WO2007033914A1 - Procede de controle de la vitesse de rotation d'un arbre de turbine - Google Patents
Procede de controle de la vitesse de rotation d'un arbre de turbine Download PDFInfo
- Publication number
- WO2007033914A1 WO2007033914A1 PCT/EP2006/066208 EP2006066208W WO2007033914A1 WO 2007033914 A1 WO2007033914 A1 WO 2007033914A1 EP 2006066208 W EP2006066208 W EP 2006066208W WO 2007033914 A1 WO2007033914 A1 WO 2007033914A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- speed
- turbo shaft
- sensor
- monitoring
- signal
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D17/00—Regulating or controlling by varying flow
- F01D17/02—Arrangement of sensing elements
- F01D17/06—Arrangement of sensing elements responsive to speed
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
- G01P3/48—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
- G01P3/481—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
- G01P3/487—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01P—MEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
- G01P3/00—Measuring linear or angular speed; Measuring differences of linear or angular speeds
- G01P3/42—Devices characterised by the use of electric or magnetic means
- G01P3/44—Devices characterised by the use of electric or magnetic means for measuring angular speed
- G01P3/48—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
- G01P3/481—Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
- G01P3/489—Digital circuits therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/40—Application in turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/01—Purpose of the control system
- F05D2270/02—Purpose of the control system to control rotational speed (n)
- F05D2270/021—Purpose of the control system to control rotational speed (n) to prevent overspeed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/30—Control parameters, e.g. input parameters
- F05D2270/304—Spool rotational speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/40—Type of control system
- F05D2270/44—Type of control system active, predictive, or anticipative
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2270/00—Control
- F05D2270/60—Control system actuates means
- F05D2270/64—Hydraulic actuators
Definitions
- the invention relates to a method for monitoring the speed of a turbo shaft, which is rotatably mounted in an exhaust gas turbocharger, wherein on the turbo shaft, a magnetic field variie ⁇ ing element is formed, which varies the magnetic field ⁇ proportional to the turbo shaft speed, and a sensor is provided, the detects the variation of the magnetic field and converts it into an electronic speed signal.
- the power generated by an internal combustion engine depends on the air mass and the corresponding amount of fuel that can be provided to the engine for combustion.
- To increase the performance of an internal combustion engine it is necessary to supply the engine with a larger amount of combustion air and fuel. This increase in performance is achieved in a naturally aspirated engine by increasing the displacement or by increasing the speed.
- An increase in displacement however, generally leads to heavier in size larger and therefore more expensive internal combustion engines.
- the increase in speed brings with larger internal combustion ⁇ machines considerable problems and disadvantages and is limited for technical reasons.
- An exhaust gas turbocharger consists essentially of a flow compressor, which is also referred to as a compressor and a turbine, which are connected to egg ⁇ ner common shaft and rotate at the same speed.
- the turbine converts the normally nutz ⁇ los deflagrating energy of the exhaust into rotational energy and drives the compressor.
- the compressor sucks fresh air and promotes the supercharged charge air to the individual cylinders of the engine.
- the larger amount of air in the cylinders can be fed an increased amount of fuel, whereby the internal combustion engine gives more power.
- the combustion process is also favorably influenced, so that the internal combustion engine achieves a better overall efficiency degree ⁇ .
- the torque curve of a charged with a turbocharger internal combustion engine can be made extremely low.
- existing Seriensaugmotoren can be significantly optimized by using an exhaust gas turbocharger without great constructive interventions on of the internal combustion ⁇ machine.
- Charged Brennkraftma ⁇ machines usually have a lower specific fuel consumption and have a lower pollutant emission on.
- turbo engines are usually quieter than naturally aspirated engines of the same power, since the turbocharger itself acts as an additional silencer. In internal combustion engines with a large operating speed range, for example in internal combustion engines for passenger cars, a high charge pressure is required even at low engine speeds.
- the maximum allowed rotation may ⁇ number of combination of turbine wheel and turbine shaft which is also referred to as the rotating parts of the turbocharger, are exceeded. If the speed of the running gear is exceeded excessively, this would be destroyed, which amounts to a total damage of the turbocharger.
- modern and klei ⁇ ne turbochargers with significantly smaller turbine wheel and compressor that significantly smaller by a mass Moment of inertia have an improved spin behavior are affected by the problem of exceeding the maximum permissible speed.
- exceeding the speed limit by approximately 5% already leads to complete destruction of the turbocharger.
- the wastegate valves have proven themselves, which are controlled by a speed-dependent signal. If the boost pressure exceeds a predetermined threshold value, then the wastegate valve opens and directs a portion of the exhaust gas mass flow past the turbine. This consumes less power due to the reduced mass flow, and the compressor performance decreases to the same extent. The boost pressure and the speed of the rotor are reduced.
- an exhaust gas turbocharger for an internal combustion engine which has a device for detecting the rotational speed of the turbo shaft.
- an element for varying a magnetic field is present in the compressor-side end of the turbo shaft, wherein the variation of the magnetic field in dependence on the rotation of the turbo shaft takes place, and wherein in the vicinity of the ele- ment for the variation of the magnetic field, a sensor element is arranged on ⁇ which detects the variation of the magnetic field and converts it into electrical evaluable signals.
- the object of the present invention is therefore to provide a method for controlling the speed of a turbo shaft, with which the exhaust gas turbocharger is safely protected from damage by a speed above the maximum permissible limit.
- This object is achieved in that the detection of a faulty speed signal, the duty cycle of the speed signal is evaluated and Vorlie ⁇ conditions of a faulty speed signal, the speed of the Tur- bowel is so far reduced that destruction of the off ⁇ gas turbocharger by exceeding its Maximum speed is excluded.
- the advantage here is that the duty cycle is easily elon- tronically evaluated and can be concluded so quickly and clearly on the presence of a signal interference.
- the object is achieved in that the rotation ⁇ number signal is classified as faulty if in the PuIs- result individual signal pulses are absent and in the presence of ei ⁇ nes erroneous speed signal, the speed of the turbo shaft is reduced so much that a destruction of the exhaust turbo ⁇ loader is excluded by exceeding its maximum speed.
- the speed signal is a strictly periodic signal
- said signal pulses lack break the periodicity, which can easily electronically Festge ⁇ represents may be.
- ⁇ represents may be simply the time between the signal edges can be measured and if this time deviates significantly from the previously measured times, the signal is classified as faulty.
- the senor is designed as a Hall sensor.
- Hall sensors are very good for detecting the variation of a magnetic field and are therefore very good to use for speed detection.
- Hall sensors are very cost-effective -effectively acquire commercially and they are also at Tem ⁇ temperatures used up to about 160 0 C.
- the senor is designed as a magnetoresistive (MR) sensor.
- MR sensors are well suited for detecting the variation of a magnetic field and can be obtained commercially in a cost- effective manner.
- the senor is designed as an inductive sensor.
- Inductive sensors are perfectly suited for detecting variations in a magnetic field and they are ver even at high temperatures ⁇ reversible.
- the control unit in the presence of a faulty speed signal, opens the wastegate valve so far that the remaining exhaust gas flow can accelerate the turbine wheel only up to the maximum speed of the exhaust gas turbocharger. Since one knows the maximum exhaust gas flow of an internal combustion engine, it is easily possible for the signal error case to calculate the proportion of the exhaust gas flow, which is harmless for the turbocharger. Only the harmless exhaust gas flow then reaches the exhaust gas turbocharger, if a faulty speed signal was detected.
- the controller sets the geometry of the tur ⁇ binenconstru so that the maximum exhaust gas flow can accelerate the turbine only to the maximum speed of the exhaust gas turbocharger.
- the internal combustion engine, a turbine geometry are predetermined knowing the Maxima len exhaust stream, with the maximum exhaust gas flow remains unwelded ⁇ lich for the turbocharger.
- the speed signal is classified as error-free when the duty cycle is in ei ⁇ nem predetermined range.
- a range for a fault-free speed signal would be, for example, a 25 to 75%. Duty ratios above 75% and below 25% would then lead to the detection of a faulty speed signal.
- FIG. 1 shows an exhaust gas turbocharger with a compressor and a turbine
- FIG. 3 a somewhat deteriorated pulse duty factor
- FIG. 4 a likewise deteriorated duty cycle
- FIG. 5 a considerably deteriorated duty cycle
- FIG. 6 a likewise considerably deteriorated Tastver ⁇ ratio
- Figure 7 another form of detection of a faulty speed signal.
- FIG. 1 shows schematically an exhaust gas turbocharger 1 with a compressor 3 and a turbine 2.
- the turbine 2 is mechanically connected to the compressor 3 through the turbo shaft 8.
- the combination of turbine 2, compressor 3 and turbo shaft 8 is rotatably mounted in the here not completely shown Abgasturbola ⁇ 1.
- the exhaust stream 4 generated by an internal combustion engine 7 is supplied to the turbine 2.
- the exhaust gas stream 4 drives the turbine, which transmits its rotational movement to the turbo ⁇ wave 8 and the compressor 3.
- the combination of turbo shaft 8, turbine 2 and compressor 3 which is also referred to as a running tool, in ⁇ mer faster.
- Modern turbochargers have a speed limit at about 300,000 revolutions per minute. This speed limit must not be exceeded, otherwise a complete destruction of the turbocharger can occur.
- an element 10 for varying a magnetic field is formed in the turbo shaft 8.
- the element 10 is designed to vary the Mag ⁇ netfeldes as a permanent magnet.
- the magnetic field at the speed sensor 6 va ⁇ riiert.
- a speed sensor 6 for example, a HaIl element, a coil for detecting the magnetic field or a magnetoritive (MR) element comes into question.
- the speed sensor 6 generates from the detected magnetic field, a speed signal 11, which is forwarded to a control unit 9.
- control unit 9 If the control unit 9 detects that the upper speed limit of the turbocharger 1 has been reached, it controls a so-called wastegate valve 12, which opens and directs the exhaust gas flow 4 past the turbine 2, thereby preventing further acceleration of the power tool.
- the speed signal 11 is falsified by external influences, such as superimposed external magnetic fields or electromagnetically interspersed pulses. In particular, it is kri ⁇ table when the speed signal 11 is a lower speed of the turbo shaft 8, as the actual existing rotation ⁇ number of the turbo shaft 8. This could lead to the total Zer- disturbance of the turbocharger 1, since the control unit 9 no pulse for Emptying opening of the waste gate valve, which is further accelerated with sufficient exhaust gas stream 4 the running gear. To prevent this, the speed signal is evaluated according to its duty cycle.
- Figures 2 to 7 show the toleite from the speed signal 11 ⁇ th voltage signal U as a function of time t. Instead of the voltage U, the current strength may well be represented.
- the speed signal 11 of Figure 2 are located in the time average, the same number of pulses below a kon ⁇ constants voltage value C as above this constant voltage value C.
- the duty cycle is the percentage of time indicate that a signal is above a threshold.
- FIG. 11 Another form of detection of a faulty speed signal 11 is shown in the diagram of FIG.
- the signal pulses 13 of the rotational speed signal 11 are strictly periodic peri ⁇ odisch, whereby the absence of a pulse 14 can be easily Festge ⁇ provides. This requires a time measurement which is coupled to the pulse train of the speed signal 11 and detects the absence of a pulse 14. Even with the ⁇ sem method for evaluating the speed signal 11, the controller 9 can detect a faulty speed signal 11 and prevent by driving the waste gate valve 12 overspeeding of the running tool.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
L'invention concerne un procédé de contrôle de la vitesse de rotation d'un arbre de turbine monté en rotation dans un turbocompresseur, un élément faisant varier un champ magnétique étant configuré au niveau de l'arbre de turbine, ledit élément provoquant la variation du champ magnétique proportionnellement à la vitesse de rotation de l'arbre de turbine, cependant qu'il est prévu un détecteur détectant la variation du champ magnétique et la convertissant en un signal électronique de vitesse de rotation. L'invention a pour but de fournir un procédé de commande de la vitesse de rotation d'un arbre de turbine, au moyen duquel le turbocompresseur est protégé de manière fiable vis-à-vis d'un endommagement résultant d'une vitesse de rotation supérieure à une limite maximale autorisée. A cet effet, l'invention est caractérisée en ce qu'en vue de détecter un signal de vitesse de rotation erroné, le taux d'impulsions dudit signal de vitesse de rotation est évalué, et en ce qu'en présence d'un signal de vitesse de rotation erroné, la vitesse de rotation de l'arbre de turbine est réduite dans une mesure telle qu'une destruction du turbocompresseur par dépassement de sa vitesse de rotation maximale est exclue.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005045457.7 | 2005-09-22 | ||
DE200510045457 DE102005045457B4 (de) | 2005-09-22 | 2005-09-22 | Verfahren zur Drehzahlüberwachung einer Turbowelle |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007033914A1 true WO2007033914A1 (fr) | 2007-03-29 |
Family
ID=37533214
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2006/066208 WO2007033914A1 (fr) | 2005-09-22 | 2006-09-11 | Procede de controle de la vitesse de rotation d'un arbre de turbine |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102005045457B4 (fr) |
WO (1) | WO2007033914A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008025754A1 (fr) * | 2006-08-30 | 2008-03-06 | Continental Automotive Gmbh | Actionneur de soupape de décharge pour un turbocompresseur à gaz d'échappement |
FR2987085A1 (fr) * | 2012-02-20 | 2013-08-23 | Snecma | Procede de securisation du fonctionnement d'une turbomachine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007036936A1 (de) | 2007-08-04 | 2009-02-05 | Daimler Ag | Verfahren zur Fehlerdiagnose eines Abgasturboladers für eine Brennkraftmaschine |
DE102012024078A1 (de) | 2012-12-07 | 2014-06-12 | Daimler Ag | Abgasturbolader für eine Verbrennungskraftmaschine |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4279576A (en) * | 1979-04-09 | 1981-07-21 | Toyota Jidosha Kogyo Kabushiki Kaisha | Rotating speed detecting device of a turbocharger |
DE3801171C1 (en) * | 1988-01-16 | 1989-05-18 | Mtu Friedrichshafen Gmbh | Device for detecting the speed of the shaft of an exhaust gas turbocharger |
EP0458121A1 (fr) * | 1990-05-25 | 1991-11-27 | Eaton Corporation | Appareil et procédé de détection de défauts dans un système de mesure de vitesse |
GB2406394A (en) * | 2003-09-29 | 2005-03-30 | Detroit Diesel Corp | Methods for responding to sensor failures on EGR/VGT engines |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4604701A (en) * | 1983-02-16 | 1986-08-05 | Allied Corporation | Fail-soft turbocharger control system |
DE3832541A1 (de) * | 1988-09-24 | 1990-03-29 | Vdo Schindling | Verfahren zur erkennung von fehlern bei einem entsprechend der geschwindigkeit eines fahrzeugs veraenderlichen signal |
DE10140121A1 (de) * | 2001-08-16 | 2003-03-06 | Daimler Chrysler Ag | Verfahren und Vorrichtung zur Diagnose eines Abgasturboladers für eine Brennkraftmaschine |
JP2005201146A (ja) * | 2004-01-15 | 2005-07-28 | Denso Corp | 過給装置のポジション検出装置 |
DE102005010921A1 (de) * | 2004-07-15 | 2006-02-09 | Siemens Ag | Abgasturbolader |
-
2005
- 2005-09-22 DE DE200510045457 patent/DE102005045457B4/de not_active Expired - Fee Related
-
2006
- 2006-09-11 WO PCT/EP2006/066208 patent/WO2007033914A1/fr active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4279576A (en) * | 1979-04-09 | 1981-07-21 | Toyota Jidosha Kogyo Kabushiki Kaisha | Rotating speed detecting device of a turbocharger |
DE3801171C1 (en) * | 1988-01-16 | 1989-05-18 | Mtu Friedrichshafen Gmbh | Device for detecting the speed of the shaft of an exhaust gas turbocharger |
EP0458121A1 (fr) * | 1990-05-25 | 1991-11-27 | Eaton Corporation | Appareil et procédé de détection de défauts dans un système de mesure de vitesse |
GB2406394A (en) * | 2003-09-29 | 2005-03-30 | Detroit Diesel Corp | Methods for responding to sensor failures on EGR/VGT engines |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008025754A1 (fr) * | 2006-08-30 | 2008-03-06 | Continental Automotive Gmbh | Actionneur de soupape de décharge pour un turbocompresseur à gaz d'échappement |
JP2010501787A (ja) * | 2006-08-30 | 2010-01-21 | コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング | 排気ターボチャージャのためのウェストゲートアクチュエータ |
US8109089B2 (en) | 2006-08-30 | 2012-02-07 | Continental Automotive Gmbh | Waste gate actuator for an exhaust gas turbocharger |
FR2987085A1 (fr) * | 2012-02-20 | 2013-08-23 | Snecma | Procede de securisation du fonctionnement d'une turbomachine |
WO2013124578A1 (fr) * | 2012-02-20 | 2013-08-29 | Snecma | Procede de securisation du fonctionnement d'une turbomachine |
US20150030464A1 (en) * | 2012-02-20 | 2015-01-29 | Snecma | Method for securing the operation of a turbomachine |
US10323538B2 (en) | 2012-02-20 | 2019-06-18 | Safran Aircraft Engines | Method for securing the operation of a turbomachine |
Also Published As
Publication number | Publication date |
---|---|
DE102005045457B4 (de) | 2014-10-02 |
DE102005045457A1 (de) | 2007-04-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2059662B1 (fr) | Actionneur de soupape de décharge pour un turbocompresseur à gaz d'échappement | |
DE102005029764B4 (de) | Sensor zur Messung der Drehzahl einer Turbowelle | |
EP2021585B1 (fr) | Élément de capteur actif et procédé de captage de la température d'un élément de capteur actif | |
DE112005001127B4 (de) | Abgasturbolader | |
WO2006029965A1 (fr) | Turbocompresseur à gaz d'échappement | |
WO2006045680A1 (fr) | Turbocompresseur | |
WO2000036280A1 (fr) | Procede pour identifier une rupture d'arbre dans une turbomachine | |
EP1977086A1 (fr) | Carter de compresseur d'un turbocompresseur à gaz d'échappement | |
WO2008125383A1 (fr) | Turbocompresseur à suralimentation pour déterminer une fonction d'erreur du turbocompresseur à suralimentation et procédé pour déterminer une telle fonction d'erreur | |
DE102006044668B4 (de) | Element zur Erzeugung eines Magnetfeldes | |
DE102004061840B4 (de) | Drehzahl- und Drehpositionsermittlungsvorrichtung für einen Lader | |
WO2007033914A1 (fr) | Procede de controle de la vitesse de rotation d'un arbre de turbine | |
DE102007027235B4 (de) | Magnetisierte Mutter zur Befestigung eines Kompressorrades eines Abgasturboladers an der Turbowelle und Verfahren zur Herstellung einer solchen | |
DE102009026971B4 (de) | Verfahren und Vorrichtung zum Bereitstellen einer Drehzahl- und Temperaturangabe einer Aufladevorrichtung für einen Verbrennungsmotor | |
WO2016045829A1 (fr) | Système de suralimentation pour un moteur à combustion interne et procédé associé | |
DE102007052453B4 (de) | Diagnosevorrichtung bzw. Diagnoseverfahren bei Abgasturboladern im Betrieb am Verbrennungsmotor | |
WO2009013092A2 (fr) | Capteur de régime inductif pour turbo-compresseur | |
WO2007057257A1 (fr) | Roue de compresseur pour un turbocompresseur | |
DE102016220543B3 (de) | Verfahren und Vorrichtung zur Erkennung eines Verdichterpumpens eines Turboverdichters einer Brennkraftmaschine | |
DE102010039532A1 (de) | Drehzahlsensoranordnung mit eigenständiger Energieversorgung | |
DE102006044666A1 (de) | Verfahren zur Erkennung einer Unwucht | |
DE102008054917A1 (de) | Verfahren und Anordnung zur Erkennung einer blockierten Schaufelverstellung bei einem Turbolader mit variabler Geometrie | |
DE102019219153A1 (de) | Verfahren zur wirkungsgradoptimierten Steuerung eines Verdichters | |
DE102012024078A1 (de) | Abgasturbolader für eine Verbrennungskraftmaschine | |
DE102004029857A1 (de) | Verfahren und Anordnung zum Betreiben eines Turboladers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06793390 Country of ref document: EP Kind code of ref document: A1 |