WO2007032457A1 - 弾性連結部材及び台座を有する三次モード振動の直管式コリオリ流量計 - Google Patents
弾性連結部材及び台座を有する三次モード振動の直管式コリオリ流量計 Download PDFInfo
- Publication number
- WO2007032457A1 WO2007032457A1 PCT/JP2006/318324 JP2006318324W WO2007032457A1 WO 2007032457 A1 WO2007032457 A1 WO 2007032457A1 JP 2006318324 W JP2006318324 W JP 2006318324W WO 2007032457 A1 WO2007032457 A1 WO 2007032457A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pedestal
- connecting member
- elastic connecting
- flow tube
- axis
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/845—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
- G01F1/8468—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
- G01F1/849—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8409—Coriolis or gyroscopic mass flowmeters constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8409—Coriolis or gyroscopic mass flowmeters constructional details
- G01F1/8413—Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8409—Coriolis or gyroscopic mass flowmeters constructional details
- G01F1/8413—Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
- G01F1/8418—Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments motion or vibration balancing means
Definitions
- the present invention relates to a straight tube type Coriolis flow meter that obtains a mass flow rate and / or density of a fluid to be measured by detecting a phase difference and a vibration frequency that are proportional to Coriolis force acting on a flow tube.
- the present invention relates to a straight pipe type Coriolis flowmeter that vibrates a straight pipe (a single tube) in a tertiary mode, and has an elastic connecting member and a base in its configuration. Background technology.
- the straight pipe type Coriolis flowmeter is designed so that when vibration is applied in the direction perpendicular to the central pipe axis of the straight pipe (flow tube) supported at both ends, A displacement difference of the straight pipe due to the Coriolis force, that is, a phase difference signal is obtained, and the mass flow rate is detected based on the phase difference signal.
- a straight Coriolis flowmeter has a simple, compact and robust structure (see, for example, Japanese Patent No. 2 8 6 8 2 9).
- the conventional straight tube type Coriolis flow meter 1 includes an outer tube 2, a single tube (inner tube) 3, a counter balance (outer tube) 4, a connecting block 5, A plate panel 6, a driving device 7, a detector (detecting means) 8, a weight (not shown), and the like are provided.
- the flow tube 3 has enlarged openings 9 formed in a trumpet shape at both ends thereof.
- the flow tube 3 has a straight straight pipe portion 10 between the enlarged openings 9 at both ends.
- the straight pipe portion 10 of the flow tube 3 is provided with a count balance 4 on the outside thereof.
- Flow tube 3 straight pipe section 10 and count Evening balance 4 is coaxially joined by connecting proxies 5 at both ends of force balance 4.
- the connecting block .5 is provided as a rigid body.
- a double pipe structure is formed by straight pipe section 10 and county balance 4.
- the outer cylinder 2 is formed so that a double pipe structure can be accommodated therein. Both end portions of the outer cylinder 2 are formed so as to narrow toward the enlarged opening 9 of the flow tube 3. Both end portions of the outer cylinder 2 are welded to the enlarged opening 9. Both ends of the outer cylinder 2 and the enlarged opening 9. are fixed in a liquid-tight manner.
- a connection flange 11 is welded to the opening end of the enlarged opening 9. In the figure, the enlarged throat 'mouth 9 is formed so as to have a panel action.
- the leaf spring 6 has a surface orthogonal to the straight pipe portion 10 of the flow tube 3, and one end is fixed to the connection pro- cess 5 and the other end is fixed to the inner wall of the outer cylinder 2. Further, the plate panel 6 is arranged in a direction orthogonal to the resonance vibration direction.
- the drive device 7 is attached to the center position of the flow tube 3 and the count balance 4.
- the drive device .7 drives the straight tube portion 10 of the flow tube 3 and the county balance 4 at the coupled vibration frequencies of opposite phases.
- the detector 8 is attached to a symmetrical position of the drive device 7.
- the weight not shown is attached to a position on the opposite side of the driving device 7. More specifically, the weight not designated by the country is attached in the driving direction of the driving device 7.
- the weight (not shown) is provided so that the natural frequency of the flow tube 3 around the connecting block 5 and the natural frequency of the counter balance 4 can be adjusted equally.
- the resonance system including the flow tube 3 and the counter balance 4 is supported by the plate panel 6.
- the enlarged opening 9 at the end of the straight pipe portion 10 extended from the resonance system is supported at the position of the connection flange 11. Therefore, the flow tube 3 is supported at a plurality of points.
- the straight tube type Coriolis flow meter 1 having such a configuration is operated with a fluid to be measured (not shown) flowing in the flow tube 3.
- the mass flow rate can be measured by resonating the moving device ⁇ and detecting a phase difference signal proportional to the Coriolis force by the detector 8.
- a standing wave is formed in the resonance system by the resonance drive of the drive device 7.
- Each of the above support points is a vibration node. Disclosure of the invention
- the conventional straight tube type Coriolis flow meter 1 is provided with a mass point that vibrates in the opposite direction to the vibration of the flow tube 3, that is, counter balance 4, in order to improve vibration resistance and eliminate vibration leakage. Therefore, it has a structure that cancels out vibration.
- the conventional straight tube type corrior flowmeter ⁇ has a structure in which the driving device 7 and the detector 8 are installed in the counter balance 4 instead of the outer cylinder 2. The structure is such that the counter 4 and the detector 4 with the detector 8 are fixed to the two locations of the flow tube 3 instead of the outer cylinder 2 via the connecting block 5 (straight pipe Coriolis). A structure to prevent noise from being directly superimposed on the detector 8 when a disturbance is applied to the flow meter 1.
- the conventional straight tube type Coriolis flowmeter 1 has a structure in which a plate panel 6 is provided to fix the position of the connecting block 5 and, as a result, the direction of vibration is determined. By providing the panel 6, the connecting process 5 has a center of rotation during vibration).
- the connecting process 5 for connecting the flow tube 3 and the counter balance 4 is a rigid body as described above. It has the following problems. That is, when an axial force is generated in the flow tube 3, local stress is generated between the pair of connection blocks 5 and between the both ends of the flow tube 3 and the connection process 5. However, there is a problem that stress may remain in the flow tube 3 or the flow tube 3 may be plastically deformed.
- Fig. 14 (a) to (d) are schematic diagrams showing the state of the flow tube 3 and the counter balance 4 when the temperature of the fluid to be measured flowing inside the flow tube 3 is raised.
- (e) is a perspective view showing the positional relationship among the flow tube 3, the county balance 4, the connecting block 5, and the leaf spring 6. .
- FIGS. 15 (a) to (d) are schematic diagrams showing the state of the flow tube 3 and the count balance 4 when the temperature of the fluid to be measured flowing inside the flow tube 3 is lowered.
- Fig. 15 (a) shows a state in which the temperature of the fluid to be measured is high and the whole temperature is uniform.In this state, no axial stress acts on the entire flow tube 3. Become ⁇
- the conventional straight tube type Coriolis flow meter 1 is difficult to disperse the axial stress acting on the flow tube 3 in the tube axis direction.
- the structure is Therefore, the conventional straight pipe type Coriolis flow meter 1 has a structure that is vulnerable to temperature changes. '
- the present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a straight-tube type collior flow meter that can disperse the axial stress acting on the flow tube.
- the third-mode vibration straight-tube type corriole flowmeter having the elastic connecting member and the pedestal according to the present invention described in claim ⁇ is as follows.
- a rigid pedestal positioned outside the flow tube in a state where the coils of the pair of detection means are fixed, and a pair of elasticities connecting the pedestal at two predetermined locations of the flow tube.
- an elastic connecting member wherein the axial direction of the flow tube is the vertical axis, the driving direction of the driving device orthogonal to the vertical axis is the X axis, and the vertical axis and the direction orthogonal to the X axis are the vertical axis.
- the inertia 3 ⁇ 4 The member is an elastic body having a structure in which the rigidity in the saddle axis direction is lower than the rigidity in the X axis direction and the saddle axis direction, and the rotational direction around the saddle axis and the X axis It is characterized in that it is an elastic body having a structure in which the rigidity in the rotation direction around the shaft is lower than the rigidity in the rotation direction around the axis.
- the present invention according to claim 2 is a tertiary mode vibration straight tube type flow meter having the elastic connection member according to claim i and a pedestal, wherein the elastic connection member is continuous with the flow tube.
- the first wall portion and the second wall portion are opposed to each other with a space therebetween, and the X-axis direction end portion is opened by the space.
- the present invention described in claim 3 is a tertiary mode vibration straight tube type collimetric flowmeter having the elastic connecting member according to claim 2 and a pedestal, wherein the elastic connecting member comprises:
- the width in the X-axis direction is a structure that is narrower than the width in the X-axis direction of the first wall portion and the second wall portion.
- a third-order mode vibration straight tube type Coriolis flowmeter having the elastic coupling member and the pedestal according to the first aspect, wherein the elastic coupling member is a spindle continuous with the flow tube.
- a flat plate structure is provided, and the bracket is provided with a bracket for fixing the elastic connecting member at the end in the axial direction that protrudes to the outside of the pedestal through the opening of the pedestal. It is characterized by that.
- a tertiary mode vibration straight tube type flow meter having the elastic coupling member and the pedestal according to any one of the first to fourth aspects, wherein the pedestal is a cylinder having a rectangular cross-sectional view. It is characterized by its shape.
- the flow tube, the base, And the elastic connecting member is a structure having the same linear expansion coefficient.
- the bending third mode vibration is adopted as a driving mode for the flow tube.
- the pedestal for fixing each coil of the driving device and the detecting means is provided, for example, at two positions serving as node positions of the ⁇ next mode inherent to the flow tube through elastic coupling members. Yes.
- This pedestal is provided as a member capable of maintaining a fixed position without vibrating even when the driving device is driven to vibrate the flow tube.
- the pedestal has a cylindrical structure
- a cross-sectional view for the purpose of increasing the rigidity, a cross-sectional view. '
- the elastic connecting member is provided to connect the pedestal to the flow tube.
- the elastic connecting member is provided to disperse the axial stress acting on the flow tube as a whole.
- Such an elastic connecting member is provided as a useful member for making the structure strong against temperature change.
- the structure of the elastic connecting member is determined so that the rigidity is weak in the axial direction of the flow tube and the rigidity is high in the other directions.
- the structure of the elastic connecting member is determined so as to be free to rotate and end in the vibration direction so as not to hinder the movement of the third mode vibration.
- the coefficient of linear expansion of the flow tube, the pedestal, and the elastic connecting member is made to be in order to make the structure even stronger against temperature changes.
- the detection means is not limited to the coil and magnet configurations.
- an acceleration sensor, an optical means, a capacitance type, a distortion type (piezo type), or the like may be used as long as it can detect any one of displacement, velocity, and degree of addition.
- a capacitance type, a distortion type (piezo type), or the like may be used as long as it can detect any one of displacement, velocity, and degree of addition.
- 'Claim 1' it is possible to disperse the axial stress acting on the flow tube. Accordingly, the strength against temperature change can be improved as compared with the conventional case.
- FIG. 1 is a diagram showing an embodiment of a straight-tube type Coriolis flow rate analyzer of a tertiary mode vibration having an elastic connecting member and a pedestal according to the present invention.
- A is a diagram of a straight-tube type Coriolis flow meter. Sectional view
- (b) is a perspective view showing the positional relationship among a flow tube, a pedestal, and an elastic connecting member.
- FIG. 2 are the straight pipe type Coriolis flowmeters in Fig. 1.
- the flow rate when the temperature of the fluid to be measured flowing inside the tube is raised.-The tube and the base are elastically connected.
- '(A) to (d) in Fig. 3 shows the flow tube when the temperature of the fluid to be measured flowing inside the flow tube of the straight tube type flowmeter in Fig. 1 is lowered.
- FIG. 4 is a perspective view showing another example of the elastic connecting member of FIG.
- FIG. 5 is a perspective view showing another example of the elastic connecting member and the base of FIG. '
- FIG. 6 is a perspective view showing another example of the elastic connecting member of FIG.
- FIG. 7 is a perspective view showing another example of the elastic connecting member of FIG.
- FIG. 8 is a perspective view showing another example of the elastic connecting member of FIG. 9A is a perspective view showing another example of the elastic coupling member and the pedestal of FIG. 1
- FIG. 9B is a front view of the elastic coupling member
- FIG. 9C is an explanatory view of the fixed position of the detector. is there.
- FIG. 10A is a perspective view showing another example of the elastic connecting member and the pedestal of FIG. 9, and FIG. 10B is a front view of the elastic connecting member.
- FIG. 1.1 is a perspective view showing another example of the elastic connecting member and the pedestal of FIG. '
- FIG. 12 is a perspective view showing another example of the elastic connecting member and the pedestal of FIG.
- Fig. 13 is a cross-sectional view of a conventional straight tube type Coriolis flowmeter.
- FIG. 14 shows the state of the flow tube and counter balance when the temperature of the fluid to be measured flowing inside the flow tube of the straight tube type Coriolis flow meter in Fig. 13 is raised.
- '(E) in FIG. 14 is a perspective view showing the positional relationship among the flow tube, the counter balance, the connecting block, and the plate frame. ⁇ ..
- FIG. 1 is a view showing one embodiment of a straight-tube type corrior flow meter of a third-order mode vibration having a raw connecting member and a pedestal according to the present invention
- (a) is a straight-tube type corrior.
- Sectional drawing of a flowmeter (b) is a perspective view which shows the positional relationship of a flow tube, a base, and an elastic connection member.
- Each of (a) to (d) in Fig. 2 and Fig. 3 flows into the flow tube of the straight tube type Coriolis flow meter in Fig. 1.
- the flow tube when the temperature of the fluid to be measured is raised and lowered
- It is a schematic diagram which shows the state of a base and an elastic connection member.
- a straight tube type Coriolis flow meter 21 of the present invention is firstly described from the same constituent members as in the conventional example.
- the straight pipe type Coriolis flow meter 21 of the present invention is The straight tube type corrior flow meter of the present invention, which is configured to include a base 2 2 as a constituent member and a pair of elastic connecting members 23 3 for connecting the base 2 2 to the flow tube 3 2 1 is a flow tube in order to minimize vibration leakage and to improve the strength against temperature changes compared to the conventional one without the conventional counter balance 4 (see Fig.
- the outer cylinder 2 is a so-called casing and has a structure that is strong against bending and twisting.
- the outer cylinder 2 is formed in a size that can accommodate the float and tube 3.
- the outer cylinder 2 is formed so as to protect the flow rate word + the main part of the flow tube 3, etc., that is, the sensor unit.
- Such an outer cylinder 2 is filled with an inert gas such as argon gas. By filling with inert gas, condensation on the flow tube 3 etc. is prevented.
- the flow tube 3 has a straight straight pipe portion 10 and a lap-like enlarged opening 9 (only one is shown here) connected to both ends of the straight pipe portion 10.
- a magnet 7 a constituting the driving device 7 and a magnet 8 a constituting the detector 8 are fixed to the straight pipe portion 10.
- the magnet 7 a constituting the driving device 7 is fixed at the center position of the straight pipe portion 10.
- the magnets 8a constituting the detector 8 are respectively fixed at positions equidistant from the magnets 7a on both sides of the magnets 7a. Magnets 7a and 8a are fixed so as to protrude along the vibration direction of the flow tube 3.
- the flow tube 3 is vibrated by the third mode vibration by driving the drive device 7 (in other words, the drive device 7 is driven by the third mode vibration).
- the magnet 8 a is fixed to the central vibration portion (excluding the central belly) sandwiched between the two nodes in the tertiary mode vibration of the flow tube 3.
- the end of the outer cylinder 2 and the connection flange 11 are fixed to the enlarged opening 9 by welding.
- the pedestal 22 is a cylindrical body and a rigid body having a rectangular cross section, and is disposed at the same position as the conventional counter balance 4 (see FIG. 13). That is, the pedestal 2 2 is arranged outside the flow tube 3 (here, in a non-contact state with respect to the flow tube 3.
- the pedestal 2 2 includes the drive device 7).
- the coil 7b to be connected to the same coil 8b that constitutes the detector 8.
- the coil 7b that constitutes the drive device 7 is fixed to the center position of the base 2 2.
- the detection The coil 8b constituting the device 8 is fixed in accordance with the position of the magnet 8a, and the coils 7b and 8b are in such a state that the magnets 7a and 8a pass through ' Fixed in position.
- the pedestal 2 2 ⁇ is provided as a member that does not vibrate while the flow tube 3 is oscillating in the third mode vibration and can maintain a fixed position (the pedestal 2 2 is a conventional counter). It shall not be a resonating member like the evening balance 4).
- the base 22 is connected to the flow tube 3 via an elastic connecting member 23.
- the elastic connecting members 23 are fixed to both ends of the base 22.
- the elastic connecting member 23 has a function of connecting the base 22 and the flow tube 3 and a function as an elastic body.
- the elastic connecting members 23 are attached to, for example, two locations that are the node positions of the third-order mode that the flow tube 3 originally has (the attachment positions are not limited to the node positions).
- the axial direction of the flow tube 3 is the Z-axis
- the driving device 7 The drive direction (the vibration direction of the flow tube 3 and is orthogonal to the Z axis) is defined as the X axis, and the 'direction orthogonal to the Z axis and the X axis is defined as the Y axis.
- the rigidity in the Z-axis direction is lower than the rigidity in the axial direction and the Y-axis direction, and the rotational direction (R z) around the Z-axis and the rotational direction (R x) around the X-axis
- the structure is such that the stiffness in the rolling direction (R y) around the Y axis is lower than the stiffness.
- a more specific structure i of the elastic connecting member 23 will be described.
- the elastic connecting member 2 3 includes the first wall 2 3 a- continuous to the flow tube 3, the second wall 2 3 b continuous to the base 2 2, and the first wall at the end in the Y-axis direction. And a pair of wall continuous portions 23 c continuous with the first wall portion 23a and the second wall portion 23b.
- the elastic connecting member 23 has a first wall portion 2 3 a and a second wall portion 2 3 b that are opposed to each other with a gap therebetween, and the end portion in the X-axis direction is opened by the gap (reference numeral 2 (See 3d) Structure (This is formed.
- the pair of wall continuous parts 2 3 c has the X-axis direction width of the first wall part 2 3 a and the second wall part 2 3 b in the X-axis direction.
- the width of the wall continuous portion 2 3 c and the first wall portion 2 3 a and the edge of the wall continuous portion 2 3 c and the second wall portion 2 3 b The edge portion is formed so as to be connected by a smooth curve
- the elastic connecting member 23 is formed into a spindle shape when viewed from the Z-axis direction.
- the elastic connecting member 23 When viewed from the opening (see reference numeral 23 d) side (when viewed from the X-axis direction side), the elastic connecting member 23 is also formed in a shape that crushes the cylinder in the Z-axis direction.
- the first wall 2 3 a and the second wall 2 3 b are formed so as to have a curved surface partially or entirely. In such a first wall portion 23a, a fixing through hole 23e corresponding to the diameter of the flow tube 3 is formed.
- the second wall portion 2 3 b is formed with a relief portion 2 3 f for the flow tube 3.
- the second wall portion 2 3 b is formed so as not to be in contact with the flow tube 3.
- the second wall 2 3 a is more fixed to the flow tube 3 at the mouth.
- the second wall 2 3 b is also fixed to the end of the base 2 2 by brazing (it is not limited to brazing).
- the base 22, and the elastic connecting member 23 in the above description for example, stainless steel is taken as an example.
- materials for these two members considering the expansion and contraction caused by temperature change, it is preferable to select a material that has the same or similar linear expansion coefficient.
- the base 22 is formed so that the heat capacity is relatively small.
- the straight pipe type Coriolis flowmeter 2.1 of the present invention has a function as a flowmeter that is completely different from the conventional one. '.
- the base 2 2 has a high rigidity and the flow tube 3 through the elastic connecting member 23 having the axial rigidity. Therefore, the flow tube 3 does not vibrate during the third mode vibration due to the driving device 7 being driven, and maintains a fixed position.
- the operation of the flow tube 3, the pedestal 22, and the elastic connecting member 23 according to the temperature change of the fluid to be measured will be described with reference to FIGS. 2 and 3.
- Fig. 2 (a) schematically shows a state where the temperature of the fluid to be measured is low and the temperature of the straight tube type Coriolis flowmeter 21 is uniform.
- Floach It shows the state that Uube 3 is oscillating with the third mode vibration by the drive device 7 being driven. In such a state, axial stress has not yet occurred in the entire flow tube 3 (however, it is assumed that stress due to vibration acts separately on the flow tube 3).
- the state immediately after raising the temperature of the fluid to be measured is shown schematically.
- Fig. 2 (c) schematically shows the state after the temperature of the fluid to be measured has been raised for a while.
- the pedestal 22 since the pedestal 22 has a relatively small heat capacity as described above, the pedestal 22 becomes accustomed to heat due to temperature changes relatively quickly, and as a result, elongation occurs in the full length direction.
- the pair of elastic connecting members 23 Since the pair of elastic connecting members 23 has a structure in which the rigidity in the axial direction (the Z-axis direction) of the flow tube 3 is lower than the other as described above, the elongation is absorbed by elastic deformation.
- the axial stress is distributed in the axial direction of the flow tube 3 between the pair of elastic connecting members 23 and between the elastic connecting member 23 and the contact flange 11 (fixed end). Become. Therefore, in the state of Fig. 2 (c), as in the state of Fig. 2 (b), no local axial stress is generated (the axial stress is almost unchanged from the state of Fig. 2 (b)).
- Fig. 2 (d) schematically shows a straight tube type Coriolis flow meter 21 in which the temperature is uniform.
- pedestal 2 2 Since the distance between the fixed ends can be extended in the same way as the flow tube 3, the axial stress that had previously been applied to the flow tube 3 is eliminated, and as a result, the straight tube Coriolis flow meter '2'1 is stable. become.
- Fig. 3 (a) schematically shows a state where the temperature of the fluid to be measured is high and the straight tube type Coriolis flowmeter 2 1. The entire temperature is uniform.
- the flow tube 3 is schematically shown in a state where it is vibrated by the tertiary motor 1 ⁇ vibration by the driving device 7 being driven. In such a state, the state is the same as in FIG. 2 (a), and no axial stress is generated over the entire mouth tube 3 (however, the flow tube 3 has a stress caused by vibration). Will act separately).
- the state is the same as in FIG. 2 (a), and no axial stress is generated over the entire mouth tube 3 (however, the flow tube 3 has a stress caused by vibration). Will act separately).
- Fig. 3 (b) schematically shows the state immediately after the temperature of the fluid to be measured is lowered.
- the cooling due to the temperature drop of the fluid to be measured is not transmitted to the pedestal 22, there is no change in the total length, and there is also a change in the distance between the pair of connection flanges 1 ⁇ ⁇ (between the fixed ends).
- the axial tube 3 is subject to tensile stress due to the temperature change of the fluid to be measured.
- This tensile axial stress acts evenly throughout the entire flow tube 3.
- the reason is the same as described above, and since the pair of elastic connecting members 23 is an elastic body, this is because the generation of local axial stress as in the conventional example is prevented by this elastic deformation. . Therefore, the axial stress generated in the flow tube 3 is dispersed in the axial direction of the flow tube 3 by the structure of the present invention in the above state.
- Fig. 3 (c) schematically shows the state after a while after the temperature of the fluid to be measured is lowered.
- the pedestal 22 since the pedestal 22 has a relatively small heat capacity as described above, it is relatively quickly adapted to cooling due to temperature changes, and as a result, shrinkage occurs in the full length direction.
- the pair of elastic connecting members 23 Since the pair of elastic connecting members 23 has a structure in which the rigidity in the axial direction of the flow tube 3 (the Z-axis direction) is lower than the other as described above, the shrinkage is absorbed by elastic deformation.
- the axial stress is distributed in the axial direction of the flow tube 3 between the connecting flange 1 1 (fixed end). Therefore, as in the state of Fig. 3 (3 ⁇ 4 '), there is no local axial stress in the state of Fig. 3 (c) (the axial stress hardly changes from the state of Fig. 3 (b)). .
- Fig. 3 (d) shows a state in which the temperature of the straight pipe Coriolis flowmeter 21 is uniform.
- the seat 2 2 and the distance between the fixed ends are contracted in the same manner as the flow tube 3, the axial stress that had been acting on the flow tube 3 until then disappears, and as a result, the straight tube type Coriolis
- the state of the flow meter 2 1 will become stable.
- the straight tube type corrior flow meter 21 of the present invention As described above with reference to FIG. 1 to FIG. 3, according to the straight tube type corrior flow meter 21 of the present invention, a temperature change occurs in the fluid to be measured, and the flow tube 3 expands or contracts. Even if it occurs, the axial stress acting on the flow tube 3 is distributed in the axial direction of the flow tube 3 (Z-axis direction), so it is resistant to temperature changes, and the temperature of the flow meter It has the advantage that the characteristics can be improved compared to the conventional one. ⁇ ,
- the flow tube 3 is structured to vibrate with the third mode vibration, so that there is an advantage that vibration leakage can be minimized. is doing.
- the straight-tube type core flow meter 21 of the present invention has a structure that eliminates the conventional panel panel 6 (see Fig. 13) for vibration leakage. This also has the advantage of eliminating the vibration leakage that has occurred.
- the straight pipe type Coriolis flow meter 21 of the present invention since it has a structure that eliminates the conventional counter balance 4 (see FIG. 13), the density change of the fluid to be measured and the counter Unbalance caused by the balance 4 inertia moment (mass), that is, the balance 4 inertia moment remains unchanged even if the density of the fluid being measured changes. Be able to Has advantages. Therefore, there is an advantage that it is possible to eliminate the instrumental shift, parallax, and shift for density measurement (frequency).
- FIG. 4 is a perspective view of an elastic connecting member showing another example.
- the elastic connecting member 2 3 as another example includes a first wall portion 2 3 a continuous with the flow tube 3, a base 2 2 and a pair of second wall portions 2 3 b ′ continuous with Y, It has a pair of wall continuous parts .2 3 c continuous with the first wall part 2 3 a and the second wall part 2 3 b ′ at the end in the axial direction.
- Another example of the elastic connecting member 2 3 f is that the second wall portion 2 3 b ′ connected to the base 2 2 is slightly fixed to the second wall portion 2 3 b of the elastic connecting member 2 3 of FIG. They are formed differently. (All the points are the same as the elastic connecting member 23 in FIG. 1 except for this fixing). .
- the elastic connecting member 2 3 ′ is less rigid in the Z-axis direction than the inertia in the X-axis direction and the Y-axis direction, and has a rotational direction (R z) around the Z-axis and the X-axis.
- the structure is such that the rigidity in the rotation direction (R y) around the Y axis is lower than the rigidity in the rotation direction (R x) around the center.
- the second wall portion 2 3 b ′ is fixed in a state of being inserted into a groove (reference numeral omitted) formed on the side wall in the Y-axis direction of the base 2 2.
- the second wall 2 3 b ′ is fixed to the side wall in the Y-axis direction of the base 2 2 by brazing, for example.
- FIG. Fig. 5 is a perspective view of an elastic connecting member and pedestal showing another example Fig.
- pedestal 3 2 is a cylindrical body (cylindrical) and a rigid body in a cross-sectional view, and is arranged in the same position as the conventional balance 4 (see Fig. 13). Yes.
- the pedestal 32 is arranged on the outer side of the flow tube 3 so as not to contact the flow tube 3.
- the pedestal 32 is fixed with a coil 7 b constituting the drive device 7 and a coil 8 b constituting the detector 8.
- the pedestal 3 2 is provided as a member that does not vibrate while the flow tube 3 is oscillating in the third mode vibration and can maintain a fixed position.
- the pedestal 3 2 is connected to the flow tube 3 through an elastic connecting rod 3 3.
- the elastic connecting members 33 are fixed to both ends of the pedestal 32, respectively.
- the elastic connecting member 33 has a function of connecting the base 3 2 and the flow tube 3 and a function as an elastic body.
- the elastic connecting member 33 is attached at two locations, for example, the node positions of the tertiary mode inherent to the flow tube 3 '(assuming that the attachment position is not determined at the node position 13 ⁇ 4).
- the elastic connecting member 3 3 has a lower rigidity in the Z-axis direction than the rigidity in the X-axis direction and the Y-axis direction, and the rotation direction (R z) around the Z-axis and the X-axis.
- the rigidity in the rotation direction (R y) around the Y axis is lower than the rigidity in the rotation direction (R x).
- the elastic connecting member 33 includes a first wall portion 3 3 a continuous to the flow tube 3, a second wall portion 3 3 b continuous to the pedestal 32, and a first wall portion at an end in the Y-axis direction. 3 3 a and a second wall portion 3 3 b, and a pair of wall continuous portions 3 3 c that are continuous to each other.
- the elastic connecting member 33 has a first wall portion 3 3a and a second wall portion 3 3b which are opposed to each other with an interval therebetween, and an end portion in the X-axis direction is opened by the interval (reference numeral 3 3 d)).
- the pair of wall continuous portions 3 3 c has a width in the X-axis direction that is narrower than a width in the X-axis direction of the first wall portion 3 3 a and the second wall portion 3 3 b. It is formed as follows.
- the pair of continuous wall portions 33c are formed as shown in the figure by a pair of slits 33g that are notched in the X-axis direction and face each other.
- the elastic connecting member 33 is formed in a shape in which the cylinder is crushed in the Z-axis direction when viewed from the opening (see reference numeral 33 d) side (when viewed from the X-axis direction side).
- the first wall portion 3 3 a and the second wall portion 3 3 b are formed so as to have a curved surface partially or entirely. ⁇ ⁇ ⁇ The first wall portion 3 3 a.
- a fixing through-hole 3 3 e that matches the diameter of the tube 3 is formed.
- circular relief portions 3, 3: for the flow tube 3 are formed on the second wall portion 3 3 b.
- the second wall portion 3 3 b is formed so as to be in a non-contact state with respect to the flow tube 3.
- a pair of ribs 3 3 h extending in the Y-axis direction are respectively formed in the center of the first wall portion 3 3 a and the second wall portion 3 3 b.
- the rib 3 3 h on the first wall 3 3 a side is also fixed to the flow tube 3 in addition to the first flange 3 3 a.
- the rib 3 3 h on the second wall 3 3 b side is still fixed to the base 3 2 in addition to the second wall 3 3 b.
- the rib 33 h is provided as a means for adjusting the rigidity of the elastic connecting member 33 in the Z-axis direction.
- the elastic connecting member 3 3 is fixed by mouth fitting as in the other examples.
- the effects of the pedestal 3 2 and the elastic connecting member 3 3 are the same as those described in FIGS. 1 to 4, and are omitted here. Further, the function and effect of the combination of the pedestal 3 2 and the elastic connecting member 23 of FIG. 1 and the combination of the elastic connecting member 33 and the pedestal 2 2 of FIG. Furthermore, the effect of each elastic connecting member described below is the same and will be omitted in the same manner.
- FIG. 6 is a perspective view of an elastic connecting member showing another example.
- the elastic connecting member 3 3 ′ has an arrangement of the ribs 3 3. This is different from the case of Fig. 5. That is, the rib 3 3 h ′ is coupled to the end portions in the X-axis direction of the first wall portion 3 3 a and the second wall portion 3 3 b. Therefore, this point is different from that in Fig. 5. Further, the rib 3 3 h ′ is different from the case of FIG. 5 in that the rib 3 3 h ′ is not fixed with respect to the mouthpiece tube 3 and the base 3 2.
- FIG. 7 is a perspective view of an elastic connecting member showing another example.
- the elastic connecting members 43 are fixed to both ends of the pedestal 32, respectively.
- the elastic connecting member 43 has a function of connecting the pedestal 32 and the flow tube 3 and a machine bear as an elastic body.
- the elastic connecting members 43 are attached to, for example, two locations that are the third mode node positions of the flow tube 3 (the mounting positions are not limited to the node positions).
- the elastic connecting member 4 3 has a lower rigidity in the Z-axis direction than the rigidity in the X-axis direction and the Y-axis direction, and the rotational direction (R z) around the Z-axis and the X-axis.
- the structure is such that the rigidity in the rotation direction (R y) about the Y axis is lower than the rigidity in the rotation direction (R x) around the center. .
- the elastic connecting member 4 3 includes a first wall portion 4 3 a continuous to the flow tube 3, a second wall portion 4 3 b continuous to the pedestal 3 2, and a first wall portion at an end in the Y-axis direction. 4 3 a and a second wall portion 4 3 b, and a pair of wall continuous portions 4 3 c continuing to the second wall portion 4 3 b. Further, the elastic connecting member 4 3 has the first wall portion 4 3 a and the second wall portion 4 3 b facing each other with a gap therebetween, and the end in the X-axis direction is opened by the gap (reference numeral 4 3 (See d)).
- the pair of continuous wall portions 43c is formed as shown in the figure by a pair of slits 43g that are cut out in the X-axis direction and face each other. Due to the presence of the slit 43g, the pair of wall continuous parts 43c has a partial width in the X-axis direction that is partially larger than the width of the first wall part 43a and the second wall part 43b in the X-axis direction. It is formed to be narrow.
- the elastic connecting member 43 is formed in a substantially rectangular shape in plan view.
- first A fixing through-hole 43 e matching the diameter of the flow tube 3 is formed in the wall 43 a.
- a circular relief portion 43 f for the flow tube 3 is formed in the second wall portion 43 b.
- the second wall 43 b is formed in a non-contact state with the flow tube 3.
- the elastic connecting member 43 is fixed by brazing as in the other examples.
- FIGS. 8 (a) to (f) are perspective views of an elastic connecting member showing another example.
- the elastic connecting member 53 in Fig. 8 (a) is basically the same as the elastic connecting member 23 in Fig. 1 and is formed in a spindle shape.
- the elastic connecting member 63 in FIG. 8B is formed in a shape such that the pair of wall continuous portions 63 c extend in the axial direction of the flow tube 3 and the base 32.
- the elastic connecting member 73 in FIG. 8 (c) has a pair of wall continuous portions 73c formed into a substantially cylindrical shape.
- the elastic connecting member 83 in FIG. 8 (d) is formed in a shape obtained by removing the slit 43g from the elastic connecting member 43 in FIG. Further, the elastic connecting member 83 of FIG.
- the elastic connecting member 93 shown in FIG. 8 (e) is formed in a shape such that the pair of wall continuous portions 93c extends in the axial direction of the pedestal 32.
- the elastic connecting member 103 in FIG. 8 (f) is shaped so that the first wall portion 103a and the second wall portion 103b have rigidity relative to the elastic connecting member 63 in FIG. Is formed.
- FIG. 9 (a) is a perspective view of an elastic connecting member and a base showing another example.
- FIG. 9 (b) is a front view of the elastic connecting member (a)
- FIG. 9 (c) is an explanatory view of the fixed position of the detector.
- the example in Fig. 9 shows an example in which the detector 8 is fixed at the vibration part sandwiched between the two nodes F and the fixed end K in the tertiary mode vibration of the flow tube 3. (This is applicable even when the detector 8 is fixed to the central vibration part (excluding the stomach) between two nodes F)
- the pedestal 1 1 2 and the elastic connecting member 1 1 3 have structures slightly different from the above-mentioned examples.
- the structure of the pedestal 11 1 2 and the elastic reach portion 1 1 3 will be described in detail.
- the pedestal 1 1 2 is a cylindrical body and a rigid body having a rectangular cross-sectional view, and is arranged at the same position as the conventional counter balance 4 (see FIG. 13). That is, the pedestal 1 1 2 is arranged outside the flow tube 3 so as not to be in contact with the flow tube 3.
- the pedestal 1 1 2 is formed to be longer than the conventional force balance 4 and longer than the above examples. .
- a coil 7 b constituting the drive device 7 and a coil 8 b constituting the detector 8 are fixed.
- the coil 7 b constituting the driving device 7 is fixed at the center position of the base 1 1 2.
- the coil 8 b constituting the detector 8 is fixed to a vibration part sandwiched between the two nodes F and the fixed end K in the third mode vibration of the flow tube 3.
- the flow tube 3 includes magnet 7a (not shown), two nodes F and F, in accordance with the position of the antinode H of the center vibration part sandwiched between the second-order nodes F in the third mode vibration.
- the magnet 8a is fixed at a position corresponding to the coil 8b in a vibration part sandwiched between the fixed end K.
- the pedestal 1 1 2 is provided as a member that does not vibrate while the flow tube 3 is oscillating in the third mode vibration, and can maintain a fixed position (the pedestal 1 1 2 is a conventional counter unit). It shall not be a resonating member such as Balance 4).
- the pedestal 1 1 2 is connected to the flow tube 3 via an elastic connecting member 1 1 3.
- the pedestal 1 1 2 is provided with an elastic connection member 1 1 3 A pair of openings 1 1 2 a and a bracket 1 1 2 b are provided.
- the opening 1 1 2 a is formed on the side wall of the pedestal 1 1.2 in the Y-axis direction.
- the opening 1 1 2 a is formed in a through hole shape.
- the bracket 1 1 2 b is formed so as to fix an end 1 1 3 c in the Y-axis direction, which will be described later, of the elastic coupling member 1 1 3. In this embodiment, it is formed in the shape shown in the figure so that the end portion 1 13 c protruding outward through the opening portion 1 1 2 a can be fixed.
- the bracket 1 1 2 b is formed in such a shape that the rigidity in the Z-axis direction is low. It should be noted that bracket 1 1 2 b may be included in the structure of the inertia coupling member 1 1 3 o _
- the elastic connecting member 1 1 3 is formed in the shape shown in the drawing so as to have a spindle-shaped flat plate structure continuous with the flow tube 3.
- the elastic connection member 1 1 3 has a function of connecting the base 1 1 2 and the flow tube 3 and a function as an elastic body.
- the elastic connecting members 1 1 3 are attached to, for example, two locations that are the node positions of the tertiary mode that the flow tube 3 originally has (the attachment positions are not limited to the node positions).
- a fixing through-hole 1 1 3 a that matches the diameter of the flow tube 3 is formed.
- the elastic connecting member 1 1 3 is formed such that the width in the X-axis direction of the end portion 1 1 3 c in the Y-axis direction is narrower than the width in the X-axis direction of the continuous portion 1 1 3 b with respect to the flow tube 3. Yes.
- the elastic connecting member 1 1 3 is formed so that the edges are connected with a smooth curve from the continuous portion 1 1 3 b to the end portion 1 1 3 c.
- the continuous portion 1 1 3 b is fixed to the flow tube 3 with a mouth opening.
- the end portion 1 1 3 c is fixed to the bracket 1 1 2 b by brazing (it is not limited to the mouth opening).
- FIG. Figure 10 shows another example of an elastic connecting member and It is a perspective view of a base
- (b) is a front view of the elastic connection member of (a).
- the elastic connecting member 1 1 3 ′ is different from FIG. 9 in that a torsion bar (torsion beam) 1 1 3 d ′ extending in the Y-axis direction is added to the end 1 1 3 c.
- the bracket 1 1 2 b 'and the torsion bar 1 1 3 are fixed by fitting (not fixed to brazing).
- the dotted circles in the figure indicate the mounting positions of the coils 7'b and 8b.
- FIG. 11 is a perspective view of an elastic connecting member and a base showing another example.
- the above-described pedestal 3 2 is used as a pedestal outside the flow tube 3 and in a non-contact state with the flow tube 3.
- Coil in the base 3 2, etc. coil 7 constituting the drive device 7 b (not shown), the same.
- Shaft coil 8 b constituting the detector 8 constitute a ⁇ Kudo So ⁇ 7 is fixed 7 b (not shown) is fixed at the center position of the base 3 2.
- the coil 8 b constituting the detector 8 is fixed to a central vibration portion (excluding the central antinode) sandwiched between two nodes in the third mode vibration of the flow tube 3.
- a magnet 7 a (not shown) and a magnet 8 a are fixed to the flow tube 3.
- the pedestal 3 2 is connected to the flow tube 3 via the elastic connecting member 1 1 3 described above.
- the pedestal 32 is provided as a member that does not vibrate while the flow tube 3 is oscillating with the tertiary mode vibration and can maintain a fixed position.
- the pedestal 3 2 is connected to the flow tube 3 via the above-described elastic connecting member 1 1 3.
- brackets 3 2 a are provided at both ends of the pedestal 3 2, so that bracket 3 2 a is formed and formed so that the end portion .1 1 3 c in the Y-axis direction of the elastic connecting member 1 1 3 can be fixed.
- the bracket 3 2 a has an annular fixing portion 3 2 b fixed around the base 32 and an arm portion 3 2 c extending in the Y-axis direction.
- the end portion 1 1 3 c of the elastic connecting member 1 1 3 is fixed to the front end of the arm portion 3 2 c by mouth fitting (it is not limited to mouth fitting).
- the elastic connecting member 1 1 3 has a spindle-shaped flat plate structure continuous with the flow tube 3.
- the elastic connecting member 1 1 3 has a function of connecting the base 3 2 and the flow tube 3 and a function as an elastic body.
- the sex connecting members 1 1 3 are attached to, for example, two positions that are the node positions of the tertiary mode that the flow tube 3 originally has (the attachment position is not limited to the node position).
- FIG. Figure 1 2 is a perspective view of the elastic connection member and the pedestal showing another example 0
- the pedestal 3 2 is different from FIG. 1 1 in the shape of the bracket 3 2 a '.
- the bracket part 3 2 c 'of the bracket' 3 2 a 'and the torsion bar 1 1 3 d' are fixed by mouth opening (not limited to mouth opening).
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
直管式コリオリ流量計21は、直管状のフローチューブ3と、三次モード振動で駆動する駆動装置7と、コリオリの力に比例した位相差を検出する一対の検出手段8と、剛性のある台座22と、弾力性のある弾性連結部材23とを備える。フローチューブ3の軸方向をZ軸、駆動装置7の駆動方向をX軸、Z軸及びX軸に直交する方向をY軸とすると、弾性連結部材23は、X軸方向及びY軸方向の各剛性よりもZ軸方向の剛性の方が低い構造となる弾性体、且つ、Z軸を中心とする回転方向及びX軸を中心とする回転方向の各剛性よりもY軸を中心とする回転方向の剛性の方が低い構造となる弾性体である。
Description
明 細 書 弾性連結部材及び台座を有する三次モード振動の直管式コリォ リ流量計 技術分野
本発明は、 流管に作用するコリオリの力に比例した位相差及び ノ又は振動周波数を検出することにより被測定流体の質量流量及び /又は密度を得る直管式のコリオリ流量計に関し、 詳しくは、 直管 (フ'口一チューブ) を三次モードで振動させ とともに、 構成に弾 性連結部材及び台座を有する直管式コリオリ流量計に関する.。 背景技術 .
直管式コリオリ流量計は、 両端が支持された直管 (フローチュ —ブ) の中央部直管軸に垂直な方向の振動を加えたとき、 直管め支 持部と中央部との間でコリオリの力による直管の変位差、 すなわち 位相差信号が得られ、 その位相差信号に基づいて質量流量を検知す るように構成されている。 このような直 式コリオリ流量計は、 シ ンプル、 コンパク トで堅牢な構造を有している (例えば、 特許第 2 7 8 6 8 2 9号公報、 参照) 。
図 1 3において、 従来の直管式コリオリ流量計 1は、 外筒 2 と 、 フ口一チュ一ブ (インナチュ一ブ) 3と、 カウンタバランス (ァ ウタチューブ) 4と、 連結ブロック 5と、 板パネ 6と、 駆動装置 7 と、 検出器 (検出手段) 8と、 図示しない重錘等とを備えて構成さ れている。 フローチューブ 3は、 その両端部にラッパ状に形成され た拡大開口部 9を有している。 また、 フローチューブ 3は、 両端部 の拡大開口部 9の間に真っ直ぐな直管部 1 0を有している。
フロ一チューブ 3の直管部 1 0には、 その外側にカウン夕バラ ンス 4が設けられている。 フローチューブ 3の直管部 1 0とカウン
夕バランス 4は、 力ゥン夕バランス 4の両端部において連結プロヅ ク 5により同軸に接合されている。 連結ブロック.5は、 剛体として 設けられている。 直管部 1 0とカウン夕バランス 4によって、 二重 管構造が形成されている。 外筒 2は、 その内部に二重管構造を収容 す.ることができるように形成されている。 外筒 2の両端部は、 フロ —チューブ 3の拡大開口部 9に向けて窄まるよ ^に形成されている 。 外筒 2の両端部は、 拡大開口部 9に対して溶接されている。 外筒 2の両端部と拡大開口部 9.は、 液密に固着されている。 拡大開口部 9の開口端部には、 接続フランジ 1 1が溶接されている。 図中の拡 大閧'口部 9は、 パネ作用を有するように形成きれてい,る。
板バネ 6は、 フローチューブ 3の直管部 1 0に直交する面を有 しており、 一端が連結プロヅク 5に、 他端が外筒 2の内壁に固着さ れている。 また、 板パネ 6は、 共振振動方向に対して直交方向に配 置されている。 駆動装置 7は、 フローチューブ 3とカウン夕バラン ス 4の中央位置に取り付けられている。 駆動装置.7は、 フロ一チュ —ブ 3の直管部 1 0とカウン夕バランス 4とを互いに反対位相の連 成振動周波数で駆動するようになつている。 検出器 8は、 駆動装置 7の左右対称位置に取り付けられている。 図示し い重錘は、 駆動 装置 7の反対側の位置に取り付けられている。 より具体的に、 国示 しない重錘は、 駆動装置 7の駆動方向に取り付けられている。 図示 しない重錘は、 連結ブロヅク 5まわりのフローチューブ 3の固有振 動数と.カウン夕バランス 4の固有振動数とが等しく調整することが できるように設けられている。
上記構成において、 フローチューブ 3 とカウンタバランス 4と からなる共振系は、 板パネ 6により支持されている。 また、 共振系 から延長される直管部 1 0の端部における拡大開口部 9は、 接続フ ランジ 1 1の位置で支持されている。 従って、 フロ一チューブ 3は 複数点で支持されている。 このような構成の直管式コリオリ流量計 1は、 図示しない被測定流体をフローチューブ 3に流した状態で駆
動装置 Ίを共振駆動させて、 検出器 8によりコリオリの力に比例し た位相差信号を検出することで質量流量を,測定することができるよ うになつている。 直管式コリオリ流量計 1において、 駆動装置 7の 共振駆動により、 共振系には定在波が形成されるようになっている 。 上記の各支持点は、 振動の節部となっている。 発明の開示
従来の直管式コリオリ流量計 1にあっては、 耐振性向上と振動 漏洩とをなくすために、 フローチューブ 3の振動に対して反対方向 に振'動する質点、 すなわちカウンタバランス 4を設け.て振動を相殺 するような構造をとっている。 また、 従来の直管式コリォリ流量計 丄にあっては、 駆動装置 7と検出器 8どを外筒 2でなくカウン夕.バ ランス 4に設置するような構造をとるとともに、 駆動装置 7と検出 器 8とを設置したカウン夕バラ,ンス 4を外筒 2でなくフローチュー ブ 3の二箇所に連結プロック 5を介してそれそれ固定するような構 造をとっている (直管式コリオリ流量計 1に対して外乱が作用した 場合に、. 検出器 8に直接ノィズが重畳しないようにするための構造 。 また、 最も振動が容易な低次の曲げ振動 (外乱により生じる最も 主要なモ一ド) と駆動モードとを異なったものとするための構造) 。 さらに、 従来の直管式コリオリ流量計 1にあっては、 板パネ 6を 設けて連結ブロック 5の位置を固定し、 結果、 振動の方向性を決定 する.ような構造をとっている (板パネ 6を設けることで、 連結プロ ヅク 5に振動時において回転中心が存在する) 。
ところで、 このような構造をとる従来の直管式コリオリ流量計 1にあっては、 フロ一チューブ 3とカウン夕バランス 4とを連結す る連結プロヅク 5が上述の如く剛体であることから、 次のような問 題点を有している。 すなわち、 フロ一チューブ 3に軸力が発生する と、 一対の連結ブロック 5の間、 及びフロ一チューブ 3の両端と連 結プロヅク 5 との間に局所的な応力が生じてしまい、 場合によって
ほフローチューブ 3に応力が残留したり、 フロ一チューブ 3が塑性 変形してしまったりする恐れがあるという,問題点を有している。
以下、 模式図を用いてァロ一チューブ 3に作用する軸応力につ いて説明する。 尚、 軸応力による不具合を分かり易くするため、 以 下の説明では拡大開口部 9の機能 (パネ作用) を無視して説明する ものとする。 図 1 4 ( a ) 〜 (d ) はフローチューブ 3の内部に流 れる被測定流体の温度を上昇させた時のフローチューブ 3とカウン 夕パランス, 4との状態を示す模式図、 図 1 4 ( e ) は.フローチュー ブ.3とカウン夕バランス 4と連結プロック 5と板バネ 6との位置関 係を'示す斜視図である。 .
フローチューブ 3に被測定流体を流し駆動装置 7を共振駆動さ せると、 図 1 4 ( a ) に示すような軌跡でフローチューブ 3及び.力 ゥン夕バランス 4が振動する。 被測定流体の温度が上昇しない状態 においては、 全体の温度が均等 :(温度変化が生じてない) であり、 この時、 一対の連結ブロック 5の間、 及びフローチューブ 3の両端 と連結ブロヅク 5との間には、 まだ軸^力が発生してないことにな る (但し、 駆動中は振動による応力が別に作用する) 。
被測定流体を流し続けこの温摩を上昇させると、.温度変化によ つてフローチューブ 3には、 軸方向に伸びようとする力が発生する 。 これに対して、 上記温度変化の熱が伝わりきれてないカウン夕バ ランス 4 (こは、 フロ一チューブ 3程の伸びの力が発生せず、 結果、 連結ブロック 5の間の距離はほぼ変わらないままとなる。 従って、 図 1 4 ( b ) に示すようにフローチューブ 3には、 振動による応力 の他に、 圧縮となる局所的な軸応力が発生することになる。
その後、 温度変化による熱に馴染んだカウン夕バランス 4が軸 方向に伸びると、 これに合わせて連結プロック 5の間の距離も長く なり、 連結ブロック 5の間で生じていた軸応力は図 1 4 ( c ) に示 すように緩和されることになる。 しかしながら、 フローチューブ 3 の両端と連結プロック 5との間の圧縮となる軸応力は逆に増大する
ことから.、 フローチューブ 3には、 局所的に大きな軸応力が作用す ることになる。 '
全体の温度が均 になり、 フロ一チューブ 3の固定端間の距離 も伸びて長くなると、 図 1 4 ( d ) に示すようにフローチューブ 3 の全体に軸応力がなくなり、 結果、 状態が安定する。
図 1 5 ( a ) 〜 ( d ) はフローチューブ 3の内部に流れる被測 定流体の温度を降下させた時のフローチューブ 3とカウン夕バラン ス 4との状態を示す模式図である。 図 1 5 ( a ) は、 被測定流体の 温度が高く全体の温度が均等な状態を示しており、 この状態におい ては'、 フローチューブ 3の全体に軸応力が作用してな.いことになる ο
被測定流体の温度を降下させると.、 '温度変化によってフローチ ュ一ブ 3には、 軸方向に縮もうとする力が発生する。 これに対して 、 カウンタバランス 4の長さ、,すなわち連結プロッグ 5間の距離、 フローチューブ 3の固定端間の距離には変化が見られず、 図 1 5 ( b ) に示すようにフローチューブ 3には、 引っ張りとなる局所的な 軸応力が作用することになる。
その後、 温度変化による熱に馴染んだカウンタバランス 4が軸 方向に縮むと、 これに合わせて連結プロヅク 5の間の距籬も短くな り、 連結プロック 5の間で生じていた軸応ガは図 1 5 ( c ) に示す ように緩和されることになる。 しかしながら、 フローチュ一ブ 3の 両端と.連結プロック 5 との間の引っ張りとなる軸応力は逆に増大す ることから、 フローチューブ 3には、 局所的に大きな軸応力が作用 することになる。
全体の温度が均等になり、 フローチューブ 3の固定端間の距離 も縮んで短くなると、 図 1 5 ( d ) に示すようにフローチューブ 3 の全体に軸応力がなくなり、 結果、 状態が安定する。
以上の説明からも分かるように、 従来の直管式コリオリ流量計 1は、 フローチューブ 3に作用する軸応力を管軸方向に分散させ難
い構造となっている。 従って、 従来の直管式コリオリ流量計 1は、 温度変化に弱い構造となっている。 '
本発明は、 上述した事情に鑑みてなされたもので、 フローチュ —ブに作用する軸応力を分散させることが可能な直管式コリォリ流 量.計を提供することを課題とする。
上記課題を解決するためになされた請求項 ί記載の本発明の弹 性連結部材及び台座を有する三次モ一ド振動の直管式コリォリ流量 計は、 ¾測定流体が流れる.直管状のフローチューブと、 該フローチ ユーブを三次モ一ド.振動で駆動する駆動装置と、 前記フ口一チュ一 プに'作用するコリオリの力に比例した位相差 ¾検出する一対の検出 手段と、 前記駆動装置及び前記一対の検出手段の各コイルを固定し た状態で前記フローチューブの外側に位置する剛性のある台座と、 前記フローチューブの所定の二箇所で前記台座を連結する一対の弾 力性のある弾性連結部材とを備え、 前記フローチューブの軸方向を Ζ軸、 該 Ζ軸に直交する前記駆動装置の駆動方向を X軸、 さらに前 記 Ζ軸及び前記 X軸に直交する方向を Υ軸とすると、 前記弹性 ¾結 部材は、 前記 X軸方向及び前記 Υ軸方向の各剛性よりも前記 Ζ軸方 向の剛性の方が低い構造となる弾性体、 且つ、 前記 Ζ軸を中心とす る回転方向及び前記 X軸を中心とする回転方向の各剛性よりも前記 Υ軸を中心とする回転方向の剛性の方が低い構造となる弾性体であ ることを特徴としている。
請求項 2記載の本発明は、 請求項 iに記載の弾性連結部材及び 台座を有する三次モ一ド振動の直管式コリォリ流量計において、 前 記弾性連結部材は、 前記フローチューブに連続する第一壁部と、 前 記台座に連続する第二壁部と、 前記 Y軸方向の端部において前記第 一壁部及び前記第二壁部にそれそれ連続する一対の壁連続部とを有 するとともに、 前記第一壁部及び前記第二壁部が間隔をあけて対向 し、 さらに、 前記 X軸方向の端部が前記間隔により開口する構造で あることを特徴としている。
請求項 3記載の本発明は、 請求項 2に記載の弾性連結部材及び 台座を有する三次モ一ド振動の直管式コリ'ォリ流量計において、 前 記弾性連結部材は、 俞記壁連続部の前記 X軸方向の幅が前記第一壁 部及び前記第二壁部の前記 X軸方向の幅よりも狭くなる構造である こ.とを特徴としている。
請求項 4記載の本発明は、 請求項 1に記載の弾性連結 ^材及び 台座を有する三次モード振動の直管式コリオリ流量計において、 前 記弾性連結部材は、 .前記フローチューブに連続する紡錘状の平板構 造であり、 前記台座には、 該台座の開口部を介して台座外側へ突出 する'前記弾性連結部材の前記 Υ軸方向の端部き固定す^ためのブラ ケヅ トを設けることを特徴としている。
請求項 5記載の本発明は、 請求項 1ないし請求項 4いずれか記 載の弾性連結部材及び台座を有する三次モード振動の直管式コリォ リ流量計において、 前記台座は、 断面視矩形の筒状体であることを 特徴としている。 ' 請求項 6記載の本発明ほ、 請求項.1ないし請求項 5いずれか記 載の弾性連結部材及び台座を有する三次モード振動の直管式コリォ リ流量計において、 前記フローチューブ、 前記台座、 及び前記弾性 連結部材は、 同じ線膨張係数の構造体であることを特徴としている ο
本発明によれば、 フロ一チューブに対する駆動モ一ドとして、 曲げの三次モード振動が採用されている。 ミ次モード振動は、 従来 のカウン夕バランスがなくとも振動漏洩を最小とすることが可能な 駆動モードであることから、 これが採用理由となっている。 駆動装 置及び検出手段の各コイルを固定するための台座は、 例えばフロ一 チュ一ブの本来持つている≡次モ一ドの節位置となる二箇所に弾性 連結部材を介して設けられている。 この台座は、 駆動装置を駆動し てフロ一チューブを振動させた時も振動せずに、 一定位置を保つこ とが可能な部材として設けられている。 台座は、 円筒体となる構造
の他に、 本発明では剛性を高めることを目的として、 断面視.矩形の 筒状体となる構造も採用されている。 '
弾性連結部材は、 台座をフロ一チューブに連結するために設け られている。 また、 弾性連結部材は、 フローチューブに作用する軸 応力を全体に分散させるために設けられている。 このような弾性連 結部材は、 温度変化に対し強い構造とするために有用な部材として 設けられている。 弾性連結部材は、 フロ一チューブの軸方向に対し て剛性^弱く、 その他の方向に対しては剛性が高くなるように構造 が決定されている。 また、 弾性連結部材は、 三次モード振動の動き を阻'害しないように、 振動方向に対して回転自由支持,端となるよう に構造が決定されている。
その他、 本発明は、 温度変化に対じてより一層強い構造とする ために、 フローチューブ、 台座、 及び弾性連結部材の線膨張係数を 崗じにすることが好ましいものとなっている。 尚、 検出手段は.、 コ ィル及びマグネッ トの構成に限らないものとする。 例えば、 加速度 センサ、 光学的手段、 静電容量式、 歪み式 (ピエゾ式) 等の変位、. 速度、 加淳度のいずれかを検出する手段であればよいものとする。 ' 請求項 1 'に記載された本発明によれば、 フローチューブに作用 する軸応力を分散させることができるという効果を奏する。 従って 、 従来よりも温度変化に対する強さを向上ざせることができるとレ、 う効果を奏する。 その他、 請求項 1に記載された本発明によれば、 従来甩いていたカウン夕バランスを不要にすることができるという 効果を奏する。 これにより、 被測定流体の密度変化とカウンタバラ ンスの慣性モーメン ト (質量) とにより生じるアンバランス、 すな わち被測定流体の密度が変わっても力ゥン夕バランスの慣性モ一メ ントが不変であることに起因するアンバランスを解消することがで きるという効果を奏する。 従って、 器差シフ トゃバラヅキ、 さらに は密度計測 (周波数) に対するシフ トもなくすことができるという 効果を奏する。
請求項 2 ~ 4に記載された本発明によれば、 弾性連結部.材のよ り良い形態を提供することができるといゔ'効果を奏する。 また、.請 求項 5に記載された本発明によれば、 台座の剛性を高めることがで' きるという効果を奏する。 また、 請求項 6に記載された本発明によ れば、 温度変化に起因する伸び縮みにおいて部材間でのバラツキを なくすことができるという効果を奏する。 図面の簡単な説明 .
' 図 1は、 本発明の弾性連結部材及び台座を有する三次モード振 動の'直管式コリオリ流量言ナの一実施の形態を示す図であり、 ( a ) は直管式コリオリ流量計の断面図、 (b ) ばフローチューブと台座 と弾性連結部材との位置関係を示す斜視図である。
: 図 2の (a ) 〜 ( d ) は、 図 1の直管式コリオリ流量計のプロ —チューブの内部に流れる被測定流体の温度を上昇させた時のフ口 —チューブと台座と弾性連結部材との状態を示す模式図である。' 図 3の (a ) 〜 ( d ) は、 図 1の直管式コリォリ流量計のフロ »チューブの内部に流れる被測定流体の温度を降下させた時のフロ —チューブと台座と弾性連結部材との状態を示す模式図である。
図 4は、 図 1の弾性連結部材の他の例を示す斜視図である。 . ' '図 5は、 図 1の弾性連結部材及び台座の'他の例を示す斜視図で ある。 '
図 6ば、 図 5の弾性連結部材の他の例を示す斜視図である。 図 7は、 図 5の弾性連結部材の他の例を示す斜視図である。
図 8は、 図 5の弾性連結部材の他の例を示す斜視図である。 図 9は、 ( a ) が図 1の弾性連結部材及び台座の他の例を示す 斜視図、 (b ) が弾性連結部材の正面図、 ( c ) が検出器の固定位 置の説明図である。
図 1 0は、 (a ) が図 9の弾性連結部材及び台座の他の例を示 す斜視図、 (b ) が弾性連結部材の正面図である。
図 1. 1は、 図 9の弾性連結部材及び台座の他の例を示す斜視図 である。 '
図 1 2は、 図 1 1の弾性連結部材及び台座の他の例を示す斜視 図である。
. 図 1 3は、 従来例の直管式コリオリ流量計の断面図である。
図 1 4の ( a ) 〜 (d ) は、 図 1 3の直管式コリオリ流量計の フローチューブの内部に流れる被測定流体の温度を上昇させた時の フロ—チューブとカウンタバランスとの状態を示す模式図、. 図 1 4 の'( e ) は、 フローチューブとカウンタバランスと連結ブロックと 板バ'ネとの位置関係を示す斜視図である。 . ■ ..
図 1 5の ( a ) 〜 (d ) は、 図 1 3の直管式コリオリ流量計の フロ一チュープの内部に流れる被測定流体の温度を降下させた時の フローチューブとカウン夕バランスとの状態を示す模式図である。 発明を実施するための最良の形態
以下、 図面を参照しながら本発明について説明する。 図 1は本 発明の弾'!;生連結部材及び台座を有する三次モード振動の直管式コリ ォリ流量計の一実施の形態を示す図であり、 ( a ) .は直管式コリォ リ流量計の断面図、 (b ) はフローチューブと台座と弾性連結部材 との位置関係を示す斜視図である。 また、 図 2及び図 3の各 ( a ) 〜 (d ) は図 1の直管式コリオリ流量計のフローチューブの内部に 流れる.被測定流体の温度を上昇、 降下させた時のフローチューブと 台座と弾性連結部材との状態を示す模式図である。
図 1において、 本発明の直管式コリオリ流量計 2 1は、 先ず従 来例と同じものとなる構成部材から挙げると、 外筒 2と、 フローチ ュ一ブ 3と、 駆動装置 7と、 一対の検出器 (検出手段。 ここでは 1 つのみ図示) 8と、 一対の接続フランジ (ここでは 1つのみ図示) 1 1 とを備えて構成されている (他の一般的な構成部材については 省略する) 。 また、 本発明の直管式コリオリ流量計 2 1は、 主要な
構成部材'となる、 台座 2 2と、 この台座 2 2をフロ一チューブ 3に 連結するための一対の弾性連結部材 2 3ど'を備えて構成されている 本発明の直管式コリォリ流量計 2 1は、 従来のカウン夕バラン ス.4 (図 1 3参照) を設けなく とも振動漏洩を最小にし、 また、 温 度変化 iこ対する強さを従来よりも向上させるために、 フローチュー ブ 3を曲げの三次モード振動にて駆動する点と、 台座 2 2及び弾性 連結部 2 3を構成部材に加える点とが特徴になっている。 その他 、 構造の特徴としては、 従来の板パネ 6 (図 1 3参照) を設けなく とも'、 弾性連結部材 2 3がフローチューブ 3の振動方向に対して回 転自由支持端となる点が挙げられるものどする。 以下、 各構成部材 について説明する。
: 外筒 2は、 所謂筐体であって、 曲げやねじれに強固な構造を有 している。 外筒 2は、 フローチ,ュ一ブ 3を収納することができ.る大 きさに形成されている。 外筒 2は、: フローチュ ブ 3等の流量言 +要 部、 すなわちセンサュニッ ト部分を保護することができるように形 成されている。 このような外筒 2の内部には、 アルゴンガス等の不 活性ガスが充填されている。 不活性ガスの充填により、 フローチュ ープ 3等への結露が防止されるようになっている。
' フローチューブ 3は、 真っ直ぐな直管部 1 0と、 この直管部 1 0の両端に連続するラヅパ状の拡大開口部 9 (ここでは 1つのみ図 示) とを有している。 直管部 1 0には、 駆動装置 7を構成するマグ ネッ ト 7 aと、 検出器 8を構成する同じくマグネッ ト 8 aとが固定 されている。 駆動装置 7を構成するマグネッ ト 7 aは、 直管部 1 0 の中央位置に固定されている。 一方、 検出器 8を構成するマグネッ ト 8 aは、 マグネッ ト 7 aの両側で、 マグネッ ト 7 aから等間隔と なる位置にそれそれ固定されている。 マグネッ ト 7 a、 8 aは、 フ ローチューブ 3の振動方向に沿って突出するように固定されている
フローチューブ 3は、 駆動装置 7の駆動によって三次モード振 動で振動するようになっている (言い換え'れば、 駆動装置 7はフロ 一チューブ 3を三次モード振動で駆動するようになっている) 。 マ グネ ヅ ト 8 aは、 本形態において、 フローチューブ 3の三次モー ド 振動における二つの節で挟まれた中央の振動部分 (但し中央の腹は 除く) に固定されるようになっている。 拡大開口部 9には、 外筒 2 の端部と接続フランジ 1 1とが溶接により固定されている。
台座 2 2は、 断面視矩形の筒状体且つ剛体であって、 従来のカウ ン夕パランス 4 (図 1 3参照) と同じ位置に配置されている。 すな わち'、 台座 2 2は、 フローチューブ 3の外側(こおいて、 フローチュ —ブ 3に対し非接触状態となるように配置されている。 台座 2 2に は、 駆動装置 7を構成するコイル 7 bど、 検出器 8を構成する同じ ぐコイル 8 bとが固定されている。 駆動装置 7を構成するコイル 7 bは、 台座 2 2の中央位置に固定されている。 一方、 検出器 8を構 成するコイル 8 bは、 マグネヅ ト 8 aの位置に合わせてそれそれ固 定されている。 コイル 7 b、 8 bは、 マグネヅ ト 7 a、 8 aが ' も 貫通する うな状態の位置に固定されている。 ·
台座 2 2·は、 フロ一チューブ 3が三次モード振動で振動してい る最中に振動せず、 一定位置を保つことが可能な部材として設けも れている (台座 2 2は、 従来のカウン夕バランス 4のような共振す る部材でないものとする) 。 台座 2 2は、 弾性連結部材 2 3を介し てフローチューブ 3に連結されている。
弾性連結部材 2 3は、 台座 2 2の両端にそれぞれ固定されてい る。 弾性連結部材 2 3は、 台座 2 2及びフローチューブ 3を連結す る機能と、 弾性体としての機能とを有している。 弾性連結部材 2 3 は、 例えばフローチューブ 3の本来持っている三次モードの節位置 となる二箇所に取り付けられている (取り付け位置は節位置に限定 されないものとする) 。
ここで、 フロ一チューブ 3の軸方向を Z軸、 また、 駆動装置 7
の駆動方向 (フローチューブ 3の振動方向であり Z軸に直交する') を X軸、 さらに、 Z軸及び X軸に直交する'方向を Y軸と定義すると 、 弾性連結部材 2 3は、 X軸方向及び Y軸方向の各剛性よりも Z軸 方向の剛性の方が低く、 且つ、 Z軸を中心とする回転方向 (R z ) 及び X軸を中心どする回転方向 (R x ) の各剛性よりも Y軸を中心 とする囱転方向 (R y ) の剛性の方が低くなるような構造に形成さ れている。 以下 > 弾性連結部材 2 3のもう少し具体的な構造 iこつい て説明する。
' 弾性連結部材 2 3は、 フローチューブ 3に連続する第一壁部 2 3 a—と、 台座 2 2に連続する第二壁部 2 3 bと、 Y軸,方向の端部に おいて第一壁部 2 3 a及び第二壁部 2 3 bに連続する一対の壁連続 部 2 3 cとを有している。 ま 、 弾性連結部材 2 3は、 第一壁部 2 3 a及び第二壁部 2 3 bが間隔をあけて対向し、 ざらに、 X軸方向 の端部が前記間隔によって開口 (引用符号 2 3 d参照) するような 構造 (こ形成されている。 一対の壁連続部 2 3 cは、 X軸方向の幅が 第一壁部 2 3 a及び第二壁部 2 3 bの X軸方向の幅よりも狭くなる ように形成されている。 壁連続部 2 3 cと第一壁部 2 3 aとの縁部 、 及び、 壁連続部 2 3 cと第二壁部 2 3 bとの縁部は、 滑らかな曲 線で繋がるように形成きれている。 弾性連結部材 2 3は、 Z軸方向 から見ると紡錘状となる形状に形成されている。
弾性連結部材 2 3は、 前記開口 (引用符号 2 3 d参照) 側から 見ると (X軸方向側から見ると) 、 恰も円筒を Z軸方向に押し潰し たような形状に形成されている。 第一壁部 2 3 a及び第二壁部 2 3 bは、 部分的に又は全体的に曲面を有するように形成されている。 このような第一壁部 2 3 aには、 フローチューブ 3の直径に合わせ た固定用の貫通孔 2 3 eが形成されている。 また、 第二壁部 2 3 b には、 フロ一チューブ 3に対する逃がし部分 2 3 f が形成されてい る。 第二壁部 2 3 bは、 フローチューブ 3に対して非接触状態とな るように形成されている。
第 壁部 2 3 aは、 フローチューブ 3に対して口一付けに.より 固定されている。 また、 第二壁部 2 3 bも台座 2 2の端部に対して ロー付けにより固定されている (ロー付けに限定されないものとす る) 。
. 以上の説明におけるフローチューブ 3、 台座 2 2、 及び弾性連 結部材 2 3の材質としては、 例えばステンレスが一例として挙げら れるものとする。 これら Ξつの部材の材質としては、 温度変化に起 因する伸び縮みに配慮すると、 同じ線膨張係数となる、 又はなるベ く近い線膨張係数となる材質を選択することが好ましいものとする o 本形態において、 台座 2 2は熱容量が比較的小さくなるように形 成されている。
上記構成において、 フローチューブ 3に被測定镩体 (図示省略 ) を流すとともに、 駆動装置 7を駆動させてフローチューブ 3に三 次モ一ド振働を生じさせると、,検出器 8の位置でのコリオリの力に よって生じる位相の差分により、 質量流量が図示しない信号演算処 理部で算出されるようになっている.。 また、 本形態においては; 振 動周波数から密度も算出されるようになっている。 本'発明の直管式 コリオリ流量計 2. 1は、 従来と全,く変わらない流量計としての機能 を有している。 ' .
• 本発明の直管式コリオリ流量計 2 1において、 以上の説明から も分かるように、 台座 2 2は高い剛性を有するとともに上記軸方向 の剛性を有する弾性連結部材 2 3を介してフローチューブ 3に連結 するものであることから、 フロ一チューブ 3が駆動装置 7の駆動に · より三次モード振動で振動している最中に振動せず、 一定位置を保 つようになっている。 以下、 図 2及び図 3を参照しながら図示しな い被測定流体の温度変化に応じたフローチューブ 3、 台座 2 2、 及 び弾性連結部材 2 3の作用について説明する。
図 2 ( a ) は被測定流体の温度が低く直管式コリオリ流量計 2 1全体の温度が均等な状態を模式的に示している。 また、 フローチ
ユーブ 3が駆動装置 7の駆動によって三次モ一ド振動で振動してい る状態を示している。 このような状態においては、 フローチューブ 3の全体にわたり軸応力がまだ発生していないことになる (但しフ ローチューブ 3には、 振動による応力が別に作用するものとする) 図 2 ( b ) は被測定流体の温度を上昇させた直後の状態を模式 的に示している。 この時、 台座 2 2には、 被測定流体の温度変化に よる熱が伝わりきれてないため全長に変化がなく、 また、 一対の接 続'フランジ 1 1間 (固定端間) の距離にも変化がなく、 結果、 フロ —ヂュ一ブ 3には、 被測定流体の温度変化による、 圧縮となる軸応 力が発生する。 この圧縮となる軸応力は、 フロ一チューブ 3の全体 にわたり均等に働く。 理由としては、 一対の弾性連結部材 2 3が弾 性体であることから、 この弾性変形により従来例のような局所的な 軸応力の発生が阻止されているためである。 従って、 フロ一チュ一 ブ 3に発生する軸応力は、. 上記状態において本発朋の構造によりフ 口一チューブ 3の軸方向に分散ざれることになる。
図 2 ( c ) は被測定流体の温度を上昇させてしばちく経過した 後の状態を模式的に示している。 この時、 台座 2 2は、 上述の如く 熱容量が比較的小さいことから温度変化による熱に比較的早く馴染 み、 結果、 全長方向に伸びが発生する。 一対の弾性連結部材 2 3は 、 上述の如くフローチューブ 3.の軸方向 (上記 Z軸方向) の剛性が 他より.も低くなる構造であることから、 上記伸びは弾性変形により 吸収される。 一対の弾性連結部材 2 3の間、 弾性連結部材 2 3と接 繞フランジ 1 1 (固定端) との間は、 従来例と異なり軸応力がフロ —チューブ 3の軸方向に分散されることになる。 従って、 図 2 ( c ) の状態も図 2 ( b ) の状態と同様、 局所的な軸応力の発生がない ことになる (軸応力は殆ど図 2 ( b ) の状態から変化しない) 。
図 2 ( d ) は直管式コリオリ流量計 2 1全体の温度が均等にな つた状態を模式的に示している。 この状態においては、 台座 2 2や
固定端間距離がフロ一チューブ 3と同様に伸びきることから、 それ までフローチューブ 3に作用していた軸応力がなくなり、 結果、 直 管式コリオリ流量計' 2 '1の状態が安定することになる。
図 3 ( a ) は被測定流体の温度が高く直管式コリオリ流量計 2 1.全体の温度が均等な状態を模式的に示している。 また、 フローチ ュ一ブ 3が駆動装置 7の駆動によって三次モー 1 ^振動で振動してい る状態を模式的に示している。 このような状態においては、 図 2 ( a ) の状態と同じであり、 フ口一チューブ 3の全体にわたり軸応力 が発生していないことになる (但しフローチューブ 3には、 振動に よる—応力が別に作用するものとする) 。 一 .
図 3 ( b ) は被測定流体の温度を降下させた直後の状態を模式 的に示している。 この時、 台座 2 2には、 被測定流体の温度降下に よる冷えが伝わりきれてないため全長に変化がなく、 また、 一対の 接続フランジ 1 Ι ^ (固定端間) の距離にも変化がなく、 結果、 フ 口一チューブ 3には、 被測定流体の温度変化による、 引っ張りとな る軸応力が発生する。 この引っ張り となる軸応力は、 フローチュー ブ 3の全体にわたり均等に働く。 理由としては上述と同様であり、 一対の弾性連結部材 2 3が弾性体であることから、. この弾性変形に より従来例のような局所的な軸応力の発生が阻止されているためで ある。 従って、 フローチューブ 3に発生する軸応力は、 上記状態に おいて本発明の構造によりフロ一チューブ 3の軸方向に分散される ことになる。
図 3 ( c ) は被測定流体の温度を降下させてしばらく経過しだ 後の状態を模式的に示している。 この時、 台座 2 2は、 上述の如く 熱容量が比較的小さいことから温度変化による冷えに比較的早く馴 染み、 結果、 全長方向に縮みが発生する。 一対の弾性連結部材 2 3 は、 上述の如くフローチューブ 3の軸方向 (上記 Z軸方向) の剛性 が他よりも低くなる構造であることから、 上記縮みは弾性変形によ り吸収される。 一対の弾性連結部材 2 3の間、 弾性連結部材 2 3と
接続フランジ 1 1 (固定端) との間は、 従来例と異なり軸応力がフ ローチューブ 3の軸方向に分散されること'になる。 従って、 図 3 ( c ) の状態も図 3 ( ¾ ') の状態と同様、 局所的な軸応力の発生がな いことになる (軸応力は殆ど図 3 ( b ) の状態から変化しない) 。
. 図 3 ( d ) は直管式コリオリ流量計 2 1全体の温度が均等にな つた状態を示している。 この状態においては、 ^座 2 2や固定端間 距離がフロ一チューブ 3と同様に縮みきることから、 それまでフロ —チューブ 3に作用していた軸応力がなくなり、 結果、 直管式コリ オリ流量計 2 1の状態が安定することになる。
'以上、 図 1ないし図 3を参照しながら説明してきたように、 本 発明の直管式コリォリ流量計 2 1によれば、 被測定流体に温度変化 が生じてフローチューブ 3に伸びや縮みが発生しても、 フローチュ —ブ 3に働く軸応力がフローチューブ 3の軸方向 (Z軸方向) に分 散される構造であることから、 温度変化に対して強い構造になり、 流量計として温度特性を従来よりも向上させることができるという 利点を有している。 · ,
また、 本発明の直管式コリオリ流量計 2 1によれぱ、 フローチ ュ一ブ 3を三次モ一ド振動で振動させる構造であることから、 振動 漏洩を最小に抑えることができるという利点を有している。 尚、 振 動漏洩に関して本発明の直管式コリォリ流量計 2 1は、 従来用いて いた板パネ 6 (図 1 3参照) を不要にする構造であることから、 従 来板.パネ 6を介して生じていた振動漏洩を解消することができると いう利点も有している。
さらに、 本発明の直管式コリオリ流量計 2 1によれば、 従来用 いていたカウン夕バランス 4 (図 1 3参照) を不要にする構造であ ることから、 被測定流体の密度変化とカウンタバランス 4の慣性モ —メン ト (質量) とにより生じるアンバランス、 すなわち被測定流 体の密度が変わってもカウン夕バランス 4の慣性モ一メントが不変 であることに起因するアンバランスを解消することができるという
利点を有している。 従って、 器差シフ トやパラヅキ、 さらには密度 計測 (周波数) に対するシフ トもなくすこ 'とができるという利点を 有している。
その他、 本発明の直管式コリオリ流暈計 2 1によれば、 台座 2 2.がフ口一チューブ 3の振動中に振動しない構造であることから、 この台座 2 2に固定されるコイル 7 b、 8 bに対して配線 (図示省 略) を外筒 2から配索する際に、 弛み (振動を考慮した弛み) を持 たせる必要がなく、 結果、 配線設計の自由度が増えるという利点を 有 ている。
'次に、 図 4を参照しながら図 1の弾性連 部材 2 3の他の例を 説明する。 図 4は他の例を示す弾性連結部材の斜視図である。
. 図 4において、 他の例となる弾性連結部材 2 3 は、 フローチ ユーブ 3に連続する第一壁部 2 3 aど、 台座 2 2 連続する一対の 第二壁部 2 3 b ' と、 Y軸方向の端部において第一壁部 2 3 a及び 第二壁部 2 3 b ' に連続する一対の壁連続部.2 3 cとを有している 。 他の例となる弾性連結部材 2 3 f は、 台座 2 2に連続する第 壁 部 2 3 b ' の固定が図 1の弾性連結部材 2 3の第二壁部 2 3 bに対 して若干異なるように形成されている. (この固定に係る点以外は全 て図 1の弾性連結部材 2 3と同じになっている) 。.
弾性連結部材 2 3 ' は、 X軸方向及び Y軸方向の各侧性よりも Z軸方向の剛性の方が低く、 且つ、 Z軸を中心とする回転方向 (R z ) .及び X軸を中心とする回転方向 (R x ) の各剛性よりも Y軸を 中心とする回転方向 (R y ) の剛性の方が低くなるような構造に形 成されている。 第二壁部 2 3 b ' は、 図中に示すように、 台座 2 2 の Y軸方向の側壁に形成された溝 (符号省略) に差し込まれた状態 で固定されている。 第二壁部 2 3 b ' は、 台座 2 2の Y軸方向の側 壁に対して例えばロー付けにより固定されている。
続いて、 図 5を参照しながら図 1の弾性連結部材及び台座の他 の例を説明する。 図 5は他の例を示す弾性連結部材及び台座の斜視
図である.。
図 5において、 台座. 3 2は、 断面視円,形の筒状体 (円筒) 且つ 剛体であって、 従来め^ゥン夕バランス 4 (図 1 3参照) と同じ位 置に配置ざれている。 すなわち、 台座 3 2は、 フローチューブ 3の 外.側において、 フロ一チューブ 3に対し非接触状態となるように配 置されている。 台座 3 2には、 特に図示しないが、 駆動装置 7を構 成するコイル 7 bと、 検出器 8を構成する同じくコイル 8 bとが固 定されている。 台座 3 2は、 フロ一チューブ 3が三次モード振動で 振動している最中に振動せず、 一定位置を保つことが可能な部材と して設けられている。 台座 3 2は、 弾性連結鄣材 3 3を介してフロ —チューブ 3に連結されている。
弾性連結部材 3 3は、 台座 3 2の両端にそれぞれ固定されてい る。 弾性連結部材 3 3は、 台座 3 2及びフローチュ.一ブ 3を連結す る機能と、 弾性体としての機能とを有している。 弾性連結部材 3 3 は、 例えばフロ一チューブ 3の本来持っている三次モ一ドの節位置 となる二箇所に取り付けられている '(取り付け位置は節位置に 1¾定 されないものとする).。 弾性連結部材 3 3ほ、 X軸方向及び Y軸方 向の各剛性よりも Z軸方向の剛性の方が低く、 且つ、. Z軸を中心と する回転方向 (R z ) 及び X軸を中心とする回転方向 (R x ) の各 剛性よりも Y軸を中心とする回転方向 (R y ) の剛性の方が低くな るような構造に形成されている。
弾性連結部材 3 3は、 フローチューブ 3に連続する第一壁部 3 3 aと、 台座 3 2に連続する第二壁部 3 3 bと、 Y軸方向の端部に おいて第一壁部 3 3 a及び第二壁部 3 3 bに連続する一対の壁連続 部 3 3 cとを有している。 また、 弾性連結部材 3 3は、 第一壁部 3 3 a及び第二壁部 3 3 bが間隔をあけて対向し、 さらに、 X軸方向 の端部が前記間隔によって開口 (引用符号 3 3 d参照) するような 構造に形成されている。 一対の壁連続部 3 3 cは、 X軸方向の幅が 第一壁部 3 3 a及び第二壁部 3 3 bの X軸方向の幅よりも狭くなる
ように形成されている。 一対の壁連続.部 3 3 cは、 X軸方向に切り 欠かれて対向する一対のスリ ッ ト 3 3 gにより図示のように形成さ れている。
弾性連結部材 3 3は、 前記開口 (引用符号 3 3 d参照) 側から 見ると (X軸方向側から見ると) 、 恰も円筒を Z軸方向に押し潰し たような形状に形成されている。 第一壁部 3 3 a及び第二壁部 3 3 bは、 部分的に又は全体的に曲面を有するように形成されている ό このような第一壁部 3 3 a.には、 フロ一チューブ 3の直径に合わせ た固定用の貫通孔 3 3 eが形成されている。 また、 第二壁部 3 3 b にば、 フロ一チューブ 3に対する円形の逃がし部分 3, 3: が形成さ れている。 第二壁部 3 3 bは、 フロ一チューブ 3に対して非接触状 態となるように形成されている。
第一壁部 3 3 a及び第二壁部 3 3 bの中央には、 Y軸方向に伸 びる一対のリブ 3 3 hがそれぞれ形成されている。 第一壁部 3 3 a 側のリブ 3 3 hは、 第一擘部 3 3 a以外にフローチューブ 3に対し ても固定されている。 まだ、 第二壁部 3 3 b側のリブ 3 3 hは、 第 二壁部 3 3 b以外に台座 3 2に対しても固定されている。 リブ 3 3 hは、 弾性連結部材 3 3の Z軸方向の剛性を調整するための一手段 として設けられている。 弾性連結部材 3 3の固定に関しては、 他の 例と同様に口一付けにより固定されている。
台座 3 2及び弾性連結部材 3 3の作用効果は、 図 1ないし図 4 の説朋と同じでありここでは省略するものと.する。 また、 台座 3 2 と図 1の弾性連結部材 2 3との組み合わせや、 弾性連結部材 3 3と 図 1の台座 2 2との組み合わせによる作用効果も同じであり同様に 省略するものとする。 さらに、 以下で説明する各弾性連結部材の作 用効果も同じであり同様に省略するものとする。
続いて、 図 6を参照しながら図 5の弾性連結部材の他の例を説 明する。 図 6は他の例を示す弾性連結部材の斜視図である。
図 6において、 弾性連結部材 3 3 ' は、 リブ 3 3 の配置が
図 5の場合と異なっている。 すなわち、 リブ 3 3 h ' は、 第一壁部 3 3 a及び第二壁部 3 3 bの X軸方向の端部に連成されている。 従 つてこの点が図 5の場^と異なっている。 また、 リブ 3 3 h ' は、 フ口一チューブ 3及び台座 3 2に対して阖定されてない点が図 5の 場合と異なっている。
続いて、 図 Ίを参照しながら図 5の弾性連結部材の他の例を説 明する。 図 7は他の例を示す弾性連結部材の斜視図である。
図 7において、 弾性連結部材 4 3は、 台座 3 2の両端にそれぞ れ固定されている。 弾性連結部材 4 3は、 台座 3 2及びフローチュ ープ' 3を連結する機能と、 弾性体としての機熊とを有している。 弹 性連結部材 4 3は、 例えばフローチューブ 3の本来持っている三次 モードの節位置となる二箇所に取り付げられている (取り付け位置 は節位置に限定されないものとする) 。 弾性連結部.材 4 3は、 X軸 方向及び Y軸方向の各剛性より.も Z軸方向の剛性の方が低く、 且つ 、 Z軸を中心とする回転方向 (R z ) 及び X軸を中心とする回転方 向 (R x ) の各剛性よりも Y軸を中心とする回転方向 (R y ) の剛 性の方が低くなるような構造に形成されている。.
弾性連結部材 4 3は、 フローチューブ 3に連続する第一壁部 4 3 aと、 台座 3 2に連続する第二壁部 4 3 bと、 Y軸方向の端部に おいて第一壁部 4 3 a及び第二壁部 4 3 bに連続する一対の壁連続 部 4 3 cとを有している。 また、 弾性連結部材 4 3は、 第一壁部 4 3 a及び第二壁部 4 3 bが間隔をあけて対向し、 さらに、 X軸方向 の端部が前記間隔によって開口 (引用符号 4 3 d参照) するような' 構造に形成されている。 一対の壁連続部 4 3 cは、 X軸方向に切り 欠かれて対向する一対のスリ ッ ト 4 3 gにより図示のように形成さ れている。 一対の壁連続部 4 3 cは、 スリ ッ ト 4 3 gの存在により X軸方向の幅が第一壁部 4 3 a及び第二壁部 4 3 bの X軸方向の幅 よりも部分的に狭くなるように形成されている。
弾性連結部材 4 3は、 平面視略矩形状に形成されている。 第一
壁部 43 aには、 フローチューブ 3の直径に合わせた固定用の貫通 孔 43 eが形成されている。 また、 第二壁部 43 bには、 フローチ ュ一ブ 3に対する円形の逃がし部分 43 f が形成されている。 第二 壁部 43 bは、 フローチューブ 3に対して非接触状態となるように 形成されている。 弾性連結部材 43の固定に関しては、 他の例と同 様にロー付けにより固定されている。
続いて、 図 8 (a) 〜 ( f ) を参照しながら図 5の弾性連結部 材の他の例を説明する。 ¾8 (a) ~ (f ) は他の例を示す弾性連 結部材の斜視図である。
. '図 8 (a) の弾性連結部材 5 3は、 基本^に図 1の弾性連結部 材 2 3と同じであり、 紡錘状に形成されている。 図 8 (b) の弾性 連結部材 63は、 一対の壁連続部 63 cがフローチ ーブ 3及び台 座 32の軸方向にそれそれ伸びるような形状に形成されている。 図 8 (c) の弾性連結部材 73は、 一対の壁連続部 73 cが略筒状と なる形状に形成されている。 図 8 (d) の弾性連結部材 83は、 図 7の弾性連結部材 43からスリッ ト 43 gを除いたような形状に形 成されている。 また、 図 8 ( d) の弾性連結部材 83は、 図 7の弹 性連結部材 43の第一壁部 43 a及び第二壁部 43 bの間隔を狭め るような形状に形成されている。 図 8 (e) の弾性連結部材 9 3は 、 一対の壁連続部 93 cが台座 32の軸方向に伸びるような形状に 形成されている。 図 8 (f ) の弾性連結部材 10 3は、 図 8 (b) の弾性連結部材 63に対して第一壁部 1 03 a及び第二壁部 1 03 bに剛性を持たせるような形状に形成されている。
続いて、 図 9を参照しながら図 1の弾性連結部材及び台座の他 の例を説明する。 図 9 (a) は他の例を示す弾性連結部材及び台座 の斜視図である。 また、 図 9 (b) は (a) の弾性連結部材の正面 図、 図 9 ( c ) は検出器の固定位置の説明図である。 図 9の例は、 検出器 8の固定位置がフローチューブ 3の三次モ一ド振動における 二つの節 Fと固定端 Kとに挟まれた振動部分に固定される場合の例
を示している (検出器 8が二つの節 Fで挟まれた中央の振動部分 ( 但し腹 Ηは除く) に固定される場合でも適用可能であるものとする
) ο '
図 9において、 この図からも分かるように、 台座 1 1 2及び弾 性連結部材 1 1 3は上述の幾つかの例と若干異なる構造を有してい る。 以下、 具体的に台座 1 1 2及び弾性達結部枋 1 1 3の構造につ いて説明する。
台座 1 1 2は、 断面視矩形の筒状体且つ剛体であって、 従来の カウン夕パランス 4 (図 1 3参照) と同じ位置に配置されている。 すなわち、 台座 1 1 2は、 フローチューブ 3 外側に.おいて、 フロ 一チューブ 3に対し非接触状態となるように配置されている。 台座 1 1 2は、 従来の力ゥン夕バランス 4よりも、 また、.上述の幾つか の例よりも全長が長くなるように形成されている。 .
台座 1 1 2には、 駆動装置 7を構成するコイル 7 bと、 検出器 8を構成する同じくコイル 8 bとが固定されている。 駆動装置 7を 構成するコイル 7 bは、 台座 1 1 2の中央位置に固定されている。 一方、 検出器 8を構成するコイル 8 bは、 フロ一チューブ 3の三次 モード振動における二つの節 Fと固定端 Kとに挟まれた振動部分に 固定されている。 フローチューブ.3には、 三次モード振動におはる 二 όの節 Fで挟まれた中央の振動部分の腹 Hの位置に合わせてマグ ネッ ト 7 a (図示省略) 、 二つの節 Fと固定端 Kとに挟まれた振動 部分で且つコイル 8 bに対応した位置にマグネヅ ト 8 aが固定され ている。
台座 1 1 2は、 フローチューブ 3が三次モード振動で振動して いる最中に振動せず、 一定位置を保つことが可能な部材として設け られている (台座 1 1 2は、 従来のカウン夕バランス 4のような共 振する部材でないものとする) 。 台座 1 1 2は、 弾性連結部材 1 1 3を介してフローチューブ 3に連結されている。
台座 1 1 2には、 弾性連結部材 1 1 3との連結を図るための一
対の開口部 1 1 2 a及びブラケヅ ト 1 1 2 bが設けられている。 開 口部 1 1 2 aは、 台座 1 1. 2の Y軸方向の側壁に形成されている。 開口部 1 1 2 aは、 貫通孔状に形成されている。 ブラケヅ ト 1 1 2 bは、 弾性連結部材 1 1 3の後述する Y軸方向の端部 1 1 3 cを固 定.することができるように形成されている。 本形態においては、 開 口部 1 1 2 aを介して外側へ突出する端部 1 1 3 cを固定すること ができるような図示の形状に形成されている。 ブラケヅ ト 1 1 2 b は、 Z軸方向の剛性が低くなるような形状に形成されている。 尚、 ブラケヅ ト 1 1 2 bを弹性連結部材 1 1 3の構成に含めてもよいも のと-する o _
弾性連結部材 1 1 3は、 フローチューブ 3に連続する紡錘状の 平板構造を有するような図示の形状に形成されている。 弾性連結.部 材. 1 1 3は、 台座 1 1 2及びフローチューブ 3を連結する機能と、 弾性体としての機能とを有して,いる。 弾性連結部材 1 1 3は、 例え ばフローチューブ 3の本来持っている三次モー ドの節位置となる二 箇所に取り付けられている (取り付け位置は節位置に限定されない ものとする) 。
弾性連結部材.1 1 3の中央には、 フロ一チューブ 3の直径に合 わせた固定用の貫通孔 1 1 3 aが形成されている。 弾性連結部材 1 1 3は、 Y軸方向の端部 1 1 3 cの X軸方向の幅がフローチューブ 3に対する連続部分 1 1 3 bの X軸方向の幅よりも狭くなるように 形成されている。 弾性連結部材 1 1 3は、 連続部分 1 1 3 bから端 部 1 1 3 cにかけて縁部が滑らかな曲線で繋がるように形成されて いる。 連続部分 1 1 3 bは、 フローチューブ 3に対して口一付けに より固定されている。 また、 端部 1 1 3 cもブラケッ ト 1 1 2 bに 対してロー付けにより固定されている (口一付けに限定されないも のとする) 。
続いて、 図 1 0を参照しながら図 9の弾性連結部材及び台座の 他の例を説明する。 図 1 0 ( a ) は他の例を示す弾性連結部材及び
台座の斜視図であり、 ( b ) は ( a ) の弾性連結部材の正面図であ る。 ' . 図 1 0において、 台座 1 1 2 ' は、 ブラケッ ト 1 1 2 b ' の形 状のみが図 9と異なっている。 また、 弾性連結部材 1 1 3 ' は、 端 部 1 1 3 cに Y軸方向に伸びる捻り棒 (ト一シヨンビーム) 1 1 3 d ' が追加されている点が図 9と異なっている。 ブラケッ ト 1 1 2 b ' と捻り棒 1 1 3 は、 口一付けにより固定されている (ロー 付けに 定されないものとする) 。 尚、 図中の点線の円は、 コイル 7 'b、 8 bの取り付け位置を示している。
'続いて、 図 1 1を参照しながら図 9の弾性連結部材及び台座の 他の例を説明する。 図 1 1は他の例を示す弾性連結部材及び台座の 斜視図である。
図 1 1において、 フローチューブ 3の外側且つこのフロ一チュ —ブ 3に対し非接触状態となる台座としては、 上述の台座 3 2が用 いられている。 台座 3 2には、 駆動装置 7を構成するコイル 7 b ( 図示省略) ど、 検出器 8を構成する同.じくコイル 8 bとが固定され ている ώ 区動装奩 7を構成するコイル 7 b (図示省略) は、 台座 3 2の中央位置に固定されている。 一方、 検出器 8を構成するコイル 8 bは、 フロ一チューブ 3の三次モ一ド振動における二つの節で挟 まれた中央の振動部分 (但し中央の腹は除く) に固定されている。 フローチューブ 3には、 マグネヅ ト 7 a (図示省略) 及びマグネヅ ト 8 aが固定されている。
台座 3 2は、 上述の弾性連結部材 1 1 3を介してフローチュー プ 3に連結されている。 台座 3 2は、 フロ一チューブ 3が三次モー ド振動で振動している最中に振動せず、 一定位置を保つことが可能 な部材として設けられている。 台座 3 2は、 上述の弾性連結部材 1 1 3を介してフローチューブ 3に連結されている。 台座 3 2の両端 部には、 弾性連結部材 1 1 3との連結を図るためのブラケッ ト 3 2 aが設けられている。
ブラケヅ ト 3 2 aは、 弾性連結部材 1 1 3の Y軸方向の端部.1 1 3 cを固定することができるように形成,されている。 プラケヅ ト 3 2 aは、 台座 3 2め^周に固定される環状固定部 3 2 bと、 Y軸 方向に伸びるアーム部 3 2 cとを有している。 アーム部 3 2 cの先 端.には、 弾性連結部材 1 1 3の端部 1 1 3 cが口一付けにより固定 されている (口一付けに限定されないもめとする) 。
弾性連結部材 1 1 3は、 フロ一チューブ 3に連続する紡錘状の 平板構造を有している。 弾性連 部材 1 1 3は、 台座 3 2及びフロ —チューブ 3を連結する'機能と、 弾性体としての機能とを有してい る。 性連結部材 1 1 3は、 例えばフローチューブ 3の本来持って いる三次モードの節位置となる二箇所に取り付けられている (取り: 付け位置は節位置に限定されないものどする) 。
続いて、 図 1 2を参照しながら図 1 1 の弾性琿結部材及び台座 の他の例を説明する。 図 1 2は,他の例を示す弾性連結部材及び台座 の斜視図である 0
図 1 2において、 台座 3 2は、 ブラケヅ ト 3 2 a ' の形状めみ が図 1 1 と異なっている。 また、 弾性連結部材 1 1 3 ' は、 端部 1 1 3 cに Y軸.方向に伸びる捻り棒:(ト一シヨンビーム) 1 1 3 d ' が追加されている点が図 1 1 と異なっている。 ブラケヅ ト' 3 2 a ' の ーム部 3 2 c ' と捻り棒 1 1 3 d ' は、 口一付けにより固定ざ れている,(口一付けに限定されないものとする) 。
.その他、 本発明は本発明の主旨.を変えない範囲で種々変更実施 可能なことは勿論である。
Claims
1 . 被測定流体が流れる直管状のフロ一チューブと、 該フローチュ ーブを三次モード振勳で駆動する駆動装置と、 前記フローチューブ に作用するコリォリの力に比例した位相差を検出する一対の検出手 段.と、 前記駆動装置及び前記一対の検出手段の各コイルを固定した 状態で前記フローチューブの外側に位置する剛性のある台座と、 前 記フロ一チューブの所定の二箇所で前記台座を連結する一対の弾力 性のあ ¾弹性連結部材とを備え、
前記フロ一チューブの軸方向を Z軸、 該 Z軸に直交する前記駆動 装置'の駆動方向を X軸、 さらに前記 Z軸及び前記 X軸.に直交する方 向を Y軸とすると、 前記弾性連結部材は、 前記 X軸方向及び前記 Y 軸方向の各剛性よりも前記 Z軸方向の剛性の方が低い構造となる弾 性体、 且つ、 前記 Z軸を中心とする回転方向及び前記 X軸を中心と する回転方向の各剛性よりも前記 Y軸を中心とする回転方向の剛性 の方が低い構造となる弾性体である
ことを特徴とする弾性連結部材及び台座を有する三次モ一ド振動 の直管式コリオリ.流量計。
2 . 請求項 1 ·に記載の弾性連結部材及び台座を有する三次モード振 動の直管式コリオリ流量計において、
前記弾性連結部材は、 前記フローチューブに連続する第一壁部ど
、 前記台座に連続する第二壁部と、 前記 Y軸方向の端部において前 記第一.壁部及び前記第二壁部にそれそれ連続する一対の壁連続部と を有するとともに、 前記第一壁部及び前記第二壁部が間隔をあけて 対向し、 さらに、 前記 X軸方向の端部が前記間隔により開口する構 造である
ことを特徴とする弾性連結部材及び台座を有する三次モード振動 の直管式コリオリ流量計。
3 . 請求項 2に記載の弾性連結部材及び台座を有する三次モード振 動の直管式コリオリ流量計において、
前記弾性連結部材は、 前記壁連続部の前記 X軸方向の幅が前記第 一壁部及び前記第二壁部の前記 X軸方向の幅よりも狭くなる構瑋で ある ■ ■
ことを特徴とする弾性連結部材及び台座を有する三次モード振動 の.直管式コリオリ流量計。
4 . 請求項 1に記載の弾性連結部材及び台座を有する三次モード振 動の直管式コリオリ流量計において、
前記弾性連結部材は、 前記フロ一チューブに連続する紡錘状の平 板構造であり、 前記台座には、 該台座の開口部を介して台座外側へ 突出—する前記弾性連結部材の前記 Y軸方向の端部を固.定するための ブラケヅ トを設ける
.ことを特徴とする弾性連結部材及び台座を有する三次モード振動 の直管式コリオリ流量計。 .
5 . 請求項 1ないし請求項 4いずれか記載の弾性連結部材及び台座 を有する三次モ一ド振動の直管式コリオリ流量計において、
前記台座は、 断面視矩形の筒状体である
ことを 徴とする弾性連結部材及び台座を有する三次モード振動 の直管式コリオリ流量計。
6 . 請求項 1ないし請求項 5いずれか記載の弾性連結部材及び台座 を有する三次モ一ド振動の直管式コリォリ流量計において、
前記フローチューブ、 前記台座、 及び前記弾性連結部材は、 同じ 線膨張.係数の構造体である
ことを特徴とする弾性連結部材及び台座を有する三次モード振 KJ の直管式コリオリ流量計。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2006800336196A CN101273248B (zh) | 2005-09-13 | 2006-09-08 | 具有弹性连结部件及基座的三维模式振动的直管式科里奥利流量计 |
EP06810168A EP1925917A4 (en) | 2005-09-13 | 2006-09-08 | CORIOLIS FLOWMETER WITH STRAIGHT TUBE FOR TERTIOR MODEL VIBRATION WITH ELASTIC CONNECTING PART AND STANDS |
US11/920,436 US7694585B2 (en) | 2005-09-13 | 2006-09-08 | Straight tube type Coriolis flowmeter for tertiary mode vibration with elastic connection member and pedestal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-264630 | 2005-09-13 | ||
JP2005264630A JP3877174B1 (ja) | 2005-09-13 | 2005-09-13 | 弾性連結部材及び台座を有する三次モード振動の直管式コリオリ流量計 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007032457A1 true WO2007032457A1 (ja) | 2007-03-22 |
Family
ID=37801352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/318324 WO2007032457A1 (ja) | 2005-09-13 | 2006-09-08 | 弾性連結部材及び台座を有する三次モード振動の直管式コリオリ流量計 |
Country Status (5)
Country | Link |
---|---|
US (1) | US7694585B2 (ja) |
EP (1) | EP1925917A4 (ja) |
JP (1) | JP3877174B1 (ja) |
CN (1) | CN101273248B (ja) |
WO (1) | WO2007032457A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0525504D0 (en) | 2005-12-14 | 2006-01-25 | Bristol Myers Squibb Co | Antimicrobial composition |
CN101432600B (zh) * | 2006-05-01 | 2012-12-05 | 微动公司 | 单曲线管式科里奥利流量计的平衡结构 |
DE102008035877A1 (de) * | 2008-08-01 | 2010-02-04 | Endress + Hauser Flowtec Ag | Meßwandler vom Vibrationstyp |
TWI417502B (zh) * | 2011-06-15 | 2013-12-01 | Inventec Corp | 冷卻裝置 |
CN105008611A (zh) | 2012-12-20 | 2015-10-28 | 康沃特克科技公司 | 化学改性的纤维素纤维的处理 |
CN105705912B (zh) * | 2013-11-13 | 2019-11-19 | 高准公司 | 用于振动计的撑杆 |
CN107478285B (zh) * | 2017-07-25 | 2020-03-20 | 大连美天三有电子仪表有限公司 | 科氏力质量流量计 |
DE102017010850B3 (de) * | 2017-11-23 | 2018-12-27 | Schenck Process Europe Gmbh | Messgerät zum Messen eines Massendurchsatzes eines Materialstroms, Messsystem, Dosiersystem, Verfahren zum Betreiben eines Messgeräts und Verfahren zum Betreiben eines Messsystems |
CN110806240A (zh) * | 2019-11-21 | 2020-02-18 | 沃森测控技术(河北)有限公司 | 一种用于流量计部件的固定装置 |
US20230145225A1 (en) * | 2020-03-05 | 2023-05-11 | Micro Motion, Inc. | Flow meter coupling system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3096181B2 (ja) * | 1992-12-07 | 2000-10-10 | 株式会社オーバル | コリオリ流量計 |
JP3431923B2 (ja) * | 1997-02-27 | 2003-07-28 | マイクロ・モーション・インコーポレーテッド | 軸方向に柔軟性のあるケース端部を有するコリオリ流量計 |
JP2004509349A (ja) * | 2000-09-22 | 2004-03-25 | マイクロ・モーション・インコーポレーテッド | コリオリ式流量計の流管及びバランスバーに連結リングを接合する方法及び装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08247816A (ja) * | 1995-03-09 | 1996-09-27 | Fuji Electric Co Ltd | 質量流量計 |
US5945609A (en) * | 1996-03-08 | 1999-08-31 | Fuji Electric Co., Ltd. | Mass flowmeter for measuring flow rate of a fluid |
JP2898266B1 (ja) * | 1998-01-23 | 1999-05-31 | 株式会社オーバル | 二重直管式コリオリ流量計 |
US6397684B1 (en) * | 1999-02-23 | 2002-06-04 | Micro Motion Inc. | Low thermal stress case connect link for a straight tube Coriolis flowmeter |
JP3783962B2 (ja) * | 2004-03-24 | 2006-06-07 | 株式会社オーバル | 三次モード振動式コリオリ流量計 |
JP4218808B2 (ja) * | 2005-11-28 | 2009-02-04 | 株式会社オーバル | 弾性連結部材と台座とフローチューブ三次モード節位置安定化構造とを有する直管式コリオリ流量計 |
-
2005
- 2005-09-13 JP JP2005264630A patent/JP3877174B1/ja not_active Expired - Fee Related
-
2006
- 2006-09-08 EP EP06810168A patent/EP1925917A4/en not_active Withdrawn
- 2006-09-08 WO PCT/JP2006/318324 patent/WO2007032457A1/ja active Application Filing
- 2006-09-08 US US11/920,436 patent/US7694585B2/en not_active Expired - Fee Related
- 2006-09-08 CN CN2006800336196A patent/CN101273248B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3096181B2 (ja) * | 1992-12-07 | 2000-10-10 | 株式会社オーバル | コリオリ流量計 |
JP3431923B2 (ja) * | 1997-02-27 | 2003-07-28 | マイクロ・モーション・インコーポレーテッド | 軸方向に柔軟性のあるケース端部を有するコリオリ流量計 |
JP2004509349A (ja) * | 2000-09-22 | 2004-03-25 | マイクロ・モーション・インコーポレーテッド | コリオリ式流量計の流管及びバランスバーに連結リングを接合する方法及び装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP1925917A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN101273248A (zh) | 2008-09-24 |
CN101273248B (zh) | 2010-05-19 |
JP2007078438A (ja) | 2007-03-29 |
EP1925917A4 (en) | 2013-02-27 |
US20090084195A1 (en) | 2009-04-02 |
EP1925917A1 (en) | 2008-05-28 |
US7694585B2 (en) | 2010-04-13 |
JP3877174B1 (ja) | 2007-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007032457A1 (ja) | 弾性連結部材及び台座を有する三次モード振動の直管式コリオリ流量計 | |
US6516674B1 (en) | Mass flow measuring instrument | |
JP4695988B2 (ja) | 質量流量計 | |
JP3065357B2 (ja) | 質量流量計 | |
EP1995572B1 (en) | Coriolis flow meter with vibrating direction restriction means | |
JP3782421B2 (ja) | コリオリ流量計 | |
JP3812844B2 (ja) | 三次モード振動式コリオリ流量計 | |
JP3782422B2 (ja) | コリオリ流量計 | |
JP4218808B2 (ja) | 弾性連結部材と台座とフローチューブ三次モード節位置安定化構造とを有する直管式コリオリ流量計 | |
JP2885768B1 (ja) | コリオリ式質量流量計 | |
JP5033755B2 (ja) | 振動方向規制手段を有するコリオリ流量計 | |
JP3224788B2 (ja) | 直管シングルチューブコリオリ流量計 | |
JP7514941B2 (ja) | コリオリ流量計のバランスバーのためのモード分割共振器 | |
RU2413183C2 (ru) | Уравновешивающая конструкция для расходомера кориолиса с одной криволинейной трубкой | |
JP4668664B2 (ja) | 多重管構造形直管式コリオリ流量計 | |
JPH11230805A (ja) | カウンタバランスチューブ式コリオリ流量計 | |
JP2002031554A (ja) | コリオリ流量計 | |
PL216207B1 (pl) | Przepływomierz Coriolisa i sposób wyważania przepływomierza Coriolisa | |
JP2009020084A (ja) | コリオリ流量計 | |
JPH08128876A (ja) | コリオリ質量流量計 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680033619.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2006810168 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11920436 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |