoride battery has excellent long-term storage characteristics of 10 years or more at room temperature, and is therefore widely used as a power source for memory backup.
  • the conventional lithium graphite fluoride battery has the following problems in discharging in a low temperature environment. Discharge of fluorinated graphite lithium battery from metallic lithium as negative electrode The process proceeds when the dissolved lithium ions are inserted between the fluorinated graphite layers as the positive electrode. At that time, lithium ions are inserted between the fluorinated graphite layers in a solvated state with the electrolytic solution. Therefore, the positive electrode using fluorinated graphite increases in volume (expands) as the discharge progresses. In particular, the expansion rate tends to increase as the discharge load increases and the temperature decreases.
  • the volume expansion of the pellet-shaped positive electrode proceeds both in the diameter direction and in the thickness direction.
  • the positive electrode expanded in the diametrical direction may come into contact with the inner wall of the gasket, and the positive electrode may be pushed by the gasket and the positive electrode may crack.
  • the internal resistance of the battery increases, and the battery voltage may decrease during discharge.
  • the positive electrode of the flat organic electrolyte battery is mainly composed of a conductive agent that plays a role of increasing conductivity and a binder that keeps the positive electrode in a pellet form. It is blended as Therefore, it is conceivable to increase the amount of the binder as a method for improving the deterioration of the battery characteristics accompanying the expansion of the positive electrode in a low temperature environment.
  • the binder include tetrafluorinated styrene resin (PTFE) and styrene butadiene rubber (SBR). It is considered that the strength of the positive electrode can be increased by increasing the binder content, and the volume expansion of the positive electrode pellet during discharge in a low temperature environment of a fluorinated graphite lithium battery can be suppressed. It is done.
  • the discharge reaction proceeds by inserting lithium ions dissolved in negative electrode force between fluorinated graphite layers in the positive electrode. For this reason, when the amount of the binder not involved in the discharge reaction is increased, the insertion of lithium ions between the fluorinated graphite layers may be inhibited. Therefore, an excessive increase in the binder may also cause deterioration of battery characteristics.
  • the present invention is a flat organic electrolyte battery that can be stably discharged in a discharge under an extremely low temperature environment without reducing the characteristics of the graphite fluoride lithium battery.
  • the flat organic electrolyte battery of the present invention includes a negative electrode, a positive electrode, an organic electrolyte, a separator, a sealing plate, a positive electrode case, and a gasket.
  • the negative electrode uses metallic lithium or lithium alloy as the negative electrode active material.
  • the positive electrode includes 100 parts by weight of graphite fluoride as a positive electrode active material and 15 parts by weight or more and 30 parts by weight or less of a conductive agent.
  • the separator is interposed between the negative electrode and the positive electrode.
  • the sealing plate contacts the negative electrode and also serves as the negative electrode terminal.
  • the positive electrode case contacts the positive electrode and doubles as the positive electrode terminal.
  • the gasket is interposed between the positive electrode case and the sealing plate.
  • FIG. 1 is a cross-sectional view of a flat organic electrolyte battery according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of a flat organic electrolyte battery according to an embodiment of the present invention.
  • the battery includes a positive electrode 3 disposed in a positive electrode case 1 having an upper opening, a negative electrode 4 disposed via a separator 5 that holds an organic electrolyte, and a sealing plate 2.
  • a sealing plate 2 After the sealing plate 2 is combined with the positive electrode case 1 through the grease gasket 6 having a cross-sectional shape and a force, The opening of the pole case 1 is force-sealed inside to form a sealing portion.
  • Positive electrode case 1 contacts positive electrode 3 to serve as a positive electrode terminal, and sealing plate 2 contacts negative electrode 4 to serve as a negative electrode terminal.
  • the positive electrode 3 includes fluorinated graphite as a positive electrode active material, and the negative electrode 4 includes metallic lithium or a lithium alloy as a negative electrode active material.
  • the positive electrode 3 contains 15 to 30 parts by weight of a conductive agent with respect to 100 parts by weight of fluorinated graphite.
  • the conductive agent it is preferable to use natural graphite, artificial graphite, acetylene black, furnace black or the like alone or a mixture thereof. As a result, the conductivity in the positive electrode 3, the moldability of the positive electrode 3, and the strength durability are obtained.
  • the binder styrene-butadiene rubber, fluorine-based resin and the like are mainly used.
  • a conductive agent has been added to assist the conductivity by covering the active material surface with a conductive agent when the conductivity of the active material itself is low. For this reason, increasing the amount of conductive agent added will improve the battery characteristics such as CCV characteristics. Even if it is added excessively, the characteristics will not improve.
  • the addition of a conductive agent suppresses the volume expansion of the positive electrode 3 associated with the discharge as well as imparting conductivity. Therefore, the larger the amount of conductive agent added, the more the volume expansion of the positive electrode 3 is suppressed until the end of discharge, and the battery characteristics are improved.
  • the addition amount of the conductive agent is desirably in the range of 15 parts by weight or more and 30 parts by weight or less with respect to 100 parts by weight of graphite fluoride as the positive electrode active material.
  • lithium alloys such as metallic lithium, Li—Al, Li Sn, Li—NiSi, and Li—Pb are used.
  • the organic electrolytic solution is prepared by dissolving a solute in an organic solvent.
  • organic solvents include polar solvents such as propylene carbonate, butylene carbonate, ethylene carbonate, snorephoran, and butyl lactone, and low-viscosity solvents such as 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate.
  • polar solvents such as propylene carbonate, butylene carbonate, ethylene carbonate, snorephoran, and butyl lactone
  • low-viscosity solvents such as 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate.
  • Solutes include lithium borofluoride, lithium phosphorus hexafluoride, lithium trifluoromethanesulfonate, and LiN (CF SO), LiN (C
  • Lithium fluoride is preferable because it has good storage characteristics at high temperatures and can exhibit stable discharge characteristics when dissolved in an organic solvent at a concentration of 0.5 to 1.5 molZl.
  • the gasket 6 is annular in order to insulate the positive electrode case 1 also serving as the positive electrode terminal and the sealing plate 2 also serving as the negative electrode terminal, and its cross section has an L shape.
  • the gasket 6 preferably has a rib-like inner wall portion 6A in the battery inner space, and the inner wall portion 6A has a structure facing a power generating element constituted by the positive electrode 3 and the negative electrode 4.
  • the gasket 6 has the inner wall 6A to prevent the positive electrode 3 and the sealing plate 2 from coming into contact with each other and short-circuiting when the positive electrode 3 expands in the diameter direction or the positive electrode 3 is displaced from the center. Is done.
  • batteries A to F are manufactured, and the effects of the present embodiment will be described using these batteries.
  • battery A will be described.
  • the positive electrode 3 is produced as follows. First, a conductive agent for 100 parts by weight of graphite Add 15 parts by weight of acetylene black, and 10 parts by weight of styrene butadiene rubber as a binder, and mix to prepare a positive electrode mixture. This positive electrode mixture is filled in a cylindrical mold having a diameter of 17. Omm, press-molded, and dried at 100 ° C for 24 hours.
  • the negative electrode 4 is formed by punching a metal lithium hoop-like material having a thickness of 1. Omm into a circle. The negative electrode 4 is pressed against the inner surface of the central portion of the sealing plate 2 by pressure.
  • the separator 5 is made of a polypropylene (PP) non-woven fabric punched into a larger diameter than the positive electrode 3 and the negative electrode 4.
  • PP polypropylene
  • a solution prepared by dissolving lithium borofluoride in lmol / 1 at ⁇ -petit rataton is used as the organic electrolyte.
  • This battery is manufactured by the following procedure. First, the positive electrode 3 and the separator 5 are arranged inside the positive electrode case 1, and 1. Og of organic electrolyte is injected. Next, the sealing plate 2 having the negative electrode 4 bonded to the inner surface of the central portion is inserted into the positive electrode case 1. At this time, the power generation element in which the positive electrode 3 and the negative electrode 4 are disposed to face each other via the separator 5 is accommodated in the inner space of the battery container surrounded by the sealing plate 2 and the positive electrode case 1 insulated by the gasket 6. Thereafter, the peripheral edge of the positive electrode case 1 is deformed inward by a caulking jig, and is folded back along the peripheral edge of the sealing plate 2 together with the gasket 6.
  • the peripheral portion of the sealing plate 2 is also tightened with the vertical force through the gasket 6.
  • An inwardly folded portion is formed in the positive electrode case 1, and has a cross-sectional shape as shown in FIG. 1, with a diameter of 24.5 mm and a thickness of 5. Omm battery is obtained.
  • the gasket 6 is made of polyphenylene sulfide (PPS) having a cross-sectional shape of force, and the inner wall 6A of the gasket 6 in contact with the power generation element has an inner diameter of 20. Omm.
  • batteries B, C, and D batteries are fabricated under the same conditions as battery A, except that the blending ratio of acetylene black, which is a conductive agent, is 20 parts by weight, 25 parts by weight, and 30 parts by weight, respectively.
  • batteries E and F are produced under the same conditions as battery A except that the mixing ratio of acetylene black is 5 parts by weight and 10 parts by weight, respectively.
  • the amount of active material of positive electrode 3 is adjusted so that the theoretical capacity of the battery is regulated by positive electrode 3 to be 550 mAh.
  • the pellet thickness is varied so that the density of the positive electrode 3 is also equal, and the thickness of the negative electrode 4 is adjusted to produce a battery.
  • the battery produced as described above was evaluated by performing the following tests. First, 10 batteries from battery A to battery F were each connected with a resistance of 30 k ⁇ and discharged under an environment of 20 ° C. The battery was discharged to a final voltage of 2. OV and the discharge capacity was measured. In addition, each battery was disassembled after discharging to 50% of the theoretical capacity of 550 mAh, and the diameter of each positive electrode 3 was measured. (Table 1) shows the average value of the discharge capacity of each battery and the average value of the positive electrode 3 diameter.
  • battery E has a capacity of about 70% of the theoretical capacity of 550 mAh, and no power is obtained.
  • the capacity of the conductive agent is not less than 15 parts by weight with respect to 100 parts by weight of graphite fluoride.
  • the cause of the decrease in discharge capacity due to the difference in the amount of the conductive agent is considered as follows.
  • the positive electrode 3 expands in volume as the discharge proceeds. Such volume expansion is more pronounced when discharging under severe conditions such as large current discharge or discharge in a low temperature environment than during discharge under weak current or discharge at room temperature or high temperature. It is. From these conditions, it is considered that lithium ions are inserted between layers of fluorinated graphite in different states during discharge under severe conditions, and the layers are greatly expanded. Therefore, the positive electrode 3 comes into contact with the gasket 6 during the discharge, and the positive electrode 3 is cracked and broken. As a result, the organic electrolyte solution withered rapidly, and the internal resistance of the battery increased, which is presumed to decrease the discharge capacity.
  • the positive electrode 3 is discharged in a low temperature environment. Excessive expansion is suppressed. For this reason, it is considered that the spread between the fluorinated graphite layers due to discharge in a low temperature environment is reduced, and a discharge capacity close to the theoretical capacity can be obtained.
  • a battery was fabricated under the same conditions as Battery A except that acetylene black, which is a conductive agent, was changed to natural graphite, and the same evaluation was performed. In this case, the same result was obtained. Obtained. In other words, the result was that the discharge capacity at low temperature was close to the theoretical capacity in the range of 15 parts by weight to 30 parts by weight with respect to 100 parts by weight of the graphite conductive graphite. Similar results were obtained when the conductive agent was changed to artificial graphite or furnace black.
  • polyethylene naphthalate, polyethylene terephthalate, or PP may be used as the material of the gasket 6.
  • the separator 5 may be made of non-woven cloth or microporous film of polyethylene (PE), polyphenylene sulfide (PPS), or polyethylene terephthalate (PET).
  • the low-temperature discharge characteristics of a graphite fluoride lithium battery can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Disclosed is a flat organic electrolyte battery capable of stably discharging in an extremely low temperature environment without deteriorating characteristics of conventional graphite fluoride lithium batteries. Specifically disclosed is a flat organic electrolyte battery comprising a negative electrode, a positive electrode, an organic electrolyte solution, a separator, a top plate, a positive electrode case and a gasket. The negative electrode contains either metal lithium or a lithium alloy as a negative electrode active material. The positive electrode contains 100 parts by weight of graphite fluoride as a positive electrode active material and 15-30 parts by weight of a conductive agent. The separator is interposed between the negative electrode and the positive electrode. The top plate is in contact with the negative electrode and also serves as a negative electrode terminal. The positive electrode case is in contact with the positive electrode and also serves as a positive electrode terminal. The gasket is interposed between the positive electrode case and the top plate.

Description

明 細 書  Specification
偏平形有機電解液電池  Flat organic electrolyte battery
技術分野  Technical field
[0001] 本発明はリチウム金属あるいはリチウム合金を負極活物質とし、フッ化黒鉛を正極 活物質とする偏平形有機電解液電池に関する。  The present invention relates to a flat organic electrolyte battery using lithium metal or lithium alloy as a negative electrode active material and graphite fluoride as a positive electrode active material.
背景技術  Background art
[0002] 一般に有機電解質電池はエネルギー密度が高く、保存性、耐漏液特性などの信頼 性に優れ、また、小型化、軽量ィ匕が可能である。そのため各種電子機器の主電源や メモリーバックアップ用電源として、年々その需要が増加している。この種の代表的な 一次電池では、負極にリチウム金属、正極に二酸ィ匕マンガン、フッ化黒鉛、塩化チォ ニール、クロム酸銀などが用いられている。また代表的な二次電池では、負極にリチ ゥム金属やリチウムの吸蔵 ·放出が可能な合金、炭素金属酸化物、ポリアセン、正極 にはリチウムイオンと層間化合物を形成する材料が用いられている。このような正極 活物質としては、例えば五酸ィ匕ニオブ、五酸化バナジウム、二酸化マンガンなどの金 属酸化物や、リチウムと金属酸化物の複合酸化物、また二硫化チタン、二硫化モリブ デンなどの硫ィ匕物、さらにはポリア-リン、ポリアセンなどの導電性高分子などが挙げ られる。電池の形状としては円筒形や偏平形が主流である。  In general, an organic electrolyte battery has a high energy density, is excellent in reliability such as storability and leakage resistance, and can be reduced in size and weight. For this reason, demand is increasing year by year as a main power source for various electronic devices and as a memory backup power source. In a typical primary battery of this type, lithium metal is used for the negative electrode, manganese dioxide, graphite fluoride, titanium chloride, silver chromate, etc. are used for the positive electrode. Also, typical secondary batteries use lithium metal and lithium occluding / releasing alloys for the negative electrode, carbon metal oxides, polyacene, and materials that form intercalation compounds with lithium ions for the positive electrode. . Examples of such positive electrode active materials include metal oxides such as niobium pentoxide, vanadium pentoxide, and manganese dioxide, composite oxides of lithium and metal oxides, titanium disulfide, molybdenum disulfide, and the like. Examples thereof include conductive polymers such as polyaline and polyacene. The main shape of the battery is a cylindrical shape or a flat shape.
[0003] その中でも偏平形のフッ化黒鉛リチウム電池は常温で 10年以上という長期保存特 性に優れて 、ることによりメモリーバックアップ用の電源として広く用いられて 、る。し 力しながら、最近では自動車、産業機器などの厳しい温度環境下での使用を要望さ れており、電気特性に関しても従来のメモリーバックアップなどの微弱電流放電から 大電流放電のパルス用途へと変化して 、る。  [0003] Among them, a flat-type lithium graphite fluoride battery has excellent long-term storage characteristics of 10 years or more at room temperature, and is therefore widely used as a power source for memory backup. However, recently there has been a demand for use in severe temperature environments such as automobiles and industrial equipment, and electrical characteristics have also changed from conventional weak current discharges such as memory backups to high current discharge pulse applications. And then.
[0004] このような要求を満たすため、例えば米国特許第 5246795号公報、特開平 8— 31 429号公報、特開 2002— 170575号公報には偏平形のフッ化黒鉛リチウム電池に おける電池構成材料の検討による高温保存特性の改良方法が提案されている。  In order to satisfy such a requirement, for example, US Pat. No. 5246795, Japanese Patent Laid-Open No. 8-31 429, and Japanese Patent Laid-Open No. 2002-170575 disclose a battery constituent material in a flat lithium graphite fluoride battery. A method for improving the high-temperature storage characteristics has been proposed.
[0005] しかし、従来のフッ化黒鉛リチウム電池は低温環境下での放電において以下のよう な課題を有して 、る。フッ化黒鉛リチウム電池の放電は負極である金属リチウムから 溶解したリチウムイオンが正極であるフッ化黒鉛層間に挿入されることで進行する。そ の際にリチウムイオンは電解液と溶媒和された状態でフッ化黒鉛の層間に挿入され る。そのため、フッ化黒鉛を用いた正極は放電の進行と共に体積増カロ (膨張)する。 特に放電の負荷が大きぐ低い温度であるほど膨張率は大きくなる傾向にある。これ は、リチウムイオンが急激にフッ化黒鉛層間に進入することで、従来とは層間の広がり が異なるためであると推測される。この際、ペレット状の正極の体積膨脹は直径方向 と厚み方向の両方に進行する。直径方向に膨張すると正極の外径とガスケットの内 径のバランスによっては直径方向に膨張した正極がガスケット内壁に接触し、正極が ガスケットに押されて正極の割れ'破壊が生じる場合がある。この場合には電池の内 部抵抗が上昇し、放電途中で電池電圧が低下する可能性がある。 [0005] However, the conventional lithium graphite fluoride battery has the following problems in discharging in a low temperature environment. Discharge of fluorinated graphite lithium battery from metallic lithium as negative electrode The process proceeds when the dissolved lithium ions are inserted between the fluorinated graphite layers as the positive electrode. At that time, lithium ions are inserted between the fluorinated graphite layers in a solvated state with the electrolytic solution. Therefore, the positive electrode using fluorinated graphite increases in volume (expands) as the discharge progresses. In particular, the expansion rate tends to increase as the discharge load increases and the temperature decreases. This is presumed to be because the spread of the interlayer is different from the conventional one because lithium ions rapidly enter the fluorinated graphite layer. At this time, the volume expansion of the pellet-shaped positive electrode proceeds both in the diameter direction and in the thickness direction. When expanded in the diametrical direction, depending on the balance between the outer diameter of the positive electrode and the inner diameter of the gasket, the positive electrode expanded in the diametrical direction may come into contact with the inner wall of the gasket, and the positive electrode may be pushed by the gasket and the positive electrode may crack. In this case, the internal resistance of the battery increases, and the battery voltage may decrease during discharge.
[0006] このような問題を解決するには円柱状に加圧成型されたペレット状の正極の直径を ガスケットの内壁に対して極度に小さくする方法が考えられる。これにより正極がガス ケット内壁に接触することが防止される。し力しながら、正極の直径を極端に小さくす ると負極との対向面積も同時に減少してしまうため、閉回路電圧 (CCV)特性などフッ 化黒鉛リチウム電池自体の特性の低下を引き起こす可能性がある。  [0006] In order to solve such a problem, a method is conceivable in which the diameter of the pellet-shaped positive electrode that is pressure-molded into a cylindrical shape is extremely small with respect to the inner wall of the gasket. This prevents the positive electrode from contacting the inner wall of the gasket. However, if the diameter of the positive electrode is made extremely small, the area facing the negative electrode also decreases at the same time, which may cause deterioration of the characteristics of the graphite lithium fluoride battery itself, such as the closed circuit voltage (CCV) characteristic. There is.
[0007] また、偏平形有機電解液電池の正極は正極活物質以外にも導電性を高める役割 を果たす導電剤や、正極をペレット状に維持する役割を果たす結着剤が主な構成成 分として配合されて 、る。そこで低温環境下での正極の膨張に伴う電池特性の低下 を改善する方法として、結着剤を増量することも考えられる。結着剤には 4フッ化工チ レン榭脂(PTFE)やスチレンブタジエンゴム(SBR)などが挙げられる。結着剤の配 合量を増加させれば正極の強度を高めることは可能であり、フッ化黒鉛リチウム電池 の低温環境下での放電における正極ペレットの体積膨脹を抑制することができると考 えられる。  [0007] In addition to the positive electrode active material, the positive electrode of the flat organic electrolyte battery is mainly composed of a conductive agent that plays a role of increasing conductivity and a binder that keeps the positive electrode in a pellet form. It is blended as Therefore, it is conceivable to increase the amount of the binder as a method for improving the deterioration of the battery characteristics accompanying the expansion of the positive electrode in a low temperature environment. Examples of the binder include tetrafluorinated styrene resin (PTFE) and styrene butadiene rubber (SBR). It is considered that the strength of the positive electrode can be increased by increasing the binder content, and the volume expansion of the positive electrode pellet during discharge in a low temperature environment of a fluorinated graphite lithium battery can be suppressed. It is done.
[0008] 一方、放電反応は負極力 溶解したリチウムイオンが正極中のフッ化黒鉛層間に挿 入されることで進行する。そのため放電反応に関与しない結着剤を増量するとリチウ ムイオンのフッ化黒鉛層間への挿入を阻害する場合があるため、過剰な結着剤の増 量も電池特性の低下を引き起こす可能性がある。  [0008] On the other hand, the discharge reaction proceeds by inserting lithium ions dissolved in negative electrode force between fluorinated graphite layers in the positive electrode. For this reason, when the amount of the binder not involved in the discharge reaction is increased, the insertion of lithium ions between the fluorinated graphite layers may be inhibited. Therefore, an excessive increase in the binder may also cause deterioration of battery characteristics.
発明の開示 [0009] 本発明はフッ化黒鉛リチウム電池の特性を低減させることなぐ極めて低温環境下 での放電において安定に放電することを可能とする偏平形有機電解液電池である。 本発明の扁平形有機電解液電池は、負極と、正極と、有機電解液と、セパレータと、 封口板と、正極ケースと、ガスケットとを有する。負極は金属リチウムまたはリチウム合 金を負極活物質とする。正極は正極活物質であるフッ化黒鉛 100重量部と 15重量 部以上 30重量部以下の導電剤とを含む。セパレータは負極と正極との間に介在す る。封口板は負極に接触し負極端子を兼ねる。正極ケースは正極に接触し正極端子 を兼ねる。ガスケットは正極ケースと封口板の間に介在する。本発明の構成によれば 、黒鉛、アセチレンブラックなど正極活物質の導電性を補う役割で添加される導電剤 を従来よりも過剰に添加することによって正極自体の直流抵抗が低減される。その結 果、リチウムイオンのフッ化黒鉛への挿入がより円滑に進行するため、低温環境下で の放電における正極の過度な膨張が抑制される。そのため、従来のフッ化黒鉛リチウ ム電池に比べて低温環境下での放電特性が向上する。 Disclosure of the invention [0009] The present invention is a flat organic electrolyte battery that can be stably discharged in a discharge under an extremely low temperature environment without reducing the characteristics of the graphite fluoride lithium battery. The flat organic electrolyte battery of the present invention includes a negative electrode, a positive electrode, an organic electrolyte, a separator, a sealing plate, a positive electrode case, and a gasket. The negative electrode uses metallic lithium or lithium alloy as the negative electrode active material. The positive electrode includes 100 parts by weight of graphite fluoride as a positive electrode active material and 15 parts by weight or more and 30 parts by weight or less of a conductive agent. The separator is interposed between the negative electrode and the positive electrode. The sealing plate contacts the negative electrode and also serves as the negative electrode terminal. The positive electrode case contacts the positive electrode and doubles as the positive electrode terminal. The gasket is interposed between the positive electrode case and the sealing plate. According to the configuration of the present invention, the direct current resistance of the positive electrode itself is reduced by adding a conductive agent added to supplement the conductivity of the positive electrode active material, such as graphite and acetylene black, in excess of the conventional amount. As a result, insertion of lithium ions into the fluorinated graphite proceeds more smoothly, so that excessive expansion of the positive electrode during discharge in a low temperature environment is suppressed. Therefore, the discharge characteristics under a low temperature environment are improved as compared with the conventional fluorinated graphite lithium battery.
図面の簡単な説明  Brief Description of Drawings
[0010] [図 1]図 1は本発明の実施の形態における偏平形有機電解液電池の断面図である。  FIG. 1 is a cross-sectional view of a flat organic electrolyte battery according to an embodiment of the present invention.
符号の説明  Explanation of symbols
[0011] 1 正極ケース  [0011] 1 Positive electrode case
2 封口板  2 Sealing plate
3 正極  3 Positive electrode
4 負極  4 Negative electrode
5 セノレータ  5 Senator
6 ガスケット  6 Gasket
6A 内壁部  6A inner wall
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 図 1は本発明の実施の形態における偏平形有機電解液電池の断面図である。この 電池は、上部が開口した正極ケース 1内に配置された正極 3と、有機電解液を保持 するセパレータ 5を介して配置された負極 4と、封口板 2とを有する。封口板 2は、断 面形状力 字状の榭脂製ガスケット 6を介して正極ケース 1と組み合わされた後に正 極ケース 1の開口部が内側に力シメ封口されて封口部が構成されている。正極ケー ス 1は正極 3に接触して正極端子を兼ね、封口板 2は負極 4に接触し負極端子を兼 ねる。 FIG. 1 is a cross-sectional view of a flat organic electrolyte battery according to an embodiment of the present invention. The battery includes a positive electrode 3 disposed in a positive electrode case 1 having an upper opening, a negative electrode 4 disposed via a separator 5 that holds an organic electrolyte, and a sealing plate 2. After the sealing plate 2 is combined with the positive electrode case 1 through the grease gasket 6 having a cross-sectional shape and a force, The opening of the pole case 1 is force-sealed inside to form a sealing portion. Positive electrode case 1 contacts positive electrode 3 to serve as a positive electrode terminal, and sealing plate 2 contacts negative electrode 4 to serve as a negative electrode terminal.
[0013] 正極 3はフッ化黒鉛を正極活物質として含み、負極 4は金属リチウムまたはリチウム 合金を負極活物質として含む。特に正極 3はフッ化黒鉛 100重量部に対し 15重量部 以上 30重量部以下の導電剤を含有している。このような正極 3を用いることで低温環 境下での放電における正極 3の過度な体積膨張が抑制され、極めて低温環境下で の放電特性が向上する。  The positive electrode 3 includes fluorinated graphite as a positive electrode active material, and the negative electrode 4 includes metallic lithium or a lithium alloy as a negative electrode active material. In particular, the positive electrode 3 contains 15 to 30 parts by weight of a conductive agent with respect to 100 parts by weight of fluorinated graphite. By using such a positive electrode 3, excessive volume expansion of the positive electrode 3 during discharge in a low temperature environment is suppressed, and discharge characteristics in an extremely low temperature environment are improved.
[0014] 正極活物質であるフッ化黒鉛は、コータスや黒鉛などの炭素材料とフッ素ガスとを 2 50〜650°C程度の温度で反応させることにより生成する。フッ素化処理に応じて、 (C F ) (但し、 x=0. 5〜1)、 (C F)あるいはこれらの混合物が生成する。有機電解液 との組み合わせにおいて、フッ化黒鉛の形状や粒径等に特段の限定はないが、好ま しくは、ニードルコータスを出発材料とし、これを 400°Cでフッ化処理したものが好まし い。また、正極 3を構成する際、導電剤や結着剤をフッ化黒鉛に混合して正極合剤と し、この正極合剤を円柱状に加圧成型した後、乾燥してペレット状の正極 3を作製す る。  [0014] Fluorinated graphite, which is a positive electrode active material, is produced by reacting a carbon material such as coatus or graphite with fluorine gas at a temperature of about 250 to 650 ° C. Depending on the fluorination treatment, (C F) (where x = 0.5-1), (C F) or a mixture thereof is formed. There is no particular limitation on the shape and particle size of the fluorinated graphite in combination with the organic electrolyte, but it is preferable to use needle coatas as a starting material and fluorinated at 400 ° C. Yes. Further, when the positive electrode 3 is constituted, a conductive agent or a binder is mixed with fluorinated graphite to form a positive electrode mixture. The positive electrode mixture is pressure-molded into a cylindrical shape, and then dried to form a pellet-shaped positive electrode. 3 is produced.
[0015] また導電剤には、天然黒鉛、人造黒鉛、アセチレンブラックおよびファーネスブラッ クなどを単独またはこれらの混合物を用いることが好ましい。これにより正極 3中の導 電性、正極 3の成形性、強度耐久性が得られる。結着剤にはスチレンブタジエンゴム 、フッ素系榭脂などが主に用いられる。  [0015] As the conductive agent, it is preferable to use natural graphite, artificial graphite, acetylene black, furnace black or the like alone or a mixture thereof. As a result, the conductivity in the positive electrode 3, the moldability of the positive electrode 3, and the strength durability are obtained. As the binder, styrene-butadiene rubber, fluorine-based resin and the like are mainly used.
[0016] 従来から導電剤は活物質自身の導電性が低!ヽ場合に、活物質表面を導電剤で覆 うことで導電性を補助するために添加されている。そのため、導電剤の添加量を増や すことで CCV特性などの電池特性は向上する力 過剰に添加しても特性は向上しな い。これに対し、フッ化黒鉛リチウム電池においては導電剤を添加することにより導電 性が付与されるだけでなぐ放電に伴う正極 3の体積膨張が抑制される。そのため、 導電剤添加量は多ければ多いほどより放電末期まで正極 3の体積膨張が抑制され、 電池特性が向上する。  Conventionally, a conductive agent has been added to assist the conductivity by covering the active material surface with a conductive agent when the conductivity of the active material itself is low. For this reason, increasing the amount of conductive agent added will improve the battery characteristics such as CCV characteristics. Even if it is added excessively, the characteristics will not improve. On the other hand, in a lithium fluoride graphite battery, the addition of a conductive agent suppresses the volume expansion of the positive electrode 3 associated with the discharge as well as imparting conductivity. Therefore, the larger the amount of conductive agent added, the more the volume expansion of the positive electrode 3 is suppressed until the end of discharge, and the battery characteristics are improved.
[0017] なお、活物質量を一定として多量の導電剤を添加した場合、正極 3の厚みが増加 する。そのため、封口時の押圧力により正極ケース 1や封口板 2が変形する場合があ る。このような変形はカシメ部分の密封性を低下させ、耐漏液特性や保存特性が低 下する。また後述するように多量の導電剤を添加すると正極 3の成形性が低下する。 そのため導電剤の添加量は正極活物質であるフッ化黒鉛 100重量部に対して 15重 量部以上 30重量部以下の範囲であることが望まし 、。 [0017] Note that, when a large amount of conductive agent is added with a constant amount of active material, the thickness of the positive electrode 3 increases. To do. Therefore, the positive electrode case 1 and the sealing plate 2 may be deformed by the pressing force at the time of sealing. Such deformation lowers the sealability of the caulking portion, and deteriorates the leakage resistance and storage characteristics. Further, as described later, when a large amount of a conductive agent is added, the formability of the positive electrode 3 is lowered. Therefore, the addition amount of the conductive agent is desirably in the range of 15 parts by weight or more and 30 parts by weight or less with respect to 100 parts by weight of graphite fluoride as the positive electrode active material.
[0018] 負極 4には、金属リチウム、 Li—Al、 Li Sn、 Li—NiSi、 Li— Pbなどのリチウム合 金のうちの一つ以上が用いられている。  For the negative electrode 4, one or more of lithium alloys such as metallic lithium, Li—Al, Li Sn, Li—NiSi, and Li—Pb are used.
[0019] 有機電解液は有機溶媒に溶質を溶解して調製される。有機溶媒としては、プロピレ ンカーボネート、ブチレンカーボネート、エチレンカーボネート、スノレホラン、 Ίーブチ ルラクトンなどの極性溶媒や 1, 2—ジメトキシェタン、ジメチルカーボネート、ジェチ ルカーボネート、ェチルメチルカーボネートなどの低粘度溶媒を一つ以上使用するこ とができる。高温環境下で使用するためには、 y—プチルラクトンを単独で用いること が好ましい。溶質には、ホウフッ化リチウム、リチウム六フッ化リン、トリフルォロメタンス ルホン酸リチウム、および分子構造内にイミド結合を有する LiN (CF SO ) 、 LiN (C [0019] The organic electrolytic solution is prepared by dissolving a solute in an organic solvent. Examples of organic solvents include polar solvents such as propylene carbonate, butylene carbonate, ethylene carbonate, snorephoran, and butyl lactone, and low-viscosity solvents such as 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate. One or more can be used. In order to use in a high temperature environment, it is preferable to use y-ptyllactone alone. Solutes include lithium borofluoride, lithium phosphorus hexafluoride, lithium trifluoromethanesulfonate, and LiN (CF SO), LiN (C
3 2 2  3 2 2
F SO ) 、 LiN (CF SO ) (C F SO )などを用いることができる。この中でもホウフ F SO), LiN (CF SO) (C F SO), or the like can be used. Of these, Hough
2 5 2 2 3 2 4 9 2 2 5 2 2 3 2 4 9 2
ッ化リチウムは高温での保存特性が良好で、 0. 5〜1. 5molZlの濃度で有機溶媒 に溶解させた場合には安定した放電特性を発揮することができるため好ましい。  Lithium fluoride is preferable because it has good storage characteristics at high temperatures and can exhibit stable discharge characteristics when dissolved in an organic solvent at a concentration of 0.5 to 1.5 molZl.
[0020] ガスケット 6は正極端子を兼ねる正極ケース 1と負極端子を兼ねる封口板 2とを絶縁 するために環状であり、その断面は L字形の形状をしている。なお、ガスケット 6は電 池内空間にリブ状の内壁部 6Aを有し、内壁部 6Aが正極 3、負極 4から構成された発 電要素に面する構造となっていることが好ましい。ガスケット 6が内壁部 6Aを有するこ とにより、正極 3が直径方向に膨張したり、正極 3が中心カゝらずれたりした時に、正極 3と封口板 2とが接触して短絡することが防止される。  [0020] The gasket 6 is annular in order to insulate the positive electrode case 1 also serving as the positive electrode terminal and the sealing plate 2 also serving as the negative electrode terminal, and its cross section has an L shape. The gasket 6 preferably has a rib-like inner wall portion 6A in the battery inner space, and the inner wall portion 6A has a structure facing a power generating element constituted by the positive electrode 3 and the negative electrode 4. The gasket 6 has the inner wall 6A to prevent the positive electrode 3 and the sealing plate 2 from coming into contact with each other and short-circuiting when the positive electrode 3 expands in the diameter direction or the positive electrode 3 is displaced from the center. Is done.
[0021] その他電池を構成するにあたり、セパレータ、正極ケース、封口板などは公知の材 料を使用することができる。  [0021] In configuring other batteries, known materials can be used for the separator, the positive electrode case, the sealing plate, and the like.
[0022] 以下、より具体的な例として電池 A〜Fを作製し、これらを用いて本実施の形態の効 果を説明する。まず電池 Aについて説明する。  Hereinafter, as more specific examples, batteries A to F are manufactured, and the effects of the present embodiment will be described using these batteries. First, battery A will be described.
[0023] 正極 3は以下のようにして作製する。まずフッ化黒鉛 100重量部に対して、導電剤 であるアセチレンブラックを 15重量部、結着剤であるスチレンブタジエンゴムを 10重 量部加えて混合し正極合剤を調製する。この正極合剤を直径 17. Ommの円柱状の 金型内に充填し、加圧成型した後に 100°Cで 24時間乾燥する。 [0023] The positive electrode 3 is produced as follows. First, a conductive agent for 100 parts by weight of graphite Add 15 parts by weight of acetylene black, and 10 parts by weight of styrene butadiene rubber as a binder, and mix to prepare a positive electrode mixture. This positive electrode mixture is filled in a cylindrical mold having a diameter of 17. Omm, press-molded, and dried at 100 ° C for 24 hours.
[0024] 負極 4は厚み 1. Ommの金属リチウムのフープ状素材を円形に打抜いて用いる。負 極 4は、封口板 2の中央部内面に加圧により圧接する。セパレータ 5は正極 3、負極 4 よりも大径な円形に打抜いたポリプロピレン (PP)不織布で構成されている。また γ プチ口ラタトンにホウフッ化リチウムを lmol/1の割合で溶解した溶液を有機電解液と して用いる。 [0024] The negative electrode 4 is formed by punching a metal lithium hoop-like material having a thickness of 1. Omm into a circle. The negative electrode 4 is pressed against the inner surface of the central portion of the sealing plate 2 by pressure. The separator 5 is made of a polypropylene (PP) non-woven fabric punched into a larger diameter than the positive electrode 3 and the negative electrode 4. In addition, a solution prepared by dissolving lithium borofluoride in lmol / 1 at γ-petit rataton is used as the organic electrolyte.
[0025] この電池は以下の手順によって作製される。まず、正極ケース 1の内部に、正極 3と セパレータ 5とを配置し、有機電解液を 1. Og注入する。次に負極 4を中央部内面に 圧着した封口板 2を正極ケース 1内に挿入する。このときセパレータ 5を介して正極 3 、負極 4が対向配置された発電要素はガスケット 6により絶縁された封口板 2と正極ケ ース 1に取り囲まれた電池容器の内空間に収容される。その後、正極ケース 1の周縁 部をカシメ治具で内方に向けて変形させ、ガスケット 6と共に封口板 2の周縁部に沿 つて折り返す。これにより、ガスケット 6を介して封口板 2の周縁部を上下力も締付ける 内側への折り返し部が正極ケース 1に形成され、図 1に示すような断面形状を有し、 直径 24. 5mm、厚さ 5. Ommの電池が得られる。なおガスケット 6は断面形状力 字 状のポリフエ二レンスルフイド(PPS)で構成され、発電要素に接するガスケット 6の内 壁部 6Aの内径は 20. Ommである。  [0025] This battery is manufactured by the following procedure. First, the positive electrode 3 and the separator 5 are arranged inside the positive electrode case 1, and 1. Og of organic electrolyte is injected. Next, the sealing plate 2 having the negative electrode 4 bonded to the inner surface of the central portion is inserted into the positive electrode case 1. At this time, the power generation element in which the positive electrode 3 and the negative electrode 4 are disposed to face each other via the separator 5 is accommodated in the inner space of the battery container surrounded by the sealing plate 2 and the positive electrode case 1 insulated by the gasket 6. Thereafter, the peripheral edge of the positive electrode case 1 is deformed inward by a caulking jig, and is folded back along the peripheral edge of the sealing plate 2 together with the gasket 6. As a result, the peripheral portion of the sealing plate 2 is also tightened with the vertical force through the gasket 6. An inwardly folded portion is formed in the positive electrode case 1, and has a cross-sectional shape as shown in FIG. 1, with a diameter of 24.5 mm and a thickness of 5. Omm battery is obtained. The gasket 6 is made of polyphenylene sulfide (PPS) having a cross-sectional shape of force, and the inner wall 6A of the gasket 6 in contact with the power generation element has an inner diameter of 20. Omm.
[0026] 電池 B、 C、 Dは、導電剤であるアセチレンブラックの配合比をそれぞれ 20重量部、 25重量部、 30重量部とした以外は電池 Aと同様の条件で電池を作製する。一方、電 池 E、 Fは、アセチレンブラックの配合比をそれぞれ 5重量部、 10重量部とした以外は 電池 Aと同様の条件で電池を作製する。  [0026] For batteries B, C, and D, batteries are fabricated under the same conditions as battery A, except that the blending ratio of acetylene black, which is a conductive agent, is 20 parts by weight, 25 parts by weight, and 30 parts by weight, respectively. On the other hand, batteries E and F are produced under the same conditions as battery A except that the mixing ratio of acetylene black is 5 parts by weight and 10 parts by weight, respectively.
[0027] なお電池 A〜Fにおいて、正極 3はいずれも電池の理論容量が正極 3で規制されて 550mAhとなるように活物質量を調整する。また正極 3の密度も同等となるようにペレ ット厚みをそれぞれ変化させ、負極 4の厚みを調節して電池を作製する。  [0027] In batteries A to F, the amount of active material of positive electrode 3 is adjusted so that the theoretical capacity of the battery is regulated by positive electrode 3 to be 550 mAh. In addition, the pellet thickness is varied so that the density of the positive electrode 3 is also equal, and the thickness of the negative electrode 4 is adjusted to produce a battery.
[0028] なお導電剤量が 30重量部を超える場合、加圧成型時に正極 3に割れが発生する。  [0028] When the amount of the conductive agent exceeds 30 parts by weight, the positive electrode 3 cracks during pressure molding.
このような導電剤量で加圧成型することは困難である。 [0029] 以上のようにして作製した電池にっ 、て、以下の試験を実施して評価した。まず、 電池 Aから電池 Fまでの電池 10個〖こそれぞれ 30k Ωの抵抗を接続して 20°Cの環 境下で放電させ、終止電圧 2. OVまで放電して放電容量を測定した。また、理論容 量である 550mAhの 50%まで放電させた後に各電池を分解し、正極 3の直径をそれ ぞれ測定した。(表 1)は各電池の放電容量の平均値と正極 3の直径の平均値を示し ている。 It is difficult to perform pressure molding with such a conductive agent amount. [0029] The battery produced as described above was evaluated by performing the following tests. First, 10 batteries from battery A to battery F were each connected with a resistance of 30 kΩ and discharged under an environment of 20 ° C. The battery was discharged to a final voltage of 2. OV and the discharge capacity was measured. In addition, each battery was disassembled after discharging to 50% of the theoretical capacity of 550 mAh, and the diameter of each positive electrode 3 was measured. (Table 1) shows the average value of the discharge capacity of each battery and the average value of the positive electrode 3 diameter.
[0030] [表 1]  [0030] [Table 1]
Figure imgf000009_0001
Figure imgf000009_0001
[0031] (表 1)の結果から明らかなように、導電剤であるアセチレンブラックの量が少なくな ればなるほど得られる放電容量は小さくなる。特に電池 Eにおいては理論容量である 550mAhに対して約 70%程度の容量し力得られていない。一方、導電剤量がフッ 化黒鉛 100重量部に対して 15重量部以上である電池 Aから電池 Dではほぼ理論容 量どおりの容量が得られている。  [0031] As is apparent from the results of (Table 1), the smaller the amount of acetylene black as the conductive agent, the smaller the obtained discharge capacity. In particular, battery E has a capacity of about 70% of the theoretical capacity of 550 mAh, and no power is obtained. On the other hand, the capacity of the conductive agent is not less than 15 parts by weight with respect to 100 parts by weight of graphite fluoride.
[0032] このように導電剤量が異なることによって放電容量の低下が起こる原因は、以下の ように考えられる。正極 3は放電の進行に伴い体積膨張する。このような体積膨張は 、大電流放電や低温環境下での放電のように厳しい条件下での放電時の方が、微 弱電流での放電や常温、高温環境下での放電時に比べて顕著である。これらの状 況から、厳 、条件下での放電時にはリチウムイオンが異なる状態でフッ化黒鉛の層 間に挿入され、層間が大きく広がっていると考えられる。そのため、放電途中で正極 3 がガスケット 6と接触し、正極 3に割れ'破壊が生じる。これにより有機電解液が急激に 枯渴し、電池の内部抵抗が上昇したために放電容量が低下していると推測される。 導電剤量を増加すると正極 3の直流抵抗が低減され、フッ化黒鉛へのリチウムイオン の挿入がより円滑に進行する。これによつて低温環境下での放電における正極 3の 過度な膨張が抑制される。そのため、低温環境下での放電によるフッ化黒鉛層間の 広がりが軽減されて理論容量に近い放電容量が得られると考えられる。 [0032] The cause of the decrease in discharge capacity due to the difference in the amount of the conductive agent is considered as follows. The positive electrode 3 expands in volume as the discharge proceeds. Such volume expansion is more pronounced when discharging under severe conditions such as large current discharge or discharge in a low temperature environment than during discharge under weak current or discharge at room temperature or high temperature. It is. From these conditions, it is considered that lithium ions are inserted between layers of fluorinated graphite in different states during discharge under severe conditions, and the layers are greatly expanded. Therefore, the positive electrode 3 comes into contact with the gasket 6 during the discharge, and the positive electrode 3 is cracked and broken. As a result, the organic electrolyte solution withered rapidly, and the internal resistance of the battery increased, which is presumed to decrease the discharge capacity. Increasing the amount of the conductive agent reduces the DC resistance of the positive electrode 3 and facilitates the insertion of lithium ions into the fluorinated graphite. As a result, the positive electrode 3 is discharged in a low temperature environment. Excessive expansion is suppressed. For this reason, it is considered that the spread between the fluorinated graphite layers due to discharge in a low temperature environment is reduced, and a discharge capacity close to the theoretical capacity can be obtained.
[0033] また、(表 1)より導電剤の量を増加することによって同一の負荷で放電を行っても正 極 3の膨張は抑制されて 、ることがわ力る。このことも上記の推測どおり導電剤量が 異なることによって放電容量に差が生じる原因は正極ペレットの体積膨張が原因であ ることを示唆している。  [0033] In addition, it is obvious from (Table 1) that the expansion of the positive electrode 3 is suppressed even when discharging is performed with the same load by increasing the amount of the conductive agent. This also suggests that the cause of the difference in the discharge capacity due to the difference in the amount of the conductive agent as estimated above is due to the volume expansion of the positive electrode pellet.
[0034] 次に、導電剤であるアセチレンブラックを天然黒鉛に変更する以外は電池 Aと同様 の条件にて電池を作製して、同様の評価を行ったところ、この場合にも同様の結果が 得られた。すなわち、導電剤量カ^ツ化黒鉛 100重量部に対して 15重量部以上 30 重量部以下の範囲で、低温における放電容量が理論容量に近くなる結果が得られ た。また、導電剤を人造黒鉛またはファーネスブラックに変更した場合においても同 様の結果が得られた。  [0034] Next, a battery was fabricated under the same conditions as Battery A except that acetylene black, which is a conductive agent, was changed to natural graphite, and the same evaluation was performed. In this case, the same result was obtained. Obtained. In other words, the result was that the discharge capacity at low temperature was close to the theoretical capacity in the range of 15 parts by weight to 30 parts by weight with respect to 100 parts by weight of the graphite conductive graphite. Similar results were obtained when the conductive agent was changed to artificial graphite or furnace black.
[0035] なおガスケット 6の材料には PPS以外に、ポリエチレンナフタレート、ポリエチレンテ レフタレート、 PPを用いてもよい。また、セパレータ 5の材料には PP以外に、ポリェチ レン(PE)、ポリフエ二レンスルフイド(PPS)、ポリエチレンテレフタレート(PET)、の不 織布または微多孔膜を用いてもょ 、。  [0035] In addition to PPS, polyethylene naphthalate, polyethylene terephthalate, or PP may be used as the material of the gasket 6. In addition to PP, the separator 5 may be made of non-woven cloth or microporous film of polyethylene (PE), polyphenylene sulfide (PPS), or polyethylene terephthalate (PET).
産業上の利用可能性  Industrial applicability
[0036] 本発明によればフッ化黒鉛リチウム電池の低温放電特性を向上することができる。 [0036] According to the present invention, the low-temperature discharge characteristics of a graphite fluoride lithium battery can be improved.
そのためフッ化黒鉛リチウム電池の用途カ モリーバックアップ用途以外へ拡大する ことにつながるため、産業的な利用価値は極めて大きい。  For this reason, it will lead to the expansion of the use of graphite fluoride lithium batteries to applications other than the backup of the use of the catalyst, and thus the industrial utility value is extremely large.

Claims

請求の範囲 The scope of the claims
[1] 金属リチウムとリチウム合金との ヽずれかを負極活物質とする負極と、  [1] a negative electrode having a negative electrode active material of at least one of metallic lithium and a lithium alloy;
正極活物質であるフッ化黒鉛 100重量部と 15重量部以上 30重量部以下の導電剤と を含む正極と、  A positive electrode comprising 100 parts by weight of fluorinated graphite as a positive electrode active material and 15 to 30 parts by weight of a conductive agent;
有機電解液と、  An organic electrolyte,
前記負極と前記正極との間に介在するセパレータと、  A separator interposed between the negative electrode and the positive electrode;
前記負極に接触し負極端子を兼ねる封口板と、  A sealing plate that contacts the negative electrode and also serves as a negative electrode terminal;
前記正極に接触し正極端子を兼ねる正極ケースと、  A positive electrode case that contacts the positive electrode and also serves as a positive electrode terminal;
前記正極ケースと前記封口板の間に介在するガスケットと、を備えた偏平形有機電 解液電池。  A flat organic electrolyte battery comprising a gasket interposed between the positive electrode case and the sealing plate.
[2] 前記導電剤が天然黒鉛、人造黒鉛、アセチレンブラック、ファーネスブラックの少なく ともいずれかを含む請求項 1記載の偏平形有機電解液電池。  2. The flat organic electrolyte battery according to claim 1, wherein the conductive agent includes at least one of natural graphite, artificial graphite, acetylene black, and furnace black.
PCT/JP2006/318566 2005-09-21 2006-09-20 Flat organic electrolyte battery WO2007034799A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-273332 2005-09-21
JP2005273332 2005-09-21

Publications (1)

Publication Number Publication Date
WO2007034799A1 true WO2007034799A1 (en) 2007-03-29

Family

ID=37888842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318566 WO2007034799A1 (en) 2005-09-21 2006-09-20 Flat organic electrolyte battery

Country Status (1)

Country Link
WO (1) WO2007034799A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795955A (en) * 2021-03-30 2021-12-14 宁德新能源科技有限公司 Battery and electronic device using same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487821A (en) * 1977-12-23 1979-07-12 Matsushita Electric Ind Co Ltd Organic electrolyte cell
JPS54103513A (en) * 1978-01-31 1979-08-15 Matsushita Electric Ind Co Ltd Nonnelectrolyte cell
JPS56145670A (en) * 1980-04-15 1981-11-12 Matsushita Electric Ind Co Ltd Battery
JPS585966A (en) * 1981-07-01 1983-01-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JPS60246559A (en) * 1984-05-18 1985-12-06 Matsushita Electric Ind Co Ltd Flat organic electrolyte cell
JP2006059632A (en) * 2004-08-19 2006-03-02 Matsushita Electric Ind Co Ltd Flat-shaped organic electrolyte battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487821A (en) * 1977-12-23 1979-07-12 Matsushita Electric Ind Co Ltd Organic electrolyte cell
JPS54103513A (en) * 1978-01-31 1979-08-15 Matsushita Electric Ind Co Ltd Nonnelectrolyte cell
JPS56145670A (en) * 1980-04-15 1981-11-12 Matsushita Electric Ind Co Ltd Battery
JPS585966A (en) * 1981-07-01 1983-01-13 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery
JPS60246559A (en) * 1984-05-18 1985-12-06 Matsushita Electric Ind Co Ltd Flat organic electrolyte cell
JP2006059632A (en) * 2004-08-19 2006-03-02 Matsushita Electric Ind Co Ltd Flat-shaped organic electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113795955A (en) * 2021-03-30 2021-12-14 宁德新能源科技有限公司 Battery and electronic device using same
WO2022205011A1 (en) * 2021-03-30 2022-10-06 宁德新能源科技有限公司 Battery and electronic device applying same

Similar Documents

Publication Publication Date Title
US7883797B2 (en) Non-aqueous electrolyte battery
US7214449B2 (en) Cathode active material and non-aqueous electrolyte secondary battery
KR100814560B1 (en) Secondary battery with terminal for surface mounting
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JP2001057179A (en) Secondary battery and case thereof
JP4649113B2 (en) Nonaqueous electrolyte secondary battery
JP2001084993A (en) Battery
WO2007034798A1 (en) Flat organic electrolyte secondary battery
EP1278261A1 (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
JP4580699B2 (en) Nonaqueous electrolyte secondary battery
JP4563002B2 (en) Flat non-aqueous electrolyte secondary battery
WO2007034799A1 (en) Flat organic electrolyte battery
CN111164814B (en) Cylindrical secondary battery
JP2007220455A (en) Nonaqueous electrolyte secondary battery
JP2000277063A (en) Sealed battery
JP2006059632A (en) Flat-shaped organic electrolyte battery
JPH1074538A (en) Lithium ion secondary battery
JPH0997611A (en) Electrode for battery, and secondary battery
JP2005032688A (en) Non-aqueous electrolyte secondary battery
JP4284261B2 (en) Secondary battery
JP7277626B2 (en) Non-aqueous electrolyte battery
JP2002134072A (en) Flattened non-aqueous electrolytic secondary battery
JP7337515B2 (en) Non-aqueous electrolyte battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JPWO2018154841A1 (en) Coin type battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06798126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP