WO2007033914A1 - Procede de controle de la vitesse de rotation d'un arbre de turbine - Google Patents

Procede de controle de la vitesse de rotation d'un arbre de turbine Download PDF

Info

Publication number
WO2007033914A1
WO2007033914A1 PCT/EP2006/066208 EP2006066208W WO2007033914A1 WO 2007033914 A1 WO2007033914 A1 WO 2007033914A1 EP 2006066208 W EP2006066208 W EP 2006066208W WO 2007033914 A1 WO2007033914 A1 WO 2007033914A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
turbo shaft
sensor
monitoring
signal
Prior art date
Application number
PCT/EP2006/066208
Other languages
German (de)
English (en)
Inventor
Johannes Ante
Markus Gilch
Original Assignee
Siemens Vdo Automotive Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Vdo Automotive Ag filed Critical Siemens Vdo Automotive Ag
Publication of WO2007033914A1 publication Critical patent/WO2007033914A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/06Arrangement of sensing elements responsive to speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/487Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by rotating magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/489Digital circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/02Purpose of the control system to control rotational speed (n)
    • F05D2270/021Purpose of the control system to control rotational speed (n) to prevent overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/304Spool rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/40Type of control system
    • F05D2270/44Type of control system active, predictive, or anticipative
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/60Control system actuates means
    • F05D2270/64Hydraulic actuators

Definitions

  • the invention relates to a method for monitoring the speed of a turbo shaft, which is rotatably mounted in an exhaust gas turbocharger, wherein on the turbo shaft, a magnetic field variie ⁇ ing element is formed, which varies the magnetic field ⁇ proportional to the turbo shaft speed, and a sensor is provided, the detects the variation of the magnetic field and converts it into an electronic speed signal.
  • the power generated by an internal combustion engine depends on the air mass and the corresponding amount of fuel that can be provided to the engine for combustion.
  • To increase the performance of an internal combustion engine it is necessary to supply the engine with a larger amount of combustion air and fuel. This increase in performance is achieved in a naturally aspirated engine by increasing the displacement or by increasing the speed.
  • An increase in displacement however, generally leads to heavier in size larger and therefore more expensive internal combustion engines.
  • the increase in speed brings with larger internal combustion ⁇ machines considerable problems and disadvantages and is limited for technical reasons.
  • An exhaust gas turbocharger consists essentially of a flow compressor, which is also referred to as a compressor and a turbine, which are connected to egg ⁇ ner common shaft and rotate at the same speed.
  • the turbine converts the normally nutz ⁇ los deflagrating energy of the exhaust into rotational energy and drives the compressor.
  • the compressor sucks fresh air and promotes the supercharged charge air to the individual cylinders of the engine.
  • the larger amount of air in the cylinders can be fed an increased amount of fuel, whereby the internal combustion engine gives more power.
  • the combustion process is also favorably influenced, so that the internal combustion engine achieves a better overall efficiency degree ⁇ .
  • the torque curve of a charged with a turbocharger internal combustion engine can be made extremely low.
  • existing Seriensaugmotoren can be significantly optimized by using an exhaust gas turbocharger without great constructive interventions on of the internal combustion ⁇ machine.
  • Charged Brennkraftma ⁇ machines usually have a lower specific fuel consumption and have a lower pollutant emission on.
  • turbo engines are usually quieter than naturally aspirated engines of the same power, since the turbocharger itself acts as an additional silencer. In internal combustion engines with a large operating speed range, for example in internal combustion engines for passenger cars, a high charge pressure is required even at low engine speeds.
  • the maximum allowed rotation may ⁇ number of combination of turbine wheel and turbine shaft which is also referred to as the rotating parts of the turbocharger, are exceeded. If the speed of the running gear is exceeded excessively, this would be destroyed, which amounts to a total damage of the turbocharger.
  • modern and klei ⁇ ne turbochargers with significantly smaller turbine wheel and compressor that significantly smaller by a mass Moment of inertia have an improved spin behavior are affected by the problem of exceeding the maximum permissible speed.
  • exceeding the speed limit by approximately 5% already leads to complete destruction of the turbocharger.
  • the wastegate valves have proven themselves, which are controlled by a speed-dependent signal. If the boost pressure exceeds a predetermined threshold value, then the wastegate valve opens and directs a portion of the exhaust gas mass flow past the turbine. This consumes less power due to the reduced mass flow, and the compressor performance decreases to the same extent. The boost pressure and the speed of the rotor are reduced.
  • an exhaust gas turbocharger for an internal combustion engine which has a device for detecting the rotational speed of the turbo shaft.
  • an element for varying a magnetic field is present in the compressor-side end of the turbo shaft, wherein the variation of the magnetic field in dependence on the rotation of the turbo shaft takes place, and wherein in the vicinity of the ele- ment for the variation of the magnetic field, a sensor element is arranged on ⁇ which detects the variation of the magnetic field and converts it into electrical evaluable signals.
  • the object of the present invention is therefore to provide a method for controlling the speed of a turbo shaft, with which the exhaust gas turbocharger is safely protected from damage by a speed above the maximum permissible limit.
  • This object is achieved in that the detection of a faulty speed signal, the duty cycle of the speed signal is evaluated and Vorlie ⁇ conditions of a faulty speed signal, the speed of the Tur- bowel is so far reduced that destruction of the off ⁇ gas turbocharger by exceeding its Maximum speed is excluded.
  • the advantage here is that the duty cycle is easily elon- tronically evaluated and can be concluded so quickly and clearly on the presence of a signal interference.
  • the object is achieved in that the rotation ⁇ number signal is classified as faulty if in the PuIs- result individual signal pulses are absent and in the presence of ei ⁇ nes erroneous speed signal, the speed of the turbo shaft is reduced so much that a destruction of the exhaust turbo ⁇ loader is excluded by exceeding its maximum speed.
  • the speed signal is a strictly periodic signal
  • said signal pulses lack break the periodicity, which can easily electronically Festge ⁇ represents may be.
  • represents may be simply the time between the signal edges can be measured and if this time deviates significantly from the previously measured times, the signal is classified as faulty.
  • the senor is designed as a Hall sensor.
  • Hall sensors are very good for detecting the variation of a magnetic field and are therefore very good to use for speed detection.
  • Hall sensors are very cost-effective -effectively acquire commercially and they are also at Tem ⁇ temperatures used up to about 160 0 C.
  • the senor is designed as a magnetoresistive (MR) sensor.
  • MR sensors are well suited for detecting the variation of a magnetic field and can be obtained commercially in a cost- effective manner.
  • the senor is designed as an inductive sensor.
  • Inductive sensors are perfectly suited for detecting variations in a magnetic field and they are ver even at high temperatures ⁇ reversible.
  • the control unit in the presence of a faulty speed signal, opens the wastegate valve so far that the remaining exhaust gas flow can accelerate the turbine wheel only up to the maximum speed of the exhaust gas turbocharger. Since one knows the maximum exhaust gas flow of an internal combustion engine, it is easily possible for the signal error case to calculate the proportion of the exhaust gas flow, which is harmless for the turbocharger. Only the harmless exhaust gas flow then reaches the exhaust gas turbocharger, if a faulty speed signal was detected.
  • the controller sets the geometry of the tur ⁇ binenconstru so that the maximum exhaust gas flow can accelerate the turbine only to the maximum speed of the exhaust gas turbocharger.
  • the internal combustion engine, a turbine geometry are predetermined knowing the Maxima len exhaust stream, with the maximum exhaust gas flow remains unwelded ⁇ lich for the turbocharger.
  • the speed signal is classified as error-free when the duty cycle is in ei ⁇ nem predetermined range.
  • a range for a fault-free speed signal would be, for example, a 25 to 75%. Duty ratios above 75% and below 25% would then lead to the detection of a faulty speed signal.
  • FIG. 1 shows an exhaust gas turbocharger with a compressor and a turbine
  • FIG. 3 a somewhat deteriorated pulse duty factor
  • FIG. 4 a likewise deteriorated duty cycle
  • FIG. 5 a considerably deteriorated duty cycle
  • FIG. 6 a likewise considerably deteriorated Tastver ⁇ ratio
  • Figure 7 another form of detection of a faulty speed signal.
  • FIG. 1 shows schematically an exhaust gas turbocharger 1 with a compressor 3 and a turbine 2.
  • the turbine 2 is mechanically connected to the compressor 3 through the turbo shaft 8.
  • the combination of turbine 2, compressor 3 and turbo shaft 8 is rotatably mounted in the here not completely shown Abgasturbola ⁇ 1.
  • the exhaust stream 4 generated by an internal combustion engine 7 is supplied to the turbine 2.
  • the exhaust gas stream 4 drives the turbine, which transmits its rotational movement to the turbo ⁇ wave 8 and the compressor 3.
  • the combination of turbo shaft 8, turbine 2 and compressor 3 which is also referred to as a running tool, in ⁇ mer faster.
  • Modern turbochargers have a speed limit at about 300,000 revolutions per minute. This speed limit must not be exceeded, otherwise a complete destruction of the turbocharger can occur.
  • an element 10 for varying a magnetic field is formed in the turbo shaft 8.
  • the element 10 is designed to vary the Mag ⁇ netfeldes as a permanent magnet.
  • the magnetic field at the speed sensor 6 va ⁇ riiert.
  • a speed sensor 6 for example, a HaIl element, a coil for detecting the magnetic field or a magnetoritive (MR) element comes into question.
  • the speed sensor 6 generates from the detected magnetic field, a speed signal 11, which is forwarded to a control unit 9.
  • control unit 9 If the control unit 9 detects that the upper speed limit of the turbocharger 1 has been reached, it controls a so-called wastegate valve 12, which opens and directs the exhaust gas flow 4 past the turbine 2, thereby preventing further acceleration of the power tool.
  • the speed signal 11 is falsified by external influences, such as superimposed external magnetic fields or electromagnetically interspersed pulses. In particular, it is kri ⁇ table when the speed signal 11 is a lower speed of the turbo shaft 8, as the actual existing rotation ⁇ number of the turbo shaft 8. This could lead to the total Zer- disturbance of the turbocharger 1, since the control unit 9 no pulse for Emptying opening of the waste gate valve, which is further accelerated with sufficient exhaust gas stream 4 the running gear. To prevent this, the speed signal is evaluated according to its duty cycle.
  • Figures 2 to 7 show the toleite from the speed signal 11 ⁇ th voltage signal U as a function of time t. Instead of the voltage U, the current strength may well be represented.
  • the speed signal 11 of Figure 2 are located in the time average, the same number of pulses below a kon ⁇ constants voltage value C as above this constant voltage value C.
  • the duty cycle is the percentage of time indicate that a signal is above a threshold.
  • FIG. 11 Another form of detection of a faulty speed signal 11 is shown in the diagram of FIG.
  • the signal pulses 13 of the rotational speed signal 11 are strictly periodic peri ⁇ odisch, whereby the absence of a pulse 14 can be easily Festge ⁇ provides. This requires a time measurement which is coupled to the pulse train of the speed signal 11 and detects the absence of a pulse 14. Even with the ⁇ sem method for evaluating the speed signal 11, the controller 9 can detect a faulty speed signal 11 and prevent by driving the waste gate valve 12 overspeeding of the running tool.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

L'invention concerne un procédé de contrôle de la vitesse de rotation d'un arbre de turbine monté en rotation dans un turbocompresseur, un élément faisant varier un champ magnétique étant configuré au niveau de l'arbre de turbine, ledit élément provoquant la variation du champ magnétique proportionnellement à la vitesse de rotation de l'arbre de turbine, cependant qu'il est prévu un détecteur détectant la variation du champ magnétique et la convertissant en un signal électronique de vitesse de rotation. L'invention a pour but de fournir un procédé de commande de la vitesse de rotation d'un arbre de turbine, au moyen duquel le turbocompresseur est protégé de manière fiable vis-à-vis d'un endommagement résultant d'une vitesse de rotation supérieure à une limite maximale autorisée. A cet effet, l'invention est caractérisée en ce qu'en vue de détecter un signal de vitesse de rotation erroné, le taux d'impulsions dudit signal de vitesse de rotation est évalué, et en ce qu'en présence d'un signal de vitesse de rotation erroné, la vitesse de rotation de l'arbre de turbine est réduite dans une mesure telle qu'une destruction du turbocompresseur par dépassement de sa vitesse de rotation maximale est exclue.
PCT/EP2006/066208 2005-09-22 2006-09-11 Procede de controle de la vitesse de rotation d'un arbre de turbine WO2007033914A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005045457.7 2005-09-22
DE200510045457 DE102005045457B4 (de) 2005-09-22 2005-09-22 Verfahren zur Drehzahlüberwachung einer Turbowelle

Publications (1)

Publication Number Publication Date
WO2007033914A1 true WO2007033914A1 (fr) 2007-03-29

Family

ID=37533214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/066208 WO2007033914A1 (fr) 2005-09-22 2006-09-11 Procede de controle de la vitesse de rotation d'un arbre de turbine

Country Status (2)

Country Link
DE (1) DE102005045457B4 (fr)
WO (1) WO2007033914A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025754A1 (fr) * 2006-08-30 2008-03-06 Continental Automotive Gmbh Actionneur de soupape de décharge pour un turbocompresseur à gaz d'échappement
FR2987085A1 (fr) * 2012-02-20 2013-08-23 Snecma Procede de securisation du fonctionnement d'une turbomachine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007036936A1 (de) 2007-08-04 2009-02-05 Daimler Ag Verfahren zur Fehlerdiagnose eines Abgasturboladers für eine Brennkraftmaschine
DE102012024078A1 (de) 2012-12-07 2014-06-12 Daimler Ag Abgasturbolader für eine Verbrennungskraftmaschine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279576A (en) * 1979-04-09 1981-07-21 Toyota Jidosha Kogyo Kabushiki Kaisha Rotating speed detecting device of a turbocharger
DE3801171C1 (en) * 1988-01-16 1989-05-18 Mtu Friedrichshafen Gmbh Device for detecting the speed of the shaft of an exhaust gas turbocharger
EP0458121A1 (fr) * 1990-05-25 1991-11-27 Eaton Corporation Appareil et procédé de détection de défauts dans un système de mesure de vitesse
GB2406394A (en) * 2003-09-29 2005-03-30 Detroit Diesel Corp Methods for responding to sensor failures on EGR/VGT engines

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4604701A (en) * 1983-02-16 1986-08-05 Allied Corporation Fail-soft turbocharger control system
DE3832541A1 (de) * 1988-09-24 1990-03-29 Vdo Schindling Verfahren zur erkennung von fehlern bei einem entsprechend der geschwindigkeit eines fahrzeugs veraenderlichen signal
DE10140121A1 (de) * 2001-08-16 2003-03-06 Daimler Chrysler Ag Verfahren und Vorrichtung zur Diagnose eines Abgasturboladers für eine Brennkraftmaschine
JP2005201146A (ja) * 2004-01-15 2005-07-28 Denso Corp 過給装置のポジション検出装置
DE102005010921A1 (de) * 2004-07-15 2006-02-09 Siemens Ag Abgasturbolader

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4279576A (en) * 1979-04-09 1981-07-21 Toyota Jidosha Kogyo Kabushiki Kaisha Rotating speed detecting device of a turbocharger
DE3801171C1 (en) * 1988-01-16 1989-05-18 Mtu Friedrichshafen Gmbh Device for detecting the speed of the shaft of an exhaust gas turbocharger
EP0458121A1 (fr) * 1990-05-25 1991-11-27 Eaton Corporation Appareil et procédé de détection de défauts dans un système de mesure de vitesse
GB2406394A (en) * 2003-09-29 2005-03-30 Detroit Diesel Corp Methods for responding to sensor failures on EGR/VGT engines

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008025754A1 (fr) * 2006-08-30 2008-03-06 Continental Automotive Gmbh Actionneur de soupape de décharge pour un turbocompresseur à gaz d'échappement
JP2010501787A (ja) * 2006-08-30 2010-01-21 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング 排気ターボチャージャのためのウェストゲートアクチュエータ
US8109089B2 (en) 2006-08-30 2012-02-07 Continental Automotive Gmbh Waste gate actuator for an exhaust gas turbocharger
FR2987085A1 (fr) * 2012-02-20 2013-08-23 Snecma Procede de securisation du fonctionnement d'une turbomachine
WO2013124578A1 (fr) * 2012-02-20 2013-08-29 Snecma Procede de securisation du fonctionnement d'une turbomachine
US20150030464A1 (en) * 2012-02-20 2015-01-29 Snecma Method for securing the operation of a turbomachine
US10323538B2 (en) 2012-02-20 2019-06-18 Safran Aircraft Engines Method for securing the operation of a turbomachine

Also Published As

Publication number Publication date
DE102005045457B4 (de) 2014-10-02
DE102005045457A1 (de) 2007-04-05

Similar Documents

Publication Publication Date Title
EP2059662B1 (fr) Actionneur de soupape de décharge pour un turbocompresseur à gaz d'échappement
DE102005029764B4 (de) Sensor zur Messung der Drehzahl einer Turbowelle
EP2021585B1 (fr) Élément de capteur actif et procédé de captage de la température d'un élément de capteur actif
DE112005001127B4 (de) Abgasturbolader
WO2006029965A1 (fr) Turbocompresseur à gaz d'échappement
WO2006045680A1 (fr) Turbocompresseur
WO2000036280A1 (fr) Procede pour identifier une rupture d'arbre dans une turbomachine
EP1977086A1 (fr) Carter de compresseur d'un turbocompresseur à gaz d'échappement
WO2008125383A1 (fr) Turbocompresseur à suralimentation pour déterminer une fonction d'erreur du turbocompresseur à suralimentation et procédé pour déterminer une telle fonction d'erreur
DE102006044668B4 (de) Element zur Erzeugung eines Magnetfeldes
DE102004061840B4 (de) Drehzahl- und Drehpositionsermittlungsvorrichtung für einen Lader
WO2007033914A1 (fr) Procede de controle de la vitesse de rotation d'un arbre de turbine
DE102007027235B4 (de) Magnetisierte Mutter zur Befestigung eines Kompressorrades eines Abgasturboladers an der Turbowelle und Verfahren zur Herstellung einer solchen
DE102009026971B4 (de) Verfahren und Vorrichtung zum Bereitstellen einer Drehzahl- und Temperaturangabe einer Aufladevorrichtung für einen Verbrennungsmotor
WO2016045829A1 (fr) Système de suralimentation pour un moteur à combustion interne et procédé associé
DE102007052453B4 (de) Diagnosevorrichtung bzw. Diagnoseverfahren bei Abgasturboladern im Betrieb am Verbrennungsmotor
WO2009013092A2 (fr) Capteur de régime inductif pour turbo-compresseur
WO2007057257A1 (fr) Roue de compresseur pour un turbocompresseur
DE102016220543B3 (de) Verfahren und Vorrichtung zur Erkennung eines Verdichterpumpens eines Turboverdichters einer Brennkraftmaschine
DE102010039532A1 (de) Drehzahlsensoranordnung mit eigenständiger Energieversorgung
DE102006044666A1 (de) Verfahren zur Erkennung einer Unwucht
DE102008054917A1 (de) Verfahren und Anordnung zur Erkennung einer blockierten Schaufelverstellung bei einem Turbolader mit variabler Geometrie
DE102019219153A1 (de) Verfahren zur wirkungsgradoptimierten Steuerung eines Verdichters
DE102012024078A1 (de) Abgasturbolader für eine Verbrennungskraftmaschine
DE102004029857A1 (de) Verfahren und Anordnung zum Betreiben eines Turboladers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06793390

Country of ref document: EP

Kind code of ref document: A1