JPS585966A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPS585966A
JPS585966A JP56102776A JP10277681A JPS585966A JP S585966 A JPS585966 A JP S585966A JP 56102776 A JP56102776 A JP 56102776A JP 10277681 A JP10277681 A JP 10277681A JP S585966 A JPS585966 A JP S585966A
Authority
JP
Japan
Prior art keywords
graphite
battery
fluorinated graphite
amount
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56102776A
Other languages
Japanese (ja)
Inventor
Ryoji Okazaki
良二 岡崎
Teruyoshi Morita
守田 彰克
Hisaaki Otsuka
大塚 央陽
Kenichi Morigaki
健一 森垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56102776A priority Critical patent/JPS585966A/en
Publication of JPS585966A publication Critical patent/JPS585966A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a graphite-fluoride light-metal system nonaqueous electrolyte battery having a large energy density and a stable discharge voltage by giving a conductivity to graphite fluoride by eliminating part of fluorine bound to the surface of molecules so as to form carbon layers over the surfaces of the molecules by irradiating gamma-rays on graphite fluoride. CONSTITUTION:Graphite fluoride obtained through gamma-ray irradiation treatment has an increased conductivity due to an increased amount of carbonaceous matter existing in its surface. Therefore, in preparing a positive mixture 5 by use of the above graphite fluodide, the amount of an added conductive agent can be greatly reduced, and the addition amount of a binding agent can be reduced. The F/C value of unirradiated graphite fluoride, which is 1.15-0.90, is preferred to be reduced by the irradiation by above 0.07 to above 0.75. As the result, the capacity and the discharge voltage characteristic of the battery can be improved effectively.

Description

【発明の詳細な説明】 本発明は、放電電圧が安定し、容量密度の大きな7ノ化
黒鉛−軽金属系の非水電解液電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-aqueous electrolyte battery based on graphite hepta-light metal, which has a stable discharge voltage and a high capacity density.

フッ化黒鉛は、炭素とフッ素との直接反応で得られる層
間化合物で、(CF)nと(02F)n との二つの型
が知られている。本発明は、そのうち(CF)nをフッ
化黒鉛と定義し、これを正極活物質とする非水電解液電
池の改良を目的としたものである。
Fluorinated graphite is an intercalation compound obtained by a direct reaction between carbon and fluorine, and two types are known: (CF)n and (02F)n. The present invention defines (CF)n as fluorinated graphite, and aims at improving a non-aqueous electrolyte battery using this as a positive electrode active material.

フッ化黒鉛は0.864Ah/yという固体活物質中で
は極めて大きな理論容量を持っているが、非電導性であ
るため正極として使用するには、導電剤を比較的多量に
必要とし、実用電池では充填容量を大幅に犠牲にせざる
を得ないという問題があった。さらに、放電特性もその
初期において第1図に示す如く、イの部分で放電電圧が
若干低下するという問題があった。その原因は明らかで
ないが、フッ化黒鉛の表面層が反応する際の反応抵抗が
大きいためと推察され、イの部分の反応を経たのちは反
応抵抗が小さくなり、しかも放電によって、(CF)n
−+nC+nF″″の反応が起こり、炭素の生成により
導電性がさらに良くなるので平坦な電圧特性を示すもの
と考えられている。
Fluorinated graphite has an extremely large theoretical capacity among solid active materials of 0.864Ah/y, but since it is non-conductive, it requires a relatively large amount of conductive agent to be used as a positive electrode, making it difficult to use in practical batteries. However, there was a problem in that the filling capacity had to be significantly sacrificed. Furthermore, in the early stages of the discharge characteristics, as shown in FIG. 1, there was a problem in that the discharge voltage slightly decreased at the portion A. Although the cause is not clear, it is presumed that the reaction resistance is large when the surface layer of fluorinated graphite reacts.
It is thought that the reaction of -+nC+nF"" occurs, and the conductivity is further improved by the production of carbon, resulting in flat voltage characteristics.

これらの問題を解決する方法として、電池使用前に、若
干の放電をさせてイの部分を消耗させる方法が提案さ、
flているが、放電容址を犠牲にせざるを得す、7ノ化
黒鉛の充填容量を太きぐするにめに導電剤を少くすると
、放電初期の電圧降下現象が著しくあられれる欠点があ
った。
As a way to solve these problems, a method has been proposed that allows the battery to discharge slightly before using it, causing the battery to wear out.
However, the discharge capacity had to be sacrificed, and if the amount of conductive agent was reduced in order to increase the filling capacity of the heptanodinated graphite, there was a drawback that the voltage drop phenomenon at the beginning of discharge would occur significantly. .

本発明は前記の従来法の欠点を解決し、エネルギー密度
が大きく、放電電圧が安定した7ノ化黒鉛−軽金属、例
えばリチウム系の非水電解液電池を構、成する手段を提
供するものである。具体的にはフッ化黒鉛にr線を照射
し、分子表面の結合フッ素を一部離脱せしめ、分子表面
に炭素層を形成させることによりツノ化黒鉛に導電性を
付与し、このフッ化黒鉛を正極活物質として用いるもの
で°ある。この場合、後述するように、一定の導電性を
得るだめの導電剤の添加量は、未処理のフン化黒鉛を用
いた場合よりも大幅に少なく、父、一定体積中に充填さ
れる7ノ化黒鉛の有効フッ素量も大きいので、容琶密度
は増加する。
The present invention solves the drawbacks of the conventional methods described above and provides a means for constructing a non-aqueous electrolyte battery based on hepta-nitrated graphite-light metal, such as lithium, which has a high energy density and a stable discharge voltage. be. Specifically, fluorinated graphite is irradiated with r-rays to remove some of the bound fluorine on the molecular surface, forming a carbon layer on the molecular surface, which gives the fluorinated graphite conductivity. It is used as a positive electrode active material. In this case, as will be described later, the amount of conductive agent added to obtain a certain level of conductivity is significantly smaller than when untreated fluorinated graphite is used. Since the effective amount of fluorine in graphite is also large, the volumetric density increases.

さらに、放電初期からフッ化黒鉛の表面に密着した炭素
層が存在しているため放電初期から反応粒子の導電性が
良好で、安定した電圧が得られる。
Furthermore, since the carbon layer is present in close contact with the surface of the fluorinated graphite from the early stage of discharge, the conductivity of the reaction particles is good from the early stage of discharge, and a stable voltage can be obtained.

層間化合物である(CF)nの各層平面の末端には、>
CFや一〇F3が存在し、F/Cが1〜1.2の分但し
、フン化反応が不十分な場合は中心部に未反応の炭素が
残存し、F/Cが1.0未満の分析値を示す場合もある
が、表面が(CF)nなので殆んど導電性がない。本発
明では係る未反応炭素を含む(CF)nもフッ化黒鉛と
して定義する。
At the end of each layer plane of (CF)n, which is an intercalation compound, >
If CF or 10F3 is present and F/C is 1 to 1.2, however, if the fluorination reaction is insufficient, unreacted carbon remains in the center and F/C is less than 1.0. However, since the surface is (CF)n, it has almost no conductivity. In the present invention, (CF)n containing such unreacted carbon is also defined as fluorinated graphite.

(CF)nは化学的に安定な物質で、原料炭素によって
も異なるが400’C,或いは600″Cの高温にも耐
えるが、r線の照射により、前記の′−CF2や−CF
3の存在する層平面の末端から優先し7て分解するとい
われている。
(CF)n is a chemically stable substance that can withstand high temperatures of 400'C or 600'C, depending on the raw material carbon, but when irradiated with r-rays, the aforementioned '-CF2 and -CF
It is said that decomposition takes priority from the end of the layer plane where 3 exists.

(CF八けr線の照射により、気体を放出し、次第に白
色から黒色に変化し7てF/Cが減少する。
(By irradiation with CF radiation, gas is released, the color gradually changes from white to black, and the F/C decreases).

ここでいうF/Cとはフッ素と炭素の含有原子数の比を
指す。
F/C here refers to the ratio of the number of atoms contained in fluorine and carbon.

例えば、F/C=1.15のフッ化黒鉛(、)を用意し
For example, prepare fluorinated graphite (,) with F/C=1.15.

これにco−60線源を空気中で1y当り1000Mr
ad照射した場合に第2図の如(F/C=1.08(b
)、3000Mradの場合に F/C−= 0 、9
5 (c) 。
Add to this a co-60 source in the air at 1000 Mr per y.
When ad irradiated, as shown in Figure 2 (F/C = 1.08 (b
), in the case of 3000 Mrad, F/C-= 0, 9
5(c).

5oooMrad ty)場合にF/C=0.8(d)
、100論radの場合にF/C−0、7(e)となっ
た。この場合、CF4゜F2などが主として放出し1表
面は白色から灰色を経て黒色に近づく。その間フッ化黒
鉛は表面に炭素質が増加し、一部C−C結合がC−C結
合に変化する。r線照射時の雰囲気は上記の他、真空中
の場合にはやや反応速度は遅く、酸素中での反応速度は
速い。
5oooMrad ty), then F/C=0.8(d)
, F/C-0, 7(e) in the case of 100 rad. In this case, CF4°F2 and the like are mainly emitted, and the surface becomes white, changes to gray, and approaches black. During this time, carbonaceous matter increases on the surface of fluorinated graphite, and some C--C bonds change to C--C bonds. In addition to the above-mentioned atmosphere during r-ray irradiation, the reaction rate is somewhat slow in vacuum, and the reaction rate is fast in oxygen.

次に上記の照射処理によって得たフッ化黒鉛は表面の炭
素質の増加により導電性が増すので、このツノ化黒鉛を
用いて正極合剤を作製する場合、添加する導電剤の量を
大幅に減少でき、これにより結着剤の添加量も低減でき
る。
Next, the conductivity of the fluorinated graphite obtained through the above irradiation treatment increases due to the increase in carbonaceous content on the surface, so when making a positive electrode mixture using this fluorinated graphite, the amount of the conductive agent added must be significantly reduced. Therefore, the amount of binder added can also be reduced.

まず、第2図は前記(、)〜(e)のフッ化黒鉛に対し
て導電剤であるアセチレンブラックの混合比を変えた粉
末を2ton/dの圧力で加圧した時の比抵抗を7FL
だもので、r線照射が多く、F/Cが小さい程、少量の
アセチレンブラックの混合により比抵抗が小さくなる傾
向が顕著に表われている。
First, Figure 2 shows the specific resistance of 7FL when the powders of the above (,) to (e) with different mixing ratios of acetylene black, which is a conductive agent, to fluorinated graphite are pressed at a pressure of 2 tons/d.
However, as the amount of r-ray irradiation increases and the F/C decreases, the specific resistance tends to decrease due to the addition of a small amount of acetylene black.

比抵抗がほぼ最低値になるアセチレンブラックの混合重
ら(比率は(、)では17%、(b)では13チ、(C
)では8%、(d)では6%、(e)では3%となり、
これらの配合比の混合物100重量部に対し、結着性を
十分に付与できるフッ素樹脂(PTFE)の結着剤は体
)では15部、(b)では10部、(C)では8部、(
d)では5部、(e)では4部の重量比率で必要なこと
を実験的に割り出して、2ton/cdの圧力で直径1
5朗、厚さ11I11のベレットを成型した2、この時
にベレット中に含まれるフッ素量と理論電気容量を示し
たのが、第3図である。第3図より、一定体積中に充填
できる有効フッ素量は、r線照射を行い、F/Cを約0
.7以上とした場合には未照射の場合より大となる。
Acetylene black mixture with almost the lowest specific resistance (ratio is 17% for (,), 13% for (b), (C)
) is 8%, (d) is 6%, (e) is 3%,
For 100 parts by weight of a mixture with these mixing ratios, the binder of fluororesin (PTFE) that can sufficiently impart binding properties is 15 parts for (B), 10 parts for (B), 8 parts for (C), (
We experimentally determined what was required at a weight ratio of 5 parts for d) and 4 parts for (e), and a diameter of 1 part at a pressure of 2 tons/cd.
Figure 3 shows the amount of fluorine contained in the pellet and the theoretical capacitance at this time. From Figure 3, the effective amount of fluorine that can be filled into a certain volume is approximately 0 when R-ray irradiation is performed and F/C is approximately 0.
.. When it is 7 or more, it becomes larger than when it is not irradiated.

これは添加する導電剤と結着剤との祉がF、/Cが小さ
い場合に少くてすむことによる。
This is because the amount of the conductive agent and binder to be added can be reduced when F and /C are small.

このようにして作製した、各正極ベレットを用いて第4
図に示すような電池を試作し、放電性能を比較した。第
4図において、1はステンレススチール製の封口板、2
はニッケルネットの負極集電体で1に溶接されている。
Using each positive electrode pellet thus produced, the fourth
We prototyped a battery as shown in the figure and compared its discharge performance. In Fig. 4, 1 is a stainless steel sealing plate, 2
is welded to 1 with a nickel net negative electrode current collector.

3は2に圧着されたリチウム負極、4はポリプロピレン
不織布製セパレータ、5は前記した各配合のフッ化黒鉛
正極、6はステンレススチール製の電池容器、7はポリ
プロピレン製ガスケットである。電池内部にはグロヒレ
ンカーボネイトとディメトキシエタントラ1:1に混合
した溶媒に、ホウフッ化リチウムを1モ・ル溶解させた
電解液を封入している。
3 is a lithium negative electrode pressed onto 2, 4 is a polypropylene nonwoven fabric separator, 5 is a fluorinated graphite positive electrode having each of the above-mentioned compositions, 6 is a stainless steel battery container, and 7 is a polypropylene gasket. Inside the battery, an electrolytic solution containing 1 mole of lithium borofluoride dissolved in a 1:1 mixture of glohylene carbonate and dimethoxyethane is sealed.

電池の形状は直径201t11、高さ2.5朝であり、
各々の正極を用いて試作した電池の20°C15にΩ負
荷での放電曲線を第5図に示した。第5図に見られる如
く、未処理のフッ化黒鉛を用いた電池aは放電初期電圧
が低い傾向が最も顕著であり、r線照射によりF/Cが
減少したす、c、d、eとなるほど、初期電圧特性は良
好となっている。一方、放電持続時間は 1が最も短く
、次いです。
The shape of the battery is 201t11 in diameter and 2.5cm in height.
FIG. 5 shows the discharge curves of batteries prototyped using each of the positive electrodes at 20° C. and 15 Ω load. As seen in Figure 5, battery a using untreated fluorinated graphite has the most remarkable tendency to have a low initial discharge voltage, and the F/C decreases due to r-ray irradiation. I see, the initial voltage characteristics are good. On the other hand, 1 is the shortest discharge duration, followed by 1.

d、cの順に長くなっており、これは第3図の充填理論
容妙の順になっている・ 以上はF/C=1.1eiのフッ化黒鉛をr線照射した
材料での実験結果であるが、中心部に一部未反応の炭素
が残存していると考えられるF/C・=0−90  の
フッ化黒鉛をr線照射した場合につい線源によりr線を
約8000 Mr a d照射して得たF/C=0.8
3 (7)材料fと、約20000Mrad(7)線量
を照射して得たF/C−0,75の材料qについて試験
した。合剤比抵抗はf≠b、q≠Cの特性が得られた。
The length increases in the order of d and c, which is in the order of the filling theory in Figure 3. The above is an experimental result of fluorinated graphite with F/C = 1.1ei irradiated with r-rays. However, when fluorinated graphite with F/C = 0-90, in which some unreacted carbon is thought to remain in the center, is irradiated with r-rays, the radiation source produces approximately 8000 Mr a d of r-rays. F/C obtained by irradiation = 0.8
3 (7) Material f and F/C-0,75 material q obtained by irradiation with a dose of about 20,000 Mrad (7) were tested. The characteristics of the specific resistance of the mixture were f≠b and q≠C.

父、fに対してアセチレンブシノクを重量比で13%、
qに対して8%混合し、結着剤(PTFE)を各々の混
合物に対し1部部。
father, acetylene butinoc 13% by weight relative to f;
8% to q, and 1 part of binder (PTFE) to each mixture.

8部の重量比で添加して2ton/dの圧力で直径16
I、厚さ1鶏のベレットに成型した場合の理論電気容置
はfでは約110mAh 、 gでは約105mAh 
で、各々、第3図におけるr線未照射のF/C=1.1
5を使用した場合aと同等以上であった4、 次に、これらの正極を用いた第4図の構成の電池を温度
20″C,5にΩ負荷で放電し、第5図に示した、aの
特性と比較して第6図に示した。第6図に見られるよう
に、F/C=0.90のr線未照射のフッ化黒鉛にr線
照射をした場合でもF/C−〇−75〜0.83の範囲
で、初期特性、放電’14MともF/C=1.16未処
理品dを用いた場合と同等以上の性能が得られる。以上
の結果から、r線照射でF/Cの様々な値のフッ化黒鉛
を照射条件を変えることで適宜なF/Cのフッ化黒鉛に
処理でき、それに応じた特性が得られるので初期特性。
It was added at a weight ratio of 8 parts and the diameter was 16 mm at a pressure of 2 tons/d.
The theoretical electric capacity when molded into a pellet with a thickness of 1 chicken is approximately 110 mAh for f and approximately 105 mAh for g.
In each case, F/C without r-ray irradiation in Fig. 3 is 1.1.
When 5 was used, it was equivalent to or better than a. 4. Next, a battery with the configuration shown in Figure 4 using these positive electrodes was discharged at a temperature of 20''C with a Ω load of 5, and the results were as shown in Figure 5. , and a are shown in Figure 6. As seen in Figure 6, even when fluorinated graphite with F/C = 0.90 and unirradiated with r-rays is irradiated with r-rays, F/ In the range of C-〇-75 to 0.83, performance equivalent to or better than the case of using the untreated product d with F/C = 1.16 can be obtained for both initial characteristics and discharge '14M.From the above results, r By changing the irradiation conditions, fluorinated graphite with various values of F/C can be processed into fluorinated graphite with an appropriate F/C by radiation irradiation, and the characteristics corresponding to that can be obtained, so the initial characteristics.

容量の何れを重視するかによって、未照射材料と照射条
件を選択すれば良いが、容量、初期特性ともにすぐれた
電池が得られる範囲として、未照射フッ化黒鉛のF/C
=1.15〜0.90で、照射によりF/C値を0.0
7以上減少せしめ、F/C値を0.75以上に止めるこ
とが好ましい。
The unirradiated material and irradiation conditions can be selected depending on which of the capacity is more important, but as far as a battery with excellent capacity and initial characteristics can be obtained, unirradiated fluorinated graphite F/C is recommended.
= 1.15 to 0.90, F/C value is 0.0 by irradiation
It is preferable to reduce the F/C value by 7 or more and keep the F/C value to 0.75 or more.

上述の如く、本発明により放電電圧特性と容量を効果的
に改良できる。
As described above, the present invention can effectively improve discharge voltage characteristics and capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来電池の放電特性の代表例を示す図、第2図
はr線照射により得られたフッ化黒鉛と未照射のフッ化
黒鉛に対して導電剤を加えた場合の比抵抗値を示す図、
第3図は各種条件で作成した正極ペレット中の有効フッ
素量と理論充填容量との関係を示す図、第4図は実験に
用いた試作電池1゜ の断面図、第5図、第6図は本発明の実施例電池と従来
電池との放電特性比較図である。 3・・・・・・リチウム負極、42.  セ・ぐレータ
、6 、、、、、、フッ化黒鉛正極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 Pi−?1Miトiハ (hン 第2図 a’tT’1m1l!+tfttJ−(z+第3図 第4図
Figure 1 shows a typical example of the discharge characteristics of a conventional battery, and Figure 2 shows the specific resistance values when a conductive agent is added to fluorinated graphite obtained by r-ray irradiation and unirradiated fluorinated graphite. A diagram showing
Figure 3 is a diagram showing the relationship between the effective amount of fluorine in positive electrode pellets prepared under various conditions and the theoretical filling capacity, Figure 4 is a cross-sectional view of a 1° prototype battery used in the experiment, Figures 5 and 6 1 is a comparison diagram of discharge characteristics between an example battery of the present invention and a conventional battery. 3...Lithium negative electrode, 42. 6. Fluorinated graphite positive electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure Pi-? 1MiToiha (hnFigure 2a'tT'1m1l!+tfttJ-(z+Figure 3Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)  γ線照射により一部のフッ素を離脱したフッ
化黒鉛を正極活物質に用いたことを特徴とする非水電解
液電池。
(1) A non-aqueous electrolyte battery characterized by using fluorinated graphite from which some fluorine has been removed by γ-ray irradiation as a positive electrode active material.
(2)フッ素と炭素の含有原子数の比F/Cを1.16
〜0.90としたフッ化黒鉛をγ線照射によりF/C値
を0.07以上減少させF/Cを0.75以上とした正
極活物質と導電剤とを混合して用いた特許請求の範囲第
1項に記載の非水電解液電池。
(2) The ratio F/C of the number of atoms contained in fluorine and carbon is 1.16
A patent claim that uses a mixture of a positive electrode active material and a conductive agent whose F/C value is reduced by 0.07 or more by irradiating fluorinated graphite with a concentration of ~0.90 to 0.75 or more. The non-aqueous electrolyte battery according to item 1.
JP56102776A 1981-07-01 1981-07-01 Nonaqueous electrolyte battery Pending JPS585966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56102776A JPS585966A (en) 1981-07-01 1981-07-01 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56102776A JPS585966A (en) 1981-07-01 1981-07-01 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS585966A true JPS585966A (en) 1983-01-13

Family

ID=14336548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56102776A Pending JPS585966A (en) 1981-07-01 1981-07-01 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS585966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034799A1 (en) * 2005-09-21 2007-03-29 Matsushita Electric Industrial Co., Ltd. Flat organic electrolyte battery
WO2009031293A1 (en) 2007-09-06 2009-03-12 Panasonic Corporation Nonaqueous electrolyte battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034799A1 (en) * 2005-09-21 2007-03-29 Matsushita Electric Industrial Co., Ltd. Flat organic electrolyte battery
WO2009031293A1 (en) 2007-09-06 2009-03-12 Panasonic Corporation Nonaqueous electrolyte battery
US8709660B2 (en) 2007-09-06 2014-04-29 Panasonic Corporation Non-aqueous electrolyte battery

Similar Documents

Publication Publication Date Title
US5968683A (en) Fluoridated electrode materials and associated process for fabrication
US5143805A (en) Cathodic electrode
US4379817A (en) Organic solvent-treated manganese dioxide-containing cathodes
US3770506A (en) Electrical energy storage device containing a tellurium additive
CA1278034C (en) Cathodic electrode
EP0149494B1 (en) Method for preparing positive electrode for non-aqueous electrolyte cell
JPH1092432A (en) Manufacture of electrode material
JPH1131534A (en) Nonaqueous electrolyte secondary battery, and manufacture of electrode plate used for the nonaqueous electrolyte secondary battery
JPH06333558A (en) Nonaqueous electrolytic secondary battery
US3567516A (en) Electrical energy storage device containing a tellurium additive
JPS585966A (en) Nonaqueous electrolyte battery
JPS59154763A (en) Negative pole material for lithic secondary cell
JPH09180708A (en) Alkaline dry cell
JPH06103976A (en) Non-aqueous electrolute battery
JP3698516B2 (en) Film electrode and manufacturing method thereof
JPS5826457A (en) Manufacture of positive pole active substance for non-acqueous electrolytic cell
JPH0568834B2 (en)
JPH02239572A (en) Polyaniline battery
JPS61163571A (en) Manufacture of porous titanium disulfide electrode
JPS58206057A (en) Nonaqueous electrolyte battery
SU564668A1 (en) Positive electrode of chemical current source
JPS5832749B2 (en) Manufacturing method for positive electrode active material for organic electrolyte batteries
JPS6155739B2 (en)
JPS62283571A (en) Nonaqueous solvent secondary cell
SU516126A1 (en) Chemical current source