WO2007032374A1 - Composite particle for electrochemical device electrode, method for producing same, electrochemical device electrode material, and electrochemical device electrode - Google Patents

Composite particle for electrochemical device electrode, method for producing same, electrochemical device electrode material, and electrochemical device electrode Download PDF

Info

Publication number
WO2007032374A1
WO2007032374A1 PCT/JP2006/318132 JP2006318132W WO2007032374A1 WO 2007032374 A1 WO2007032374 A1 WO 2007032374A1 JP 2006318132 W JP2006318132 W JP 2006318132W WO 2007032374 A1 WO2007032374 A1 WO 2007032374A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
electrode
active material
composite particles
electrochemical element
Prior art date
Application number
PCT/JP2006/318132
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshio Fukumine
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2007535498A priority Critical patent/JP4985404B2/en
Publication of WO2007032374A1 publication Critical patent/WO2007032374A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0433Molding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrochemical element electrode composite particle (this book) for constituting an electrode material suitably used for an electrochemical element such as a lithium ion secondary battery and an electric double layer capacitor, particularly an electric double layer capacitor. In the specification, it may be simply referred to as “composite particles.”) And a method for producing the same.
  • the present invention also relates to an electrochemical element electrode material containing the composite particles, and an electrochemical element electrode using the electrode material.
  • Electrochemical elements such as lithium ion secondary batteries and electric double layer capacitors are rapidly growing in demand due to their small size, light weight, high energy density, and the ability to repeatedly charge and discharge. .
  • Lithium ion secondary batteries are used in fields such as mobile phones and notebook personal computers because of their relatively high energy density. Since electric double layer capacitors can be charged and discharged rapidly, they are used as a memory backup compact power source for personal computers and the like. Furthermore, the electric double layer capacitor is expected to be used as a large power source for electric vehicles.
  • Redox capacitors that utilize the oxidation-reduction reaction (pseudo electric double layer capacitance) on the surface of metal oxides and conductive polymers are also attracting attention due to their large capacity.
  • Electrochemical element electrodes are generally formed by laminating an active material layer formed by binding an electrode active material such as activated carbon or lithium metal oxide and a conductive material on a current collector. It is.
  • Japanese Patent Application Publication No. 2005-78943 discloses a composite particle in which a particulate electrode active material and a particulate conductive additive are adhered to each other with a binder. A method is described in which the child is obtained by pressure molding.
  • the composite particles used in Japanese Patent Application Publication No. 2005-78943 have a structure in which the particulate electrode active material and the particulate conductive auxiliary are uniformly dispersed in the composite particles. However, when this composite particle is used, it is difficult to stably and continuously form an active material layer when the molding speed is increased in the press molding.
  • An object of the present invention is to provide an electrochemical element electrode that has good fluidity at room temperature, excellent transportability and quantitative supply, and has a uniform active material layer especially for mouth pressure molding. High! Provided are composite particles for an electrochemical element electrode that can be obtained at a molding speed, a method for producing the same, an electrochemical element electrode material comprising the composite particle, and an electrochemical element electrode formed from the electrode material It is to be.
  • the present inventor pays attention to the powder characteristics of the electrode material, and as a result, the tensile bond strength when the electrode material is compressed greatly affects the moldability, fluidity and storage characteristics of the electrode material.
  • conventional electrode materials have low tensile bond strength at high temperatures and lack of binding strength, so the moldability was low.
  • an electrode material having a tensile bond strength of less than a certain value when compressed at O. lMPa and 0.5 MPa for 60 seconds at 25 ° C is excellent in fluidity and storage characteristics. It came to complete.
  • the composite element for an electrochemical element electrode comprising an electrode active material, a conductive material, and a binder and having a volume average particle diameter of 1 to 500 m.
  • a composite particle for an electrochemical device electrode having a tensile bond strength of 8, OOONZm 2 or more when compressed at OMPa for 5 seconds at 70 ° C is provided.
  • the composite particle for an electrochemical element electrode preferably has a tensile adhesion strength of 00 NZm 2 or less when compressed with O.lMPa at 25 ° C for 60 seconds.
  • the composite particle for an electrochemical element electrode preferably has a bow tension strength of 3, OOONZm 2 or less when compressed at 0.5 MPa for 60 seconds at 25 ° C.
  • an electrode active material, a conductive material, and a binder are dispersed in a solvent.
  • a method for producing the composite particle for an electrochemical element electrode comprising a step of obtaining a slurry and a step of spray-drying the slurry and granulating the slurry.
  • an electrochemical element electrode material comprising the composite particle for an electrochemical element electrode.
  • an electrochemical element electrode in which an active material layer formed on the electrochemical element electrode material is laminated on a current collector.
  • the pressure forming in which the method of laminating the active material layer on the current collector is preferably pressure forming, is more preferably roll pressure forming.
  • the electrochemical element electrode is preferably for an electric double layer capacitor.
  • the composite particle for an electrochemical element electrode contains an electrode active material, a conductive material, and a binder, and has a volume average particle diameter of 1 to 500 m. At 70 ° C, the tensile bond strength when compressed at OMPa for 5 seconds
  • Electrode active material constituting the composite particle according to the embodiment of the present invention is appropriately selected depending on the type of the electrochemical element.
  • Electrode active materials for the positive electrode of lithium ion secondary batteries include lithium-containing materials such as LiCoO, LiNiO, LiMnO, LiMn O, LiFePO, and LiFeVO.
  • Transition metal sulfides such as TiS, TiS, and amorphous MoS; Cu V O,
  • V O 'PO transition metal oxides such as ⁇ , V ⁇ , V ;
  • conductive polymers such as polyacetylene and poly (rho) -phenylene are listed.
  • Examples of the electrode active material for the negative electrode of the lithium ion secondary battery include carbonaceous materials such as amorphous force bonbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon fibers; Examples thereof include conductive polymers such as polyacene.
  • carbonaceous materials such as amorphous force bonbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon fibers
  • Examples thereof include conductive polymers such as polyacene.
  • These electrode active materials can be used alone or in combination of two or more depending on the type of electrochemical element. When using a combination of electrode active materials, use two or more types of electrode active materials with different average particle sizes or particle size distributions. You can do it.
  • the shape of the electrode active material used for the electrode of the lithium ion secondary battery is preferably sized into spherical particles. If the particle shape is spherical, a higher-density electrode can be formed during electrode molding. Also, a mixture of fine particles with an average particle size of about 1 ⁇ m and relatively large particles with an average particle size of 3 to 8 ⁇ m and particles with a broad particle size distribution of 0.5 to 8 m are preferred! /. Particles having a particle size of 50 ⁇ m or more are preferably used after being removed by sieving or separating. Tap density defined by ASTM D4164 of the electrode active material 2GZcm 3 or more in particular limited, such bur cathode, is preferably used as a 0. 6gZcm 3 or more in the negative electrode
  • an allotrope of carbon is usually used as an electrode active material for an electric double layer capacitor.
  • the electrode active material for an electric double layer capacitor is preferably one having a large specific surface area that can form an interface with a larger area even with the same weight.
  • Specific examples of the allotrope of carbon include activated carbon, polyacene, vigorous whisker, and graphite. These powders or fibers can be used.
  • a preferable electrode active material for the electric double layer capacitor is activated carbon, and specific examples include phenol-based, rayon-based, acrylic-based, pitch-based, and coconut shell-based activated carbon. These carbonaceous materials can be used alone or in combination of two or more as the electrode active material for electric double layer capacitors. When using a combination of carbonaceous materials, use a combination of two or more carbonaceous materials with different average particle sizes or particle size distributions.
  • non-porous carbon having microcrystalline carbon similar to graphite and having an increased interlayer distance of the microcrystalline carbon can be used as an electrode active material.
  • Such non-porous carbon is obtained by dry-distilling graphitized charcoal with multi-layered graphite structure microcrystals at 700-850 ° C and then heat-treating with caustic at 800-900 ° C. Further, it can be obtained by removing residual alkali components with heated steam as required.
  • an electrode active material for an electric double layer capacitor a powder having a volume average particle size of 0.1 to: LOO / zm, preferably 1 to 50 / ⁇ ⁇ , more preferably 5 to 20 / ⁇ ⁇ is used. And the electric double layer This is preferable because the capacitor electrode can be easily thinned and the capacitance can be increased.
  • the conductive material constituting the composite particle according to the embodiment of the present invention is an allotrope force of particulate carbon that has conductivity and does not have pores that can form an electric double layer. It improves the conductivity of the element electrode.
  • the volume average particle size of the conductive material is preferably smaller than the volume average particle size of the electrode active material. Usually 0.001 to 10 111, preferably 0.05 to 5 ⁇ m, more preferably 0.01. It is in the range of ⁇ 1 ⁇ m. When the particle size of the conductive material is within this range, high conductivity can be obtained with a smaller amount of use.
  • conductive carbon blacks such as furnace black, acetylene black, and ketjen black (registered trademark of Akzo Nobel Chemicals Bethloten Fennot SHAP); graphite such as natural graphite and artificial graphite.
  • acetylene black and furnace black are more preferred, with conductive carbon black being preferred.
  • These conductive materials can be used alone or in combination of two or more.
  • the amount of the conductive material is usually in the range of 0.1 to 50 parts by weight, preferably 0.5 to 15 parts by weight, and more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material.
  • the binder according to the embodiment of the present invention is not particularly limited as long as it is a compound having a binding force, but a dispersion-type binder is preferable.
  • the dispersion-type binder is a binder having a property of being dispersed in a solvent.
  • a high-molecular compound such as a fluorine-based polymer, a gen-based polymer, an acrylate polymer, a polyimide, a polyamide, or a polyurethane. More preferred are fluorine-based polymers, gen-based polymers, and acrylate polymers. These binders can be used alone or in combination of two or more.
  • the fluorine-based polymer is a polymer containing a monomer unit containing a fluorine atom.
  • the proportion of the fluorine-containing monomer unit in the fluoropolymer is usually 50% by weight or more.
  • Specific examples of the fluorine-based polymer include fluorine resins such as polytetrafluoroethylene and polyvinylidene fluoride, and polytetrafluoroethylene is preferred.
  • the gen-based polymer is a homopolymer of conjugated gen or a copolymer obtained by polymerizing a monomer mixture containing conjugated gen, or a hydrogenated product thereof.
  • Monomer The conjugation ratio in the mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
  • Specific examples of the gen-based polymer include conjugated gen homopolymers such as polybutadiene and polyisoprene; carboxy-modified aromatic styrene such as styrene copolymer and butadiene copolymer (SBR) Examples thereof include cyanide bur 'conjugation copolymers such as acrylo-tolyl. Butadiene copolymer (NBR); hydrogenated SBR, hydrogenated NBR, and the like.
  • the acrylate polymer is a copolymer obtained by polymerizing a homopolymer of acrylic ester and Z or methacrylic ester or a monomer mixture containing these.
  • the proportion of acrylic acid ester and Z or methacrylic acid ester in the monomer mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more.
  • Specific examples of the acrylate polymer include 2-ethylhexyl acrylate, methacrylic acid, acrylonitrile, ethylene glycol dimethacrylate copolymer, 2-ethylhexyl acrylate, methacrylic acid, methacrylo-tolyl, diethylene glycol diacrylate.
  • radical polymerizable monomer used for the graft polymer examples include methyl methacrylate, acrylonitrile, methacrylic acid and the like.
  • ethylene 'acrylic acid copolymer, ethylene' methacrylic acid copolymer, and the like can be used as a binder.
  • a gen-based polymer and an acrylate polymer are preferable.
  • the binder preferably has a glass transition temperature (Tg), and the Tg is usually 80 ° C to + 180 ° C, preferably 50 ° C to + 40 ° C, more preferably 30 ° C to + 20 ° C.
  • the glass transition temperature is a value measured according to JIS K7210. Whether Tg is too high or too low, the tensile bond strength tends to decrease when compressed at 4. OMPa for 5 seconds at 70 ° C. On the other hand, the tensile bond strength when compressed at 0. IMPa or 0.5 MPa at 25 ° C for 60 seconds tends to decrease as Tg increases, so these values can be obtained by using binders with different Tg. Can be adjusted.
  • the binder used in the embodiment of the present invention is not particularly limited depending on the shape thereof, but has good binding properties. Also, the capacitance of the prepared electrode is reduced due to repeated charge / discharge. Since it can suppress, it is preferable that it is a particulate form. Examples of the particulate binder include those in which binder particles such as latex are dispersed in a solvent, and powders obtained by drying such a dispersion.
  • the binder used in the embodiment of the present invention may be a particle having a core-shell structure obtained by stepwise polymerization of a mixture of two or more monomers.
  • the binder having the core shell structure first polymerizes the monomer that gives the first-stage polymer to obtain seed particles, and gives the second-stage polymer in the presence of the seed particles. It is preferable to produce by polymerizing monomers.
  • the ratio between the core and the shell of the binder having the core-shell structure is not particularly limited, but the core part: shell part is usually 50:50 to 99: 1, preferably 60:40 to 99: by mass ratio. 1, more preferably 70:30 to 99: 1.
  • the polymer constituting the core part and the shell part can be selected from the above polymers. Since the tensile bond strength tends to increase as the ratio of the core portion decreases, the tensile bond strength can be adjusted by changing the ratio of the core portion.
  • the Tg of the core is usually 80 ° C or higher and lower than 0 ° C, preferably 60 ° C or higher and lower than 0 ° C, more preferably -40 ° C or higher and lower than 0 ° C.
  • the higher the Tg of the core the higher the tensile bond strength when compressed at 4. OM Pa for 5 seconds at 70 ° C.
  • the tensile bond strength when compressed at 0. IMPa or 0.5 MPa for 60 seconds at 25 ° C tends to decrease as the core Tg increases.
  • the Tg of the shell is usually 0 ° C or higher and + 180 ° C or lower, preferably 0 ° C or higher and + 120 ° C or lower, more preferably 0 ° C or higher and + 80 ° C or lower. Further, the difference in Tg between the core portion and the shell portion is usually 20 ° C or higher, preferably 50 ° C or higher.
  • the particulate binder used in the embodiment of the present invention has a specific limit depending on the particle diameter.
  • Normal strength Normal temperature 0.001 to 100111, preferably 0.001 to 10 m. More preferably, it has a volume average particle diameter of 0.01 to: m. When the average particle size of the binder is within this range, even if a small amount of the binder is used, an excellent binding force can be imparted to the active material layer.
  • the amount of the binder used is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to: 100 parts by weight of the electrode active material.
  • the range is LO parts by weight. Since the tensile bond strength tends to increase as the amount of the binder increases, the tensile bond strength can be adjusted by adjusting the amount of the binder.
  • the composite particles of the embodiment of the present invention preferably contain a soluble resin.
  • Dissolved resin is a resin that dissolves in a solvent, and is preferably used by dissolving it in a solvent when preparing slurry A or slurry B, which will be described later, so that an electrode active material, a conductive material, and the like are uniformly used in the solvent. It has an action of dispersing.
  • Dissolved rosins include cellulosic polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose and hydroxypropylcellulose, and their ammonium or alkali metal salts; poly (poly (meth) acrylate) Examples include (meth) acrylates; polybulal alcohol, modified polybulal alcohol, polyethylene oxide; polybulurpyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, and chitosan derivatives. These soluble type rosins can be used alone or in combination of two or more.
  • carboxymethylcellulose which is preferred as a cellulose polymer, or an ammonium salt or alkali metal salt thereof is particularly preferred.
  • the use amount of the soluble type resin is not particularly limited, but is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, more preferably 0 to 100 parts by weight of the electrode active material. The range is 8 to 2 parts by weight.
  • the composite particles according to the embodiment of the present invention may further contain other additives as necessary.
  • other additives include a surfactant.
  • the surfactant include amphoteric surfactants such as anionic, cationic, nonionic and nonionic anions. Among them, a cationic surfactant or a nonionic surfactant is used for heat distribution. What is easy to understand is preferable.
  • the amount of the surfactant is not particularly limited, but is 0 to 50 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the electrode active material. It is a range.
  • the composite particles of the embodiment of the present invention have a volume average particle diameter of 1 to 500 ⁇ m, preferably 5 to 300 111, more preferably 10 to 100 / ⁇ ⁇ . Since the tensile adhesion strength tends to increase as the particle size decreases, the tensile adhesion strength can be adjusted by adjusting the particle size. If necessary, the particle size may be adjusted by sieving.
  • the volume average particle diameter is a median diameter of a volume distribution measured by an optical diffraction method.
  • the pressing time is shortened, so that the composite particles must be bound in a short time. Therefore, the higher the tensile bond strength when compressed for a short time at a relatively high pressure, the faster the molding becomes possible.
  • the composite particles according to the embodiment of the present invention have a tensile bond strength of 8,000 N / m 2 or more, preferably 10,000 to 30, OOONZm 2 when compressed at 4. OMPa for 5 seconds at 70 ° C. . Higher values enable faster molding.
  • the tensile adhesion strength is defined as: an aluminum upper and lower divided cylindrical cell (inner diameter: 25 mm) is filled with composite particles, and the cell is placed in a thermostatic chamber adjusted to a predetermined temperature. It is the maximum tensile stress when the composite particle layer breaks when the upper cell is lifted at 0.4 mmZ seconds after compressing to a predetermined pressure in ImmZ seconds and holding in that state for a predetermined time.
  • the tensile adhesion strength can be measured using, for example, “Agg Robot” manufactured by Hosokawa Mikulon.
  • the composite particles have low fluidity or agglomerate at room temperature, the composite particles are not uniformly supplied to the molding apparatus at the time of molding, which makes it difficult to form a uniform active material layer. . Therefore, the tensile bond strength when compressed at a relatively low temperature 'pressure should be small. Is preferred.
  • the composite particles of the embodiment of the present invention preferably have a tensile bond strength of 400 NZm 2 or less, more preferably 120 to 380 NZm 2 when compressed at 0. IMPa for 60 seconds at 25 ° C. The smaller this value, the better the fluidity at room temperature. Further, the tensile bond strength when compressed at 0.5 MPa for 60 seconds at 25 ° C.
  • the particles can be quantitatively supplied without being agglomerated, so that an active material layer having a uniform thickness can be obtained.
  • the composite particles having tensile strength characteristics as described above can be obtained by appropriately selecting the amount and type of the binder used, the method for producing the composite particles, and the like.
  • the composite particles according to the embodiment of the present invention can be preferably obtained by a production method in which a binder can be unevenly distributed on the surface of the composite particles.
  • a binder can be unevenly distributed on the surface of the composite particles.
  • the binding property between the particles can be improved, and the tensile bond strength when compressed at 4. OMPa for 5 seconds at 70 ° C can be increased.
  • the binder suitably used for the composite particles according to the embodiment of the present invention is a binder having a low viscosity near room temperature and a high binding property at the molding temperature.
  • the tensile bond strength is high when compressed at 4. OMPa for 5 seconds at 70 ° C.
  • the tensile strength when compressed at 0. IMPa or 0.5 MPa for 60 seconds.
  • Composite particles having low adhesion strength can be obtained.
  • the strong binder is preferably a gen-based polymer, an acrylate polymer or a core-shell structure having a glass transition temperature in the above range, and a core-shell structure having a glass transition temperature in the above range.
  • Particularly preferred is a binder having
  • the electrochemical device electrode composite particles according to the embodiment of the present invention are not particularly limited by the manufacturing method thereof, but according to the two manufacturing methods described below, the surface of the composite particles is formed. Since it is easy to make the binder unevenly distributed, the composite particles according to the embodiment of the present invention can be easily obtained, which is preferable.
  • the first production method includes a step of obtaining a slurry A containing an electrode active material, a conductive material, and a binder, and a spray-drying granulation method including a step of spray-drying and granulating the slurry A It is.
  • the electrode active material, the conductive material, the binder, and, if necessary, a soluble resin and other additives are dispersed or dissolved in a solvent to obtain an electrode active material, a conductive material.
  • a slurry A is obtained in which an electric material, a binder, and, if necessary, a dissolving type resin and other additives are dispersed or dissolved.
  • the solvent used for obtaining the slurry A is not particularly limited, but when the above-mentioned soluble resin is used, a solvent capable of dissolving the soluble resin is preferably used. Specifically, a force organic solvent in which water is usually used can also be used.
  • organic solvent examples include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; Preference is given to alcohols such as dimethylacetoamide, N—methyl-1-pyrrolidone, dimethylimidazolidinone and other amides; dimethyl sulfoxide, sulfolane and other amide solvents; When water and an organic solvent having a lower boiling point than water are used in combination, the drying rate can be increased during spray drying.
  • alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol
  • alkyl ketones such as acetone and methyl ethyl ketone
  • ethers such as tetrahydrofuran, dioxane and diglyme
  • Preference is given to alcohols such as dimethylacetoamide, N—
  • the amount of solvent used when preparing slurry A is typically in the range of 1 to 50% by weight, preferably 5 to 50% by weight, more preferably 10 to 30% by weight. Is such an amount.
  • the binder is preferably dispersed uniformly.
  • the particle diameter of the composite particles increases as the solid content concentration of the slurry A increases, the tensile adhesion strength of the composite particles obtained by adjusting the solid content concentration of the slurry A can be adjusted.
  • the method or procedure for dispersing or dissolving the electrode active material, the conductive material, the binder, the soluble resin and other additives in a solvent is not particularly limited.
  • binder for example, latex
  • To electrode A method of adding and mixing an active material and a conductive material, and adding and mixing an electrode active material and a conductive material in a binder dispersed in a solvent, and then adding a dissolved resin dissolved in the solvent to the mixture.
  • the method of combining is mentioned.
  • mixing means examples include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer. Mixing is usually carried out in the range of room temperature to 80 ° C for 10 minutes to several hours.
  • the spray drying method is a method of spraying and drying slurry in hot air.
  • An atomizer is one of the devices used for the spray drying method.
  • a rotating disk method slurry is introduced almost at the center of a high-speed rotating disk, and the slurry is released outside the disk by the centrifugal force of the disk, and in that case, the slurry is dried in the form of a mist.
  • the rotational speed of the disc is a force depending on the size of the disc. Usually, it is 5,000-30, OOOrpm, preferably 15,000-30, OOOrpm.
  • a pin-type atomizer is a type of centrifugal spraying device that uses a spray plate.
  • the spray plate is detachably mounted between upper and lower mounting disks on a substantially concentric circle along its periphery. Consists of things that are attached. Slurry A is introduced from the center of the spray plate, adheres to the spraying roller by centrifugal force, moves to the outside of the roller surface, and finally sprays away from the roller surface.
  • the pressurization method is a method in which the slurry A is pressurized and sprayed from the nozzle and dried.
  • the temperature of the slurry A to be sprayed may be a room temperature or higher by heating with a force usually at room temperature.
  • the hot air temperature during spray drying is usually 80 to 250 ° C, preferably 100 to 200 ° C.
  • the method of blowing hot air is not particularly limited.
  • the method in which the hot air and the spraying direction flow in parallel to each other, the method in which the hot air is sprayed at the top of the drying tower and descends with the hot air Examples are the contact method, and the sprayed droplets co-flow with the hot air first and then drop by gravity and contact countercurrent.
  • a slurry B containing a conductive material, a binder, and, if necessary, a soluble resin and other additives is obtained.
  • the solvent used for obtaining the slurry B include the same solvents as those mentioned in the spray drying granulation method.
  • the amount of solvent used when preparing slurry B is usually in the range of 1 to 50% by weight, preferably 5 to 50% by weight, more preferably 10 to 30% by weight. It is an amount. When the solid content concentration is within this range, it is preferable because the binder is uniformly dispersed.
  • the method or procedure for dispersing or dissolving the conductive material and the binder, and if necessary, the soluble type resin in the solvent For example, the conductive material, the binder and the soluble type resin are added to the solvent.
  • a method of mixing and dissolving, dissolving a soluble resin in a solvent, adding and mixing a binder (for example, latex) dispersed in a solvent, and finally adding and mixing a conductive material, conductive material There is a method of adding and mixing a dispersible binder dissolved in a solvent and mixing it with a dispersible binder dispersed in a solvent.
  • mixing means examples include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer. Mixing is usually performed in the range of room temperature to 80 ° C for 10 minutes to several hours.
  • the electrode active material is caused to flow in a tank, and the slurry B is sprayed thereon for fluid granulation.
  • the method of fluid granulation in the tank include a fluidized bed, a deformed fluidized bed, and a spouted bed.
  • the electrode active material is fluidized with hot air, and the slurry B is also sprayed with the slurry B to perform agglomeration and granulation.
  • the modified fluidized bed is the same as the fluidized bed described above, but is a method of giving a circulating flow to the powder in the bed and discharging the granulated material that has grown relatively large by using the classification effect.
  • the method using the spouted bed is a method in which slurry B of spray isotropic force is adhered to coarse particles using the characteristics of the spouted bed and granulated while drying at the same time.
  • a method using a fluidized bed or a deformed fluidized bed among these three methods is preferable.
  • the temperature of the slurry B to be sprayed may be a room temperature or higher by heating with a force normally at room temperature.
  • the temperature of the hot air used for fluidization is usually 80 to 300 ° C, preferably 100. ⁇ 200 ° C.
  • Particles obtained by fluid granulation may be completely dried with hot air, but may be granulated in the next rolling granulation step. In order to increase the grain efficiency, it is preferable to be in a wet state.
  • the particles B obtained in the fluidized granulation step are subjected to rolling granulation in the presence of slurry B containing a conductive material and a binder.
  • the slurry B used for rolling granulation is the same as or different from the slurry B used for fluid granulation as long as it contains a conductive material and a binder. Also good.
  • rolling granulation such as a rotating coarse method, a rotating cylindrical method, and a rotating truncated cone method.
  • the slurry B is sprayed on the particles B supplied in the inclined rotating sand to produce an agglomerated granulated product, and the granulated powder that has grown relatively large by utilizing the classification effect of the rotating sand.
  • This is a method of discharging objects from the rim.
  • the rotating cylinder system is a system in which wet particles B are supplied to an inclined rotating cylinder, and this is rolled in a cylinder, and the slurry B is sprayed to obtain an agglomerated granulated product.
  • the rotating truncated cone method is the same as the operating method of the rotating cylinder, but is a method of discharging the granulated material that has grown relatively large while utilizing the classification effect of the aggregated granulated material by the truncated cone shape.
  • coating granulation is mainly performed, and agglomeration granulation is partially performed.
  • the temperature during rolling granulation is not particularly limited, but is usually 80 to 300 ° C, preferably 100 to 200 ° C in order to remove the solvent constituting the slurry B. Furthermore, in order to remove the residual solvent from the composite particles, it can be dried as necessary after rolling granulation.
  • composite particles containing an electrode active material, a conductive material, and a binder can be obtained.
  • the electrode active material and the conductive material are bound by a binder and / or a soluble type resin, and the outer layer portion of the composite particle has a relatively small average particle diameter.
  • the material is formed by binding, and the inner part of the composite particle has a relatively large average particle diameter, and is formed by binding of an electrode active material and Z or a conductive material.
  • the electrochemical element electrode material according to the embodiment of the present invention includes the composite particles according to the embodiment of the present invention, and additionally includes other binders and other additives as necessary. Is.
  • the amount of the composite particles contained in the electrochemical element electrode material is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more.
  • Examples of the other binder contained in the electrode material as necessary include the same binders as those used for obtaining the composite particles. Since the composite particles already contain the binder, it is not necessary to add them separately when preparing the electrode material. Force To increase the binding force between the composite particles, the binder and the electrode material are used. It may be added during preparation.
  • the amount of the other binder added when preparing the electrode material is generally 0.001 to 50 parts by weight with respect to 100 parts by weight of the electrode active material in total with the binder in the composite particles. Preferably it is 0.01-20 weight part, More preferably, it is the range of 0.1-10 weight part.
  • Other additives include, in addition to the above-mentioned dissolved type rosy surfactant, molding aids such as water and alcohol, and the like, which can be added by appropriately selecting an amount that does not impair the effects of the present invention.
  • An electrochemical element electrode according to an embodiment of the present invention (hereinafter sometimes simply referred to as "electrode”;) has an active material layer formed of the above-described electrochemical element electrode material on a current collector. It is made by laminating.
  • the current collector material used for the electrode for example, metal, carbon, conductive polymer and the like can be used, and metal is preferably used.
  • the current collector metal aluminum, platinum, nickel, tantalum, titanium, stainless steel, and other alloys are usually used. Among these, it is preferable to use aluminum or an aluminum alloy in terms of conductivity and voltage resistance. When high voltage resistance is required, high-purity aluminum disclosed in JP 2001-176757 A can be suitably used.
  • the current collector is in the form of a film or a sheet, and the thickness thereof is appropriately selected depending on the purpose of use, but is usually 1 to 200 ⁇ m, preferably 5 to: LOO ⁇ m, more preferably 10 to 50 ⁇ m. m.
  • the active material layer may be formed by forming the electrochemical element electrode material into a sheet and then laminating it on the current collector. However, the active material layer is formed directly on the current collector by forming the electrochemical element electrode material directly. May be formed.
  • a method for forming the active material layer there are a dry molding method such as a pressure molding method, and a wet molding method such as a coating method. However, there is a dry molding method that does not require a drying process and can reduce manufacturing costs. preferable. Examples of dry molding methods include pressure molding and extrusion (also referred to as paste extrusion).
  • the pressure forming method is a method of forming an active material layer by applying pressure to the electrochemical element electrode material to perform densification by rearrangement and deformation of the electrode material.
  • the electrochemical element electrode material is extruded with an extruder. This is a method of forming into a film or sheet.
  • the pressure forming include a roll pressure forming method in which an electrode material containing composite particles is supplied to a roll type pressure forming device with a supply device such as a screw feeder, and an active material layer is formed. Disperse the material on the current collector, adjust the thickness by leveling the electrode material with a blade, etc., then mold with a pressure device, fill the mold with the electrode material, and press the mold to mold There are ways to do it.
  • the active material layer may be directly laminated on the current collector by feeding the current collector to the roll simultaneously with the supply of the electrode material.
  • the molding temperature is usually from 0 to 200 ° C., preferably higher than the melting point or glass transition temperature of the binder, more preferably 20 ° C. or more higher than the melting point or glass transition temperature.
  • the forming speed is usually 0.1 to 20 mZ, preferably 1 to 10 mZ.
  • the pressing linear pressure between rolls is usually 0.2 to 30 kN / cm, preferably 0.5 to LOkNZcm.
  • the post-pressing method is generally a pressing process using a roll.
  • the roll press process two cylindrical rolls are arranged vertically in parallel at a predetermined interval, and each is rotated in the opposite direction. The temperature of the roll may be adjusted by heating or cooling.
  • the composite particles for electrochemical element electrodes according to the embodiment of the present invention can firmly bind the composite particles to each other by pressing, an active material layer can be obtained at a high forming speed in roll press forming. Can do. Furthermore, since the fluidity at room temperature is good, the supply accuracy is increased and a uniform active material layer can be obtained. In addition, since it does not easily aggregate at room temperature, its storage characteristics are good.
  • Example 1 [0065] Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The present invention is not limited to these examples. In the examples and comparative examples, “parts” and “%” are based on weight unless otherwise specified. [0066] Example 1
  • the tensile bond strength of the obtained composite particles was measured using "Aggrobot" (manufactured by Hosokawa Micron Corporation). That is, when the composite particles are packed in an aluminum upper and lower split cell (inner diameter 25mm), compression is performed under the following conditions at a compression head speed of 0. ImmZ seconds, and then the upper cell is pulled vertically at a speed of 0.4 mmZ seconds. The maximum stress was measured three times, and the average value was taken as the tensile adhesion strength. The measurement was performed in a room at a temperature of 25 ⁇ 3 ° C and a humidity of 60 ⁇ 5%.
  • Example 1 1 32 13 890 1235 388 ⁇ 4.8 3.7
  • Example 1 2 60 8 200 500 188 5 2.5 2.8
  • Example 1 3 34 8500 1600 459 3 4.5 4.4
  • the obtained composite particles were subjected to a roll press machine (pressed rough surface heat roll, Hirano Giken Kogyo Co., Ltd.).
  • the sheet-like active material layer was formed by roll pressure molding using a fixed feeder.
  • the roll was supplied to a roll (manufactured by Kogyo Co., Ltd.) (roll temperature 120 ° C, press linear pressure 4 kNZm). Forming is performed by increasing the roll speed in the range of l to 9mZ by lmZ, and the upper limit roll speed obtained continuously without breaking more than the sheet-like active material layer force Sim is the maximum forming speed. did.
  • the active material layer obtained at a molding speed of 3 mZ was randomly punched into 20 shapes with a diameter of 12 mm, thickness and density were measured, and each variation was calculated by the following formula. The results are shown in Table 1.
  • Example 3 As the binder, the monomer unit that forms the core part is 2-ethylhexyl acrylate, the monomer unit that forms the shell part is ethyl acetate, methacrylic acid, and methacrylic acid.
  • a composite particle was obtained in the same manner as in Example 1 except that 23 ⁇ m, the glass transition temperature of the core portion—60 ° C., the glass transition temperature of the shell portion + 70 ° C., and a concentration of 40% were used.
  • Composite particles were obtained in the same manner as in Example 1 except that latex (volume average particle size 0.12 / ⁇ ⁇ , glass transition temperature—10 ° C, concentration 40%) obtained by dispersing the polymer in water was used. I got a child.
  • polytetrafluoroethylene (manufactured by Daikin Chemical Co., Ltd.), which is a fluoropolymer, is used in water.
  • Composite particles were obtained in the same manner as in Example 1 except that 9.3 parts of a dispersed latex (glass transition temperature + 120 ° C., concentration 64.5%) was used.
  • Composite particles were obtained in the same manner as in Example 2 except that the amount of the latex obtained by dispersing a crosslinked acrylate polymer as a binder in water was 37.5 parts.
  • latex volume average particle size: 0.11 ⁇ m, glass transition temperature: 24 ° C, concentration: 40%
  • Example 8 As the binder, the monomer unit that forms the core part is 2-ethylhexyl acrylate, the monomer unit that forms the shell part is ethyl acetate, methacrylic acid, and methacrylic acid.
  • a latex (volume average particle size 0) having a composition ratio of 2-ethylhexyl acrylate: ethyl ethyl methacrylate: methacrylic acid 89: 8: 3 (weight ratio) dispersed in water. 24 ⁇ m, glass transition temperature of the core part—60 ° C, glass transition temperature of the shell part + 70 ° C, concentration 40%) were used in the same manner as in Example 1 to obtain composite particles.
  • the monomer unit forming the core part is ethyl acrylate
  • the monomer unit forming the shell part is ethyl acrylate and methacrylic acid
  • Composite particles were obtained in the same manner as in Example 1 except that the glass transition temperature—13 ° C., the glass transition temperature of the shell portion + 70 ° C., and the concentration 40% were used.
  • aqueous dispersion of DN-800H carboxymethylcellulose ammonium salt (Daicel Chemical Industries, Ltd.) 44.67 parts and 77.1 parts of ion-exchanged water were added to a slurry (II) having a solid content concentration of 8% by stirring and mixing with a hobart mixer (Aiesha Seisakusho Co., Ltd.).
  • Supply 100 parts of activated carbon as an electrode active material to “Agromaster” (manufactured by Hosokawa Micron Co., Ltd.), flow it with hot air at 80 ° C, spray the slurry (soot) here, and perform fluidized bed granulation.
  • Composite particles were obtained.
  • the acetylene black, the water-dispersed latex and activated carbon of the cross-linked acrylate polymer were the same as those in Example 1.
  • Composite particles were obtained in the same manner as in Example 1 except that the rotational speed of the rotating disk type pin type atomizer was set to 15, OOOrpm.
  • Fluidized bed granulation was carried out in the same manner as in Example 10 except that 15 parts of a latex obtained by dispersing a crosslinked acrylate polymer in water as a binder was used, and a sieve having a mesh size of 155 microns. !, And sieved to obtain composite particles.
  • Composite particles were obtained in the same manner as in Example 10 except that the amount of the latex obtained by dispersing the crosslinked acrylate polymer as a binder in water was 15 parts.
  • Example 1 The slurry (I) obtained in Example 1 was poured into a vat, and the solid material dried at 110 ° C. for 24 hours under reduced pressure in a vacuum dryer was pulverized to obtain composite particles.
  • Composite particles were obtained in the same manner as in Example 2 except that the amount of the latex obtained by dispersing the crosslinked acrylate polymer as a binder in water was 7.5 parts.
  • the composite particle for an electrochemical element electrode, the method for producing the composite particle for an electrochemical element electrode, the electrochemical element electrode material, and the electrochemical element electrode of the present invention have high performance lithium ion secondary. Suitable for use in double layer capacitors for batteries and electricity.

Abstract

Composite particles for electrochemical device electrodes containing an electrode active material, a conductive material and a binder, while having a volume average particle diameter of 1-500 μm. The composite particles have a tensile bond strength of not less than 8,000 N/m2 when compressed for 5 seconds at 4.0 MPa at 70˚C, a tensile bond strength of not more than 200 N/m2 when compressed for 60 seconds at 0.1 MPa at 25˚C, and a tensile bond strength of not more than 3,000 N/m2 when compressed for 60 seconds at 0.5 MPa at 25˚C.

Description

明 細 書  Specification
電気化学素子電極用複合粒子、その製造方法、電気化学素子電極材料 及び電気化学素子電極  COMPOSITE PARTICLE FOR ELECTROCHEMICAL ELEMENT ELECTRODE, METHOD FOR PRODUCING THE SAME, ELECTROCHEMICAL ELEMENT ELECTRODE MATERIAL, AND ELECTROCHEMICAL ELEMENT ELECTRODE
技術分野  Technical field
[0001] 本発明は、リチウムイオン二次電池や電気二重層キャパシタなどの電気化学素子、 特に電気二重層キャパシタに好適に用いられる電極材料を構成するための電気化 学素子電極用複合粒子 (本明細書では単に「複合粒子」と言うことがある。 )及びその 製造方法に関する。また、本発明は、この複合粒子を含有する電気化学素子電極材 料、および該電極材料を用いた電気化学素子電極に関する。  [0001] The present invention relates to an electrochemical element electrode composite particle (this book) for constituting an electrode material suitably used for an electrochemical element such as a lithium ion secondary battery and an electric double layer capacitor, particularly an electric double layer capacitor. In the specification, it may be simply referred to as “composite particles.”) And a method for producing the same. The present invention also relates to an electrochemical element electrode material containing the composite particles, and an electrochemical element electrode using the electrode material.
背景技術  Background art
[0002] リチウムイオン二次電池や電気二重層キャパシタなどの電気化学素子は、小型で 軽量、且つエネルギー密度が高ぐ更に繰り返し充放電が可能という特性を活力して 急速に需要を拡大している。リチウムイオン二次電池は、エネルギー密度が比較的 に大きいことから携帯電話やノート型パーソナルコンピュータなどの分野で利用され ている。電気二重層キャパシタは、急速な充放電が可能なので、パーソナルコンビュ ータ等のメモリバックアップ小型電源として利用されている。更に、電気二重層キャパ シタは電気自動車用の大型電源としての利用が期待されている。また、金属酸化物 や導電性高分子の表面の酸化還元反応 (疑似電気二重層容量)を利用するレドック スキャパシタもその容量の大きさから注目を集めている。これら電気化学素子は、用 途の拡大や発展に伴い、低抵抗化、高容量化、機械的特性や生産性の向上など、 より一層の改善が求められている。そのようななかで、電気化学素子電極に関しても より生産性の高い製造方法が求められており、高速成形可能な製造方法および該製 造方法に適合する電気化学素子電極用材料にっ 、て様々な改善が行われて 、る。  [0002] Electrochemical elements such as lithium ion secondary batteries and electric double layer capacitors are rapidly growing in demand due to their small size, light weight, high energy density, and the ability to repeatedly charge and discharge. . Lithium ion secondary batteries are used in fields such as mobile phones and notebook personal computers because of their relatively high energy density. Since electric double layer capacitors can be charged and discharged rapidly, they are used as a memory backup compact power source for personal computers and the like. Furthermore, the electric double layer capacitor is expected to be used as a large power source for electric vehicles. Redox capacitors that utilize the oxidation-reduction reaction (pseudo electric double layer capacitance) on the surface of metal oxides and conductive polymers are also attracting attention due to their large capacity. With the expansion and development of applications, these electrochemical devices are required to be further improved, such as lowering resistance, increasing capacity, improving mechanical properties and productivity. Under such circumstances, there is a demand for a more productive manufacturing method for electrochemical element electrodes, and there are various manufacturing methods capable of high-speed molding and various electrochemical element electrode materials suitable for the manufacturing method. Improvements are being made.
[0003] 電気化学素子電極は、一般に、活性炭やリチウム金属酸化物などの電極活物質と 導電材とを結着剤で結着して形成された活物質層を集電体上に積層してなるもので ある。この活物質層を形成するために、 日本国特許出願出願公開 2005— 78943号 公報には、粒子状電極活物質及び粒子状導電助剤を結着剤で密着させた複合粒 子を加圧成形して得る方法が記載されている。 日本国特許出願出願公開 2005— 7 8943号公報で用いる複合粒子は粒子状電極活物質及び粒子状導電助剤が均一 に複合粒子中に分散した構造をなしている。しかし、この複合粒子を用いた場合、加 圧成形において成形速度を上げると、安定して連続的に活物質層を形成することが 困難であった。 [0003] Electrochemical element electrodes are generally formed by laminating an active material layer formed by binding an electrode active material such as activated carbon or lithium metal oxide and a conductive material on a current collector. It is. In order to form this active material layer, Japanese Patent Application Publication No. 2005-78943 discloses a composite particle in which a particulate electrode active material and a particulate conductive additive are adhered to each other with a binder. A method is described in which the child is obtained by pressure molding. The composite particles used in Japanese Patent Application Publication No. 2005-78943 have a structure in which the particulate electrode active material and the particulate conductive auxiliary are uniformly dispersed in the composite particles. However, when this composite particle is used, it is difficult to stably and continuously form an active material layer when the molding speed is increased in the press molding.
発明の開示  Disclosure of the invention
[0004] 本発明の目的は、室温での流動性が良好で搬送性、定量供給性に優れ、特に口 ール加圧成形にお!ヽて均一な活物質層を有する電気化学素子電極を高!ヽ成形速 度で得ることが可能な電気化学素子電極用複合粒子及びその製造方法、該複合粒 子を含んでなる電気化学素子電極材料、及びこの電極材料によって形成された電気 化学素子電極を提供することである。  [0004] An object of the present invention is to provide an electrochemical element electrode that has good fluidity at room temperature, excellent transportability and quantitative supply, and has a uniform active material layer especially for mouth pressure molding. High! Provided are composite particles for an electrochemical element electrode that can be obtained at a molding speed, a method for producing the same, an electrochemical element electrode material comprising the composite particle, and an electrochemical element electrode formed from the electrode material It is to be.
[0005] 本発明者は電極材料の粉体特性に着目し、その結果、電極材料を圧縮したときの 引張り付着強度が、電極材料の成形性、流動性および保存特性に大きく影響してい ることを見出した。そして、従来の電極材料が高温での引張り付着強度が小さぐ結 着力が不足しているために成形性が低かったのに対し、 70°Cにおいて 4. OMPaで 5 秒間圧縮したときの引張り付着強度が一定以上である電極材料を用いると成形性に 優れることを見出した。さらに、 25°Cにおいて O. lMPaおよび 0.5MPaで 60秒間圧 縮したときの引張り付着強度が一定以下である電極材料は、流動性および保存特性 に優れることを見出し、これらの知見に基づき本発明を完成するに至った。  [0005] The present inventor pays attention to the powder characteristics of the electrode material, and as a result, the tensile bond strength when the electrode material is compressed greatly affects the moldability, fluidity and storage characteristics of the electrode material. I found. In contrast, conventional electrode materials have low tensile bond strength at high temperatures and lack of binding strength, so the moldability was low. At 70 ° C, 4. Tensile bond when compressed at OMPa for 5 seconds. It has been found that when an electrode material having a certain strength or more is used, the moldability is excellent. Furthermore, it has been found that an electrode material having a tensile bond strength of less than a certain value when compressed at O. lMPa and 0.5 MPa for 60 seconds at 25 ° C is excellent in fluidity and storage characteristics. It came to complete.
[0006] カゝくして本発明の第一の観点によれば、電極活物質、導電材及び結着剤を含有し 、体積平均粒子径が 1〜500 mの電気化学素子電極用複合粒子であって、 70°C において 4. OMPaで 5秒間圧縮したときの引張り付着強度が 8, OOONZm2以上で ある電気化学素子電極用複合粒子が提供される。 [0006] According to a first aspect of the present invention, the composite element for an electrochemical element electrode comprising an electrode active material, a conductive material, and a binder and having a volume average particle diameter of 1 to 500 m. Thus, a composite particle for an electrochemical device electrode having a tensile bond strength of 8, OOONZm 2 or more when compressed at OMPa for 5 seconds at 70 ° C is provided.
[0007] 該電気化学素子電極用複合粒子は、 25°Cにおいて O.lMPaで 60秒間圧縮したと きの引張り付着強度力 00NZm2以下であることが好ましい。また、該電気化学素子 電極用複合粒子は、 25°Cにお 、て 0.5MPaで 60秒間圧縮したときの弓 |張り付着強 度が 3, OOONZm2以下であることが好ましい。 [0007] The composite particle for an electrochemical element electrode preferably has a tensile adhesion strength of 00 NZm 2 or less when compressed with O.lMPa at 25 ° C for 60 seconds. The composite particle for an electrochemical element electrode preferably has a bow tension strength of 3, OOONZm 2 or less when compressed at 0.5 MPa for 60 seconds at 25 ° C.
[0008] 本発明の第二の観点によれば、電極活物質、導電材および結着剤を溶媒に分散 してスラリーを得る工程、ならびにこのスラリーを噴霧乾燥して造粒する工程、を有す る前記電気化学素子電極用複合粒子の製造方法が提供される。 [0008] According to a second aspect of the present invention, an electrode active material, a conductive material, and a binder are dispersed in a solvent. Thus, there is provided a method for producing the composite particle for an electrochemical element electrode, comprising a step of obtaining a slurry and a step of spray-drying the slurry and granulating the slurry.
[0009] 本発明の第三の観点によれば、前記電気化学素子電極用複合粒子を含んでなる 電気化学素子電極材料が提供される。  [0009] According to a third aspect of the present invention, there is provided an electrochemical element electrode material comprising the composite particle for an electrochemical element electrode.
[0010] 本発明の第四の観点によれば、前記電気化学素子電極材料カゝら形成される活物 質層を集電体上に積層してなる電気化学素子電極が提供される。 According to a fourth aspect of the present invention, there is provided an electrochemical element electrode in which an active material layer formed on the electrochemical element electrode material is laminated on a current collector.
[0011] 該活物質層を集電体上に積層する方法が、加圧成形であることが好ましぐ加圧成 形は、ロール加圧成形であることがより好まし 、。  [0011] The pressure forming, in which the method of laminating the active material layer on the current collector is preferably pressure forming, is more preferably roll pressure forming.
[0012] また、該電気化学素子電極は、電気二重層キャパシタ用であることが好ま 、。  [0012] The electrochemical element electrode is preferably for an electric double layer capacitor.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下、本発明を実施の形態により詳細に説明するが、実施の形態は例示であってHereinafter, the present invention will be described in detail by way of embodiments. However, the embodiments are merely examples.
、以下に説明する実施の形態は、本発明を限定するものではない。 The embodiments described below do not limit the present invention.
[0014] 本発明の実施の形態に係る電気化学素子電極用複合粒子は、電極活物質、導電 材及び結着剤を含有し、体積平均粒子径が 1〜500 mの電気化学素子電極用複 合粒子であって、 70°Cにおいて 4. OMPaで 5秒間圧縮したときの引張り付着強度が[0014] The composite particle for an electrochemical element electrode according to an embodiment of the present invention contains an electrode active material, a conductive material, and a binder, and has a volume average particle diameter of 1 to 500 m. At 70 ° C, the tensile bond strength when compressed at OMPa for 5 seconds
8, OOONZm2以上である。 8, OOONZm 2 or more.
[0015] 本発明の実施の形態に係る複合粒子を構成する電極活物質は、電気化学素子の 種類によって適宜選択される。リチウムイオン二次電池の正極用の電極活物質として は、 LiCoO、 LiNiO、 LiMnO、 LiMn O、 LiFePO、 LiFeVOなどのリチウム含 [0015] The electrode active material constituting the composite particle according to the embodiment of the present invention is appropriately selected depending on the type of the electrochemical element. Electrode active materials for the positive electrode of lithium ion secondary batteries include lithium-containing materials such as LiCoO, LiNiO, LiMnO, LiMn O, LiFePO, and LiFeVO.
2 2 2 2 4 4 4  2 2 2 2 4 4 4
有複合金属酸化物; TiS、 TiS、非晶質 MoSなどの遷移金属硫ィ匕物; Cu V O、  Complex metal oxides; transition metal sulfides such as TiS, TiS, and amorphous MoS; Cu V O,
2 3 3 2 2 3 非晶質 V O 'P O、 ΜοΟ、 V Ο、 V Ο などの遷移金属酸化物;が例示される。さ  2 3 3 2 2 3 Amorphous V O 'PO, transition metal oxides such as ΜοΟ, V Ο, V ;; The
2 2 5 3 2 5 6 13  2 2 5 3 2 5 6 13
らに、ポリアセチレン、ポリ一 ρ—フエ-レンなどの導電性高分子が挙げられる。  In addition, conductive polymers such as polyacetylene and poly (rho) -phenylene are listed.
[0016] リチウムイオン二次電池の負極用の電極活物質としては、例えば、アモルファス力 一ボン、グラフアイト、天然黒鉛、メゾカーボンマイクロビーズ(MCMB)、及びピッチ 系炭素繊維などの炭素質材料;ポリアセン等の導電性高分子などが挙げられる。こ れらの電極活物質は、電気化学素子の種類に応じて、単独でまたは二種類以上を 組み合わせて使用することができる。電極活物質を組み合わせて使用する場合は、 平均粒子径又は粒径分布の異なる二種類以上の電極活物質を組み合わせて使用 してちよい。 [0016] Examples of the electrode active material for the negative electrode of the lithium ion secondary battery include carbonaceous materials such as amorphous force bonbon, graphite, natural graphite, mesocarbon microbeads (MCMB), and pitch-based carbon fibers; Examples thereof include conductive polymers such as polyacene. These electrode active materials can be used alone or in combination of two or more depending on the type of electrochemical element. When using a combination of electrode active materials, use two or more types of electrode active materials with different average particle sizes or particle size distributions. You can do it.
[0017] リチウムイオン二次電池の電極に使用する電極活物質の形状は球形の粒子に整 粒されたものが好ましい。粒子の形状が球形であると、電極成形時により高密度な電 極が形成できる。また、平均粒子径 1 μ m程度の細かな粒子と平均粒子径 3〜8 μ m の比較的大きな粒子の混合物や、 0. 5〜8 mにブロードな粒子径分布を持つ粒子 が好まし!/、。粒子径が 50 μ m以上の粒子は篩 、分けなどにより除去して用いるのが 好ましい。電極活物質の ASTM D4164で規定されるタップ密度は特に制限されな いが正極では 2gZcm3以上、負極では 0. 6gZcm3以上のものが好適に用いられる [0017] The shape of the electrode active material used for the electrode of the lithium ion secondary battery is preferably sized into spherical particles. If the particle shape is spherical, a higher-density electrode can be formed during electrode molding. Also, a mixture of fine particles with an average particle size of about 1 μm and relatively large particles with an average particle size of 3 to 8 μm and particles with a broad particle size distribution of 0.5 to 8 m are preferred! /. Particles having a particle size of 50 μm or more are preferably used after being removed by sieving or separating. Tap density defined by ASTM D4164 of the electrode active material 2GZcm 3 or more in particular limited, such bur cathode, is preferably used as a 0. 6gZcm 3 or more in the negative electrode
[0018] 電気二重層キャパシタ用の電極活物質としては、通常、炭素の同素体が用いられ る。電気二重層キャパシタ用の電極活物質は、同じ重量でもより広い面積の界面を 形成することが可能な、比表面積の大きいものが好ましい。具体的には、比表面積が 30m2Zg以上、好まし <は 500〜5, 000m2Zg、より好まし <は 1, 000〜3, 000m2 Zgであることが好ましい。炭素の同素体の具体例としては、活性炭、ポリアセン、力 一ボンウイスカ及びグラフアイト等が挙げられ、これらの粉末または繊維を使用するこ とができる。電気二重層キャパシタ用の好ましい電極活物質は活性炭であり、具体的 にはフエノール系、レーヨン系、アクリル系、ピッチ系、又はヤシガラ系等の活性炭を 挙げることができる。これら炭素質物質は、電気二重層キャパシタ用電極活物質とし て、単独でまたは二種類以上を組み合わせて使用することができる。炭素質物質を 組み合わせて使用する場合は、平均粒子径又は粒径分布の異なる二種類以上の炭 素質物質を組み合わせて使用してもょ 、。 [0018] As an electrode active material for an electric double layer capacitor, an allotrope of carbon is usually used. The electrode active material for an electric double layer capacitor is preferably one having a large specific surface area that can form an interface with a larger area even with the same weight. Specifically, the specific surface area of 30 m 2 Zg above, preferably <is 500~5, 000m 2 Zg, more preferably <1, 000-3, is preferably 000m 2 Zg. Specific examples of the allotrope of carbon include activated carbon, polyacene, vigorous whisker, and graphite. These powders or fibers can be used. A preferable electrode active material for the electric double layer capacitor is activated carbon, and specific examples include phenol-based, rayon-based, acrylic-based, pitch-based, and coconut shell-based activated carbon. These carbonaceous materials can be used alone or in combination of two or more as the electrode active material for electric double layer capacitors. When using a combination of carbonaceous materials, use a combination of two or more carbonaceous materials with different average particle sizes or particle size distributions.
[0019] また、黒鉛類似の微結晶炭素を有し、その微結晶炭素の層間距離が拡大された非 多孔性炭素を電極活物質として用いることができる。このような非多孔性炭素は、多 層グラフアイト構造の微結晶が発達した易黒鉛ィ匕炭を 700〜850°Cで乾留し、次い で苛性アルカリと共に 800〜900°Cで熱処理し、さらに必要に応じ加熱水蒸気により 残存アルカリ成分を除くことで得られる。  [0019] Further, non-porous carbon having microcrystalline carbon similar to graphite and having an increased interlayer distance of the microcrystalline carbon can be used as an electrode active material. Such non-porous carbon is obtained by dry-distilling graphitized charcoal with multi-layered graphite structure microcrystals at 700-850 ° C and then heat-treating with caustic at 800-900 ° C. Further, it can be obtained by removing residual alkali components with heated steam as required.
[0020] 電気二重層キャパシタ用の電極活物質として、体積平均粒子径が 0. 1〜: LOO /z m 、好ましくは 1〜50 /ζ πι、更に好ましくは 5〜20 /ζ πιの粉末を用いると、電気二重層 キャパシタ用電極の薄膜ィ匕が容易で、静電容量も高くできるので好ましい。 [0020] As an electrode active material for an electric double layer capacitor, a powder having a volume average particle size of 0.1 to: LOO / zm, preferably 1 to 50 / ζ πι, more preferably 5 to 20 / ζ πι is used. And the electric double layer This is preferable because the capacitor electrode can be easily thinned and the capacitance can be increased.
[0021] 本発明の実施の形態に係る複合粒子を構成する導電材は、導電性を有し、電気二 重層を形成し得る細孔を有さない粒子状の炭素の同素体力 なり、電気化学素子電 極の導電性を向上させるものである。導電材の体積平均粒子径は、電極活物質の体 積平均粒径よりも小さいものが好ましぐ通常 0. 001〜10 111、好ましくは0. 05〜5 μ m、より好ましくは 0. 01〜1 μ mの範囲である。導電材の粒径がこの範囲にあると 、より少ない使用量で高い導電性が得られる。具体的には、ファーネスブラック、ァセ チレンブラック、及びケッチェンブラック(ァクゾノーベル ケミカルズ ベスローテン フェンノートシヤップ社の登録商標)などの導電性カーボンブラック;天然黒鉛、人造 黒鉛等の黒鉛;が挙げられる。これらの中でも、導電性カーボンブラックが好ましぐ アセチレンブラックおよびファーネスブラックがより好ましい。これらの導電材は、それ ぞれ単独でまたは 2種以上を組み合わせて用いることができる。  [0021] The conductive material constituting the composite particle according to the embodiment of the present invention is an allotrope force of particulate carbon that has conductivity and does not have pores that can form an electric double layer. It improves the conductivity of the element electrode. The volume average particle size of the conductive material is preferably smaller than the volume average particle size of the electrode active material. Usually 0.001 to 10 111, preferably 0.05 to 5 μm, more preferably 0.01. It is in the range of ~ 1 μm. When the particle size of the conductive material is within this range, high conductivity can be obtained with a smaller amount of use. Specific examples thereof include conductive carbon blacks such as furnace black, acetylene black, and ketjen black (registered trademark of Akzo Nobel Chemicals Bethloten Fennot SHAP); graphite such as natural graphite and artificial graphite. Of these, acetylene black and furnace black are more preferred, with conductive carbon black being preferred. These conductive materials can be used alone or in combination of two or more.
[0022] 導電材の量は、電極活物質 100重量部に対して通常 0. 1〜50重量部、好ましくは 0. 5〜15重量部、より好ましくは 1〜10重量部の範囲である。導電材の量がこの範 囲にある電極を使用することによって、電気化学素子の容量を高く且つ内部抵抗を 低くすることができる。  [0022] The amount of the conductive material is usually in the range of 0.1 to 50 parts by weight, preferably 0.5 to 15 parts by weight, and more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the electrode active material. By using an electrode in which the amount of the conductive material is within this range, the capacity of the electrochemical element can be increased and the internal resistance can be decreased.
[0023] 本発明の実施の形態に係る結着剤は、結着力を有する化合物であれば特に制限 はないが、分散型結着剤が好ましい。分散型結着剤とは、溶媒に分散する性質のあ る結着剤であり、例えば、フッ素系重合体、ジェン系重合体、アタリレート系重合体、 ポリイミド、ポリアミド、ポリウレタン等の高分子化合物が挙げられ、より好ましくはフッ 素系重合体、ジェン系重合体、及びアタリレート系重合体が挙げられる。これら結着 剤は単独で又は二種以上を組み合わせて用いることができる。  [0023] The binder according to the embodiment of the present invention is not particularly limited as long as it is a compound having a binding force, but a dispersion-type binder is preferable. The dispersion-type binder is a binder having a property of being dispersed in a solvent. For example, a high-molecular compound such as a fluorine-based polymer, a gen-based polymer, an acrylate polymer, a polyimide, a polyamide, or a polyurethane. More preferred are fluorine-based polymers, gen-based polymers, and acrylate polymers. These binders can be used alone or in combination of two or more.
[0024] フッ素系重合体はフッ素原子を含む単量体単位を含有する重合体である。フッ素 系重合体中のフッ素を含有する単量体単位の割合は通常 50重量%以上である。フ ッ素系重合体の具体例としては、ポリテトラフルォロエチレン、ポリフッ化ビ-リデン等 のフッ素榭脂が挙げられ、ポリテトラフルォロエチレンが好まし 、。  [0024] The fluorine-based polymer is a polymer containing a monomer unit containing a fluorine atom. The proportion of the fluorine-containing monomer unit in the fluoropolymer is usually 50% by weight or more. Specific examples of the fluorine-based polymer include fluorine resins such as polytetrafluoroethylene and polyvinylidene fluoride, and polytetrafluoroethylene is preferred.
[0025] ジェン系重合体は、共役ジェンの単独重合体もしくは共役ジェンを含む単量体混 合物を重合して得られる共重合体、またはそれらの水素添加物である。前記単量体 混合物における共役ジェンの割合は通常 40重量%以上、好ましくは 50重量%以上 、より好ましくは 60重量%以上である。ジェン系重合体の具体例としては、ポリブタジ ェンゃポリイソプレンなどの共役ジェン単独重合体;カルボキシ変性されていてもよい スチレン ·ブタジエン共重合体(SBR)などの芳香族ビュル ·共役ジェン共重合体;ァ クリロ-トリル.ブタジエン共重合体(NBR)などのシアン化ビュル'共役ジェン共重合 体;水素化 SBR、水素化 NBRなどが挙げられる。 [0025] The gen-based polymer is a homopolymer of conjugated gen or a copolymer obtained by polymerizing a monomer mixture containing conjugated gen, or a hydrogenated product thereof. Monomer The conjugation ratio in the mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more. Specific examples of the gen-based polymer include conjugated gen homopolymers such as polybutadiene and polyisoprene; carboxy-modified aromatic styrene such as styrene copolymer and butadiene copolymer (SBR) Examples thereof include cyanide bur 'conjugation copolymers such as acrylo-tolyl. Butadiene copolymer (NBR); hydrogenated SBR, hydrogenated NBR, and the like.
[0026] アタリレート系重合体は、アクリル酸エステルおよび Zまたはメタクリル酸エステルの 単独重合体またはこれらを含む単量体混合物を重合して得られる共重合体である。 前記単量体混合物におけるアクリル酸エステルおよび Zまたはメタクリル酸エステル の割合は通常 40重量%以上、好ましくは 50重量%以上、より好ましくは 60重量%以 上である。アタリレート系重合体の具体例としては、アクリル酸 2—ェチルへキシル 'メ タクリル酸 'アクリロニトリル'エチレングリコールジメタタリレート共重合体、アクリル酸 2 ェチルへキシル .メタクリル酸 .メタクリロ-トリル.ジエチレングリコールジメタクリレー ト共重合体、アクリル酸 2—ェチルへキシル 'スチレン'メタクリル酸 ·エチレングリコー ルジメタタリレート共重合体、アクリル酸ブチル.アクリロニトリル.ジエチレングリコール ジメタタリレート共重合体、およびアクリル酸ブチル ·アクリル酸 'トリメチロールプロパ ントリメタタリレート共重合体などの架橋型アタリレート系重合体;エチレン'アクリル酸 メチル共重合体、エチレン 'メタクリル酸メチル共重合体、エチレン 'アクリル酸ェチル 共重合体、およびエチレン 'メタクリル酸ェチル共重合体などのエチレンとアクリル酸( またはメタクリル酸)エステルとの共重合体;上記エチレンとアクリル酸 (またはメタタリ ル酸)エステルとの共重合体にラジカル重合性単量体をグラフト重合させたグラフト重 合体;などが挙げられる。なお、上記グラフト重合体に用いられるラジカル重合性単 量体としては、例えば、メタクリル酸メチル、アクリロニトリル、メタクリル酸などが挙げら れる。その他に、エチレン 'アクリル酸共重合体、エチレン 'メタクリル酸共重合体など が結着剤として使用できる。 [0026] The acrylate polymer is a copolymer obtained by polymerizing a homopolymer of acrylic ester and Z or methacrylic ester or a monomer mixture containing these. The proportion of acrylic acid ester and Z or methacrylic acid ester in the monomer mixture is usually 40% by weight or more, preferably 50% by weight or more, more preferably 60% by weight or more. Specific examples of the acrylate polymer include 2-ethylhexyl acrylate, methacrylic acid, acrylonitrile, ethylene glycol dimethacrylate copolymer, 2-ethylhexyl acrylate, methacrylic acid, methacrylo-tolyl, diethylene glycol diacrylate. Methyl acrylate copolymer, 2-ethylhexyl acrylate 'styrene' methacrylic acid · ethylene glycol dimethacrylate copolymer, butyl acrylate.acrylonitrile.diethylene glycol dimethacrylate copolymer, and butyl acrylate · acrylic Cross-linked acrylate polymers such as acid 'trimethylolpropane trimetatalylate copolymer; ethylene' methyl acrylate copolymer, ethylene 'methyl methacrylate copolymer, ethylene' ethyl acrylate copolymer, and Ethylene A copolymer of ethylene and acrylic acid (or methacrylic acid) such as an ethyl acrylate copolymer; a radical polymerizable monomer grafted onto the above copolymer of ethylene and acrylic acid (or methacrylate) Polymerized graft polymer; and the like. Examples of the radical polymerizable monomer used for the graft polymer include methyl methacrylate, acrylonitrile, methacrylic acid and the like. In addition, ethylene 'acrylic acid copolymer, ethylene' methacrylic acid copolymer, and the like can be used as a binder.
[0027] これらの中で、集電体との結着性や強度に優れた活物質層が得られるという観点か ら、ジェン系重合体およびアタリレート系重合体が好ましい。 Among these, from the viewpoint of obtaining an active material layer excellent in binding property and strength to the current collector, a gen-based polymer and an acrylate polymer are preferable.
[0028] また、上記結着剤はガラス転移温度 (Tg)を有することが好ましぐその Tgは、通常 80°C〜 + 180°C、好ましくは 50°C〜+40°C、より好ましくは 30°C〜 + 20°C である。本発明において、ガラス転移温度は、 JIS K7210に準拠して測定される値 である。 Tgが高過ぎても低過ぎても、 70°Cにおいて 4. OMPaで 5秒間圧縮したとき の引張り付着強度が低下する傾向がある。一方、 25°Cにおいて 0. IMPaまたは 0. 5MPaで 60秒間圧縮したときの引張り付着強度は、 Tgが高いほど低下する傾向が あるので、 Tgの異なる結着剤を用いることによりこれらの値を調節することができる。 [0028] The binder preferably has a glass transition temperature (Tg), and the Tg is usually 80 ° C to + 180 ° C, preferably 50 ° C to + 40 ° C, more preferably 30 ° C to + 20 ° C. In the present invention, the glass transition temperature is a value measured according to JIS K7210. Whether Tg is too high or too low, the tensile bond strength tends to decrease when compressed at 4. OMPa for 5 seconds at 70 ° C. On the other hand, the tensile bond strength when compressed at 0. IMPa or 0.5 MPa at 25 ° C for 60 seconds tends to decrease as Tg increases, so these values can be obtained by using binders with different Tg. Can be adjusted.
[0029] 本発明の実施の形態に用いる結着剤は、その形状によって特に制限はないが、結 着性が良ぐまた、作成した電極の静電容量の低下ゃ充放電の繰り返しによる劣化 を抑えることができるため、粒子状であることが好ましい。粒子状の結着剤としては、 例えば、ラテックスのごとき結着剤の粒子が溶媒に分散した状態のものや、このような 分散液を乾燥して得られる粉末状のものが挙げられる。  [0029] The binder used in the embodiment of the present invention is not particularly limited depending on the shape thereof, but has good binding properties. Also, the capacitance of the prepared electrode is reduced due to repeated charge / discharge. Since it can suppress, it is preferable that it is a particulate form. Examples of the particulate binder include those in which binder particles such as latex are dispersed in a solvent, and powders obtained by drying such a dispersion.
[0030] また、本発明の実施の形態に用いる結着剤は、 2種以上の単量体混合物を段階的 に重合することにより得られるコアシェル構造を有する粒子であっても良い。コアシェ ル構造を有する結着剤は、第一段目の重合体を与える単量体をまず重合しシード粒 子を得、このシード粒子の存在下に、第二段目となる重合体を与える単量体を重合 することにより製造することが好まし ヽ。  [0030] The binder used in the embodiment of the present invention may be a particle having a core-shell structure obtained by stepwise polymerization of a mixture of two or more monomers. The binder having the core shell structure first polymerizes the monomer that gives the first-stage polymer to obtain seed particles, and gives the second-stage polymer in the presence of the seed particles. It is preferable to produce by polymerizing monomers.
[0031] 上記コアシェル構造を有する結着剤のコアとシェルの割合は、特に限定されないが 、質量比でコア部:シェル部が通常 50 : 50〜99 : 1、好ましくは 60 :40〜99 : 1、より 好ましくは 70 : 30〜99: 1である。コア部及びシェル部を構成する重合体は上記の重 合体の中から選択できる。コア部の割合が少ないほど、引張り付着強度が増加する 傾向があるので、コア部の割合を変動させることにより引張り付着強度を調節すること ができる。  [0031] The ratio between the core and the shell of the binder having the core-shell structure is not particularly limited, but the core part: shell part is usually 50:50 to 99: 1, preferably 60:40 to 99: by mass ratio. 1, more preferably 70:30 to 99: 1. The polymer constituting the core part and the shell part can be selected from the above polymers. Since the tensile bond strength tends to increase as the ratio of the core portion decreases, the tensile bond strength can be adjusted by changing the ratio of the core portion.
[0032] コア部の Tgは、通常 80°C以上 0°C未満、好ましくは 60°C以上 0°C未満、より好 ましくは— 40°C以上 0°C未満である。コア部の Tgが高いほど、 70°Cにおいて 4. OM Paで 5秒間圧縮したときの引張り付着強度が増加する傾向がある。一方、 25°Cにお いて 0. IMPaまたは 0. 5MPaで 60秒間圧縮したときの引張り付着強度は、コア部 の Tgが高いほど低下する傾向があるので、コア部の Tgの異なる結着剤を用いること によりこれらの値を調節することができる。 [0033] シェル部の Tgは、通常 0°C以上 + 180°C以下、好ましくは 0°C以上 + 120°C以下、 より好ましくは 0°C以上 + 80°C以下である。また、コア部とシェル部との Tgの差は、通 常 20°C以上、好ましくは 50°C以上である。 [0032] The Tg of the core is usually 80 ° C or higher and lower than 0 ° C, preferably 60 ° C or higher and lower than 0 ° C, more preferably -40 ° C or higher and lower than 0 ° C. The higher the Tg of the core, the higher the tensile bond strength when compressed at 4. OM Pa for 5 seconds at 70 ° C. On the other hand, the tensile bond strength when compressed at 0. IMPa or 0.5 MPa for 60 seconds at 25 ° C tends to decrease as the core Tg increases. These values can be adjusted by using. [0033] The Tg of the shell is usually 0 ° C or higher and + 180 ° C or lower, preferably 0 ° C or higher and + 120 ° C or lower, more preferably 0 ° C or higher and + 80 ° C or lower. Further, the difference in Tg between the core portion and the shell portion is usually 20 ° C or higher, preferably 50 ° C or higher.
[0034] 本発明の実施の形態に用いる粒子状の結着剤は、その粒子径によって格別な限 定 ίまな ヽ力 通常 ίま 0. 0001〜100 111、好ましく【ま0. 001〜10 m、より好ましく は 0. 01〜: mの体積平均粒子径を有するものである。結着剤の平均粒子径がこ の範囲であるときは、少量の結着剤の使用でも優れた結着力を活物質層に与えるこ とがでさる。  [0034] The particulate binder used in the embodiment of the present invention has a specific limit depending on the particle diameter. Normal strength Normal temperature 0.001 to 100111, preferably 0.001 to 10 m. More preferably, it has a volume average particle diameter of 0.01 to: m. When the average particle size of the binder is within this range, even if a small amount of the binder is used, an excellent binding force can be imparted to the active material layer.
[0035] 上記の結着剤の使用量は、電極活物質 100重量部に対して、通常は 0. 1〜50重 量部、好ましくは 0. 5〜20重量部、より好ましくは 1〜: LO重量部の範囲である。結着 剤の量が多いほど、引張り付着強度が大きくなる傾向があるので、結着剤の量を調 節することにより引張り付着強度を調節することができる。  [0035] The amount of the binder used is usually 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, more preferably 1 to: 100 parts by weight of the electrode active material. The range is LO parts by weight. Since the tensile bond strength tends to increase as the amount of the binder increases, the tensile bond strength can be adjusted by adjusting the amount of the binder.
[0036] 本発明の実施の形態の複合粒子は、上記の他に溶解型榭脂を含有していることが 好ましい。溶解型榭脂とは、溶媒に溶解する榭脂であり、好適には後述するスラリー Aまたはスラリー Bの調製時に溶媒に溶解させて用いられて、電極活物質、導電材等 を溶媒に均一に分散させる作用を有するものである。溶解型榭脂としては、カルボキ シメチルセルロース、メチルセルロース、ェチルセルロースおよびヒドロキシプロピル セルロースなどのセルロース系ポリマー、ならびにこれらのアンモ-ゥム塩またはアル カリ金属塩;ポリ (メタ)アクリル酸ナトリウムなどのポリ(メタ)アクリル酸塩;ポリビュルァ ルコール、変性ポリビュルアルコール、ポリエチレンォキシド;ポリビュルピロリドン、ポ リカルボン酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、キチン、 キトサン誘導体などが挙げられる。これらの溶解型榭脂は、それぞれ単独でまたは 2 種以上を組み合わせて使用できる。中でも、セルロース系ポリマーが好ましぐカルボ キシメチルセルロースまたはそのアンモ-ゥム塩もしくはアルカリ金属塩が特に好まし い。溶解型榭脂の使用量は、格別な限定はないが、電極活物質 100重量部に対し て、通常は 0. 1〜10重量部、好ましくは 0. 5〜5重量部、より好ましくは 0. 8〜2重量 部の範囲である。溶解型榭脂を用いることで、スラリー Aおよびスラリー B中の固形分 の沈降や凝集を抑制できる。また、噴霧乾燥時のアトマイザ一の詰まりを防止するこ とができるので、噴霧乾燥を安定して連続的に行うことができる。 [0036] In addition to the above, the composite particles of the embodiment of the present invention preferably contain a soluble resin. Dissolved resin is a resin that dissolves in a solvent, and is preferably used by dissolving it in a solvent when preparing slurry A or slurry B, which will be described later, so that an electrode active material, a conductive material, and the like are uniformly used in the solvent. It has an action of dispersing. Dissolved rosins include cellulosic polymers such as carboxymethylcellulose, methylcellulose, ethylcellulose and hydroxypropylcellulose, and their ammonium or alkali metal salts; poly (poly (meth) acrylate) Examples include (meth) acrylates; polybulal alcohol, modified polybulal alcohol, polyethylene oxide; polybulurpyrrolidone, polycarboxylic acid, oxidized starch, phosphate starch, casein, various modified starches, chitin, and chitosan derivatives. These soluble type rosins can be used alone or in combination of two or more. Of these, carboxymethylcellulose, which is preferred as a cellulose polymer, or an ammonium salt or alkali metal salt thereof is particularly preferred. The use amount of the soluble type resin is not particularly limited, but is usually 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, more preferably 0 to 100 parts by weight of the electrode active material. The range is 8 to 2 parts by weight. By using dissolved type rosin, it is possible to suppress sedimentation and aggregation of solids in slurry A and slurry B. It also prevents clogging of the atomizer during spray drying. Therefore, spray drying can be performed stably and continuously.
[0037] 本発明の実施の形態の複合粒子は、さらに必要に応じてその他の添加剤を含有し ていてもよい。その他の添加剤としては、例えば、界面活性剤がある。界面活性剤と しては、ァニオン性、カチオン性、ノニオン性及びノニォニックァニオンなどの両性の 界面活性剤が挙げられるが、中でもァ-オン性またはノ-オン性界面活性剤で熱分 解しやすいものが好ましい。界面活性剤の量は、格別な限定はないが、電極活物質 100重量部に対して 0〜50重量部、好ましくは 0. 1〜10重量部、より好ましくは 0. 5 〜5重量部の範囲である。  [0037] The composite particles according to the embodiment of the present invention may further contain other additives as necessary. Examples of other additives include a surfactant. Examples of the surfactant include amphoteric surfactants such as anionic, cationic, nonionic and nonionic anions. Among them, a cationic surfactant or a nonionic surfactant is used for heat distribution. What is easy to understand is preferable. The amount of the surfactant is not particularly limited, but is 0 to 50 parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the electrode active material. It is a range.
[0038] 本発明の実施の形態の複合粒子は、その体積平均粒子径カ 1〜500 μ m、好ま しくは5〜300 111、より好ましくは 10〜100 /ζ πιの範囲である。粒子径が小さいほど 、引張り付着強度が大きくなる傾向があるので、粒子径を調節することにより引張り付 着強度を調節することができる。必要に応じ、篩い分けなどで粒子径を調節してもよ い。なお、ここでいう体積平均粒子径は、光回折法で測定される体積分布のメジアン 径である。  [0038] The composite particles of the embodiment of the present invention have a volume average particle diameter of 1 to 500 µm, preferably 5 to 300 111, more preferably 10 to 100 / ζ πι. Since the tensile adhesion strength tends to increase as the particle size decreases, the tensile adhesion strength can be adjusted by adjusting the particle size. If necessary, the particle size may be adjusted by sieving. Here, the volume average particle diameter is a median diameter of a volume distribution measured by an optical diffraction method.
[0039] 活物質層を高速で成形する時には加圧時間が短くなるため、短時間で複合粒子相 互が結着しなければならない。そのため、比較的高い圧力で短時間圧縮したときの 引張り付着強度が大きいほど、高速成形が可能となる。本発明の実施の形態に係る 複合粒子は、 70°Cにおいて 4. OMPaで 5秒間圧縮したときの引張り付着強度が 8, 000N/m2以上、好ましくは 10, 000〜30, OOONZm2である。この値が大きいほど 高速成形が可能となる。本発明の実施の形態において引張り付着強度とは、アルミ 製上下二分割の円筒セル(内径: 25mm)に複合粒子を充填し、セルを所定温度に 調整した恒温槽に設置し、圧縮速度: 0. ImmZ秒で所定圧力まで圧縮し、その状 態で所定時間保持した後、上部セルを引張り速度: 0. 4mmZ秒で持ち上げ複合粒 子層が破断したときの最大引張り応力である。引張り付着強度は、例えば、ホソカワミ クロン社製「ァグロボット」を用いて測定することができる。 [0039] When the active material layer is molded at a high speed, the pressing time is shortened, so that the composite particles must be bound in a short time. Therefore, the higher the tensile bond strength when compressed for a short time at a relatively high pressure, the faster the molding becomes possible. The composite particles according to the embodiment of the present invention have a tensile bond strength of 8,000 N / m 2 or more, preferably 10,000 to 30, OOONZm 2 when compressed at 4. OMPa for 5 seconds at 70 ° C. . Higher values enable faster molding. In the embodiment of the present invention, the tensile adhesion strength is defined as: an aluminum upper and lower divided cylindrical cell (inner diameter: 25 mm) is filled with composite particles, and the cell is placed in a thermostatic chamber adjusted to a predetermined temperature. It is the maximum tensile stress when the composite particle layer breaks when the upper cell is lifted at 0.4 mmZ seconds after compressing to a predetermined pressure in ImmZ seconds and holding in that state for a predetermined time. The tensile adhesion strength can be measured using, for example, “Agg Robot” manufactured by Hosokawa Mikulon.
[0040] また、複合粒子が室温で流動性が低力つたり凝集したりすると、成形時に複合粒子 が成形装置に均一に供給されないので、均一な活物質層を成形することが困難とな る。そのため、比較的低い温度 '圧力で圧縮したときの引張り付着強度は小さいこと が好ましい。本発明の実施の形態の複合粒子は、 25°Cにおいて 0. IMPaで 60秒 間圧縮したときの引張り付着強度が好ましくは 400NZm2以下、より好ましくは 120 〜380NZm2である。この値が小さいほど、室温での流動性が良好である。さらに、 2 5°Cにおいて 0. 5MPaで 60秒間圧縮したときの引張り付着強度が好ましくは 3, 000 NZm2以下、より好ましくは 600〜2, 700NZm2である。この値が小さいほど、室温 で複合粒子同士の凝集が生じにくぐ保存安定性に優れる。したがって、この二つの 値が小さいほど、粒子が塊状にならずに定量的に供給できるので、厚さが均一な活 物質層を得ることができる。 [0040] If the composite particles have low fluidity or agglomerate at room temperature, the composite particles are not uniformly supplied to the molding apparatus at the time of molding, which makes it difficult to form a uniform active material layer. . Therefore, the tensile bond strength when compressed at a relatively low temperature 'pressure should be small. Is preferred. The composite particles of the embodiment of the present invention preferably have a tensile bond strength of 400 NZm 2 or less, more preferably 120 to 380 NZm 2 when compressed at 0. IMPa for 60 seconds at 25 ° C. The smaller this value, the better the fluidity at room temperature. Further, the tensile bond strength when compressed at 0.5 MPa for 60 seconds at 25 ° C. is preferably 3,000 NZm 2 or less, more preferably 600 to 2,700 NZm 2 . The smaller this value, the better the storage stability at which the composite particles hardly aggregate at room temperature. Therefore, as the two values are smaller, the particles can be quantitatively supplied without being agglomerated, so that an active material layer having a uniform thickness can be obtained.
[0041] 上記のような引張り強度特性を有する複合粒子は、用いる結着剤の量および種類 、複合粒子の製造方法などを適宜選択することにより得ることができる。本発明の実 施の形態に係る複合粒子は、好適には、複合粒子の表面に結着剤を偏在させること のできる製造方法により得ることができる。従来の技術では、結着剤が複合粒子中に 均一に分布しているので、粒子相互の結着性に関与する粒子表面の結着剤が少な ぐ短時間圧縮での引張り付着強度が不十分であった。複合粒子の表面に結着剤を 偏在させることで粒子相互の結着性を高め、 70°Cにおいて 4. OMPaで 5秒間圧縮し たときの引張り付着強度を高めることができる。  [0041] The composite particles having tensile strength characteristics as described above can be obtained by appropriately selecting the amount and type of the binder used, the method for producing the composite particles, and the like. The composite particles according to the embodiment of the present invention can be preferably obtained by a production method in which a binder can be unevenly distributed on the surface of the composite particles. In the conventional technology, since the binder is uniformly distributed in the composite particles, there are few binders on the surface of the particles that are involved in the binding properties between the particles, and the tensile bond strength during short-time compression is insufficient. Met. By making the binder unevenly distributed on the surface of the composite particles, the binding property between the particles can be improved, and the tensile bond strength when compressed at 4. OMPa for 5 seconds at 70 ° C can be increased.
[0042] また、本発明の実施の形態に係る複合粒子に好適に用いられる結着剤は、室温付 近での粘性が低ぐかつ成形温度での結着性が高い結着剤である。このような結着 剤を用いることで、 70°Cにおいて 4. OMPaで 5秒間圧縮したときの引張り付着強度 が高ぐ 25°Cにおいて 0. IMPaまたは 0. 5MPaで 60秒間圧縮したときの引張り付 着強度が低い複合粒子を得ることができる。力かる結着剤としては、上記範囲のガラ ス転移温度を有する、ジェン系重合体、アタリレート系重合体またはコアシェル構造 を有する結着剤が好ましく、上記範囲のガラス転移温度を有しコアシェル構造を有す る結着剤が特に好ましい。  [0042] Further, the binder suitably used for the composite particles according to the embodiment of the present invention is a binder having a low viscosity near room temperature and a high binding property at the molding temperature. Using such a binder, the tensile bond strength is high when compressed at 4. OMPa for 5 seconds at 70 ° C. At 25 ° C, the tensile strength when compressed at 0. IMPa or 0.5 MPa for 60 seconds. Composite particles having low adhesion strength can be obtained. The strong binder is preferably a gen-based polymer, an acrylate polymer or a core-shell structure having a glass transition temperature in the above range, and a core-shell structure having a glass transition temperature in the above range. Particularly preferred is a binder having
[0043] 本発明の実施の形態に係る電気化学素子電極用複合粒子は、その製造方法によ つて特に制限を受けないが、次に述べる二つの製造方法によれば、複合粒子の表 面に結着剤を偏在させることが容易なので、本発明の実施の形態に係る複合粒子を 容易に得ることができ、好ましい。 [0044] 第一の製造方法は、電極活物質、導電材及び結着剤を含有するスラリー Aを得る 工程、及び前記スラリー Aを噴霧乾燥して、造粒する工程を有する噴霧乾燥造粒法 である。 [0043] The electrochemical device electrode composite particles according to the embodiment of the present invention are not particularly limited by the manufacturing method thereof, but according to the two manufacturing methods described below, the surface of the composite particles is formed. Since it is easy to make the binder unevenly distributed, the composite particles according to the embodiment of the present invention can be easily obtained, which is preferable. [0044] The first production method includes a step of obtaining a slurry A containing an electrode active material, a conductive material, and a binder, and a spray-drying granulation method including a step of spray-drying and granulating the slurry A It is.
[0045] 噴霧乾燥造粒法では、先ず前記電極活物質、導電材、結着剤ならびに必要に応じ て溶解型榭脂およびその他の添加剤を溶媒に分散又は溶解して、電極活物質、導 電材、結着剤ならびに必要に応じて溶解型榭脂およびその他の添加剤が分散又は 溶解されてなるスラリー Aを得る。  In the spray drying granulation method, first, the electrode active material, the conductive material, the binder, and, if necessary, a soluble resin and other additives are dispersed or dissolved in a solvent to obtain an electrode active material, a conductive material. A slurry A is obtained in which an electric material, a binder, and, if necessary, a dissolving type resin and other additives are dispersed or dissolved.
[0046] スラリー Aを得るために用いる溶媒として、特に限定されないが、上記の溶解型榭 脂を用いる場合には、溶解型榭脂を溶解可能な溶媒が好適に用いられる。具体的に は、通常水が用いられる力 有機溶媒を用いることもできる。有機溶媒としては、例え ば、メチルアルコール、エチルアルコール、プロピルアルコールなどのアルキルアル コール類;アセトン、メチルェチルケトンなどのアルキルケトン類;テトラヒドロフラン、ジ ォキサン、ジグライム等のエーテル類;ジェチルホルムアミド、ジメチルァセトアミド、 N —メチル一 2 -ピロリドン、ジメチルイミダゾリジノン等のアミド類;ジメチルスルホキサイ ド、スルホラン等のィォゥ系溶剤;などが挙げられる力 アルコール類が好ましい。水 と、水よりも沸点の低い有機溶媒とを併用すると、噴霧乾燥時に、乾燥速度を速くす ることができる。また、結着剤の分散性又は溶解型榭脂の溶解性が変わるので、スラ リー Aの粘度や流動性を有機溶媒の量又は種類によって調製できる。従って、生産 効率を向上させることができる。スラリー Aを調製するときに使用する溶媒の量は、ス ラリー Aの固形分濃度力 通常は 1〜50重量%、好ましくは 5〜50重量%、より好ま しくは 10〜30重量%の範囲となるような量である。固形分濃度がこの範囲にあるとき に、結着剤が均一に分散するため好適である。また、スラリー Aの固形分濃度が大き いほど複合粒子の粒子径が大きくなるので、スラリー Aの固形分濃度を調節すること で得られる複合粒子の引張り付着強度を調節することができる。  [0046] The solvent used for obtaining the slurry A is not particularly limited, but when the above-mentioned soluble resin is used, a solvent capable of dissolving the soluble resin is preferably used. Specifically, a force organic solvent in which water is usually used can also be used. Examples of the organic solvent include alkyl alcohols such as methyl alcohol, ethyl alcohol and propyl alcohol; alkyl ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran, dioxane and diglyme; Preference is given to alcohols such as dimethylacetoamide, N—methyl-1-pyrrolidone, dimethylimidazolidinone and other amides; dimethyl sulfoxide, sulfolane and other amide solvents; When water and an organic solvent having a lower boiling point than water are used in combination, the drying rate can be increased during spray drying. In addition, since the dispersibility of the binder or the solubility of the soluble resin is changed, the viscosity and fluidity of the slurry A can be adjusted depending on the amount or type of the organic solvent. Therefore, production efficiency can be improved. The amount of solvent used when preparing slurry A is typically in the range of 1 to 50% by weight, preferably 5 to 50% by weight, more preferably 10 to 30% by weight. Is such an amount. When the solid content concentration is within this range, the binder is preferably dispersed uniformly. Further, since the particle diameter of the composite particles increases as the solid content concentration of the slurry A increases, the tensile adhesion strength of the composite particles obtained by adjusting the solid content concentration of the slurry A can be adjusted.
[0047] 前記電極活物質、導電材、結着剤、溶解型榭脂及びその他の添加剤を溶媒に分 散又は溶解する方法又は手順は特に限定されず、例えば、溶媒に電極活物質、導 電材、結着剤及び溶解型榭脂を添加し混合する方法、溶媒に溶解型榭脂を溶解し た後、溶媒に分散させた結着剤 (例えば、ラテックス)を添加して混合し、最後に電極 活物質及び導電材を添加して混合する方法、電極活物質及び導電材を溶媒に分散 させた結着剤に添加して混合し、それに溶媒に溶解させた溶解型榭脂を添加して混 合する方法などが挙げられる。混合の手段としては、例えば、ボールミル、サンドミル 、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリー ミキサーなどの混合機器が挙げられる。混合は、通常、室温〜 80°Cの範囲で、 10分 〜数時間行う。 [0047] The method or procedure for dispersing or dissolving the electrode active material, the conductive material, the binder, the soluble resin and other additives in a solvent is not particularly limited. Method of adding and mixing electrical material, binder and soluble type resin, dissolving soluble type resin in solvent, adding binder (for example, latex) dispersed in solvent, mixing, and finally To electrode A method of adding and mixing an active material and a conductive material, and adding and mixing an electrode active material and a conductive material in a binder dispersed in a solvent, and then adding a dissolved resin dissolved in the solvent to the mixture. The method of combining is mentioned. Examples of the mixing means include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer. Mixing is usually carried out in the range of room temperature to 80 ° C for 10 minutes to several hours.
[0048] 次に、前記スラリー Aを噴霧乾燥して造粒する。噴霧乾燥法は、熱風中にスラリーを 噴霧して乾燥する方法である。噴霧乾燥法に用いる装置としてアトマイザ一が挙げら れる。アトマイザ一は、回転円盤方式と加圧方式との二種類の装置がある。回転円盤 方式は、高速回転する円盤のほぼ中央にスラリーを導入、円盤の遠心力によってス ラリーが円盤の外に放たれ、その際に霧状にして乾燥する方式である。円盤の回転 速度は円盤の大きさに依存する力 通常は 5, 000-30, OOOrpm、好ましくは 15, 000-30, OOOrpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、複 合粒子の粒子径が大きくなる。回転円盤方式のアトマイザ一としては、ピン型とベー ン型が上げられる力 好ましくはピン型アトマイザ一である。ピン型アトマイザ一は、噴 霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にそ の周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので 構成されている。スラリー Aは噴霧盤中央カゝら導入され、遠心力によって噴霧用コロ に付着し、コロ表面を外側へと移動し、最後にコロ表面カゝら離れ噴霧される。一方、 加圧方式は、スラリー Aを加圧してノズルから霧状にして乾燥する方式である。  Next, the slurry A is granulated by spray drying. The spray drying method is a method of spraying and drying slurry in hot air. An atomizer is one of the devices used for the spray drying method. There are two types of atomizers, a rotating disk method and a pressure method. In the rotating disk method, slurry is introduced almost at the center of a high-speed rotating disk, and the slurry is released outside the disk by the centrifugal force of the disk, and in that case, the slurry is dried in the form of a mist. The rotational speed of the disc is a force depending on the size of the disc. Usually, it is 5,000-30, OOOrpm, preferably 15,000-30, OOOrpm. The lower the rotational speed of the disk, the larger the spray droplets and the larger the particle size of the composite particles. As a rotating disk type atomizer, a force capable of raising a pin type and a vane type, preferably a pin type atomizer is used. A pin-type atomizer is a type of centrifugal spraying device that uses a spray plate. The spray plate is detachably mounted between upper and lower mounting disks on a substantially concentric circle along its periphery. Consists of things that are attached. Slurry A is introduced from the center of the spray plate, adheres to the spraying roller by centrifugal force, moves to the outside of the roller surface, and finally sprays away from the roller surface. On the other hand, the pressurization method is a method in which the slurry A is pressurized and sprayed from the nozzle and dried.
[0049] 噴霧されるスラリー Aの温度は、通常は室温である力 加温して室温以上にしたも のであってもよい。また、噴霧乾燥時の熱風温度は、通常 80〜250°C、好ましくは 10 0〜200°Cである。噴霧乾燥法において、熱風の吹き込み方法は特に制限されず、 例えば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と 共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風 と並流し次いで重力落下して向流接触する方式などが挙げられる。  [0049] The temperature of the slurry A to be sprayed may be a room temperature or higher by heating with a force usually at room temperature. The hot air temperature during spray drying is usually 80 to 250 ° C, preferably 100 to 200 ° C. In the spray drying method, the method of blowing hot air is not particularly limited. For example, the method in which the hot air and the spraying direction flow in parallel to each other, the method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, Examples are the contact method, and the sprayed droplets co-flow with the hot air first and then drop by gravity and contact countercurrent.
[0050] 第二の製造方法は、導電材、結着剤、ならびに必要に応じて添加する溶解型榭脂 及びその他添加剤を含有するスラリー Bを得る工程、電極活物質を槽内で流動させ、 そこに前記スラリー Bを噴霧して、流動造粒する工程、及び前記流動造粒工程で得ら れた粒子を転動造粒する工程を有するものである。 [0050] In the second production method, a step of obtaining a slurry B containing a conductive material, a binder, and a soluble resin added as necessary and other additives, and flowing an electrode active material in a tank. , The slurry B is sprayed there for fluid granulation, and the particles obtained in the fluid granulation step are tumbled and granulated.
[0051] 先ず導電材、結着剤、ならびに必要に応じて溶解型榭脂及びその他添加剤を含 有するスラリー Bを得る。スラリー Bを得るために用いる溶媒としては、前記噴霧乾燥 造粒法で挙げたものと同じものを挙げることができる。スラリー Bを調製するときに使用 する溶媒の量は、スラリー Bの固形分濃度力 通常は 1〜50重量%、好ましくは 5〜5 0重量%、より好ましくは 10〜30重量%の範囲となるような量である。固形分濃度が この範囲にあるときに、結着剤が均一に分散するため好適である  [0051] First, a slurry B containing a conductive material, a binder, and, if necessary, a soluble resin and other additives is obtained. Examples of the solvent used for obtaining the slurry B include the same solvents as those mentioned in the spray drying granulation method. The amount of solvent used when preparing slurry B is usually in the range of 1 to 50% by weight, preferably 5 to 50% by weight, more preferably 10 to 30% by weight. It is an amount. When the solid content concentration is within this range, it is preferable because the binder is uniformly dispersed.
前記導電材及び結着剤、必要に応じて溶解型榭脂を溶媒に分散又は溶解する方 法又は手順は特に限定されず、例えば、溶媒に導電材、結着剤及び溶解型榭脂を 添加し混合する方法、溶媒に溶解型榭脂を溶解した後、溶媒に分散させた結着剤( 例えば、ラテックス)を添加して混合し、最後に導電材を添加して混合する方法、導電 材を溶媒に溶解させた溶解型榭脂に添加して混合し、それに溶媒に分散させた分 散型結着剤を添加して混合する方法などが挙げられる。混合の手段としては、例え ば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホ モジナイザー、プラネタリーミキサーなどの混合機器が挙げられる。混合は、通常、室 温〜 80°Cの範囲で、 10分〜数時間行う。  There is no particular limitation on the method or procedure for dispersing or dissolving the conductive material and the binder, and if necessary, the soluble type resin in the solvent. For example, the conductive material, the binder and the soluble type resin are added to the solvent. A method of mixing and dissolving, dissolving a soluble resin in a solvent, adding and mixing a binder (for example, latex) dispersed in a solvent, and finally adding and mixing a conductive material, conductive material There is a method of adding and mixing a dispersible binder dissolved in a solvent and mixing it with a dispersible binder dispersed in a solvent. Examples of the mixing means include mixing equipment such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, and a planetary mixer. Mixing is usually performed in the range of room temperature to 80 ° C for 10 minutes to several hours.
[0052] 次に電極活物質を槽内で流動させ、そこに前記スラリー Bを噴霧して、流動造粒す る。槽内で流動造粒する方法としては、流動層によるもの、変形流動層によるもの、 噴流層によるものなどが挙げられる。流動層によるものは、熱風で電極活物質を流動 させ、これにスプレー等力も前記スラリー Bを噴霧して凝集造粒を行う方法である。変 形流動層によるものは、前記流動層と同様であるが、層内の粉体に循環流を与え、 かつ分級効果を利用して比較的大きく成長した造粒物を排出させる方法である。ま た、噴流層によるものは、噴流層の特徴を利用して粗い粒子にスプレー等力 のスラ リー Bを付着させ、同時に乾燥させながら造粒する方法である。本発明の実施の形態 に係る製法としては、この 3つ方式のうち流動層又は変形流動層によるものが好まし い。噴霧されるスラリー Bの温度は、通常は室温である力 加温して室温以上にしたも のであってもよい。流動化に用いる熱風の温度は、通常 80〜300°C、好ましくは 100 〜200°Cである。 [0052] Next, the electrode active material is caused to flow in a tank, and the slurry B is sprayed thereon for fluid granulation. Examples of the method of fluid granulation in the tank include a fluidized bed, a deformed fluidized bed, and a spouted bed. In the fluidized bed, the electrode active material is fluidized with hot air, and the slurry B is also sprayed with the slurry B to perform agglomeration and granulation. The modified fluidized bed is the same as the fluidized bed described above, but is a method of giving a circulating flow to the powder in the bed and discharging the granulated material that has grown relatively large by using the classification effect. In addition, the method using the spouted bed is a method in which slurry B of spray isotropic force is adhered to coarse particles using the characteristics of the spouted bed and granulated while drying at the same time. As a manufacturing method according to the embodiment of the present invention, a method using a fluidized bed or a deformed fluidized bed among these three methods is preferable. The temperature of the slurry B to be sprayed may be a room temperature or higher by heating with a force normally at room temperature. The temperature of the hot air used for fluidization is usually 80 to 300 ° C, preferably 100. ~ 200 ° C.
[0053] 流動造粒で得られる粒子(以下、「粒子 B」 t 、うことがある)は、熱風で完全に乾燥 したものであってもよいが、次の転動造粒工程での造粒効率を上げるために、湿潤 状態にあることが好ましい。  [0053] Particles obtained by fluid granulation (hereinafter sometimes referred to as "Particle B" t) may be completely dried with hot air, but may be granulated in the next rolling granulation step. In order to increase the grain efficiency, it is preferable to be in a wet state.
[0054] 次いで前記流動造粒工程で得られた粒子 Bを導電材及び結着剤を含有するスラリ 一 Bの存在下に転動造粒する。なお、転動造粒に用いるスラリー Bは、導電材及び結 着剤を含有するものであればよぐ流動造粒で用いたスラリー Bと同一のものであって も異なっているものであってもよい。転動造粒には、回転ざら方式、回転円筒方式、 回転頭切り円錐方式などの方式がある。回転ざら方式は、傾斜した回転ざら内に供 給した粒子 Bに前記スラリー Bを噴霧して凝集造粒物を生成させ、かつ回転ざらの分 級効果を利用して比較的大きく成長した造粒物をリムより排出させる方式である。回 転円筒方式は、傾斜した回転円筒に湿潤した粒子 Bを供給し、これを円筒内で転動 運動させ、前記スラリー Bを噴霧して凝集造粒物を得る方式である。回転頭切り円錐 方式は、回転円筒の操作方式と同様であるが、頭切円錐形により凝集造粒物の分級 効果を利用しつつ比較的大きく成長した造粒物を排出させる方式である。この転動 造粒工程では、主に被覆造粒が行われ、一部で凝集造粒が行われる。  [0054] Next, the particles B obtained in the fluidized granulation step are subjected to rolling granulation in the presence of slurry B containing a conductive material and a binder. The slurry B used for rolling granulation is the same as or different from the slurry B used for fluid granulation as long as it contains a conductive material and a binder. Also good. There are various types of rolling granulation, such as a rotating coarse method, a rotating cylindrical method, and a rotating truncated cone method. In the rotating sand method, the slurry B is sprayed on the particles B supplied in the inclined rotating sand to produce an agglomerated granulated product, and the granulated powder that has grown relatively large by utilizing the classification effect of the rotating sand. This is a method of discharging objects from the rim. The rotating cylinder system is a system in which wet particles B are supplied to an inclined rotating cylinder, and this is rolled in a cylinder, and the slurry B is sprayed to obtain an agglomerated granulated product. The rotating truncated cone method is the same as the operating method of the rotating cylinder, but is a method of discharging the granulated material that has grown relatively large while utilizing the classification effect of the aggregated granulated material by the truncated cone shape. In this rolling granulation step, coating granulation is mainly performed, and agglomeration granulation is partially performed.
[0055] 転動造粒時の温度は特に制限されないが、スラリー Bを構成している溶媒を除去す るために、通常は 80〜300°C、好ましくは 100〜200°Cで行う。さらに、複合粒子か ら残留溶媒を除去するために、転動造粒の後、必要に応じて乾燥することができる。  [0055] The temperature during rolling granulation is not particularly limited, but is usually 80 to 300 ° C, preferably 100 to 200 ° C in order to remove the solvent constituting the slurry B. Furthermore, in order to remove the residual solvent from the composite particles, it can be dried as necessary after rolling granulation.
[0056] 以上の方法によって、電極活物質、導電材及び結着剤を含む複合粒子が得られる 。この複合粒子は、電極活物質および導電材が結着剤及び/又は溶解型榭脂によ り結着されており、複合粒子外層部が平均粒子径の比較的小さい電極活物質及び Z又は導電材が結着したもので形成され、複合粒子内層部が平均粒子径の比較的 大き 、電極活物質及び Z又は導電材が結着したもので形成されて 、る。  [0056] By the above method, composite particles containing an electrode active material, a conductive material, and a binder can be obtained. In this composite particle, the electrode active material and the conductive material are bound by a binder and / or a soluble type resin, and the outer layer portion of the composite particle has a relatively small average particle diameter. The material is formed by binding, and the inner part of the composite particle has a relatively large average particle diameter, and is formed by binding of an electrode active material and Z or a conductive material.
[0057] 本発明の実施の形態に係る電気化学素子電極材料は、本発明の実施の形態に係 る複合粒子を含み、そのほか必要に応じて他の結着剤やその他の添加剤を含有す るものである。電気化学素子電極材料中に含まれる複合粒子の量は、通常 50重量 %以上、好ましくは 70重量%以上、より好ましくは 90重量%以上である。 [0058] 電極材料に必要に応じて含有される他の結着剤としては、前記複合粒子を得る際 に用いられる結着剤として挙げたものと同じものが挙げられる。前記複合粒子はすで に結着剤を含有しているので、電極材料を調製する際に、別途添加する必要はない 力 複合粒子同士の結着力を高めるために結着剤を、電極材料を調製する際に添 加してもよい。電極材料を調製する際に添加する他の結着剤の量は、複合粒子中の 結着剤との合計で、電極活物質 100重量部に対して、通常は 0. 001〜50重量部、 好ましくは 0. 01〜20重量部、より好ましくは 0. 1〜10重量部の範囲である。その他 の添加剤には、前記の溶解型榭脂ゃ界面活性剤の他、水やアルコールなどの成形 助剤等があり、本発明の効果を損なわない量を適宜選択して加えることができる。 [0057] The electrochemical element electrode material according to the embodiment of the present invention includes the composite particles according to the embodiment of the present invention, and additionally includes other binders and other additives as necessary. Is. The amount of the composite particles contained in the electrochemical element electrode material is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more. [0058] Examples of the other binder contained in the electrode material as necessary include the same binders as those used for obtaining the composite particles. Since the composite particles already contain the binder, it is not necessary to add them separately when preparing the electrode material. Force To increase the binding force between the composite particles, the binder and the electrode material are used. It may be added during preparation. The amount of the other binder added when preparing the electrode material is generally 0.001 to 50 parts by weight with respect to 100 parts by weight of the electrode active material in total with the binder in the composite particles. Preferably it is 0.01-20 weight part, More preferably, it is the range of 0.1-10 weight part. Other additives include, in addition to the above-mentioned dissolved type rosy surfactant, molding aids such as water and alcohol, and the like, which can be added by appropriately selecting an amount that does not impair the effects of the present invention.
[0059] 本発明の実施の形態に係る電気化学素子電極 (以下、単に「電極」ということがある 。;)は、前記の電気化学素子電極材料から形成される活物質層を集電体上に積層し てなるものである。電極に使用される集電体用材料としては、例えば、金属、炭素、 導電性高分子などを用いることができ、好適には金属が用いられる。集電体用金属と しては、通常、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、その他 の合金等が使用される。これらの中で導電性、耐電圧性の面カゝらアルミニウムまたは アルミニウム合金を使用するのが好ましい。また、高い耐電圧性が要求される場合に は特開 2001— 176757号公報等で開示される高純度のアルミニウムを好適に用い ることができる。集電体は、フィルムまたはシート状であり、その厚みは、使用目的に 応じて適宜選択されるが、通常 1〜200 μ m、好ましくは 5〜: LOO μ m、より好ましくは 10〜50 μ mである。  [0059] An electrochemical element electrode according to an embodiment of the present invention (hereinafter sometimes simply referred to as "electrode";) has an active material layer formed of the above-described electrochemical element electrode material on a current collector. It is made by laminating. As the current collector material used for the electrode, for example, metal, carbon, conductive polymer and the like can be used, and metal is preferably used. As the current collector metal, aluminum, platinum, nickel, tantalum, titanium, stainless steel, and other alloys are usually used. Among these, it is preferable to use aluminum or an aluminum alloy in terms of conductivity and voltage resistance. When high voltage resistance is required, high-purity aluminum disclosed in JP 2001-176757 A can be suitably used. The current collector is in the form of a film or a sheet, and the thickness thereof is appropriately selected depending on the purpose of use, but is usually 1 to 200 μm, preferably 5 to: LOO μm, more preferably 10 to 50 μm. m.
[0060] 活物質層は、電気化学素子電極材料をシート状に成形し、次いで集電体上に積層 しても良いが、集電体上で電気化学素子電極材料を直接成形し活物質層を形成し ても良い。活物質層を形成する方法としては、加圧成形法などの乾式成形方法、お よび塗布方法などの湿式成形方法があるが、乾燥工程が不要で製造コストを抑える ことが可能な乾式成形法が好ましい。乾式成形法としては、加圧成形法、押出成形 法 (ペースト押出とも言う。)などがある。加圧成形法は、電気化学素子電極材料に圧 力を加えることで電極材料の再配列、変形により緻密化を行い、活物質層を成形す る方法である。押出成形法は、電気化学素子電極材料を押出成形機で押し出しフィ ルム、シートなどに成形する方法である。 [0060] The active material layer may be formed by forming the electrochemical element electrode material into a sheet and then laminating it on the current collector. However, the active material layer is formed directly on the current collector by forming the electrochemical element electrode material directly. May be formed. As a method for forming the active material layer, there are a dry molding method such as a pressure molding method, and a wet molding method such as a coating method. However, there is a dry molding method that does not require a drying process and can reduce manufacturing costs. preferable. Examples of dry molding methods include pressure molding and extrusion (also referred to as paste extrusion). The pressure forming method is a method of forming an active material layer by applying pressure to the electrochemical element electrode material to perform densification by rearrangement and deformation of the electrode material. In the extrusion method, the electrochemical element electrode material is extruded with an extruder. This is a method of forming into a film or sheet.
[0061] これらのうち、簡略な設備で行えることから、加圧成形を使用することが好ましい。加 圧成形としては、例えば、複合粒子を含んでなる電極材料をスクリューフィーダ一等 の供給装置でロール式加圧成形装置に供給し、活物質層を成形するロール加圧成 形法や、電極材料を集電体上に散布し、電極材料をブレード等でならして厚みを調 整し、次いで加圧装置で成形する方法、電極材料を金型に充填し、金型を加圧して 成形する方法などがある。  [0061] Of these, it is preferable to use pressure molding because it can be performed with simple equipment. Examples of the pressure forming include a roll pressure forming method in which an electrode material containing composite particles is supplied to a roll type pressure forming device with a supply device such as a screw feeder, and an active material layer is formed. Disperse the material on the current collector, adjust the thickness by leveling the electrode material with a blade, etc., then mold with a pressure device, fill the mold with the electrode material, and press the mold to mold There are ways to do it.
[0062] これら加圧成形のうち、ロール加圧成形が好適である。この方法にぉ 、て、集電体 を電極材料の供給と同時にロールに送り込むことによって、集電体上に直接活物質 層を積層してもよい。成形時の温度は、通常 0〜200°Cであり、結着剤の融点または ガラス転移温度より高いことが好ましぐ融点またはガラス転移温度より 20°C以上高 いことがより好ましい。ロール加圧成形においては、成形速度を通常 0. l〜20mZ 分、好ましくは l〜10mZ分にして行う。またロール間のプレス線圧を通常 0. 2〜30 kN/cm,好ましくは 0. 5〜: LOkNZcmにして行う。  [0062] Of these pressure moldings, roll pressure molding is preferred. In this method, the active material layer may be directly laminated on the current collector by feeding the current collector to the roll simultaneously with the supply of the electrode material. The molding temperature is usually from 0 to 200 ° C., preferably higher than the melting point or glass transition temperature of the binder, more preferably 20 ° C. or more higher than the melting point or glass transition temperature. In roll pressing, the forming speed is usually 0.1 to 20 mZ, preferably 1 to 10 mZ. The pressing linear pressure between rolls is usually 0.2 to 30 kN / cm, preferably 0.5 to LOkNZcm.
[0063] 成形した電極の厚みのばらつきを無くし、活物質層の密度を上げて高容量ィ匕をは かるために、必要に応じて更に後加圧を行っても良い。後加圧の方法は、ロールによ るプレス工程が一般的である。ロールプレス工程では、 2本の円柱状のロールをせま い間隔で平行に上下にならべ、それぞれを反対方向に回転させて、その間に電極を かみこませ加圧する。ロールは加熱又は冷却等、温度調節しても良い。  [0063] In order to eliminate variations in the thickness of the molded electrode and increase the density of the active material layer to achieve high capacity, further post-pressurization may be performed as necessary. The post-pressing method is generally a pressing process using a roll. In the roll press process, two cylindrical rolls are arranged vertically in parallel at a predetermined interval, and each is rotated in the opposite direction. The temperature of the roll may be adjusted by heating or cooling.
[0064] 本発明の実施の形態に係る電気化学素子電極用複合粒子は、加圧によって複合 粒子相互を強固に結びつけることができるので、ロール加圧成形において高い成形 速度で活物質層を得ることができる。更に、室温での流動性が良好のため、供給精 度が高まり、均一な活物質層を得ることができる。また、室温で凝集しにくいため、保 存特性が良好である。  [0064] Since the composite particles for electrochemical element electrodes according to the embodiment of the present invention can firmly bind the composite particles to each other by pressing, an active material layer can be obtained at a high forming speed in roll press forming. Can do. Furthermore, since the fluidity at room temperature is good, the supply accuracy is increased and a uniform active material layer can be obtained. In addition, since it does not easily aggregate at room temperature, its storage characteristics are good.
実施例  Example
[0065] 以下、実施例および比較例により本発明をさらに具体的に説明する力 本発明はこ れらの実施例に限定されるものではない。なお、実施例および比較例における部お よび%は、特に断りのない限り重量基準である。 [0066] 実施例 1 [0065] Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The present invention is not limited to these examples. In the examples and comparative examples, “parts” and “%” are based on weight unless otherwise specified. [0066] Example 1
電極活物質として体積平均粒子径 5 μ mの活性炭「クラレコール RP— 20」 ( (株)ク ラレケミカル製) 100部、結着剤として単量体単位の組成比がアクリル酸 2—ェチル へキシル:アクリロニトリル:メタクリル酸:エチレングリコールジメタクリレート = 68 : 28 : 2: 2 (重量比)である、架橋型アタリレート系重合体を水に分散してなるラテックス (体 積平均粒子径 0. 11 m、ガラス転移温度 5°C、濃度 40%) 15部、導電材としてァ セチレンブラック「デンカブラック粉状」(電気化学工業 (株)製) 5部、溶解型榭脂とし てカルボキシメチルセルロースのアンモ-ゥム塩「DN— 800H」(ダイセル化学工業( 株)製)の 1. 5%水溶液 93. 3部、及びイオン交換水 348. 7部をカ卩えて「TKホモミキ サー」(特殊機化工業 (株)製)で攪拌混合して固形分濃度が 20%のスラリー (I)を得 た。このスラリー (I)を、スプレー乾燥機「OC— 16」(大川原化工機 (株)製)を使用し 、回転円盤方式のピン型アトマイザ(直径 65mm)の回転数 20, 000rpm、熱風温度 150°C、粒子回収出口の温度が 90°Cで噴霧乾燥し、複合粒子を得た。得られた複 合粒子の体積平均粒子径をレーザ回折式粒度分布測定装置 (SALD— 2000:島 津製作所社製)で測定したところ、 44 μ mであった。  100 parts of activated carbon “Kuraray Coal RP-20” (manufactured by Kuraray Chemical Co., Ltd.) with a volume average particle size of 5 μm as the electrode active material, and the composition ratio of the monomer unit as the binder is 2-ethylhexyl acrylate : Acrylonitrile: Methacrylic acid: Ethylene glycol dimethacrylate = 68: 28: 2: 2 (weight ratio) Latex formed by dispersing a crosslinked acrylate polymer in water (volume average particle size 0.11 m) 15 parts of glass transition temperature, concentration 40%) 15 parts of acetylene black “Denka black powder” (manufactured by Denki Kagaku Kogyo Co., Ltd.) as a conductive material, carboxymethylcellulose ammonia as a soluble resin -A TK homomixer (specialized machine) containing 93.3 parts of 1.5% aqueous solution of DN-800H (produced by Daicel Chemical Industries, Ltd.) and 348.7 parts of ion-exchanged water. (Mixed by Kogyo Co., Ltd.) -Obtained (I). Using this slurry (I), spray dryer “OC-16” (Okawara Kako Co., Ltd.), rotating disk type pin-type atomizer (diameter 65mm), rotation speed 20,000 rpm, hot air temperature 150 ° C, spray drying at a particle recovery outlet temperature of 90 ° C. to obtain composite particles. The volume average particle diameter of the obtained composite particles was measured with a laser diffraction particle size distribution analyzer (SALD-2000: manufactured by Shimadzu Corporation), and found to be 44 μm.
[0067] 得られた複合粒子の引張り付着強度を、「ァグロボット」(ホソカワミクロン (株)製)を 用いて測定した。すなわち、アルミ製上下二分割セル(内径 25mm)に複合粒子を充 填し、圧縮ヘッドスピード: 0. ImmZ秒で下記条件で圧縮し、その後上部セルを 0.4 mmZ秒の速度で垂直方向に引張る時の最大応力を 3回測定し、平均値を引張り付 着強度とした。測定は、温度 25± 3°C、湿度 60 ± 5%の部屋にて行った。  [0067] The tensile bond strength of the obtained composite particles was measured using "Aggrobot" (manufactured by Hosokawa Micron Corporation). That is, when the composite particles are packed in an aluminum upper and lower split cell (inner diameter 25mm), compression is performed under the following conditions at a compression head speed of 0. ImmZ seconds, and then the upper cell is pulled vertically at a speed of 0.4 mmZ seconds. The maximum stress was measured three times, and the average value was taken as the tensile adhesion strength. The measurement was performed in a room at a temperature of 25 ± 3 ° C and a humidity of 60 ± 5%.
[0068] 条件 1.圧力:4. 0MPa、圧縮保持時間: 5秒、温度: 70°C  [0068] Conditions 1. Pressure: 4.0 MPa, Compression holding time: 5 seconds, Temperature: 70 ° C
条件 2.圧力: 0. 5MPa、圧縮保持時間: 60秒、温度: 25°C  Condition 2. Pressure: 0.5 MPa, Compression retention time: 60 seconds, Temperature: 25 ° C
条件 3.圧力: 0. IMPa、圧縮保持時間: 60秒、温度: 25°C  Condition 3. Pressure: 0. IMPa, Compression retention time: 60 seconds, Temperature: 25 ° C
なお、 70°Cでの測定は、複合粒子を充填したセルを 70°Cの恒温槽中にて 20分間保 持した後に行った。結果を表 1に示す。  The measurement at 70 ° C. was carried out after holding the cell filled with the composite particles in a constant temperature bath at 70 ° C. for 20 minutes. The results are shown in Table 1.
[表 1] 引張り付 強度 (NZm2) S大成形 [table 1] Tensile strength (NZm 2 ) S large molding
粒子径 70。C 25°C 25°C 速度 厚み 密度  Particle size 70. C 25 ° C 25 ° C Speed Thickness Density
m) 4. O Pa 0. 5MPa 0. 1 MPa (mノ分) ばらつき ばらつき 実施例 1 44 10820 647 216 9 3.1 2.5  m) 4. O Pa 0.5 MPa 0.1 MPa (m Nominal) Variation Variation Example 1 44 10820 647 216 9 3.1 2.5
実施例 2 51 9040 964 288 3 3.5 2.8  Example 2 51 9040 964 288 3 3.5 2.8
実施例 3 46 9020 1852 288 9 4.5 2.6  Example 3 46 9020 1852 288 9 4.5 2.6
実施例 4 47 8520 674 316 3 3.6 2.1  Example 4 47 8520 674 316 3 3.6 2.1
実施例 5 45 8480 3380 316 9 5.8 4.5  Example 5 45 8480 3380 316 9 5.8 4.5
実施例 6 51 14020 1593 459 9 6.4 5.6  Example 6 51 14020 1593 459 9 6.4 5.6
実施例 7 48 8200 500 216 3 3.0 2.5  Example 7 48 8 200 500 216 3 3.0 2.5
実施例 8 45 8100 1 100 216 4 3.9 2.6  Example 8 45 8 100 1 100 216 4 3.9 2.6
実施例 9 45 12000 1000 288 9 3.9 2.5  Example 9 45 12000 1000 288 9 3.9 2.5
実施例 1 0 48 8500 3560 567 5 7.8 6.9  Example 1 0 48 8500 3560 567 5 7.8 6.9
実施例 1 1 32 13890 1235 388 θ 4.8 3.7  Example 1 1 32 13 890 1235 388 θ 4.8 3.7
実施例 1 2 60 8200 500 188 5 2.5 2.8  Example 1 2 60 8 200 500 188 5 2.5 2.8
実施例 1 3 34 8500 1600 459 3 4.5 4.4  Example 1 3 34 8500 1600 459 3 4.5 4.4
比較例 1 41 7040 1 135 388 1 3.9 3.5  Comparative Example 1 41 7040 1 135 388 1 3.9 3.5
比較例 2 46 6320 974 33S 1 4.1 3 8  Comparative Example 2 46 6320 974 33S 1 4.1 3 8
比較例 3 48 6000 500 188 1 4.0. 4.1  Comparative Example 3 48 6000 500 188 1 4.0. 4.1
[0069] 次に、得られた複合粒子をロールプレス機 (押し切り粗面熱ロール、ヒラノ技研工業 [0069] Next, the obtained composite particles were subjected to a roll press machine (pressed rough surface heat roll, Hirano Giken Kogyo Co., Ltd.).
(株)製)のロール(ロール温度 120°C、プレス線圧 4kNZm)に定量フィーダ一を用 いて供給し、ロール加圧成形によりシート状の活物質層を成形した。成形は、ロール 速度が l〜9mZ分の範囲で lmZ分づっ速度を上げて行い、シート状の活物質層 力 Sim以上破断せずに連続的に得られた上限のロール速度を最大成形速度とした。 また、成形速度 3mZ分で得られた活物質層を直径 12mmの形状に無作為に 20箇 所打ち抜いて、厚みと密度を測定し、以下の式によりそれぞれのばらつきを算出した 。結果を表 1に示す。  The sheet-like active material layer was formed by roll pressure molding using a fixed feeder. The roll was supplied to a roll (manufactured by Kogyo Co., Ltd.) (roll temperature 120 ° C, press linear pressure 4 kNZm). Forming is performed by increasing the roll speed in the range of l to 9mZ by lmZ, and the upper limit roll speed obtained continuously without breaking more than the sheet-like active material layer force Sim is the maximum forming speed. did. In addition, the active material layer obtained at a molding speed of 3 mZ was randomly punched into 20 shapes with a diameter of 12 mm, thickness and density were measured, and each variation was calculated by the following formula. The results are shown in Table 1.
[0070] ばらつき =標準偏差 Z平均値 X 100  [0070] Variation = standard deviation Z average value X 100
実施例 2  Example 2
結着剤として単量体単位の組成比がアクリル酸 2—ェチルへキシル:アタリ口-トリ ル:メタクリル酸:エチレングリコールジメタタリレート = 86 : 10 : 2 : 2 (重量比)である、 架橋型アタリレート系重合体を水に分散してなるラテックス (体積平均粒子径 0. 11 m、ガラス転移温度— 40°C、濃度 40%)を使用した以外は、実施例 1と同様にして複 合粒子を得た。  As a binder, the composition ratio of monomer units is 2-ethylhexyl acrylate: atari mouth-tolyl: methacrylic acid: ethylene glycol dimetatalylate = 86: 10: 2: 2 (weight ratio), cross-linking Except that a latex (volume average particle size of 0.11 m, glass transition temperature—40 ° C., concentration 40%) obtained by dispersing a type acrylate polymer in water was used, the same as in Example 1. Combined particles were obtained.
[0071] 実施例 3 結着剤として、コア部を形成する単量体単位がアクリル酸 2—ェチルへキシルであり 、シェル部を形成する単量体単位カ タクリル酸ェチルおよびメタクリル酸であって、 全単量体単位の組成比がアクリル酸 2—ェチルへキシル:メタクリル酸ェチル:メタタリ ル酸 =81: 16 : 3 (重量比)である、コアシェル型重合体を水に分散してなるラテックス (体積平均粒子径 0. 23 μ m、コア部のガラス転移温度— 60°C、シェル部のガラス転 移温度 + 70°C、濃度 40%)を使用した以外は実施例 1と同様にして複合粒子を得た [0071] Example 3 As the binder, the monomer unit that forms the core part is 2-ethylhexyl acrylate, the monomer unit that forms the shell part is ethyl acetate, methacrylic acid, and methacrylic acid. A latex (volume average particle size 0) in which a core-shell type polymer is dispersed in water with a composition ratio of 2-ethylhexyl acrylate: ethyl methacrylate: metatalic acid = 81: 16: 3 (weight ratio). A composite particle was obtained in the same manner as in Example 1 except that 23 μm, the glass transition temperature of the core portion—60 ° C., the glass transition temperature of the shell portion + 70 ° C., and a concentration of 40% were used.
[0072] 実施例 4 [0072] Example 4
結着剤として単量体単位の組成比がアクリル酸 2—ェチルへキシル:スチレン:メタ クリル酸:エチレングリコールジメタクリレート = 70 : 26 : 2 : 2 (重量比)である、架橋型 アタリレート系重合体を水に分散してなるラテックス (体積平均粒子径 0. 12 /ζ πι、ガ ラス転移温度— 10°C、濃度 40%)を使用した以外は、実施例 1と同様にして複合粒 子を得た。  As a binder, the composition ratio of monomer units is 2-ethylhexyl acrylate: styrene: methacrylic acid: ethylene glycol dimethacrylate = 70: 26: 2: 2 (weight ratio), cross-linked attalylate type Composite particles were obtained in the same manner as in Example 1 except that latex (volume average particle size 0.12 / ζ πι, glass transition temperature—10 ° C, concentration 40%) obtained by dispersing the polymer in water was used. I got a child.
[0073] 実施例 5 [0073] Example 5
結着剤として、架橋型アタリレート系重合体の水分散ラテックスに代えて、フッ素系 重合体である、ポリテトラフルォロエチレン「POLYFLON D2CE」(ダイキン化学ェ 業 (株)製)を水に分散してなるラテックス (ガラス転移温度 + 120°C、濃度 64. 5%) 9 . 3部を使用した以外は実施例 1と同様にして複合粒子を得た。  As a binder, instead of water-dispersed latex of a cross-linked acrylate polymer, polytetrafluoroethylene “POLYFLON D2CE” (manufactured by Daikin Chemical Co., Ltd.), which is a fluoropolymer, is used in water. Composite particles were obtained in the same manner as in Example 1 except that 9.3 parts of a dispersed latex (glass transition temperature + 120 ° C., concentration 64.5%) was used.
[0074] 実施例 6 [0074] Example 6
結着剤である、架橋型アタリレート系重合体を水に分散してなるラテックスの使用量 を 37. 5部とした以外は、実施例 2と同様にして複合粒子を得た。  Composite particles were obtained in the same manner as in Example 2 except that the amount of the latex obtained by dispersing a crosslinked acrylate polymer as a binder in water was 37.5 parts.
[0075] 実施例 7 [0075] Example 7
結着剤として単量体単位の組成比がアクリル酸 2—ェチルへキシル:アタリ口-トリ ル:メタクリル酸:エチレングリコールジメタクリレート = 58 : 38 : 2 : 2 (重量比)である、 架橋型アタリレート系重合体を水に分散してなるラテックス (体積平均粒子径 0. 11 μ m、ガラス転移温度 24°C、濃度 40%)を使用した以外は、実施例 1と同様にして複合 粒子を得た。  As a binder, the composition ratio of monomer units is 2-ethylhexyl acrylate: atari mouth-tolyl: methacrylic acid: ethylene glycol dimethacrylate = 58: 38: 2: 2 (weight ratio), cross-linked type Composite particles were obtained in the same manner as in Example 1 except that latex (volume average particle size: 0.11 μm, glass transition temperature: 24 ° C, concentration: 40%) obtained by dispersing an acrylate polymer in water was used. Got.
[0076] 実施例 8 結着剤として、コア部を形成する単量体単位がアクリル酸 2—ェチルへキシルであり 、シェル部を形成する単量体単位カ タクリル酸ェチルおよびメタクリル酸であって、 全単量体単位の組成比がアクリル酸 2—ェチルへキシル:メタクリル酸ェチル:メタタリ ル酸 =89: 8: 3 (重量比)である、コアシェル型重合体を水に分散してなるラテックス( 体積平均粒子径 0. 24 ^ m,コア部のガラス転移温度— 60°C、シェル部のガラス転 移温度 + 70°C、濃度 40%)を使用した以外は実施例 1と同様にして複合粒子を得た [0076] Example 8 As the binder, the monomer unit that forms the core part is 2-ethylhexyl acrylate, the monomer unit that forms the shell part is ethyl acetate, methacrylic acid, and methacrylic acid. A latex (volume average particle size 0) having a composition ratio of 2-ethylhexyl acrylate: ethyl ethyl methacrylate: methacrylic acid = 89: 8: 3 (weight ratio) dispersed in water. 24 ^ m, glass transition temperature of the core part—60 ° C, glass transition temperature of the shell part + 70 ° C, concentration 40%) were used in the same manner as in Example 1 to obtain composite particles.
[0077] 実施例 9 [0077] Example 9
結着剤として、コア部を形成する単量体単位がアクリル酸ェチルであり、シェル部を 形成する単量体単位カ タクリル酸ェチルおよびメタクリル酸であって、全単量体単 位の組成比がアクリル酸ェチル:メタクリル酸ェチル:メタクリル酸 =81 : 16 : 3 (重量 比)である、コアシェル型重合体を水に分散してなるラテックス (体積平均粒子径 0. 2 2 m、コア部のガラス転移温度— 13°C、シェル部のガラス転移温度 + 70°C、濃度 4 0%)を使用した以外は実施例 1と同様にして複合粒子を得た。  As a binder, the monomer unit forming the core part is ethyl acrylate, the monomer unit forming the shell part is ethyl acrylate and methacrylic acid, and the composition ratio of all monomer units is Is a latex in which a core-shell polymer is dispersed in water with a volume average particle size of 0.22 m and a core portion of ethyl acrylate: ethyl methacrylate: methacrylic acid = 81: 16: 3 (weight ratio) Composite particles were obtained in the same manner as in Example 1 except that the glass transition temperature—13 ° C., the glass transition temperature of the shell portion + 70 ° C., and the concentration 40% were used.
[0078] 実施例 10 [0078] Example 10
導電材としてアセチレンブラック 5部、結着剤として架橋型アタリレート系重合体を水 に分散してなるラテックス 37. 5部、溶解型榭脂としてカルボキシメチルセルロースの アンモニゥム塩「DN— 10L」(ダイセルィ匕学工業 (株)製)の 4%水分散体を 8. 25部 とカルボキシメチルセルロースのアンモ-ゥム塩「DN—800H」(ダイセル化学工業( 株)製)の 1. 5%水分散体を 44. 67部、およびイオン交換水 77. 1部をカ卩えてホバー トミキサー( (株)愛ェ舎製作所)で攪拌混合して固形分濃度 8%のスラリー (II)を調 製した。「ァグロマスタ」(ホソカワミクロン (株)製)に電極活物質として活性炭 100部を 供給し、 80°Cの熱風で流動させ、ここに前記スラリー (Π)を噴霧し、流動層造粒を行 い、複合粒子を得た。なお、アセチレンブラック、架橋型アタリレート系重合体の水分 散ラテックスおよび活性炭は、実施例 1と同種のものを使用した。  5 parts of acetylene black as a conductive material, 37.5 parts of latex in which a cross-linked acrylate polymer is dispersed in water as a binder, and carboxymethylcellulose ammonium salt “DN-10L” (Daicel®) as a soluble resin. 8.25 parts of 4% aqueous dispersion from Gaku Kogyo Co., Ltd. and 1.5% aqueous dispersion of DN-800H carboxymethylcellulose ammonium salt (Daicel Chemical Industries, Ltd.) 44.67 parts and 77.1 parts of ion-exchanged water were added to a slurry (II) having a solid content concentration of 8% by stirring and mixing with a hobart mixer (Aiesha Seisakusho Co., Ltd.). Supply 100 parts of activated carbon as an electrode active material to “Agromaster” (manufactured by Hosokawa Micron Co., Ltd.), flow it with hot air at 80 ° C, spray the slurry (soot) here, and perform fluidized bed granulation. Composite particles were obtained. The acetylene black, the water-dispersed latex and activated carbon of the cross-linked acrylate polymer were the same as those in Example 1.
[0079] 実施例 11 [0079] Example 11
回転円盤方式のピン型アトマイザ一の回転数を 25, OOOrpmにした以外は、実施 例 1と同様にして複合粒子を得た。 [0080] 実施例 12 Composite particles were obtained in the same manner as in Example 1 except that the rotational speed of the rotating disk type pin type atomizer was 25, OOOrpm. [0080] Example 12
回転円盤方式のピン型アトマイザ一の回転数を 15, OOOrpmにした以外は、実施 例 1と同様にして複合粒子を得た。  Composite particles were obtained in the same manner as in Example 1 except that the rotational speed of the rotating disk type pin type atomizer was set to 15, OOOrpm.
[0081] 実施例 13 [0081] Example 13
結着剤である、架橋型アタリレート系重合体を水に分散してなるラテックスを 15部使 用した以外は実施例 10と同様にして流動層造粒を行い、更に目開き 155ミクロンの 篩!、を用いて篩 、分けを行 、複合粒子を得た。  Fluidized bed granulation was carried out in the same manner as in Example 10 except that 15 parts of a latex obtained by dispersing a crosslinked acrylate polymer in water as a binder was used, and a sieve having a mesh size of 155 microns. !, And sieved to obtain composite particles.
[0082] 上記実施例 2〜13で得られた複合粒子の体積平均粒子径および引張り付着強度 を実施例 1と同様に測定した。また、これらの複合粒子を用いて実施例 1と同様に活 物質層の成形を行 ヽ、最大成形速度ならびに厚みおよび密度のばらつきを測定した 。結果を表 1に示す。  [0082] The volume average particle diameter and tensile adhesion strength of the composite particles obtained in Examples 2 to 13 were measured in the same manner as in Example 1. In addition, the active material layer was molded using these composite particles in the same manner as in Example 1, and the maximum molding speed, variation in thickness and density were measured. The results are shown in Table 1.
[0083] 比較例 1  [0083] Comparative Example 1
結着剤である、架橋型アタリレート系重合体を水に分散してなるラテックスの使用量 を 15部とした以外は実施例 10と同様にして複合粒子を得た。  Composite particles were obtained in the same manner as in Example 10 except that the amount of the latex obtained by dispersing the crosslinked acrylate polymer as a binder in water was 15 parts.
[0084] 比較例 2 [0084] Comparative Example 2
実施例 1で得られたスラリー (I)をバットに流し込み、真空乾燥機中にて、減圧下、 1 10°C、 24時間乾燥させた固形物を粉砕し複合粒子を得た。  The slurry (I) obtained in Example 1 was poured into a vat, and the solid material dried at 110 ° C. for 24 hours under reduced pressure in a vacuum dryer was pulverized to obtain composite particles.
[0085] 比較例 3 [0085] Comparative Example 3
結着剤である、架橋型アタリレート系重合体を水に分散してなるラテックスの使用量 を 7. 5部とした以外は、実施例 2と同様にして複合粒子を得た。  Composite particles were obtained in the same manner as in Example 2 except that the amount of the latex obtained by dispersing the crosslinked acrylate polymer as a binder in water was 7.5 parts.
[0086] 上記比較例 1および 3で得られた複合粒子の体積平均粒子径および引張り付着強 度を実施例 1と同様に測定した。また、これらの複合粒子を用いて実施例 1と同様に 活物質層の成形を行い、最大成形速度を測定したところ、いずれも lmZ分であった ので、この成形速度で得られた活物質層を用いて実施例 1と同様に厚みおよび密度 のばらつきを測定した。結果を表 1に示す。  [0086] The volume average particle diameter and tensile adhesion strength of the composite particles obtained in Comparative Examples 1 and 3 were measured in the same manner as in Example 1. Also, the active material layer was molded using these composite particles in the same manner as in Example 1, and the maximum molding speed was measured. As a result, all were lmZ minutes, and the active material layer obtained at this molding speed was used. The thickness and density variations were measured in the same manner as in Example 1. The results are shown in Table 1.
[0087] 以上の実施例および比較例より明らかなように、本発明の実施例に係る電気化学 素子用複合粒子を用いると、比較例の複合粒子に比べて、高速成形可能であった。 また、得られた電気化学素子電極は電極厚み、電極密度ばらつきの小さいものであ つた o As is clear from the above examples and comparative examples, when the composite particles for electrochemical devices according to the examples of the present invention were used, high-speed molding was possible as compared with the composite particles of the comparative examples. In addition, the obtained electrochemical device electrode has small variations in electrode thickness and electrode density. I
[0088] なお、本国際出願で指定した指定国又は選択した選択国の国内法令が許す限り において、実施の形態において引用した特開 2001— 176757号公報の開示を援用 して本明細書の記載の一部とする。  [0088] It should be noted that as long as the national laws of the designated country selected in this international application or the selected selected country permit, the description of this specification is incorporated with the disclosure of JP 2001-176757 cited in the embodiment. As part of
[0089] また、本開示は、 2005年 9月 16日に提出された日本国特許出願 2005-270713 号に含まれた主題に関連し、その開示のすべては、ここに参照事項として明白に組 み込まれる。  [0089] This disclosure also relates to the subject matter contained in Japanese Patent Application No. 2005-270713 filed on September 16, 2005, the entire disclosure of which is expressly incorporated herein by reference. Expected.
産業上の利用可能性  Industrial applicability
[0090] 以上のように、この発明の電気化学素子電極用複合粒子、電気化学素子電極用複 合粒子の製造方法、電気化学素子電極材料、電気化学素子電極は、高性能なリチ ゥムイオン二次電池、電気に二重層キャパシタに用いるのに適して 、る。 [0090] As described above, the composite particle for an electrochemical element electrode, the method for producing the composite particle for an electrochemical element electrode, the electrochemical element electrode material, and the electrochemical element electrode of the present invention have high performance lithium ion secondary. Suitable for use in double layer capacitors for batteries and electricity.

Claims

請求の範囲 The scope of the claims
[1] 電極活物質、導電材及び結着剤を含有し、体積平均粒子径が 1〜500 μ mの電気 化学素子電極用複合粒子であって、 70°Cにおいて 4. OMPaで 5秒間圧縮したとき の引張り付着強度が 8, 000N/m2以上である電気化学素子電極用複合粒子。 [1] Electrochemical device electrode composite particles containing an electrode active material, a conductive material, and a binder and having a volume average particle diameter of 1 to 500 μm, compressed at 70 ° C 4. OMPa for 5 seconds Electrochemical element electrode composite particles having a tensile bond strength of 8,000 N / m 2 or more.
[2] 25°Cにおいて O.lMPaで 60秒間圧縮したときの引張り付着強度が 400NZm2以 下である請求項 1記載の電気化学素子電極用複合粒子。 [2] The composite particle for electrochemical device electrodes according to claim 1, wherein the tensile adhesion strength when compressed with O.lMPa at 25 ° C for 60 seconds is 400 NZm 2 or less.
[3] 25°Cにおいて 0.5MPaで 60秒間圧縮したときの引張り付着強度が 3, 000N/m2 以下である請求項 1または 2記載の電気化学素子電極用複合粒子。 [3] The composite particle for an electrochemical device electrode according to claim 1 or 2, wherein the tensile adhesion strength when compressed at 0.5 MPa for 60 seconds at 25 ° C is 3,000 N / m 2 or less.
[4] 請求項 1記載の電気化学素子電極用複合粒子の製造方法であって、  [4] A method for producing composite particles for an electrochemical device electrode according to claim 1,
電極活物質、導電材および結着剤を溶媒に分散してスラリーを得る工程、ならびに このスラリーを噴霧乾燥して造粒する工程、を有する電気化学素子電極用複合粒子 の製造方法。  A method for producing composite particles for an electrochemical element electrode, comprising: a step of dispersing an electrode active material, a conductive material and a binder in a solvent to obtain a slurry; and a step of spray-drying the slurry to granulate.
[5] 請求項 1に記載の電気化学素子電極用複合粒子を含んでなる電気化学素子電極材 料。  [5] An electrochemical element electrode material comprising the electrochemical element electrode composite particle according to claim 1.
[6] 請求項 5に記載の電気化学素子電極材料から形成される活物質層を集電体上に積 層してなる電気化学素子電極。  [6] An electrochemical element electrode obtained by stacking an active material layer formed of the electrochemical element electrode material according to claim 5 on a current collector.
[7] 活物質層を集電体上に積層する方法が加圧成形である請求項 6記載の電気化学素 子電極。 7. The electrochemical element electrode according to claim 6, wherein the method of laminating the active material layer on the current collector is pressure molding.
[8] 加圧成形が、ロール加圧成形である請求項 7記載の電気化学素子電極。  8. The electrochemical element electrode according to claim 7, wherein the pressure molding is roll pressure molding.
[9] 電気二重層キャパシタ用である請求項 6に記載の電気化学素子電極。 [9] The electrochemical device electrode according to [6], which is used for an electric double layer capacitor.
PCT/JP2006/318132 2005-09-16 2006-09-13 Composite particle for electrochemical device electrode, method for producing same, electrochemical device electrode material, and electrochemical device electrode WO2007032374A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007535498A JP4985404B2 (en) 2005-09-16 2006-09-13 Electrochemical element electrode manufacturing method, electrochemical element electrode material, and electrochemical element electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-270713 2005-09-16
JP2005270713 2005-09-16

Publications (1)

Publication Number Publication Date
WO2007032374A1 true WO2007032374A1 (en) 2007-03-22

Family

ID=37864966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/318132 WO2007032374A1 (en) 2005-09-16 2006-09-13 Composite particle for electrochemical device electrode, method for producing same, electrochemical device electrode material, and electrochemical device electrode

Country Status (2)

Country Link
JP (1) JP4985404B2 (en)
WO (1) WO2007032374A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270788A (en) * 2007-03-27 2008-11-06 Sumitomo Chemical Co Ltd Methods of manufacturing solid particulate dispersion liquid, coating liquid for electrode film, electrode, and electric double-layer capacitor
JP2010157564A (en) * 2008-12-26 2010-07-15 Nippon Zeon Co Ltd Method of manufacturing composite particle for electrochemical element electrode
JP2011243464A (en) * 2010-05-19 2011-12-01 Showa Denko Kk Binder for lithium ion secondary battery electrodes, slurry obtained by using the binder for electrodes, electrodes obtained by using the slurry, and lithium ion secondary battery obtained by using the electrodes
JP2013051203A (en) * 2011-08-04 2013-03-14 Nippon Zeon Co Ltd Composite particle for electrochemical element electrode, electrochemical element electrode material, electrochemical element electrode, and electrochemical element
JP2013069672A (en) * 2011-07-04 2013-04-18 Toyo Ink Sc Holdings Co Ltd Composition for secondary battery electrode formation, secondary battery electrode and secondary battery
JP2013093123A (en) * 2011-10-24 2013-05-16 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
WO2013180166A1 (en) * 2012-05-29 2013-12-05 日本ゼオン株式会社 Composite particles for electrochemical element electrodes, electrochemical element electrode, and electrochemical element
EP2717354A4 (en) * 2011-05-31 2015-06-24 Zeon Corp Composite particles for lithium secondary battery positive electrodes, method for producing composite particles for lithium secondary battery positive electrodes, method for producing positive electrode for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP2015159069A (en) * 2014-02-25 2015-09-03 ダイソー株式会社 Slurry composition for battery electrodes, electrode arranged by use thereof, and battery
WO2017056404A1 (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004064092A1 (en) * 2003-01-15 2004-07-29 Zeon Corporation Production method for electric double-layer capacitor-use electrode
WO2004077467A1 (en) * 2003-02-25 2004-09-10 Zeon Corporation Process for producing electrode for electrochemical device
JP2005026191A (en) * 2003-07-03 2005-01-27 Tdk Corp Electrode, electrochemical element, method of manufacturing electrode, and method of manufacturing electrochemical element
JP2005135925A (en) * 2002-02-07 2005-05-26 Hitachi Maxell Ltd Electrode material and its manufacturing method, and nonaqueous secondary battery and its manufacturing method
WO2006115272A1 (en) * 2005-04-26 2006-11-02 Zeon Corporation Composite particles for electrochemical element electrode
WO2006118235A1 (en) * 2005-04-28 2006-11-09 Zeon Corporation Electro-chemical element electrode

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11149918A (en) * 1997-11-13 1999-06-02 Toyota Motor Corp Manufacture of battery electrode
JP2000040504A (en) * 1998-07-21 2000-02-08 Sony Corp Manufacture of positive mix for organic electrolyte battery
JP4828688B2 (en) * 2000-09-06 2011-11-30 株式会社東芝 Positive electrode and non-aqueous electrolyte secondary battery
JP4219705B2 (en) * 2003-02-17 2009-02-04 パナソニック株式会社 Manufacturing method of secondary battery electrode
JP4204380B2 (en) * 2003-05-14 2009-01-07 Tdk株式会社 Composite particle for electrode and method for producing composite particle for electrode
JP4543634B2 (en) * 2003-08-14 2010-09-15 日本ゼオン株式会社 Electrode layer forming material
JP3785408B2 (en) * 2003-08-29 2006-06-14 Tdk株式会社 Electrode composite particle manufacturing method, electrode manufacturing method and electrochemical element manufacturing method, and electrode composite particle manufacturing apparatus, electrode manufacturing apparatus and electrochemical element manufacturing apparatus
JP3785407B2 (en) * 2003-08-29 2006-06-14 Tdk株式会社 Electrode composite particle manufacturing method, electrode manufacturing method and electrochemical element manufacturing method, and electrode composite particle manufacturing apparatus, electrode manufacturing apparatus and electrochemical element manufacturing apparatus
JP4432906B2 (en) * 2003-11-28 2010-03-17 日本ゼオン株式会社 Binder for electric double layer capacitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135925A (en) * 2002-02-07 2005-05-26 Hitachi Maxell Ltd Electrode material and its manufacturing method, and nonaqueous secondary battery and its manufacturing method
WO2004064092A1 (en) * 2003-01-15 2004-07-29 Zeon Corporation Production method for electric double-layer capacitor-use electrode
WO2004077467A1 (en) * 2003-02-25 2004-09-10 Zeon Corporation Process for producing electrode for electrochemical device
JP2005026191A (en) * 2003-07-03 2005-01-27 Tdk Corp Electrode, electrochemical element, method of manufacturing electrode, and method of manufacturing electrochemical element
WO2006115272A1 (en) * 2005-04-26 2006-11-02 Zeon Corporation Composite particles for electrochemical element electrode
WO2006118235A1 (en) * 2005-04-28 2006-11-09 Zeon Corporation Electro-chemical element electrode

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270788A (en) * 2007-03-27 2008-11-06 Sumitomo Chemical Co Ltd Methods of manufacturing solid particulate dispersion liquid, coating liquid for electrode film, electrode, and electric double-layer capacitor
KR20100015792A (en) * 2007-03-27 2010-02-12 스미또모 가가꾸 가부시끼가이샤 Method for producing liquid dispersion of solid fine particle, method for producing electrode and method for manufacturing electric double layer capacitor
JP2010157564A (en) * 2008-12-26 2010-07-15 Nippon Zeon Co Ltd Method of manufacturing composite particle for electrochemical element electrode
CN102934269B (en) * 2010-05-19 2016-08-24 昭和电工株式会社 Lithium ion secondary battery electrode binding agent, use slurry, the electrode using these slurries to obtain and the lithium rechargeable battery using these electrodes to obtain that these binding agent for electrode obtain
JP2011243464A (en) * 2010-05-19 2011-12-01 Showa Denko Kk Binder for lithium ion secondary battery electrodes, slurry obtained by using the binder for electrodes, electrodes obtained by using the slurry, and lithium ion secondary battery obtained by using the electrodes
CN102934269A (en) * 2010-05-19 2013-02-13 昭和电工株式会社 Binder for lithium ion secondary battery electrode, slurry obtained using the binder for electrode, electrode obtained using the slurry, and lithium ion secondary battery using the electrode
US9147882B2 (en) 2010-05-19 2015-09-29 Showa Denko K. K. Binder for lithium ion secondary battery electrode, slurry obtained using the binder for electrode, electrode obtained using the slurry, and lithium ion secondary battery using the electrode
EP2717354A4 (en) * 2011-05-31 2015-06-24 Zeon Corp Composite particles for lithium secondary battery positive electrodes, method for producing composite particles for lithium secondary battery positive electrodes, method for producing positive electrode for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP2013069672A (en) * 2011-07-04 2013-04-18 Toyo Ink Sc Holdings Co Ltd Composition for secondary battery electrode formation, secondary battery electrode and secondary battery
JP2013051203A (en) * 2011-08-04 2013-03-14 Nippon Zeon Co Ltd Composite particle for electrochemical element electrode, electrochemical element electrode material, electrochemical element electrode, and electrochemical element
JP2013093123A (en) * 2011-10-24 2013-05-16 Toyo Ink Sc Holdings Co Ltd Composition for forming secondary battery electrode, secondary battery electrode, and secondary battery
WO2013180166A1 (en) * 2012-05-29 2013-12-05 日本ゼオン株式会社 Composite particles for electrochemical element electrodes, electrochemical element electrode, and electrochemical element
JP2015159069A (en) * 2014-02-25 2015-09-03 ダイソー株式会社 Slurry composition for battery electrodes, electrode arranged by use thereof, and battery
WO2017056404A1 (en) * 2015-09-30 2017-04-06 日本ゼオン株式会社 Non-aqueous secondary battery electrode binder composition, non-aqueous secondary battery electrode slurry composition, non-aqueous secondary battery electrode, and non-aqueous secondary battery
CN107925089A (en) * 2015-09-30 2018-04-17 日本瑞翁株式会社 Binder composition for non-aqueous secondary battery electrode, non-aqueous secondary battery slurry composition for electrode, non-aqueous secondary battery electrode and non-aqueous secondary battery
CN107925089B (en) * 2015-09-30 2021-06-18 日本瑞翁株式会社 Binder composition for nonaqueous secondary battery electrode, slurry composition for electrode, and nonaqueous secondary battery
US11387457B2 (en) 2015-09-30 2022-07-12 Zeon Corporation Binder composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Also Published As

Publication number Publication date
JPWO2007032374A1 (en) 2009-03-19
JP4985404B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4840358B2 (en) Electrochemical element electrode
JP4978467B2 (en) Electrochemical element electrode material and composite particles
JP4840357B2 (en) Composite particles for electrochemical device electrodes
JP4839669B2 (en) Composite particles for electrochemical device electrodes
JP5201313B2 (en) Electrode for electrochemical device and method for producing the same
JP4929792B2 (en) Composite particles for electrochemical device electrodes
WO2007032374A1 (en) Composite particle for electrochemical device electrode, method for producing same, electrochemical device electrode material, and electrochemical device electrode
JP5069464B2 (en) Electrode material for electric double layer capacitor and manufacturing method thereof
JP5141002B2 (en) Method for producing composite particle for electrochemical device electrode
JP5311706B2 (en) Method for producing composite particle for electrochemical device electrode
JP2008098590A (en) Electrode for electrochemical device and electrochemical device using the same
JP2006339184A (en) Method of manufacturing composite particle for electrochemical element
WO2007116718A1 (en) Composite particles for electrochemical element electrode, process for producing composite particles for electrochemical element electrode, and electrochemical element electrode
KR20160146737A (en) Production method for complex particles for use in electrode of electrochemical element
WO2013018862A1 (en) Composite particles for electrochemical element electrode, electrochemical element electrode material, electrochemical element electrode, and electrochemical element
JP5767431B2 (en) Electrochemical element electrode forming material, method for producing the same, and electrochemical element electrode
JP2013055044A (en) Composite particle for electrochemical element electrode, electrochemical element electrode material, and electrochemical element electrode
WO2013118758A1 (en) Apparatus for producing composite particles for electrochemical element electrodes and method for producing composite particles for electrochemical element electrodes
JP4899354B2 (en) Method for producing composite particles, electrode material for electrochemical element, method for producing electrode for electrochemical element, and electrode for electrochemical element
JP4839726B2 (en) Electrode for electric double layer capacitor
JP6281278B2 (en) Slurry composition for composite particle for electrochemical element negative electrode, composite particle for electrochemical element negative electrode, and method for producing composite particle for electrochemical element negative electrode
JP2010171212A (en) Electrode for electric double layer capacitor and method of manufacturing the same
JP2013062202A (en) Electrode molding device and electrode molding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007535498

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06810089

Country of ref document: EP

Kind code of ref document: A1