WO2007033885A1 - Wolfram-schrot - Google Patents

Wolfram-schrot Download PDF

Info

Publication number
WO2007033885A1
WO2007033885A1 PCT/EP2006/065754 EP2006065754W WO2007033885A1 WO 2007033885 A1 WO2007033885 A1 WO 2007033885A1 EP 2006065754 W EP2006065754 W EP 2006065754W WO 2007033885 A1 WO2007033885 A1 WO 2007033885A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
sintered
shaped bodies
inorganic material
moldings
Prior art date
Application number
PCT/EP2006/065754
Other languages
English (en)
French (fr)
Inventor
Hans Wohlfromm
Johan Herman Hendrik Ter Maat
Martin Bloemacher
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to CA002623159A priority Critical patent/CA2623159A1/en
Priority to EP06793042A priority patent/EP1931486A1/de
Priority to US12/067,552 priority patent/US20080230964A1/en
Priority to JP2008531652A priority patent/JP2009509043A/ja
Publication of WO2007033885A1 publication Critical patent/WO2007033885A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/003Articles made for being fractured or separated into parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • B22F2003/208Warm or hot extruding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the present invention relates to a method for producing strips of sintered three-dimensional molded bodies or sintered three-dimensional molded bodies from a pulverulent, inorganic material by mixing this material with a binder and optionally a dispersant, shaping this mixture into a melt ribbon, forming a coherent strip of three-dimensional shaped bodies, optionally separating these shaped bodies, debindering and sintering, as well as the use of the sintered three-dimensional shaped bodies.
  • WO 01/81467 A1 discloses a binder for inorganic material powders for the production of metallic and ceramic shaped bodies.
  • a mixture of the inorganic material powder with a binder selected from the group consisting of polyoxymethylene homopolymers and copolymers, polytetrahydrofuran and a further polymer is shaped by the injection molding process known from the prior art.
  • US 6,270,549 B1 discloses a deformable, non-toxic tungsten-nickel-manganese-iron alloy having a high density. There is further disclosed a method for producing shot pellets by casting or forging.
  • JP 06271970 A discloses a sintered tungsten alloy consisting of 85 to 98% tungsten, and iron and nickel, wherein the ratio of nickel to iron is 5/5 to 8/2. This mixture is deformed according to methods known from the prior art and sintered at a specific temperature program.
  • US 4,784,690 discloses a relatively low density tungsten alloy and a method of making molded parts therefrom. This method involves pressing an alloy powder containing not more than 90% by weight of tungsten, and then sintering this shaped body in a reducing atmosphere.
  • US 2003/0172775 A1 discloses an alloy of 30 to 75 wt.% Tungsten, 10 to
  • the object of the present invention is to provide a process for the simple and thus cost-effective production of sintered strips of three-dimensional moldings from a pulverulent, inorganic material and from corresponding three-dimensional moldings.
  • This object is achieved by a method for producing contiguous strips of sintered three-dimensional shaped bodies or of three-dimensional shaped bodies of a powdery inorganic material, wherein
  • melt ribbon is deformed by means of a suitable apparatus into a continuous band of three-dimensional shaped bodies
  • step (f) sintering the debinded, three-dimensional band of the shaped bodies or the debinded, three-dimensional shaped bodies; and (g) optionally, after cooling, separating the contiguous band of the debinded, sintered, three-dimensional shaped bodies, if the singulation has not occurred in step (d).
  • the method according to the invention includes as a first step that the powdery, inorganic material is mixed with a binder and optionally a dispersant.
  • the inorganic material may be selected from any known, suitable inorganic sinterable powders. Preferably, it is selected from the group consisting of metal powders, metal alloy powders, semimetal powders, metal carbonyl powders, ceramic powders, and mixtures thereof.
  • metals which may be in powder form include tungsten, iron, cobalt, nickel, silicon, aluminum, titanium and copper. Alloys are included For example, light metal alloys based on aluminum and titanium, as well as alloys of copper and all known in the art steels.
  • Semi-metals such as tungsten carbide, boron carbide or titanium nitride may also be used alone or in combination with metals such as cobalt, nickel and iron.
  • Suitable inorganic powders are also oxide ceramic powders such as Al 2 O 3 , ZrO 2 , Y 2 O 3 , but also non-oxide ceramic powders such as silicon carbide, Si 3 N 4 .
  • Suitable powders are described, for example, in EP-AO 456 940, EP-A-0 710 516, DE-A-3 936 869, DE-A-4 000 278 and EP-AO 1 14 746, and the literature cited therein.
  • the inorganic material consists of
  • the particle sizes of the powders are preferably 0.1 to 50 .mu.m, more preferably 0.2 to 30 .mu.m.
  • the metal powders, metal alloy powders, semimetal powders, metal carbonyl powders and / or ceramic powders can also be used in a mixture.
  • the weight ratio of nickel to iron in this mixture is preferably 38:62 to 78:22, particularly preferably 42:68 to 70: 30th
  • any of the above-described, preferably organic, binders can be used in the process according to the invention, which can be removed without residue.
  • These organic binders may be selected from the group consisting of polyoxymethylene homo- and copolymers, polyalkylene oxides, preferably polytetrahydrofuran, polyolefins, polymers of acrylic acid and / or acrylic acid esters, preferably polymethyl methacrylate, if appropriate with the addition of dispersing aids and flow improvers.
  • the mixtures of said binders used preferably a mixture of polyoxymethylene and a polyolefin, optionally with the addition of dispersing aids and flow improvers.
  • Suitable binders and binder mixtures are described in WO 01/81467 A1, EP 0 465 940 B1 and EP 0 444 475 B1.
  • the binder is used in an amount of 60 to 98% by weight, preferably 70 to 95% by weight, particularly preferably 75 to 95% by weight, based on the mixture of pulverulent, inorganic material powder, binder and optionally dispersant. gierangesffen used.
  • step (a) the pulverulent inorganic material or a mixture of inorganic powdery materials is mixed with a binder and optionally a dispersant by a method known to the person skilled in the art.
  • the mixture may also optionally contain a dispersing aid and a flow improver selected from dispersion aids known to the skilled person and flow improvers.
  • mixtures may also contain conventional additives and processing aids which favorably influence the rheological properties of the mixtures during the shaping.
  • the preparation of the mixtures can be carried out according to the invention by melting the binder and mixing in the inorganic powder and optionally the dispersing assistant.
  • the binder can, for example, in a twin-screw extruder, at temperatures of preferably 150 to 220 ° C, more preferably 170 to 200 ° C are melted.
  • the inorganic powder is then added at temperatures in the same range in the required amount to the melt stream of the binder.
  • the inorganic powder on the surface contains the dispersant or dispersants.
  • the mixture can also be carried out according to the invention by mixing the binder and the inorganic powder at room temperature by methods known to those skilled in the art.
  • the preparation of the mixture by melting the binder and metering in the inorganic powder has the advantage over the mixing of the components at room temperature and subsequent extrusion with temperature increase a decomposition of the polyoxymethylene used as a binder as a result of the high shear forces occurring in this variant is largely avoided.
  • Step (b) of the process according to the invention comprises that the previously produced mixture of inorganic material powder, binder and optionally a dispersing aid on a suitable apparatus, preferably a kneader or twin-screw extruder, is shaped into a melt ribbon.
  • a suitable apparatus preferably a kneader or twin-screw extruder
  • all apparatuses known to the person skilled in the art and suitable for processing the mixtures which can be used according to the invention can be used.
  • the mixture from step (a) of the process according to the invention if the components have been mixed at room temperature or a temperature below the melting temperature, is melted. This is done at a temperature of 150 to 210 ° C, preferably from 160 to 210 ° C, more preferably from 170 to 190 ° C.
  • the molten mixture can be discharged in the form of a strand by all methods known to those skilled in the art.
  • the mixture is melted on a twin-screw extruder and discharged through a nozzle into a strand.
  • step (a) of the process according to the invention by melting the binder and metering in the inorganic powder, the molten mixture can be directly transformed into a hot melt strip, without the mixture having to be temporarily cooled and remelted.
  • step (b) While the molten mixture obtained in step (b) is deformed by a suitable apparatus, for example on a calender, the mixture is cooled. This can be done for example by cooling the apparatus with water.
  • step (c) the strand-shaped molten mixture obtained in step (b) is formed into a continuous band of three-dimensional shaped bodies.
  • This deformation can be done with any apparatus known to the person skilled in the art and suitable for the method step according to the invention.
  • step (c) of the method according to the invention is carried out by means of a calender.
  • the contiguous bands of three-dimensional shaped bodies produced in accordance with the invention can have any length; in a preferred embodiment, the bands are endless.
  • the width of the bands of three-dimensional moldings is up to 100 mm, preferably up to 60 mm, particularly preferably up to 30 mm.
  • the contiguous bands produced according to the invention are 0.1 to 20 mm, preferably 0.5 to 10 mm, particularly preferably 1, 5 to 5 mm high.
  • the single ones Three-dimensional molded bodies are connected to one another by a melt film and thus form the melt strip which can be used according to the invention.
  • step (d) the contiguous band of the three-dimensional shaped bodies obtained in step (c) is optionally separated into three-dimensional shaped bodies after cooling.
  • the singulation can be carried out with all devices known to the person skilled in the art and suitable for this method step.
  • a drum mill or a drum mixer are mentioned.
  • the three-dimensional moldings obtained by dicing have, in a preferred embodiment, a dimension along their longest dimension of 0.1 to 20 mm, preferably 0.5 to 10 mm, particularly preferably 1.5 to 5 mm.
  • the three-dimensional shaped bodies are spherical, ellipsoidal or drop-shaped, particularly preferably spherical.
  • debinding means that the binder added in process stage (a) and, if present, any dispersing aid are removed.
  • the bands of the three-dimensional moldings or the three-dimensional moldings obtained after separation are treated, for example, with a gaseous, acidic atmosphere.
  • a gaseous, acidic atmosphere Corresponding methods are described in DE-A-3929869 and DE-A-4000278. This treatment is carried out according to the invention preferably at temperatures in the range of 20 to 180 ° C over a period of preferably 0.1 to 24 hours, preferably 0.5 to 12 hours.
  • Debinding may also be performed with suitable debinding agents in the liquid phase.
  • Suitable acids for the treatment in step (e) of the process according to the invention are, for example, inorganic gases which are already gaseous at room temperature, but at least evaporable at the treatment temperature.
  • examples are hydrohalic acids and nitric acid.
  • Suitable organic acids are those which have a boiling point of less than 130 ° C. at normal pressure, such as formic acid, acetic acid or trifluoroacetic acid and mixtures thereof.
  • boron trifluoride (BF 3 ) and its adducts of organic ether, preferably tetrahydrofuran, can be used as the acid.
  • the required treatment time depends on the treatment temperature and the concentration of the acid in the treatment atmosphere as well as on the size of the molding.
  • a carrier gas When a carrier gas is used, it is generally loaded with the acid by contacting the carrier gas with the acid in the gaseous state. The thus loaded carrier gas is then brought to the treatment temperature, which is suitably higher than the loading temperature in order to avoid condensation of the acid.
  • the acid is admixed to the carrier gas via a metering device and the mixture is heated to such an extent that the acid can no longer condense.
  • Suitable carrier gases are inert gases, for example nitrogen or argon.
  • the acid treatment is preferably carried out until the binder is at least 80% by weight, preferably at least 90% by weight removed. This can be checked, for example, by weight loss.
  • the product thus obtained is slowly heated to a temperature of 250-700 ° C, preferably 400-700 ° C. Subsequently, the temperature is kept constant.
  • the heating time consisting of slow heating and constant temperature heating is preferably 0.1 to 12 hours, more preferably 0.3 to 6 hours. This heating is done to completely remove the remainder of the binder.
  • step (f) the debinded strips of three-dimensional shaped bodies or the unbound singulated three-dimensional shaped bodies are sintered in the usual way.
  • the debinded bands of three-dimensional shaped bodies or the unbound singulated three-dimensional shaped bodies are converted into the desired bands of the shaped bodies or the singulated shaped bodies, in particular metallic or ceramic.
  • the sintering is carried out at a temperature of 500 to 2500 ° C, preferably 700 to 2000 ° C, more preferably 1200 to 1800 ° C.
  • the sintering takes place in a hydrogen-containing atmosphere, preferably the atmosphere consists of hydrogen or is a hydrogen-containing atmosphere containing in addition nitrogen and / or argon.
  • the sintering can also be carried out in a vacuum.
  • the duration of the sintering process, including cooling, is less than 30 hours, preferably 8 to 24 hours, more preferably 8 to 12 hours.
  • step (d) of the process according to the invention the continuous strip of the debinded sintered three-dimensional shaped bodies obtained in step (f) is separated into debinded sintered three-dimensional shaped bodies.
  • the singulation can be carried out as described in step (d).
  • the strips of three-dimensional shaped bodies produced by the method according to the invention or the three-dimensional shaped bodies have a density of preferably 3 to 20 g / cm 3 , particularly preferably 8 to 14 g / cm 3 .
  • the present invention also relates to strips of debinded sintered three-dimensional shaped bodies or debindered sintered three-dimensional shaped bodies produced by the method according to the invention.
  • the present invention furthermore also relates to the use of the three-dimensional shaped bodies produced by the method according to the invention as shotgun pellets, ammunition, weight for fishing, balancing of tires, as oscillating mass in watches, for radiation shielding, as balance weight in drive motors, for the production of sports articles or as catalyst support.
  • an alloy composition comprising 57% by weight tungsten, 26% by weight iron and 17% by weight nickel is chosen.
  • a powder mixture consisting of 400 kg of tungsten powder (average particle diameter 6 .mu.m), 218 kg of iron powder (mean particle diameter 5 .mu.m) and 83 kg of nickel powder (average particle diameter 13 .mu.m) in a heated kneader with 61 kg of polyoxymethylene and 7 kg of polypropylene to a homogeneous mass mixed, kneaded and broken on discharge.
  • the resulting granules are remelted on a twin-screw extruder, and discharged via a nozzle into a strand, which in turn is formed by means of a calender to a band consisting of 3 mm diameter beads, which are connected via a melt film with each other.
  • the cooled bands are crushed by means of a drum mill to individual beads.
  • the beads are placed as a bed in a chamber furnace and catalytically debindered at 1 10 ° C in a nitrogen flow of 500 l / h, the 25 ml / h concentrated HNO 3 was metered. Subsequently, the ball bed is placed in an electrically heated sintering furnace and sintered there at 1420 ° C in a hydrogen stream.
  • the density of the sintered beads is 12 g / cm 3 .
  • the alloy composition is selected to be 57 wt% tungsten, 12 wt% iron, and 31 wt% nickel.
  • the processing is analogous to Example 1. Again, a density of 12 g / cm 3 is achieved.
  • alumina is selected. The process is carried out analogously to Example 1.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung gesinterter dreidimensionaler Bänder von Formkörpern und der Formkörper aus einem pulverförmigen, anorganischen Material, gesinterte dreidimensionale Formkörper, sowie die Verwendung der gesinterten, dreidimensionalen Formkörper als Schrotkugeln, Munition, Gewicht zum Angeln, zur Auswuchtung von Reifen, als Schwingmasse in Uhren, zur Strahlenabschirmung, als Ausgleichsgewicht in Antriebsmotoren, zur Herstellung von Sportartikel oder als Katalysatorträger.

Description

Wolfram-Schrot
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Bändern gesinterter dreidimensionaler Formkörper oder gesinterter dreidimensionaler Formkörper aus einem pulverförmigen, anorganischen Material durch Vermengen dieses Materials mit einem Bindemittel und gegebenenfalls einem Dispergiermittel, Verformen dieser Mischung zu einem Schmelzband, Verformung zu einem zusammenhängenden Band dreidimensionaler Formkörper, gegebenenfalls Vereinzeln dieser Formkörper, Entbin- dern und Sintern, sowie die Verwendung der gesinterten dreidimensionalen Formkörper.
Verfahren zur Herstellung von Formkörpern aus anorganischen Materialien sind bereits bekannt.
WO 01/81467 A1 offenbart ein Bindemittel für anorganische Materialpulver zur Herstellung metallischer und keramischer Formkörper. Eine Mischung des anorganischen Materialpulvers mit einem Bindemittel ausgewählt aus der Gruppe ausgewählt aus Po- lyoxymethylenhomo- und -copolymeren, Polytetrahydrofuran und einem weiteren Polymer wird durch das aus dem Stand der Technik bekannte Spritzguss-Verfahren verformt.
US 6,270,549 B1 offenbart eine verformbare, nicht toxische Wolfram-Nickel-Mangan- Eisen-Legierung mit einer hohen Dichte. Es wird weiterhin ein Verfahren zur Herstellung von Schrotkugeln durch Gießen oder Schmieden offenbart.
JP 06271970 A offenbart eine gesinterte Wolfram-Legierung, bestehend aus 85 bis 98% Wolfram, sowie Eisen und Nickel, wobei das Verhältnis von Nickel zu Eisen 5/5 bis 8/2 beträgt. Diese Mischung wird nach aus dem Stand der Technik bekannten Methoden verformt und bei einem spezifischen Temperaturprogramm gesintert.
US 4,784,690 offenbart eine Wolfram-Legierung mit einer relativ niedrigen Dichte und ein Verfahren zur Herstellung von Formteilen daraus. Dieses Verfahren beinhaltet das Pressen eines Legierungspulvers, das nicht mehr als 90 Gew.-% Wolfram enthält, und anschließendes Sintern dieses Formkörpers in einer reduzierenden Atmosphäre.
US 2003/0172775 A1 offenbart eine Legierung aus 30 bis 75 Gew.-% Wolfram, 10 bis
70 Gew.-% Nickel, 0 bis 35 Gew.-% Eisen, gegebenenfalls mit einem Verhältnis von Nickel zu Eisen von ≥ 1 ,0 oder gegebenenfalls von < 1 ,0, sowie ein Verfahren zur Her- Stellung von Geschossen aus der genannten Legierung durch Gießen, Schmieden, Hämmern und/oder Schleifen.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur einfachen und damit kos- tengünstigen Herstellung gesinterter Bänder von dreidimensionalen Formkörpern aus einem pulverförmigen, anorganischen Material und von entsprechenden dreidimensionalen Formkörpern bereit zu stellen.
Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung zusammenhängender Bänder von gesinterten dreidimensionalen Formkörpern oder von dreidimensionalen Formkörpern aus einem pulverförmigen anorganischen Material, wobei
(a) eine Mischung des pulverförmigen, anorganischen Materials mit einem Bindemittel und gegebenenfalls einem Dispergiermittel vermengt wird, (b) die Mischung mittels eines geeigneten Apparates zu einem Schmelzband verformt wird,
(c) dieses Schmelzband mittels eines geeigneten Apparates zu einem zusammenhängenden Band dreidimensionaler Formkörper verformt wird,
(d) gegebenenfalls nach Erkalten das zusammenhängende Band der dreidi- mensionalen Formkörper vereinzelt wird,
(e) das Band der dreidimensionalen Formkörper oder die dreidimensionalen Formkörper entbindert werden,
(f) das entbinderte, dreidimensionale Band der Formkörper oder die entbinderten, dreidimensionalen Formköper gesintert werden und (g) gegebenenfalls nach Erkalten das zusammenhängende Band der entbinderten, gesinterten dreidimensionalen Formkörper vereinzelt wird, falls das Vereinzeln nicht in Schritt (d) geschehen ist.
Das erfindungsgemäße Verfahren beinhaltet als ersten Schritt, dass das pulverförmige, anorganische Material mit einem Bindemittel und gegebenenfalls einem Dispergiermittel vermengt wird.
Das anorganische Material kann aus allen bekannten, geeigneten anorganischen sinterbaren Pulvern ausgewählt werden. Vorzugsweise ist es ausgewählt aus der Gruppe bestehend aus Metallpulvern, Metalllegierungspulvern, Halbmetallpulvern, Metallcar- bonylpulvern, keramischen Pulvern und Gemischen davon.
Als Metalle, die in Pulverform vorliegen können, sind beispielsweise Wolfram, Eisen, Kobalt, Nickel, Silicium, Aluminium, Titan und Kupfer genannt. Legierungen sind bei- spielsweise Leichtmetalllegierungen auf der Basis von Aluminium und Titan, sowie Legierungen von Kupfer und alle dem Fachmann bekannten Stähle.
Auch Halbmetalle wie Wolframcarbid, Borcarbid oder Titannitrid kommen alleine oder in Kombination mit Metallen wie beispielsweise Kobalt, Nickel und Eisen in Betracht.
Geeignete anorganische Pulver sind ferner oxidische Keramikpulver wie AI2O3, Zrθ2, Y2O3, aber auch nicht oxidische Keramikpulver wie Siliciumcarbid, Si3N4. Geeignete Pulver sind beispielsweise in EP-A-O 456 940, EP-A-O 710 516, DE-A-3 936 869, DE-A-4 000 278 und EP-A-O 1 14 746, sowie der darin zitierten Literatur beschrieben.
In einer weiteren bevorzugten Ausführungsform besteht das anorganische Material aus
25 - 64 Gew.-%, besonders bevorzugt aus 40 - 64 Gew.-%, ganz besonders be- vorzugt 50 - 60 Gew.-% Wolfram,
10 - 42 Gew.-%, besonders bevorzugt 10 - 35 Gew.-%, ganz besonders bevorzugt 10 - 30 Gew.-% Eisen,
14 - 55 Gew.-%, besonders bevorzugt 14 - 40 Gew.-%, ganz besonders bevorzugt 14 - 35 Gew.-% Nickel und ≤ 5 Gew.-% sonstiger geeigneter anorganischer Materialien,
wobei die Summe 100 Gew.-% ergibt.
Die Korngrößen der Pulver betragen vorzugsweise 0,1 bis 50 μm, besonders bevor- zugt 0,2 bis 30 μm. Die Metallpulver, Metalllegierungspulver, Halbmetallpulver, Metall- carbonylpulver und/oder keramischen Pulver können auch im Gemisch eingesetzt werden.
Wird als pulverförmiges anorganisches Material in das erfindungsgemäße Verfahren eine der zuvor genannten Mischungen der Metalle Wolfram, Eisen und Nickel eingesetzt, beträgt in dieser Mischung das Gewichtsverhältnis von Nickel zu Eisen vorzugsweise 38 : 62 bis 78 : 22, besonders bevorzugt 42 : 68 bis 70 : 30.
Als Bindemittel kann in dem erfindungsgemäßen Verfahren jedes vorbeschriebene, vorzugsweise organische, Bindemittel eingesetzt werden, welches sich rückstandsfrei entfernen lässt. Diese organischen Bindemittel können ausgewählt sein aus der Gruppe bestehend aus Polyoxymethylenhomo- und -copolymerisaten, Polyalkylenoxiden, vorzugsweise Polytetrahydrofuran, Polyolefinen, Polymerisaten von Acrylsäure und/oder Acrylsäureestern, vorzugsweise Polymethacrylsäuremethylester, gegebenen- falls mit Zusatz von Dispergierhilfsmitteln und Fließverbesserern. Vorzugsweise wer- den Mischungen der genannten Bindemittel eingesetzt, bevorzugt eine Mischung aus Polyoxymethylen und einem Polyolefin, gegebenenfalls mit Zusatz von Disper- gierhilfsmitteln und Fließverbesserern. Geeignete Bindemittel und Bindemittelmischungen sind in WO 01/81467A1 , EP 0 465 940 B1 und EP 0 444 475 B1 beschrieben.
Das Bindemittel wird zu einem Anteil von 60 bis 98 Gew.-% bevorzugt 70 bis 95 Gew.-%, besonders bevorzugt 75 bis 95 Gew.-%, bezogen auf die Mischung aus pul- verförmigem, anorganischem Materialpulver, Bindemittel und gegebenenfalls Disper- gierhilfsmittel, eingesetzt.
In dem erfindungsgemäßen Verfahren wird in Schritt (a) das pulverförmige anorganische Material oder eine Mischung von anorganischen pulverförmigen Materialien mit einem Bindemittel und gegebenenfalls einem Dispergiermittel nach einer dem Fachmann bekannten Methode vermengt.
Neben dem Materialpulver und dem Bindemittel kann die Mischung auch gegebenenfalls ein Dispergierhilfsmittel und einen Fließverbesserer ausgewählt aus dem Fachmann bekannten Dispergierhilfsmitteln und Fließverbesserern enthalten.
Zusätzlich können die Mischungen auch übliche Zusatzstoffe und Bearbeitungshilfsmittel, die die rheologischen Eigenschaften der Mischungen bei der Verformung günstig beeinflussen, enthalten.
Die Herstellung der Mischungen kann erfindungsgemäß durch Aufschmelzen des Bin- demittels und Einmischen des anorganischen Pulvers und gegebenenfalls des Disper- gierhilfsmittels durchgeführt werden. Das Bindemittel kann, beispielsweise in einem Zweischneckenextruder, bei Temperaturen von vorzugsweise 150 bis 220 °C, besonders bevorzugt 170 bis 200 °C aufgeschmolzen werden. Das anorganische Pulver wird anschließend bei Temperaturen im gleichen Bereich in der erforderlichen Menge zu dem Schmelzestrom des Bindemittels zudosiert. Vorteilhafterweise enthält das anorganische Pulver auf der Oberfläche das oder die Dispergierhilfsmittel.
Die Mischung kann erfindungsgemäß auch durch Vermischen des Bindemittels und des anorganischen Pulvers bei Raumtemperatur durch dem Fachmann bekannte Ver- fahren erfolgen.
Die Herstellung der Mischung durch Aufschmelzen des Bindemittels und Zudosieren des anorganischen Pulvers hat gegenüber dem Mischen der Komponenten bei Raumtemperatur und anschließender Extrusion unter Temperaturerhöhung den Vorteil, dass eine Zersetzung des als Bindemittel eingesetzten Polyoxymethylens in Folge der bei dieser Variante auftretenden hohen Scherkräfte weitgehend vermieden wird.
Schritt (b) des erfindungsgemäßen Verfahrens beinhaltet, dass die zuvor erzeugte Mi- schung von anorganischem Materialpulver, Bindemittel und gegebenenfalls einem Dispergierhilfsmittel auf einem geeigneten Apparat, vorzugsweise einem Kneter oder Zweiwellenextruder, zu einem Schmelzband verformt wird. Erfindungsgemäß können alle dem Fachmann bekannten, für die Verarbeitung der erfindungsgemäß einsetzbaren Mischungen geeigneten, Apparate eingesetzt werden.
Zu diesem Zweck wird die Mischung aus Schritt (a) des erfindungsgemäßen Verfahrens, falls die Komponenten bei Raumtemperatur oder einer Temperatur unterhalb der Schmelztemperatur, vermischt worden sind, aufgeschmolzen. Dies geschieht bei einer Temperatur von 150 bis 210 °C, bevorzugt von 160 bis 210 °C, besonders bevorzugt von 170 bis 190 °C. Die aufgeschmolzene Mischung kann nach allen dem Fachmann bekannten Methoden in Form eines Stranges ausgetragen werden. Bevorzugt wird die Mischung auf einem Zweiwellen-Extruder aufgeschmolzen und über eine Düse zu einem Strang ausgetragen.
Ist die Mischung in Schritt (a) des erfindungsgemäßen Verfahrens durch Aufschmelzen des Bindemittels und Zudosieren des anorganischen Pulvers hergestellt worden, so kann die geschmolzene Mischung unmittelbar zu einem Schmelzband verformt werden, ohne dass die Mischung zwischenzeitlich abgekühlt und erneut aufgeschmolzen werden muss.
Während die in Schritt (b) erhaltene geschmolzene Mischung mit einer geeigneten Apparatur, beispielsweise auf einem Kalandar, verformt wird, wird die Mischung abgekühlt. Das kann beispielsweise durch Kühlung der Apparatur mit Wasser geschehen.
In Schritt (c) wird die in Schritt (b) erhaltene strangförmige geschmolzene Mischung zu einem zusammenhängenden Band dreidimensionaler Formkörper verformt. Diese Verformung kann mit jedem dem Fachmann bekannten und für den erfindungsgemäßen Verfahrensschritt geeigneten Apparat geschehen. Vorzugsweise wird Schritt (c) des erfindungsgemäßen Verfahrens mittels eines Kalanders durchgeführt. Die erfindungs- gemäß erzeugten zusammenhängenden Bänder von dreidimensionalen Formkörpern können erfindungsgemäß jede Länge aufweisen, in einer bevorzugten Ausführungsform sind die Bänder endlos. Die Breite der Bänder von dreidimensionalen Formkörpern beträgt bis zu 100 mm, bevorzugt bis zu 60 mm, besonders bevorzugt bis zu 30 mm. Die erfindungsgemäß erzeugten zusammenhängenden Bänder sind 0,1 bis 20 mm, bevorzugt 0,5 bis 10 mm, besonders bevorzugt 1 ,5 bis 5 mm hoch. Die einzelnen dreidimensionalen Formkörper sind durch einen Schmelzfilm miteinander verbunden und bilden so das erfindungsgemäß einsetzbare Schmelzband.
In Schritt (d) wird das zusammenhängende Band der dreidimensionalen Formkörper, welches in Schritt (c) erhalten wird, gegebenenfalls nach Erkalten zu dreidimensionalen Formkörpern vereinzelt. Das Vereinzeln kann mit allen dem Fachmann bekannten und für diesen Verfahrensschritt geeigneten Geräten durchgeführt werden. Beispielhaft sind eine Trommelmühle oder ein Fassmischer genannt.
Die dreidimensionalen Formkörper, die durch das Vereinzeln erhalten werden, haben in einer bevorzugten Ausführungsform eine Abmessung entlang ihrer längsten Ausdehnung von 0,1 bis 20 mm, bevorzugt von 0,5 bis 10 mm, besonders bevorzugt von 1 ,5 bis 5 mm.
In einer bevorzugten Ausführungsform sind die dreidimensionalen Formkörper kugelförmig, ellipsoid oder tropfenförmig, besonders bevorzugt kugelförmig.
In Verfahrensschritt (e) werden die in Schritt (c) erhaltenen Bänder der dreidimensionalen Formkörper oder die in Schritte (d) erhaltenen vereinzelten dreidimensionalen Formkörper entbindert. Erfindungsgemäß bedeutet Entbindern, dass das in Verfahrensstufe (a) beigemengte Bindemittel und gegebenenfalls vorhandenes Disper- gierhilfsmittel entfernt werden.
Zur Entfernung des Bindemittels werden die Bänder der dreidimensionalen Formkörper oder die nach der Vereinzelung erhaltenen dreidimensionalen Formkörper beispielsweise mit einer gasförmigen, säurehaltigen Atmosphäre behandelt. Entsprechende Verfahren sind in DE-A-3929869 und DE-A-4000278 beschrieben. Diese Behandlung erfolgt erfindungsgemäß vorzugsweise bei Temperaturen im Bereich von 20 bis 180 °C über einen Zeitraum von vorzugsweise 0,1 bis 24 Stunden, vorzugsweise 0,5 bis 12 Stunden. Die Entbinderung kann auch mit geeigneten Entbindungsmitteln in der Flüssigphase durchgeführt werden.
Geeignete Säuren für die Behandlung in Schritt (e) des erfindungsgemäßen Verfahrens sind beispielsweise anorganische, bei Raumtemperatur bereits gasförmige, zu- mindest aber bei der Behandlungstemperatur verdampfbare Säuren. Beispiele sind Halogenwasserstoffsäuren und Salpetersäure. Geeignete organische Säuren sind solche, die bei Normaldruck eine Siedetemperatur von weniger als 130 °C aufweisen, wie Ameisensäure, Essigsäure oder Trifluoressigsäure und deren Mischungen. Weiterhin können als Säure Bortrifluorid (BF3) und dessen Addukte an organische E- ther, bevorzugt Tetrahydrofuran, eingesetzt werden. Die erforderliche Behandlungsdauer hängt von der Behandlungstemperatur und der Konzentration der Säure in der Behandlungsatmosphäre wie auch von der Größe des Formkörpers ab.
Wird ein Trägergas verwendet, so wird dies im Allgemeinen mit der Säure beladen, indem das Trägergas mit der Säure in gasförmigem Zustand in Kontakt gebracht wird. Das so beladene Trägergas wird dann auf die Behandlungstemperatur gebracht, die zweckmäßigerweise höher als die Beladungstemperatur ist, um eine Kondensation der Säure zu vermeiden. Bevorzugt wird die Säure über eine Dosiereinrichtung dem Trägergas zugemischt und die Mischung soweit erwärmt, dass die Säure nicht mehr kondensieren kann. Geeignete Trägergase sind inerte Gase, beispielsweise Stickstoff oder Argon.
Die Säurebehandlung wird vorzugsweise solange durchgeführt, bis das Bindemittel mindestens zu 80 Gew.-%, vorzugsweise mindestens zu 90 Gew.-% entfernt ist. Dies lässt sich beispielsweise anhand der Gewichtsabnahme überprüfen. Anschließend wird das so erhaltene Produkt langsam auf eine Temperatur von 250 - 700 °C, bevorzugt 400 - 700 °C erhitzt. Anschließend wird die Temperatur konstant gehalten. Die Dauer des Erhitzens bestehend aus langsamen Aufheizen und Erhitzen bei konstanter Temperatur beträgt insgesamt vorzugsweise 0,1 bis 12, besonders bevorzugt 0,3 bis 6 Stunden. Dieses Erhitzen wird durchgeführt, um den noch vorhandenen Rest des Bindemittels vollständig zu entfernen.
In Verfahrensschritt (f) werden die entbinderten Bänder dreidimensionaler Formkörper oder die entbinderten vereinzelten dreidimensionalen Formkörper in üblicher Weise gesintert. Dadurch werden die entbinderten Bänder dreidimensionaler Formkörper oder die entbinderten vereinzelten dreidimensionalen Formkörper in die gewünschten Bän- der der Formkörper oder die vereinzelten Formkörper, insbesondere metallische oder keramische, überführt.
Das Sintern wird bei einer Temperatur von 500 bis 2500 °C, bevorzugt 700 bis 2000 °C, besonders bevorzugt 1200 bis 1800 °C durchgeführt. Das Sintern geschieht in einer Wasserstoff-haltigen Atmosphäre, vorzugsweise besteht die Atmosphäre aus Wasserstoff oder ist eine wasserstoffhaltige Atmosphäre beinhaltend zusätzlich Stickstoff und/oder Argon. Das Sintern kann auch im Vakuum durchgeführt werden. Die Dauer des Sintervorgangs beträgt einschließlich Abkühlen weniger als 30 Stunden, bevorzugt 8 bis 24 Stunden, besonders bevorzugt 8 bis 12 Stunden. Gegebenenfalls, falls dies nicht in Schritt (d) des erfindungsgemäßen Verfahrens geschehen ist, wird das in Schritt (f) erhaltene zusammenhängende Band der entbinderten gesinterten dreidimensionalen Formkörper zu entbinderten gesinterten dreidimen- sionalen Formkörpern vereinzelt. Das Vereinzeln kann wie bei Schritt (d) beschrieben erfolgen.
Die durch das erfindungsgemäße Verfahren hergestellten Bänder von dreidimensionalen Formkörper oder die dreidimensionalen Formkörper weisen eine Dichte von bevor- zugt 3 bis 20 g/cm3, besonders bevorzugt von 8 bis 14 g/cm3 auf.
Die vorliegende Erfindung betrifft auch Bänder von entbinderten gesinterten dreidimensionalen Formkörpern oder entbinderte gesinterte dreidimensionale Formkörper, hergestellt durch das erfindungsgemäße Verfahren.
Die vorliegende Erfindung betrifft des Weiteren auch die Verwendung der durch das erfindungsgemäße Verfahren hergestellten dreidimensionalen Formkörper als Schrotkugeln, Munition, Gewicht zum Angeln, zur Auswuchtung von Reifen, als Schwingmasse in Uhren, zur Strahlenabschirmung, als Ausgleichgewicht in Antriebsmotoren, zur Herstellung von Sportartikeln oder als Katalysatorträger.
Die folgenden Beispiele sollen die vorliegende Erfindung näher erläutern, ohne sie einzuschränken.
Beispiele:
Beispiel 1
Im ersten Beispiel wird eine Legierungszusammensetzung mit 57 Gew.-% Wolfram, 26 Gew.-% Eisen und 17 Gew.-% Nickel gewählt. Eine Pulvermischung bestehend aus 400 kg Wolframpulver (mittlerer Teilchendurchmesser 6 μm), 218 kg Eisenpulver (mittlerer Teilchendurchmesser 5 μm) und 83 kg Nickelpulver (mittlerer Teilchendurchmesser 13 μm) wird in einem beheizten Kneter mit 61 kg Polyoxymethylen und 7 kg Polypropylen zu einer homogenen Masse gemischt, geknetet und beim Austragen gebro- chen. Das so entstandene Granulat wird auf einem Zweiwellenextruder erneut aufgeschmolzen, und über eine Düse zu einem Strang ausgetragen, der wiederum mittels eines Kalanders zu einem Band bestehend aus Kügelchen mit 3 mm Durchmesser, die über einen Schmelzefilm mit einander verbunden sind, geformt wird. Die abgekühlten Bänder werden mittels einer Trommelmühle zu einzelnen Kügelchen zerkleinert. Die Kügelchen werden als Schüttung in einen Kammerofen gegeben und bei 1 10 °C in einen Stickstoffstrom von 500 l/h, dem 25 ml/h konzentrierte HNO3 zudosiert wurde, katalytisch entbindert. Anschließend wird die Kugelschüttung in einen elektrisch be- heizten Sinterofen gegeben und dort bei 1420 °C in einem Wasserstoffstrom gesintert.
Die Dichte der gesinterten Kügelchen beträgt 12 g/cm3.
Beispiel 2
Die Legierungszusammensetzung wird gewählt mit 57 Gew.-% Wolfram, 12 Gew.-% Eisen und 31 Gew.-% Nickel. Die Verarbeitung erfolgt analog Beispiel 1. Auch hier wird eine Dichte von 12 g/cm3 erreicht.
Beispiel 3
Als anorganisches Material wird Aluminiumoxid gewählt. Das Verfahren wird analog zu Beispiel 1 durchgeführt.

Claims

Patentansprüche
1. Verfahren zur Herstellung zusammenhängender Bänder von gesinterten drei- dimensionalen Formkörpern oder von gesinterten dreidimensionalen Formkörpern aus einem pulverförmigen, anorganischen Material, dadurch gekennzeichnet, dass
(a) eine Mischung des pulverförmigen, anorganischen Materials mit einem Bindemittel und gegebenenfalls einem Dispergiermittel vermengt wird,
(b) die Mischung mittels eines geeigneten Apparates zu einem Schmelzband verformt wird,
(c) dieses Schmelzband mittels eines geeigneten Apparates zu einem zusammenhängenden Band dreidimensionaler Formkörper verformt wird, (d) gegebenenfalls nach Erkalten das zusammenhängende Band der dreidimensionalen Formkörper vereinzelt wird,
(e) das Band der dreidimensionalen Formkörper oder die dreidimensionalen Formkörper entbindert werden,
(f) das entbinderte, dreidimensionale Band der Formkörper oder die ent- binderten, dreidimensionalen Formkörper gesintert werden und
(g) gegebenenfalls nach Erkalten das zusammenhängende Band der entbinderten, gesinterten dreidimensionalen Formkörper vereinzelt wird, falls das Vereinzeln nicht in Schritt (d) geschehen ist.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das anorganische
Material ausgewählt ist aus der Gruppe bestehend aus Metallpulvern, Metalllegierungspulvern, Halbmetallpulvern, Metallcarbonylpulvern, keramischen Pulvern und Gemischen davon.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das anorganische Material aus
25 - 64 Gew.-% Wolfram, 10 - 42 Gew.-% Eisen, 14 - 55 Gew.-% Nickel und
< 5 Gew.-% sonstiger geeigneter anorganischer Materialien,
wobei die Summe 100 Gew.-% ergibt, besteht.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass im anorganischen Material das Verhältnis von Nickel zu Eisen 38 : 62 bis 78 : 22 beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die dreidimensionalen Formkörper kugelförmig, ellipsoid oder tropfenförmig sind.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die dreidimensionalen Formkörper eine Abmessung entlang ihrer längsten Ausdehnung von 0,1 bis 20 mm aufweisen.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Bindemittel eine Verbindung ist ausgewählt aus der Gruppe bestehend aus Polyoxymethylenhomo- und -copolymerisaten, Polyalkylenoxiden, Polyolefinen und Polymerisaten von Acrylsäure und/oder Acrylsäureestern.
8. Gesinterter dreidimensionaler Formkörper, hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 7.
9. Verwendung der gesinterten, dreidimensionalen Formkörper, hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 7 als Schrotkugeln, Munition, Gewicht zum Angeln, zur Auswuchtung von Reifen, als Schwingmasse in Uhren, zur Strahlenabschirmung, als Ausgleichsgewicht in Antriebsmotoren, zur Herstellung von Sportartikel oder als Katalysatorträger.
PCT/EP2006/065754 2005-09-21 2006-08-29 Wolfram-schrot WO2007033885A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002623159A CA2623159A1 (en) 2005-09-21 2006-08-29 Tungsten scrap
EP06793042A EP1931486A1 (de) 2005-09-21 2006-08-29 Wolfram-schrot
US12/067,552 US20080230964A1 (en) 2005-09-21 2006-08-29 Tungsten Shot
JP2008531652A JP2009509043A (ja) 2005-09-21 2006-08-29 タングステンショット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005045046.6 2005-09-21
DE102005045046A DE102005045046A1 (de) 2005-09-21 2005-09-21 Wolfram-Schrot

Publications (1)

Publication Number Publication Date
WO2007033885A1 true WO2007033885A1 (de) 2007-03-29

Family

ID=37101845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/065754 WO2007033885A1 (de) 2005-09-21 2006-08-29 Wolfram-schrot

Country Status (9)

Country Link
US (1) US20080230964A1 (de)
EP (1) EP1931486A1 (de)
JP (1) JP2009509043A (de)
KR (1) KR20080046738A (de)
CN (1) CN101287564A (de)
CA (1) CA2623159A1 (de)
DE (1) DE102005045046A1 (de)
TW (1) TW200720446A (de)
WO (1) WO2007033885A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010083345A1 (en) 2009-01-14 2010-07-22 Nosler, Inc. Bullets, including lead-free bullets, and associated methods
CN106555092A (zh) * 2016-11-20 2017-04-05 袁汝明 一种高尔夫球杆配重块用高比重钨镍铁合金及其制备方法
CN107099717B (zh) * 2017-05-16 2018-11-09 北京科技大学 晶界自净化钨镁合金的制备技术
CN108462491A (zh) * 2017-12-01 2018-08-28 安徽华东光电技术研究所 用于Ku波段频率综合器上的本振源模块加工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784690A (en) * 1985-10-11 1988-11-15 Gte Products Corporation Low density tungsten alloy article and method for producing same
EP0671231A1 (de) * 1994-03-11 1995-09-13 Basf Aktiengesellschaft Sinterteile aus sauerstoffempfindlichen, nicht reduzierbaren Pulvern und ihre Herstellung über Spritzgiessen
US5831188A (en) * 1992-05-05 1998-11-03 Teledyne Industries, Inc. Composite shots and methods of making
US6270549B1 (en) * 1998-09-04 2001-08-07 Darryl Dean Amick Ductile, high-density, non-toxic shot and other articles and method for producing same
WO2001081467A1 (de) * 2000-04-19 2001-11-01 Basf Aktiengesellschaft Bindemittel für anorganische materialpulver zur herstellung metallischer und keramischer formkörper
US20030172775A1 (en) * 1998-09-04 2003-09-18 Amick Darryl D. Ductile medium-and high-density, non-toxic shot and other articles and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949654A (en) * 1989-04-07 1990-08-21 Porter Wilson L Incinerator for combusting sewage
GB9308287D0 (en) * 1993-04-22 1993-06-09 Epron Ind Ltd Low toxicity shot pellets
GB9318437D0 (en) * 1993-09-06 1993-10-20 Gardner John Christopher High specific gravity material
ATE246798T1 (de) * 1995-12-15 2003-08-15 Gamebore Cartridge Company Ltd Schwachgiftiges schrot
FR2808711B1 (fr) * 2000-05-10 2002-08-09 Poudres & Explosifs Ste Nale Procede de fabrication d'elements composites etain-tungstene de faible epaisseur
WO2002087808A2 (en) * 2001-04-26 2002-11-07 International Non-Toxic Composites Corp. Composite material containing tungsten, tin and organic additive
ES2242097T3 (es) * 2001-10-16 2005-11-01 International Non-Toxic Composites Corp. Material compuesto que contiene tungsteno y bronce.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784690A (en) * 1985-10-11 1988-11-15 Gte Products Corporation Low density tungsten alloy article and method for producing same
US5831188A (en) * 1992-05-05 1998-11-03 Teledyne Industries, Inc. Composite shots and methods of making
EP0671231A1 (de) * 1994-03-11 1995-09-13 Basf Aktiengesellschaft Sinterteile aus sauerstoffempfindlichen, nicht reduzierbaren Pulvern und ihre Herstellung über Spritzgiessen
US6270549B1 (en) * 1998-09-04 2001-08-07 Darryl Dean Amick Ductile, high-density, non-toxic shot and other articles and method for producing same
US20030172775A1 (en) * 1998-09-04 2003-09-18 Amick Darryl D. Ductile medium-and high-density, non-toxic shot and other articles and method for producing the same
WO2001081467A1 (de) * 2000-04-19 2001-11-01 Basf Aktiengesellschaft Bindemittel für anorganische materialpulver zur herstellung metallischer und keramischer formkörper

Also Published As

Publication number Publication date
TW200720446A (en) 2007-06-01
CA2623159A1 (en) 2007-03-29
KR20080046738A (ko) 2008-05-27
EP1931486A1 (de) 2008-06-18
JP2009509043A (ja) 2009-03-05
US20080230964A1 (en) 2008-09-25
CN101287564A (zh) 2008-10-15
DE102005045046A1 (de) 2007-03-22

Similar Documents

Publication Publication Date Title
DE2365046C2 (de) Pulvermetallurgische Verarbeitung von Hochtemperaturwerkstoffen
EP1718777B1 (de) Verfahren zur herstellung einer molybdän-legierung
DE19544107C1 (de) Metallpulver-Granulat, Verfahren zu seiner Herstellung sowie dessen Verwendung
DE3205877C2 (de)
DE1909781A1 (de) Metallpulver aus gekneteten Verbundteilchen und Verfahren zu deren Herstellung
DE102005001198A1 (de) Metallische Pulvermischungen
DE102007047523B3 (de) Verfahren zur Herstellung von Halbzeuge aus NiTi-Formgedächtnislegierungen
EP1897638A1 (de) Rohes magnesiumlegierungspulvermaterial, magnesiumlegierung mit hoher elastizitätsgrenze, verfahren zur herstellung von rohem magnesiumlegierungspulvermaterial und verfahren zur herstellung einer magnesiumlegierung mit hoher elastizitätsgrenze
DE102008051784A1 (de) Herstellung von Molybdän-Metallpulver
EP2686286B1 (de) Verfahren zur herstellung von metallischen oder keramischen formkörpern
DE4319460A1 (de) Verbundwerkstoffe auf der Basis von Borcarbid, Titandiborid und elementarem Kohlenstoff sowie Verfahren zu ihrer Herstellung
DE4119695C2 (de) Aluminiumnitridkörnchen und Verfahren zu deren Herstellung
EP0431165A1 (de) Verfahren zur herstellung keramischen kompositmaterials
EP2598664B1 (de) Hochtemperaturbelastbarer mit scandium legierter aluminium-werkstoff mit verbesserter extrudierbarkeit
DE3324181C2 (de)
EP1931486A1 (de) Wolfram-schrot
US4464206A (en) Wrought P/M processing for prealloyed powder
EP0207268B1 (de) Aluminiumlegierung, geeignet für rasche Abkühlung aus einer an Legierungsbestandteilen übersättigten Schmelze
DE2519568A1 (de) Verfahren und vorrichtung zur herstellung von schleifmitteln
EP0461260A1 (de) Verfahren zur herstellung eines werkstoffes für das funkenerosivlegieren
DE2305774A1 (de) Verwendung von amidwachsen als gleitund ueberzugsmittel
AT9059U1 (de) Verfahren zur herstellung von mikrokugeln aus einer schwermetalllegierung
JPH066763B2 (ja) 高強度アルミニウム合金焼結部材の製造方法
EP0210359A1 (de) Aluminiumlegierung für die Herstellung von Pulver mit erhöhter Warmfestigkeit
DE2223715A1 (de) Dispersionsgehaertete Nickel-Chrom-Kobalt-Knetlegierung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680034802.8

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2623159

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12067552

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008531652

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020087009091

Country of ref document: KR

Ref document number: KR

WWE Wipo information: entry into national phase

Ref document number: 2006793042

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006793042

Country of ref document: EP