WO2004064092A1 - Production method for electric double-layer capacitor-use electrode - Google Patents

Production method for electric double-layer capacitor-use electrode Download PDF

Info

Publication number
WO2004064092A1
WO2004064092A1 PCT/JP2004/000220 JP2004000220W WO2004064092A1 WO 2004064092 A1 WO2004064092 A1 WO 2004064092A1 JP 2004000220 W JP2004000220 W JP 2004000220W WO 2004064092 A1 WO2004064092 A1 WO 2004064092A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
fluorine
mass
electric double
free polymer
Prior art date
Application number
PCT/JP2004/000220
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekazu Mori
Masahiro Yamakawa
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2005508008A priority Critical patent/JP4678301B2/en
Publication of WO2004064092A1 publication Critical patent/WO2004064092A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a method for manufacturing an electrode for an electric double layer capacitor.
  • BACKGROUND ART-Electric double layer capacitors utilizing an electric double layer formed at the interface between a polarizable electrode and an electrolyte, particularly coin-shaped capacitors have been rapidly growing in demand as memory backup power supplies in recent years.
  • the use of electric double-layer capacitors, which feature high power density is attracting attention for applications requiring large capacity, such as power supplies for electric vehicles.
  • a force S mainly using a carbonaceous material such as activated carbon, and a mixture of a carbonaceous material and a binder for holding the carbonaceous material in the current collector are preferably used.
  • a carbonaceous material such as activated carbon
  • a mixture of a carbonaceous material and a binder for holding the carbonaceous material in the current collector are preferably used.
  • fluorine-containing polymers such as polytetrafluoroethylene (hereinafter referred to as “PTF E”) have been used as binders for electric double layer capacitor electrodes from the viewpoint of excellent heat resistance.
  • a slurry (uniform paint) is prepared by mixing and dispersing the carbonaceous material in a binder solution or a latex. The method of painting has been taken.
  • the binder when PTFE was used as the binder, it was difficult to obtain an electrode of uniform quality by continuous molding, because the fiberized portion and the non-fibrous portion of PTFE were generated unevenly. Further, there is a first problem that the binding property with the current collector is not sufficient, and the amount of the binder used increases, so that the internal resistance of the electrode increases.
  • the method of applying the slurry on the current collector has a problem that the slurry viscosity is highly dependent on the solid concentration. In particular, when a carbonaceous material having a large specific surface area is used, a slight increase in the solid content significantly increases the viscosity of the slurry, resulting in poor coatability and a smooth coated surface. Can not be.
  • the present invention provides a method for producing an electrode for an electric double layer capacitor, which includes a step of screw-extruding a mixture containing a carbonaceous material and a fluorine-free polymer.
  • carbonaceous material is a concept including “active material” and “conductivity imparting agent” as an electrode material.
  • the fluorine-free polymer is preferably a polymer containing an elastomer.
  • the fluorine-free polymer is preferably a polymer further containing a dispersant.
  • the fluorine-free polymer is preferably contained in an amount of 1 to 20% by mass based on the carbonaceous material.
  • the mixture further contains a molding aid.
  • the molding aid is 0.1 to 100 mass per carbonaceous material. /. Preferably included.
  • the elastomer is preferably either a gen-based elastomer or a crosslinked acrylate-based elastomer.
  • the method further includes a step of performing a press treatment in addition to the step of extruding the mixture by screw.
  • the method further includes a step of bonding the mixture extruded with the screw to a current collector with a conductive adhesive.
  • FIG. 1 is a diagram showing a flow of manufacturing an electric double layer capacitor electrode.
  • FIG. 2 is a schematic diagram illustrating an example of a manufacturing apparatus used in the manufacturing method of the present invention.
  • FIG. 3 is a schematic view showing another example of the manufacturing apparatus used in the manufacturing method of the present invention.
  • an elastomer as a binder to give flexibility to the electrode.
  • a method in which a mixture obtained by mixing and dispersing activated carbon and latex is dried, pulverized, granulated, and then pressed to obtain an electrode Japanese Unexamined Patent Publication No.
  • JP-A-11-283887 discloses that a mixture comprising a carbonaceous material, polytetrafluoroethylene and a processing aid is subjected to screw extrusion molding, and the obtained extrusion is obtained. There is disclosed a method of forming an object into a sheet shape with a rolling roll.
  • the present invention has been made to solve the above-mentioned conventional problems, and it is possible to industrially mass-produce an electrode for an electric double layer capacitor having a flexible electrode and a small internal resistance. It is an object to provide a manufacturing method. Disclosure of the invention
  • the present inventors have studied various types of binder materials and methods of binding a carbonaceous material containing a binder to the current collector surface. As a result, the electrode sheet formed by extrusion using a fluorine-free polymer as a binder is adhered to the current collector surface.
  • step S 4 Two It is extruded to form an “electrode sheet” III (step S 4).
  • the “fluorine-free polymer” in the raw material group A and the raw material group B have the same concept. Therefore, for example, the same fluorine-free polymer may be used in step S1 and step S3.
  • the materials constituting the raw material groups A and B and their mixing ratios will be described later in detail.
  • Step S5 the same composition as in step S1
  • step S6 the same composition as in step S1
  • Step S6 the kneading step in step S5
  • shearing is applied by a kneader (not shown) to sufficiently sufficiently disperse the conductivity imparting agent.
  • the conductive adhesive Ib is given sufficient fluidity by dilution with a solvent or the like, and is stored in the adhesive bath 106 in a predetermined amount.
  • the lower part of the lower roll of the roll set 107 is immersed in the adhesive bath 106, and the conductive adhesive Ib that has adhered to the lower roll surface and rolled up by the rotation of the roll is a doctor blade. It is dropped to an appropriate amount by 106a, and is applied to the back side of the aluminum foil 104 as a current collector wound out from the payoff reel 103 (step S7).
  • the above conductive adhesive Ib is applied on the current collector by force, and the “current collector sheet with adhesive” IVb is prepared.
  • the step of preparing the conductive adhesive Ib through the steps S5 and S6 using the raw material group A is an optional step, and may be omitted as the case may be, and the payoff reel 3
  • the unwinding current collector sheet IVa may be used as it is (see Fig. 2).
  • the current collector sheet IVa or the current collector sheet IVb with adhesive prepared in this manner is pressure-bonded to the electrode sheet III in the next step S8. That is, the electrode sheet III and the current collector sheet IVa, or the current collector sheet with adhesive IVb, which are stacked on top and bottom, are composed of the first cooling roll 11 and the second cooling roll 12 In this way, the sheets are bonded together, cooled, and rolled to a predetermined sheet thickness.
  • the sheet laminated together (hereinafter referred to as “intermediate sheet” V) then passes between the second cooling roll 12 and the third cooling roll 13, and is further cooled to obtain a sheet thickness. Is precisely adjusted.
  • the present invention provides a method for producing an electrode for an electric double layer capacitor, which includes a step of screw-extruding a mixture containing a carbonaceous material (active material, conductivity imparting agent) and a fluorine-free polymer.
  • the formed product is extruded onto a current collector, the two are adhered to each other, dried, and if necessary, pressed with a rolling nozzle or the like. As a result, an electrode sheet for an electric double layer capacitor is manufactured.
  • FIG. 1 showing the flow of the manufacturing method
  • FIG. 2 and FIG. 3 showing the outline of the manufacturing apparatus.
  • the basic configuration of the manufacturing apparatus is the apparatus 100 shown in FIG. 2, and the apparatus 200 of FIG. 3 includes an optional configuration. Therefore, regarding the manufacturing apparatus, the following description basically refers to FIG. 2 and also to FIG. 3 as necessary.
  • FIG. 3 the same members as those shown in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and the description thereof is omitted.
  • a raw material containing a conductivity-imparting agent which is a kind of carbonaceous material, a fluorine-free polymer, and a shaping aid added as necessary.
  • the “raw material group A” is kneaded by the kneader 9 (step S1) and extruded by the extruder 10 (step S2) to obtain the “conductive material pellet” la.
  • the kneading step of step S1 is a step in which sufficient shear is applied by the kneader 9 to uniformly disperse the conductivity-imparting agent.
  • the conductive material is added and kneaded together with the active material, the fluorine-free polymer and the molding aid optionally added, and the mixture is kneaded.
  • S 2 can be omitted.
  • the conductive material pellet Ia is a raw material (hereinafter referred to as “raw material group B”) containing an active material, a fluorine-free polymer, and a molding aid added as needed. It is not shown in Figures 2 and 3.) and is fed into the screw extruder 1 and uniformly kneaded to form the “electrode paste” II.
  • the electrode paste I is formed into a sheet by a film die 2 attached to the tip of a screw extruder 1.
  • the sensor When passing through the rolls 15a and 15b, the sensor detects the thickness and tension of the sheet. The result is fed back to the extruder 1, the first cooling roll 11, the second cooling roll 12, and the third cooling roll 13, and in order to secure the appropriate sheet thickness, etc., the feed speed and the gap between each roll , Pressure, etc. are adjusted.
  • the intermediate product sheet V that has passed through the adjusting rolls 15a and 15b passes through a drying furnace 16, during which the molding aid added during kneading is removed.
  • the intermediate product sheet V is pressed by a pair of press rolls 17a and 17b arranged above and below as necessary (step S10), and is further wound up by a wind-up roll 18. In this manner, the “capacitor electrode sheet” VI is formed.
  • the “carbonaceous material” is a concept including an “active material” and a “conductivity-imparting agent” made of a carbonaceous material, and each is described separately.
  • non-porous carbon having microcrystalline carbon similar to graphite and having an increased inter-phase distance between the microcrystalline carbons described in Japanese Patent Application Laid-Open No. 11-31733 / 2002-25867, etc. Can also be used as an electrode active material.
  • the particle diameter of the active material is 0.1 to 100 / im, preferably 1 to 20 ⁇ , it is preferable because the capacitor electrode can be easily formed into a thin film and the capacity density can be increased.
  • the compounding ratio of the active material and the conductivity-imparting agent is 0.1 to 20 parts by mass, and preferably 2 to 10 parts by mass, per 100 parts by mass of the active material.
  • the fluorine-free polymer used in the present invention is not particularly limited, and examples thereof include a conjugated diene, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated carboxylic acid, an aromatic vinyl compound, a thiolefin, and a Examples include a homopolymer or a copolymer of a monomer such as a saturated nitrile conjugate, etc. Further, even when these are copolymerized polyfunctional ethylenically unsaturated monomers to form a crosslinked polymer. Among them, elastomers having a glass transition temperature of 50 ° C. or lower, preferably 150 ° C. to 0 ° C.
  • Examples of the gen-based elastomer include polybutadiene, carboxy-modified styrene-butadiene-based copolymer, and acrylonitrile Z-butadiene-based copolymer having a crosslinked structure.
  • Examples of the cross-linked acrylate-based elastomer include 2-ethylhexyl acrylate / methacrylic acid / acrylonitrile / ethylene glycol dimethacrylate copolymer, 2-ethylhexyl acrylate methacrylic acid / methacrylonitrile.
  • Examples include Z-diethylene glycol dimethacrylate copolymer, butyl acrylonitrile acrylate / diethylene glycol dimethacrylate copolymer, and butyl acrylate / acrylic acid / trimethylol pantolimethacrylate copolymer.
  • the fluorine-free polymer is used in an amount of 1 to 20% by mass, more preferably 1 to 10% by mass on a dry mass basis relative to the carbonaceous material (total amount of the active material and the conductivity-imparting agent). It is preferable to be blended so as to be contained by mass%.
  • Fluorine-free polymer is charcoal
  • the base material is bound to the current collector and is included in the electrode as a binder for maintaining the shape of the electrode sheet.
  • a polymer soluble in water or an organic solvent or a polymer melted by heat can be used alone, but is preferably used in combination with the elastomer because it also has an effect as a dispersant.
  • the use of a fluorine-free polymer that exhibits an effect as a dispersant (hereinafter, simply referred to as “dispersant”) can impart fluidity and viscosity to the electrode paste II.
  • fluorine-free polymer as a water-soluble dispersing agent
  • examples of the fluorine-free polymer as a water-soluble dispersing agent include, for example, carboxymethyl cenorellose (CMC), methinoresenolose, ethnoresenolose and other senoreloses, polyvinyl alcohol, polybutyl methyl ether, or polyacrylic acid ( Salt, oxidized starch, phosphoric acid starch, casein, and various modified starches.
  • fluorine-free polymers as dispersants soluble in organic solvents include:
  • Acrylonitrile-based polymers such as polyacrylonitrile, acrylonitrile / acrylic acid ester copolymer, Atari-mouth nitrile / methacrylic acid ester copolymer, acrylonitrile / butadiene copolymer (NBR) and hydrogenated products thereof; ethylene Zacril And olefin polymers such as acid ester copolymers, ethylene / methacrylic acid ester copolymers, and graft polymers obtained by grafting a radical polymerizable monomer onto an ethylene acrylate ester copolymer.
  • fluorine-free polymer as a dispersant which is melted by heat
  • examples of the fluorine-free polymer as a dispersant which is melted by heat include polyolefins such as polyethylene and polypropylene; styrene copolymers such as acrylate / styrene copolymer and methacrylate Z-styrene copolymer; And the like.
  • the fluorine-free polymer as a dispersant is a carbonaceous material. It is preferable that it is contained so as to be contained in an amount of 1 to 5% by mass, more preferably 1 to 3% by mass on a dry mass basis with respect to (the total amount of the active material and the conductivity imparting agent).
  • a fluorine-free polymer as a dispersant can be used for imparting fluidity and viscosity to the electrode paste II.
  • the content of the polymer is 1% by mass or more, sufficient viscosity can be imparted to the electrode paste, and the moldability of the electrode sheet ⁇ extruded from the extruder can be improved. Further, when the content is 5% by mass or less, the internal resistance of the electrode can be reduced.
  • the molding aid in the present invention is added for the purpose of improving the moldability in forming the electrode sheet III by extruding the electrode paste II from an extruder.
  • water such as acetone, ethyl methyl ketone, and methyl isobutyl ketone; hydrocarbons such as kerosene and naphtha; amides such as N-methylpyrrolidone; stearic acid, palmitic acid, and myristin Fatty acids such as acid, oleic acid and lauric acid; fatty acid amides such as stearic acid amide and palmitic acid amide; or methanol, ethanol, propanol, butanol, ethylene glycolone, propylene glycolone, dipropylene glycol,
  • alcohols such as glycerin
  • nonionic surfactants such as polyoxyethylene alkyl phenyl ether and polyoxyethylene higher alcohol ether.
  • molding aids may be used alone or in combination of two or more. These molding aids can be used as needed depending on the type and combination of the fluorine-free polymer to be used, and may be used as a solvent for the dispersion medium and the dispersant of the elastomer.
  • the above-mentioned elastomer is preferably used by dispersing it in water or a solvent other than water, and it is particularly preferable to use a water-dispersed elastomer in consideration of the environment.
  • the elastomer is used as particles dispersed in water or a solvent other than water, the amount of the elastomer can be reduced because it can be uniformly attached to the surface of the carbon material.
  • the molding aid is contained in an amount of 0.1 to 100% by mass, and more preferably 5 to 50% by mass, based on the carbonaceous material (total amount of the active material and the conductivity-imparting agent). It is preferable to mix them as follows.
  • the amount of the molding aid is 0.1% by mass or more, the effect of improving the molding can be sufficiently obtained.
  • the content is set to 100% by mass or less, The extrusion pressure can be increased, and it is possible to effectively prevent the electrode paste II from flowing backward and flowing out of the extruder hopper.
  • the screw extruder 1 is used to perform screw extrusion.
  • each of the above-mentioned raw material components is uniformly kneaded, and a uniform electrode sheet can be continuously formed.
  • the screw extruder 1 has a screw having an annular groove that rotates in the barrel of the extruder, and a mixture containing an active material, a conductivity-imparting agent, a fluorine-free polymer, and, if necessary, a molding aid.
  • the kneading is performed while rotating barrel ⁇ ⁇ ⁇ ⁇ by rotating the screw to form electrode paste II, which is extruded to form electrode sheet III.
  • the thickness of the electrode sheet III is usually from 10 to 500 ⁇ , preferably from 20 to 100 ⁇ .
  • the thickness of the extruded electrode sheet III is large, it can be rolled to a thickness suitable for an electrode for an electric double layer capacitor by a pressing process described later.
  • any of screw extruders for resin, rubber, and building materials can be used. Further, either a single screw extruder or a multi-screw extruder can be used.
  • the ratio L / D between the length (L) and the inner diameter (D) of the extruder barrel is usually 10-50.
  • the screw shape various shapes such as a full-flight screw, a noble pitch screw, and a screw with a mixing pitch can be adopted, but it is particularly preferable to use a full-flight screw whose extrusion pressure can be easily adjusted.
  • a film die such as a straight manifold die, a fish-tail die, and a coat hanger die is used.
  • the extrusion temperature in the screw extrusion molding is preferably from 5 to 100 ° C, particularly preferably from 30 to 80 ° C.
  • the extrusion temperature is preferably from 5 to 100 ° C, particularly preferably from 30 to 80 ° C.
  • the extrusion pressure in screw extrusion molding is preferably from 0.2 to 1 OMPa, more preferably from 0.3 to 5 MPa.
  • the electrode paste II is formed into an electrode sheet III by the screw extruder 1, extruded onto a current collector, dried, and optionally pressed to form an electrode VI for an electric double layer capacitor.
  • the current collector is preferably a metal foil, particularly an aluminum foil.
  • the aluminum foil can be continuously drawn from the rolled foil coil and used.
  • the conductive adhesive Ib can be obtained by kneading a conductivity-imparting agent using the above-mentioned fluorine-free polymer.
  • the elastomer is 5 to 20 parts by mass on a dry mass basis with respect to 100 parts by mass of a conductivity-imparting agent such as acetylene black, Ketjen black, and carbon black, and fluorine as a dispersant is used.
  • the non-containing polymer can be prepared by adding 1 to 5 parts by mass on a dry mass basis and using a kneader capable of applying shearing.
  • the electrode sheet ⁇ and the current collector can be sufficiently bonded.
  • the amount of the above-mentioned elastomer is not more than 20 parts by mass, the conductivity-imparting agent can be sufficiently dispersed, and the internal resistance can be reduced by / J.
  • the amount of the fluorine-free polymer used as the dispersant is 1 part by mass or more, the conductive material can be sufficiently dispersed and the internal resistance can be reduced.
  • the amount of the fluorine-free polymer used as the dispersant is set to 5 parts by mass or less, the internal resistance increases due to the fact that the conductivity-imparting agent is coated with the fluorine-free polymer as the dispersant. Can be prevented.
  • a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, or the like can be used as a kneader used for producing the conductive adhesive Ib.
  • a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, or the like can be used as a kneader used for producing the conductive adhesive Ib.
  • the method of applying the conductive adhesive Ib to the current collector is not particularly limited. For example, it is applied by a doctor blade method, a dip method, a rippers roll method, a direct roll method, a gravure method, an eta-strusion method, a brush coating, or the like.
  • the amount to be applied is not particularly limited.
  • the thickness of the conductive layer formed after drying is adjusted to be usually 0.5 to 10 ⁇ , preferably 2 to 7 ⁇ .
  • the type of the drying oven 16 is not particularly limited, and includes, for example, drying by warm air, hot air, low-humidity air, and drying by irradiation with (far) infrared rays or electron beams.
  • the drying conditions are adjusted so that the molding aid can be removed as soon as possible within a speed range where stress collection does not occur and the electrode layer does not crack or the electrode layer does not peel from the current collector.
  • the electrode may be stabilized by pressing the dried current collector.
  • the press treatment method is not particularly limited, but a method such as a die press or a roll press can be used. Among these methods, a roll press suitable for mass production is preferably employed.
  • the electric double layer capacitor was charged at a constant current of 10 mA to 2.7 V for 10 minutes at 25 ° C, and then discharged at a constant current of 1 mA to 0 V.
  • the capacitance per unit mass of the electrode layer was obtained by calculating the capacitance from the obtained charge / discharge curve, dividing the mass of the electrode by the mass of the electrode layer obtained by subtracting the mass of the current collector from the mass of the electrode. .
  • the internal resistance was calculated from the charge / discharge curve according to the calculation method of the standard RC-2377 specified by the Japan Electronics and Information Technology Industries Association. Preparation of conductive adhesive Ib>
  • Acetylene black 100 parts, 10% carboxymethylcellulose aqueous solution (Cellogen 7H; manufactured by Daiichi Kogyo Pharmaceutical) 30 parts, 40% carboxy-modified styrene-butadiene copolymer latex (BM-400B; Nippon Zeon) 30 parts, soft water 10. Two parts were kneaded using a kneader, and then diluted using soft water. Thus, a conductive adhesive Ib having an average particle size of acetylene black of 0.5 m and a solid concentration of 30% as measured by a light scattering method was obtained.
  • Acetylene black 100 parts, 10% carboxymethylcellulose aqueous solution (Cellogen 7H; Daiichi Kogyo Pharmaceutical) 30 parts, 40% carboxy-modified styrene-butadiene copolymer latex (BM-400B; Nippon Zeon) 30 parts, soft water 10. Two parts were kneaded using a kneader and extruded using an extruder to obtain a conductive material pellet Ia having a solid content of 72% with a diameter of 1 mm and a length of 2 mm.
  • Example 1 Example 1
  • the above capacitor electrode sheet is cut out of 4 (: 111 ⁇ 6 ( ; 111), leaving two lead electrodes, and the electrode surfaces of the two capacitor electrode sheets are opposed to each other. This was sandwiched between two polypropylene plates 2 mm thick, 5 cm wide, and 7 cm high to form a device.
  • the electrolytic solution a solution in which 1.5 mol 1 ZL of triethyl monomethylammonium tetrafluoroporate was dissolved in propylene carbonate was used.
  • the above element was vacuum-heated at 200 ° C for 3 hours to remove impurities such as water contained in the element.Then, the electrolytic solution was impregnated in vacuum and housed in a polypropylene container to form an electric double layer capacitor. Made.
  • the DC resistance and capacitance were measured at a current density of 2 OmAZ cm 2 , and the capacitance per unit mass (capacity density) and volume resistance of the electrode layer were calculated, confirming good performance as a capacitor. Table 1 shows the results of evaluating various characteristics of the obtained electrode sheet and electric double layer capacitor.
  • Example 2 shows the results of evaluating various characteristics of the obtained electrode sheet and electric double layer capacitor.
  • Example 3 An electrode sheet for a capacitor and an electric double layer capacitor were prepared in the same manner as in Example 1 except that the temperature was 40%. It was confirmed that a long electrode sheet for a capacitor could be formed stably and good performance as a capacitor could be confirmed. Table 1 shows the results.
  • Example 3 Example 3
  • Example 1 40% carboxy-modified styrene-butadiene copolymer latex (BM-400B) added in Example 1 as a fluorine-free polymer (included in conductive adhesive Ib and conductive material pellet Ia) BM-400 B)), but emulsify a monomer mixture consisting of 75 parts of butyl acrylate and 25 parts of methyl methacrylate in the presence of 5 parts of polyvinyl alcohol.
  • An electrode for a capacitor was prepared in the same manner as in Example 1 except that a polymer aqueous dispersion (solid content: 30%) obtained by polymerization was used, and an aqueous solution of 10% carboxymethylcellulose (cellogen 7H) was not used. A sheet and an electric double layer capacitor were prepared, and the same measurement was performed. It was confirmed that a long capacitor electrode sheet could be formed stably, and good performance as a capacitor was confirmed. Table 1 shows the results. Comparative Example 1
  • the present invention it is easy to provide a manufacturing method capable of giving flexibility to an electrode and capable of mass-producing an electrode for an electric double layer capacitor having a large capacitance density and a small internal resistance. It will be.
  • PTFE was used as the binder
  • 100 parts by mass or more of the carbonaceous material required 10 parts by mass or more of the binder, but a fluorine-free polymer was used as the binder.
  • a higher binding force can be obtained by using a relatively small amount of a binder of about 8 parts by mass.
  • the ratio of the carbonaceous material can be increased as a whole, and as a result, the capacitance density of the electrode for the electric double layer capacitor can be further increased.
  • the fluorine-free polymer-based material as the binder bonds between the carbonaceous materials in a fine shape, the flexibility of the electrode is not lacking as in the case of using PTFE as the binder.

Abstract

A production method for an electric double-layer capacitor-use electrode comprising the step of screw-extrusion-molding a mixture containing a carbonaceous material and fluorine-not-containing polymer, whereby it is possible to mass-produce an electrode for an electric double-layer capacitor large in capacitance density and small in internal resistance.

Description

明 細 書 電気二重層キャパシタ用電極の製造方法 技術分野  Description Manufacturing method of electrode for electric double layer capacitor
本発明は電気二重層キャパシタ用電極の製造方法に関する。 背景技術 - 分極性電極と電解質界面で形成される電気二重層を利用した電気二重層キャパシ タ、 特にコイン型形状のものは、 メモリバックアップ電源として近年急速に需要が伸 ぴている。 一方、 電気自動車用電源等の大容量を必要とする用途に対しても、 高出力 密度を特徴とする電気二重層キャパシタの利用が注目されている。  The present invention relates to a method for manufacturing an electrode for an electric double layer capacitor. BACKGROUND ART-Electric double layer capacitors utilizing an electric double layer formed at the interface between a polarizable electrode and an electrolyte, particularly coin-shaped capacitors, have been rapidly growing in demand as memory backup power supplies in recent years. On the other hand, the use of electric double-layer capacitors, which feature high power density, is attracting attention for applications requiring large capacity, such as power supplies for electric vehicles.
電気二重層キャパシタの活物質としては、主として活性炭などの炭素質材料が用い られる力 S、集電体に炭素質材料を保持させるために、 炭素質材料とバインダーとを混 合して用いるのが通常である。 従来の電気二重層キャパシタ電極用バインダーには、 耐熱性に優れるという観点からポリテトラフルォロエチレン (以下において 「P T F E」 という。) のようなフッ素含有ポリマーが用いられてきた。 また、 集電体表面に バインダーを含む炭素質材料を結着させる方法として、 バインダーの溶液、 またはラ テックスに炭素質材料を混合分散してスラリー (均一な塗料状) とし、 集電体上に塗 ェする方法がとられてきた。  As an active material of an electric double layer capacitor, a force S mainly using a carbonaceous material such as activated carbon, and a mixture of a carbonaceous material and a binder for holding the carbonaceous material in the current collector are preferably used. Normal. Conventionally, fluorine-containing polymers such as polytetrafluoroethylene (hereinafter referred to as “PTF E”) have been used as binders for electric double layer capacitor electrodes from the viewpoint of excellent heat resistance. In addition, as a method of binding a carbonaceous material containing a binder to the surface of the current collector, a slurry (uniform paint) is prepared by mixing and dispersing the carbonaceous material in a binder solution or a latex. The method of painting has been taken.
しかし、 バインダーとして P T F Eを使用した場合、 P T F Eに繊維化された部分 と繊維化されていない部分とが不均一に生じるために連続成形により均一な品質の 電極を得ることが困難であった。 また、集電体との結着性が十分ではなく、 バインダ 一の使用量が増えるので電極の内部抵抗が高くなるという第一の問題があった。一方、 スラリーを集電体上に塗工する方法では、スラリー粘度の固形分濃度依存性が高いと いう問題があった。 特に比表面積の大きい炭素質材料を用いる場合には、 固形分の濃 度が僅かに高くなっただけでスラリ一粘度が著しく上昇し、塗工性が悪ィ匕して平滑な 塗工面が得られなくなる。 そのため、 連続操業が難しく量産化が困難であるという第 二の問題もあった。 る方法を採用すれば、結着性に優れ、 内部抵抗の小さい電気二重層キャパシタ用電極 を製造することが可能であり、 かつ、従来の方法では困難であった量産が容易になる ことを見出し、 これらの知見に基づいて本発明を完成するに至った。 However, when PTFE was used as the binder, it was difficult to obtain an electrode of uniform quality by continuous molding, because the fiberized portion and the non-fibrous portion of PTFE were generated unevenly. Further, there is a first problem that the binding property with the current collector is not sufficient, and the amount of the binder used increases, so that the internal resistance of the electrode increases. On the other hand, the method of applying the slurry on the current collector has a problem that the slurry viscosity is highly dependent on the solid concentration. In particular, when a carbonaceous material having a large specific surface area is used, a slight increase in the solid content significantly increases the viscosity of the slurry, resulting in poor coatability and a smooth coated surface. Can not be. Therefore, there was the second problem that continuous operation was difficult and mass production was difficult. It has been found that the adoption of this method makes it possible to manufacture an electrode for an electric double layer capacitor having excellent binding properties and low internal resistance, and also facilitates mass production, which was difficult with conventional methods. The present invention has been completed based on these findings.
すなわち、 上記課題を解決するために、 本発明は、 炭素質材料およびフッ素非含有 ポリマーを含む混合物をスクリュー押し出し成形する工程を含む、電気二重層キャパ シタ用電極の製造方法を提供するものである。 なお、 本発明において 「炭素質材料」 は電極材料としての 「活物質」 および 「導電性付与剤」 を含む概念である。  That is, in order to solve the above problems, the present invention provides a method for producing an electrode for an electric double layer capacitor, which includes a step of screw-extruding a mixture containing a carbonaceous material and a fluorine-free polymer. . In the present invention, “carbonaceous material” is a concept including “active material” and “conductivity imparting agent” as an electrode material.
上記製造方法において、 フッ素非含有ポリマーは、 エラストマ一を含むポリマーで あることが好ましい。  In the above production method, the fluorine-free polymer is preferably a polymer containing an elastomer.
また、 フッ素非含有ポリマーは、 さらに分散剤を含むポリマーであることが好まし い。  Further, the fluorine-free polymer is preferably a polymer further containing a dispersant.
また、 フッ素非含有ポリマーは、 炭素質材料に対し 1〜2 0質量%含まれることが 好ましい。  The fluorine-free polymer is preferably contained in an amount of 1 to 20% by mass based on the carbonaceous material.
また、 混合物には、 さらに成形助剤が含まれることが好ましい。  Preferably, the mixture further contains a molding aid.
また、 成形助剤は、 炭素質材料に対し 0 . 1〜 1 0 0質量。 /。含まれることが好まし レ、。  The molding aid is 0.1 to 100 mass per carbonaceous material. /. Preferably included.
また、 エラストマ一は、 ジェン系エラストマ一または架橋型ァクリレート系エラス トマ一のいずれかであることが好ましい。  Further, the elastomer is preferably either a gen-based elastomer or a crosslinked acrylate-based elastomer.
また、 上記製造方法において、 混合物をスクリュー押し出し成形する工程に加え、 さらにプレス処理する工程を含むことが好ましい。  In addition, in the above-described production method, it is preferable that the method further includes a step of performing a press treatment in addition to the step of extruding the mixture by screw.
また、 上記製造方法において、 スクリュー押し出し成形された混合物を、 導電性接 着剤にて集電体に接着する工程をさらに含むことが好ましい。  Further, in the above-described production method, it is preferable that the method further includes a step of bonding the mixture extruded with the screw to a current collector with a conductive adhesive.
また、 スクリュー押し出し成形における押し出し温度は、 5〜1 0 0 °Cであること が好ましい。 図面の簡単な説明  Further, the extrusion temperature in the screw extrusion molding is preferably 5 to 100 ° C. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 電気二重層キャパシタ電極製造のフローを示す図である。  FIG. 1 is a diagram showing a flow of manufacturing an electric double layer capacitor electrode.
図 2は、 本発明の製造方法に使用する製造装置の一例を示す概略図である。  FIG. 2 is a schematic diagram illustrating an example of a manufacturing apparatus used in the manufacturing method of the present invention.
図 3は、 本発明の製造方法に使用する製造装置の他の一例を示す概略図である。 上記第一の問題点に対し、 エラストマ一をバインダーとして用いることにより、 電 極に柔軟性を付与しょうとする提案がされている。 例えば、 活性炭とラテックスとを 混合分散した混合物を乾燥、 粉砕、 造粒した後にプレスして電極を得る方法 (特開昭FIG. 3 is a schematic view showing another example of the manufacturing apparatus used in the manufacturing method of the present invention. With respect to the first problem described above, there has been a proposal to use an elastomer as a binder to give flexibility to the electrode. For example, a method in which a mixture obtained by mixing and dispersing activated carbon and latex is dried, pulverized, granulated, and then pressed to obtain an electrode (Japanese Unexamined Patent Publication No.
62-16506号公報参照) や、有機溶剤にエラストマ一からなるバインダーを溶 解し、 これに炭素質材料を混合分散し、溶剤を蒸発させた後にロールまたはプレスで 成形する方法 (特開昭 63— 104316号公報、 特開平 8— 250380号公報参 照) が提案されている。 また、 活性炭粉末とスチレン一ブタジエンゴムと水溶性増粘 剤とを混合して電極用塗料とし、集電体に塗工、 乾燥して電極を製造する方法も提案 されている (例えば、 特開平 11— 162794号公報、 特開 2000— 20836 8号公報参照)。 And a method in which a binder made of an elastomer is dissolved in an organic solvent, a carbonaceous material is mixed and dispersed in the binder, and the solvent is evaporated, and then molded by a roll or a press (Japanese Unexamined Patent Publication No. — Japanese Patent No. 104316 and Japanese Patent Application Laid-Open No. 8-250380) have been proposed. Also, a method has been proposed in which activated carbon powder, styrene-butadiene rubber, and a water-soluble thickener are mixed to prepare a coating for an electrode, and the resultant is applied to a current collector and dried to produce an electrode (for example, see Japanese Patent Application Laid-Open Publication No. 11-162794, JP-A-2000-208368).
一方、 上記第二の問題点に対して、 特開平 11一 283887号公報には、 炭素質 材料、ポリテトラフルォロエチレンおよび加工助剤からなる混合物をスクリユー押し 出し成形し、得られた押し出し物を圧延ロールでシート状に成形する方法が開示され ている。  On the other hand, with respect to the second problem, JP-A-11-283887 discloses that a mixture comprising a carbonaceous material, polytetrafluoroethylene and a processing aid is subjected to screw extrusion molding, and the obtained extrusion is obtained. There is disclosed a method of forming an object into a sheet shape with a rolling roll.
し力 し、 特開昭 62— 16506号公報、 特開昭 63— 104316号公報おょぴ 特開平 8— 250380号公報に開示された方法では、製造工程が複雑で連続化が困 難であった。 また、 特開平 1 1一 162794号公報および特開 2000— 2083 68号公報に開示されている方法では、前述したようなスラリー粘度の変動に起因す る塗工性の問題を解決することができず、 量産化が困難であるという問題があった。 さらに特開平 1 1— 283887号公報に開示された方法では、 PTFEをパインダ 一とした場合に電極の均一性、 結着性が劣る、 という問題が未だ解決されていない。 本発明は上述した従来の問題を解決すべくなされたものであり、電極に柔軟 1生があ り、 内部抵抗の小さい電気二重層キャパシタ用電極を、 工業的に有利に量産すること が可能な製造方法を提供することを課題とする。 発明の開示  However, the methods disclosed in JP-A-62-16506 and JP-A-63-104316 involve complicated production steps and difficulties in continuity. Was. Further, the method disclosed in Japanese Patent Application Laid-Open No. 11-162794 and Japanese Patent Application Laid-Open No. 2000-208368 can solve the problem of coatability due to the above-mentioned fluctuation in slurry viscosity. However, there was a problem that mass production was difficult. Further, the method disclosed in Japanese Patent Application Laid-Open No. 11-283887 has not yet solved the problem that the uniformity and binding properties of the electrode are poor when PTFE is used as the binder. The present invention has been made to solve the above-mentioned conventional problems, and it is possible to industrially mass-produce an electrode for an electric double layer capacitor having a flexible electrode and a small internal resistance. It is an object to provide a manufacturing method. Disclosure of the invention
本発明者らは、 バインダー材料の種類、 および、 集電体表面へのバインダーを含む 炭素質材料の結着方法について種々検討した。 その結果、 バインダーとしてフッ素非 含有ポリマーを使用して押出法により形成された電極シートを、集電体表面に接着す  The present inventors have studied various types of binder materials and methods of binding a carbonaceous material containing a binder to the current collector surface. As a result, the electrode sheet formed by extrusion using a fluorine-free polymer as a binder is adhered to the current collector surface.
2 押し出されて、 「電極シート」 IIIを形成する (工程 S 4 )。 ここに、 原材料群 A、 お よび原材料群 Bにおける「フッ素非含有ポリマー」はそれぞれ同一概念のものである。 したがって、例えば工程 S 1と工程 S 3において、 同一のフッ素非含有ポリマーを使 用しても良い。 これら原材料群 Aおよび Bを構成する各材料およぴそれらの混合比に ついては後に詳しく説明する。 Two It is extruded to form an “electrode sheet” III (step S 4). Here, the “fluorine-free polymer” in the raw material group A and the raw material group B have the same concept. Therefore, for example, the same fluorine-free polymer may be used in step S1 and step S3. The materials constituting the raw material groups A and B and their mixing ratios will be described later in detail.
一方、 必要に応じて (以下図 3参照)、 原材料群 A (工程 S 1と同一組成で良い。) を用いて、 それらを混練し (工程 S 5 )、 その後成形助剤にて希釈し (工程 S 6 )、 「導 電性接着剤」 I bを調製する。 工程 S 5における混練工程も工程 S 1の混練工程と同 じょうに図示されていない混練機により剪断を加えて、導電性付与剤を十分に均一に 分散する。 製造装置 2 0 0においては、 導電性接着剤 I bは溶剤等による希釈によつ て、 十分な流動性が与えられており、 接着剤浴 1 0 6に所定量貯留されている。 接着 剤浴 1 0 6にはロールセット 1 0 7の下側ロール下部が浸漬されており、 ロールの回 転により下側ロール表面に付着して巻き上げられた導電性接着剤 I bは、 ドクターブ レード 1 0 6 aにより適正量に搔き落とされて、ペイオフリール 1 0 3から卷き出さ れた集電体としてのアルミニウム箔 1 0 4の裏面側に塗布される (工程 S 7 )。 力べ して集電体上に上記導電性接着剤 I bが塗布され、 「接着剤つき集電体シ一ト」 I V bの調製が行われる。 なお、 以上の説明において、 原材料群 Aを用いて工程 S 5、 お よび S 6を経て導電性接着剤 I bを調製する工程は任意的な工程であり、場合により 省略し、ペイオフリール 3から巻き出された集電体シ一ト I V aをそのまま使用する 構成をとることもできる (図 2参照)。  On the other hand, if necessary (see Figure 3 below), they are kneaded using raw material group A (the same composition as in step S1) (step S5), and then diluted with a molding aid ( Step S6), “Conductive adhesive” Ib is prepared. In the kneading step in step S5 as well as in the kneading step in step S1, shearing is applied by a kneader (not shown) to sufficiently sufficiently disperse the conductivity imparting agent. In the production apparatus 200, the conductive adhesive Ib is given sufficient fluidity by dilution with a solvent or the like, and is stored in the adhesive bath 106 in a predetermined amount. The lower part of the lower roll of the roll set 107 is immersed in the adhesive bath 106, and the conductive adhesive Ib that has adhered to the lower roll surface and rolled up by the rotation of the roll is a doctor blade. It is dropped to an appropriate amount by 106a, and is applied to the back side of the aluminum foil 104 as a current collector wound out from the payoff reel 103 (step S7). The above conductive adhesive Ib is applied on the current collector by force, and the “current collector sheet with adhesive” IVb is prepared. In the above description, the step of preparing the conductive adhesive Ib through the steps S5 and S6 using the raw material group A is an optional step, and may be omitted as the case may be, and the payoff reel 3 The unwinding current collector sheet IVa may be used as it is (see Fig. 2).
このように調製された集電体シ一ト I V a、または接着剤つき集電体シ一ト I V b が次工程の工程 S 8において、 電極シート IIIと圧着される。 すなわち、 上下に重ね られた、 電極シート IIIと集電体シ一ト I V a、 または接着剤つき集電体シ一ト I V bとは、 第一冷却ロール 1 1と第二冷却ロール 1 2との間を通過することによって、 互いに一体に張り合わされるとともに、 冷却を受け、 あわせて所定のシート厚に圧延 される。 一体に張り合わされたシート (以下において 「中間品シート」 Vという。) はその後、 第二冷却ロール 1 2と第三冷却ロール 1 3との間を通過して、 さらに冷却 を受けつつ、 シート厚さを正確に調整される。  The current collector sheet IVa or the current collector sheet IVb with adhesive prepared in this manner is pressure-bonded to the electrode sheet III in the next step S8. That is, the electrode sheet III and the current collector sheet IVa, or the current collector sheet with adhesive IVb, which are stacked on top and bottom, are composed of the first cooling roll 11 and the second cooling roll 12 In this way, the sheets are bonded together, cooled, and rolled to a predetermined sheet thickness. The sheet laminated together (hereinafter referred to as “intermediate sheet” V) then passes between the second cooling roll 12 and the third cooling roll 13, and is further cooled to obtain a sheet thickness. Is precisely adjusted.
その後、 中間品シート Vは、 第三冷却ロール 1 3のさらに下流側に設けられた調整 発明を実施するための最良の形態 Then, the intermediate product sheet V is adjusted further downstream of the third cooling roll 13. BEST MODE FOR CARRYING OUT THE INVENTION
< 1 > 製造方法のフローと製造装置  <1> Manufacturing process flow and manufacturing equipment
本発明は、 炭素質材料 (活物質、 導電性付与剤)、 およびフッ素非含有ポリマーを 含む混合物をスクリユー押し出し成形する工程を含む、電気二重層キャパシタ用電極 の製造方法を提供するものである。本発明にかかるスクリユー押し出し成形工程によ り、 該成形品 (電極シート) を集電体上に押し出し、 両者を接着した後乾燥させ、 必 要に応じて圧延口ール等でプレス処理することにより電気二重層キャパシタ用電極 シートが製造される。  The present invention provides a method for producing an electrode for an electric double layer capacitor, which includes a step of screw-extruding a mixture containing a carbonaceous material (active material, conductivity imparting agent) and a fluorine-free polymer. In the screw extrusion forming step according to the present invention, the formed product (electrode sheet) is extruded onto a current collector, the two are adhered to each other, dried, and if necessary, pressed with a rolling nozzle or the like. As a result, an electrode sheet for an electric double layer capacitor is manufactured.
以下に製造方法のフローを示す図 1、並びに製造装置の概略を示す図 2お'ょぴ 3を 参照しつつ本発明にかかる電気二重層キャパシタ用電極の製造方法について説明す る。 なお、 製造装置に関する基本的構成は図 2に示されている装置 1 0 0であり、 図 3の装置 2 0 0には任意的構成が含まれている。 したがって製造装置に関し、 以下の 説明においては基本的に図 2を参照し、必要に応じて図 3も参照するものとする。 ま た、 図 3において図 2に示される部材等と同一のものは、 図 2における参照符号と同 一符号を付してその説明を省略する。  Hereinafter, a method for manufacturing an electrode for an electric double layer capacitor according to the present invention will be described with reference to FIG. 1 showing the flow of the manufacturing method and FIG. 2 and FIG. 3 showing the outline of the manufacturing apparatus. The basic configuration of the manufacturing apparatus is the apparatus 100 shown in FIG. 2, and the apparatus 200 of FIG. 3 includes an optional configuration. Therefore, regarding the manufacturing apparatus, the following description basically refers to FIG. 2 and also to FIG. 3 as necessary. In FIG. 3, the same members as those shown in FIG. 2 are denoted by the same reference numerals as those in FIG. 2, and the description thereof is omitted.
本発明の電気二重層キャパシタ用電極の製造方法においては、 まず、炭素質材料の 一種である導電性付与剤、 フッ素非含有ポリマー、 および必要に応じて添加される成 形助剤を含む原材料 (以下において 「原材料群 A」 という。) を混練機 9により混練 し (工程 S l )、 押出機 1 0により押し出して (工程 S 2 )、 「導電材ペレッ ト」 l a を得る。 工程 S 1の混練工程は、 混練機 9により十分な剪断を与え、 導電性付与剤を 均一に分散する工程である。 伹し、 下記の工程 S 3において、 活物質、 フッ素非含有 ポリマーおよび必要に応じて添加される成形助剤とともに、導電性付与剤をも添加し て混練することにより、 上記の工程 S 1および S 2を省略することができる。  In the method for producing an electrode for an electric double layer capacitor according to the present invention, first, a raw material containing a conductivity-imparting agent, which is a kind of carbonaceous material, a fluorine-free polymer, and a shaping aid added as necessary. Hereinafter, the “raw material group A” is kneaded by the kneader 9 (step S1) and extruded by the extruder 10 (step S2) to obtain the “conductive material pellet” la. The kneading step of step S1 is a step in which sufficient shear is applied by the kneader 9 to uniformly disperse the conductivity-imparting agent. However, in the following step S3, the conductive material is added and kneaded together with the active material, the fluorine-free polymer and the molding aid optionally added, and the mixture is kneaded. S 2 can be omitted.
次いで工程 S 3においては、 上記導電材ペレツト I aは、 活物質、 およびフッ素非 含有ポリマー、 並びに必要に応じて添加される成形助剤を含む原材料(以下において 「原材料群 B」 という。 但し、 図 2〜 3には示さない。) とともにスクリュー押出機 1に投入され、 均一に混練されて 「電極ペースト」 I Iとなる。 そして、 電極ペース ト I Iは、スクリュー押出機 1の先端に取り付けられたフィルムダイ 2でシート状に  Next, in step S3, the conductive material pellet Ia is a raw material (hereinafter referred to as “raw material group B”) containing an active material, a fluorine-free polymer, and a molding aid added as needed. It is not shown in Figures 2 and 3.) and is fed into the screw extruder 1 and uniformly kneaded to form the “electrode paste” II. The electrode paste I is formed into a sheet by a film die 2 attached to the tip of a screw extruder 1.
4 ロール 15 a、 1 5 bを通過する際にシートの厚さ、 張力がセンサーにより検知され る。 その結果が押出機 1、 第一冷却ロール 1 1、 第二冷却ロール 12、 第三冷却ロー ル 13にフィードバックされ、 適正なシート厚さ等を確保するために、 送り速度、 各 ロール間のギャップ、 圧力等が調整される。 Four When passing through the rolls 15a and 15b, the sensor detects the thickness and tension of the sheet. The result is fed back to the extruder 1, the first cooling roll 11, the second cooling roll 12, and the third cooling roll 13, and in order to secure the appropriate sheet thickness, etc., the feed speed and the gap between each roll , Pressure, etc. are adjusted.
調整ロール 15 a、 1 5 bを経た中間品シート Vは、 乾燥炉 16を通過して、 この 間に混練の際に加えられた成形助剤の除去が行われる。 次いで中間品シート Vは、 上 下に配置された一対のプレスロール 1 7 a、 17 bにより、 必要に応じてプレス処理 され(工程 S 10)、 さらに巻き取りロール 18に卷き取られる。 このようにして「キ ャパシタ用電極シート」 V Iが形成される。  The intermediate product sheet V that has passed through the adjusting rolls 15a and 15b passes through a drying furnace 16, during which the molding aid added during kneading is removed. Next, the intermediate product sheet V is pressed by a pair of press rolls 17a and 17b arranged above and below as necessary (step S10), and is further wound up by a wind-up roll 18. In this manner, the “capacitor electrode sheet” VI is formed.
< 2 > 原材料成分 <2> Raw material components
以下に、 原材料群 Aおよび Bを構成する炭素質材料、 フッ素非含有ポリマー、 およ ぴ成形助剤についてその成分配合量等について説明する。 なお、 前記 「炭素質材料」 は、 炭素質物質からなる 「活物質」 および 「導電性付与剤」 を含む概念であり、 それ ぞれを項分けして記述する。  Hereinafter, the compounding amounts of the carbonaceous materials, the fluorine-free polymers, and the molding aids constituting the raw material groups A and B will be described. The “carbonaceous material” is a concept including an “active material” and a “conductivity-imparting agent” made of a carbonaceous material, and each is described separately.
(1) 活物質  (1) Active material
電気二重層キャパシタにおいて電解質イオンが吸着される活物質としては、活性炭、 ポリアセン等からなり、 かつ比表面積が 3 以上、 好ましくは 200〜35 00m2/gである粉末が好ましい。 また、 カーボンファイバ、 カーボンウイスカ、 グラフアイト等の繊維、または粉末も比表面積が上記の範囲内であれば押出成形性を 損なわない範囲で使用することができる。活性炭としてはフエノール系、レーヨン系、 アクリル系、 ピッチ系、 またはヤシガラ系等を使用することができる。 また、 特開平 1 1-31 7333号公報ゃ特開 2002— 25867号公報などに記載される、黒 鉛類似の微結晶炭素を有しその微結晶炭素の相間距離が拡大された非多孔性炭素も 電極活物質として用いることができる。 活物質の粒子径が 0. l〜100 /im、 好ま しくは 1〜20 μπιであると、 キャパシタ用電極の薄膜化が容易で、容量密度も高く できるので好ましい。 The active material to which electrolyte ions are adsorbed in the electric double layer capacitor is made of activated carbon, polyacene, etc. and has a specific surface area of 3 As described above, a powder having a weight of 200 to 3500 m 2 / g is preferable. Fibers such as carbon fibers, carbon whiskers, and graphite, or powders can also be used as long as the specific surface area is within the above range, as long as the extrudability is not impaired. As the activated carbon, phenol-based, rayon-based, acrylic-based, pitch-based, or coconut husk-based can be used. Further, non-porous carbon having microcrystalline carbon similar to graphite and having an increased inter-phase distance between the microcrystalline carbons described in Japanese Patent Application Laid-Open No. 11-31733 / 2002-25867, etc. Can also be used as an electrode active material. When the particle diameter of the active material is 0.1 to 100 / im, preferably 1 to 20 μπι, it is preferable because the capacitor electrode can be easily formed into a thin film and the capacity density can be increased.
(2) 導電性付与剤  (2) Conductivity imparting agent
導電†生付与剤としては、 アセチレンブラック、 ケチェンブラック、 カーボンブラッ ク等の導電性カーボンが挙げられ、 上記活物質と混合して使用する。 これら導電性付 与剤を予め均一に分散した後、 上記活物質と混合して使用することが好ましい。 この ように導電性付与剤を併用することにより、前記活物質同士の電気的接触が一段と向 上し、 電気二重層キャパシタの内部抵抗が低くなり、 かつ容量密度を高くすることが できる。 活物質と導電性付与剤の配合比率は、 活物質 1 0 0質量部に対し、 導電性付 与剤が 0 . 1〜 2 0質量部、 好ましくは 2〜 1 0質量部である。 Acetylene black, Ketjen black, carbon black And conductive carbon such as carbon black. It is preferable that these conductive additives are uniformly dispersed in advance, and then mixed with the above-mentioned active material before use. By using the conductivity-imparting agent in this way, the electrical contact between the active materials is further improved, the internal resistance of the electric double layer capacitor is reduced, and the capacitance density can be increased. The compounding ratio of the active material and the conductivity-imparting agent is 0.1 to 20 parts by mass, and preferably 2 to 10 parts by mass, per 100 parts by mass of the active material.
( 3 ) フッ素非含有ポリマー  (3) Fluorine-free polymer
本発明で用いるフッ素非含有ポリマーは特に限定されず、 例えば、 共役ジェン類、 エチレン性不飽和カルボン酸エステル類、 エチレン性不飽和カルボン酸類、 芳香族ビ ニル化合物、 ひーォレフイン類、 ( , —不飽和二トリルイ匕合物などの単量体の単独 重合体または共重合体が挙げられる。 また、 これらは多官能エチレン性不飽和単量体 を共重合させて架橋ポリマーとしたものであってもよレ、。 中でも、 ガラス転移温度が 5 0 °C以下、 好ましくは一 5 0 °C〜0 °Cのエラストマ一が好ましく、 ブタジエン、 ィ ソプレンなどの共役ジェン由来の単量体単位を主成分とするジェン系エラストマ 一;架橋構造を有し、 アクリル酸エステルおよび Zまたはメタクリル酸エステル由来 の単量体単位を主成分とする架橋型ァクリレート系エラストマ一;が特に好ましく用 いられる。  The fluorine-free polymer used in the present invention is not particularly limited, and examples thereof include a conjugated diene, an ethylenically unsaturated carboxylic acid ester, an ethylenically unsaturated carboxylic acid, an aromatic vinyl compound, a thiolefin, and a Examples include a homopolymer or a copolymer of a monomer such as a saturated nitrile conjugate, etc. Further, even when these are copolymerized polyfunctional ethylenically unsaturated monomers to form a crosslinked polymer. Among them, elastomers having a glass transition temperature of 50 ° C. or lower, preferably 150 ° C. to 0 ° C. are preferable, and monomer units derived from conjugated gens such as butadiene and isoprene are used as main components. A cross-linked acrylate-based elastomer having a cross-linked structure and containing as a main component a monomer unit derived from an acrylate ester and Z or a methacrylate ester Ma one; is needed use particularly preferred.
前記ジェン系エラストマ一としては、 例えば、 ポリブタジエン、 カルボキシ変性さ れていてもよいスチレン ブタジエン系共重合体、架橋構造を有するァクリロ二トリ ル Zブタジエン系共重合体などが挙げられる。 また、 前記架橋型ァクリレート系エラ ストマ一としては、 例えば、 アクリル酸 2—ェチルへキシル /メタクリル酸/ァクリ ロニトリル/エチレングリコールジメタクリレート共重合体、 アクリル酸 2—ェチル へキシル メタクリル酸/メタクリロニトリル Zジエチレングリコールジメタクリ レート共重合体、ァクリル酸プチルノアクリロニトリル/ジエチレングリコールジメ タクリレート共重合体、アタリル酸ブチル /ァクリル酸/トリメチロールプ口パント リメタクリレート共重合体などが挙げられる。  Examples of the gen-based elastomer include polybutadiene, carboxy-modified styrene-butadiene-based copolymer, and acrylonitrile Z-butadiene-based copolymer having a crosslinked structure. Examples of the cross-linked acrylate-based elastomer include 2-ethylhexyl acrylate / methacrylic acid / acrylonitrile / ethylene glycol dimethacrylate copolymer, 2-ethylhexyl acrylate methacrylic acid / methacrylonitrile. Examples include Z-diethylene glycol dimethacrylate copolymer, butyl acrylonitrile acrylate / diethylene glycol dimethacrylate copolymer, and butyl acrylate / acrylic acid / trimethylol pantolimethacrylate copolymer.
本発明の製造方法において、 フッ素非含有ポリマーは、 炭素質材料 (前記活物質お よび導電性付与剤の合計量) に対して乾燥質量基準で 1〜2 0質量%、 さらには 1〜 1 0質量%含まれるように配合されることが好ましい。 フッ素非含有ポリマーは、 炭 素質材料を集電体に結着させるとともに、電極シート ΠΙの形状を保つパインダ一と して電極中に含まれるものである。 フッ素非含有ポリマーを 1質量%以上とすること で、 電極の強度を大きくすることができる。 また、 2 0質量%以下とすることで、 電 極の内部抵抗を低減することができる。 In the production method of the present invention, the fluorine-free polymer is used in an amount of 1 to 20% by mass, more preferably 1 to 10% by mass on a dry mass basis relative to the carbonaceous material (total amount of the active material and the conductivity-imparting agent). It is preferable to be blended so as to be contained by mass%. Fluorine-free polymer is charcoal The base material is bound to the current collector and is included in the electrode as a binder for maintaining the shape of the electrode sheet. By setting the fluorine-free polymer to 1% by mass or more, the strength of the electrode can be increased. When the content is 20% by mass or less, the internal resistance of the electrode can be reduced.
前記フッ素非含有ポリマーのうち、 水または有機溶媒に可溶なポリマーや、 熱によ り溶融するポリマーは、 単独でも使用できるが、 前記エラストマ一と併用すると分散 剤としての効果も示すので好ましい。分散剤としての効果を示すフッ素非含有ポリマ 一 (以下、 単に 「分散剤」 という。) を用いると、 電極ペースト I Iに流動性および 粘性を付与することができる。  Among the fluorine-free polymers, a polymer soluble in water or an organic solvent or a polymer melted by heat can be used alone, but is preferably used in combination with the elastomer because it also has an effect as a dispersant. The use of a fluorine-free polymer that exhibits an effect as a dispersant (hereinafter, simply referred to as “dispersant”) can impart fluidity and viscosity to the electrode paste II.
水溶性分散剤としてのフッ素非含有ポリマーとしては、 例えば、 カルボキシメチル セノレロース (CMC )、 メチノレセノレロース、 ェチノレセノレロースなどのセノレロース類、 ポリビニルアルコール、ポリビュルメチルエーテル、 あるいはポリアクリル酸(塩)、 酸化スターチ、 リン酸ィヒスターチ、 カゼイン、 各種変性デンプンなどが挙げられる。 一方、 有機溶媒に可溶な分散剤としてのフッ素非含有ポリマーには、  Examples of the fluorine-free polymer as a water-soluble dispersing agent include, for example, carboxymethyl cenorellose (CMC), methinoresenolose, ethnoresenolose and other senoreloses, polyvinyl alcohol, polybutyl methyl ether, or polyacrylic acid ( Salt, oxidized starch, phosphoric acid starch, casein, and various modified starches. On the other hand, fluorine-free polymers as dispersants soluble in organic solvents include:
1 . 溶剤に溶解しうること、  1. Soluble in solvent,
2 . キャパシタで用いられる電解液に不溶であること、  2. Insoluble in the electrolyte used in the capacitor;
3 . キャパシタで用いられる電角军液に対して電気化学的に安定であること、 の 3点が要求され、 これらの要求を満たすものの例として、  3. It is required to be electrochemically stable with respect to the electrolysis solution used for the capacitor.
ポリアクリロニトリル、 アクリロニトリル/アクリル酸エステル共重合体、 アタリ口 二トリル/メタタリル酸エステル共重合体、アタリロニトリル/ブタジェン共重合体 (N B R) およびその水素添加物などのァクリロニトリル系ポリマー;エチレン Zァ クリル酸エステル共重合体、 エチレン/メタクリル酸エステル共重合体、 エチレン アクリル酸エステル共重合体にラジカル重合性単量体をグラフトさせたグラフト重 合体などのォレフィン系ポリマー;などが挙げられる。 Acrylonitrile-based polymers such as polyacrylonitrile, acrylonitrile / acrylic acid ester copolymer, Atari-mouth nitrile / methacrylic acid ester copolymer, acrylonitrile / butadiene copolymer (NBR) and hydrogenated products thereof; ethylene Zacril And olefin polymers such as acid ester copolymers, ethylene / methacrylic acid ester copolymers, and graft polymers obtained by grafting a radical polymerizable monomer onto an ethylene acrylate ester copolymer.
また、 熱により溶融する分散剤としてのフッ素非含有ポリマーとしては、 ポリェチ レン、 ポリプロピレンなどのポリオレフイン;ァクリル酸エステル/スチレン共重合 体、 メタクリル酸エステル Zスチレン共重合体などのスチレン系共重合体;等が挙げ られる。  Examples of the fluorine-free polymer as a dispersant which is melted by heat include polyolefins such as polyethylene and polypropylene; styrene copolymers such as acrylate / styrene copolymer and methacrylate Z-styrene copolymer; And the like.
本発明の製造方法において分散剤としてのフッ素非含有ポリマーは、 炭素質材料 (前記活物質および導電性付与剤の合計量) に対して乾燥質量基準で 1〜 5質量%、 さらには 1〜 3質量%含まれるように配合されることが好ましい。分散剤としてのフ ッ素非含有ポリマーの添カ卩は、 上記したように、 電極ペースト I Iに流動性と粘性と を付与する目的で力 Πえられるものであるので、分散剤としてのフッ素非含有ポリマー を 1質量%以上とすることで、 電極ペーストに十分な粘性を付与することができ、 押 出機から押し出される電極シート ΙΠの成形性を良好なものとすることができる。 ま た、 5質量%以下とすることで、 電極の内部抵抗を低減することができる。 In the production method of the present invention, the fluorine-free polymer as a dispersant is a carbonaceous material. It is preferable that it is contained so as to be contained in an amount of 1 to 5% by mass, more preferably 1 to 3% by mass on a dry mass basis with respect to (the total amount of the active material and the conductivity imparting agent). As described above, the addition of a fluorine-free polymer as a dispersant can be used for imparting fluidity and viscosity to the electrode paste II. When the content of the polymer is 1% by mass or more, sufficient viscosity can be imparted to the electrode paste, and the moldability of the electrode sheet ΙΠ extruded from the extruder can be improved. Further, when the content is 5% by mass or less, the internal resistance of the electrode can be reduced.
( 4 ) 成形助剤  (4) Molding aid
本発明における成形助剤は、 電極ペースト I Iを押出機から押し出して、 電極シー ト IIIを形成する際の成形性を向上する目的で加えるものである。 具体的には、 水; ァセトン、 ェチルメチルケトン、 メチルイソブチルケトン等のケトン類;灯油、 ナフ サ等の炭化水素類; N—メチルピロリ ドンなどのアミ ド類;ステアリン酸、 パルミチ ン酸、 ミリスチン酸、 ォレイン酸、 ラウリン酸等の脂肪酸;ステアリン酸アミ ド、 パ ルミチン酸アミ ド等の脂肪酸アミ ド類;あるいは、 メタノール、 エタノール、 プロパ ノール、 ブタノーノレ、 エチレングリコーノレ、 プロピレングリコーノレ、 ジプロピレング リコール、 グリセリン等のアルコール類;の他、 ポリオキシエチレンアルキルフエ二 ルエーテル、ポリォキシエチレン高級アルコールエーテルなどのノニオン界面活性剤 等が挙げられる。これら成形助剤は、単独で使用しても、 2種以上を併用してもよレ、。 これら成形助剤は、 使用するフッ素非含有ポリマーの種類や組み合わせによって、 必 要に応じて用いることができ、前記エラストマ一の分散媒ゃ分散剤の溶媒として用い てもよい。  The molding aid in the present invention is added for the purpose of improving the moldability in forming the electrode sheet III by extruding the electrode paste II from an extruder. Specifically, water; ketones such as acetone, ethyl methyl ketone, and methyl isobutyl ketone; hydrocarbons such as kerosene and naphtha; amides such as N-methylpyrrolidone; stearic acid, palmitic acid, and myristin Fatty acids such as acid, oleic acid and lauric acid; fatty acid amides such as stearic acid amide and palmitic acid amide; or methanol, ethanol, propanol, butanol, ethylene glycolone, propylene glycolone, dipropylene glycol, Other examples include alcohols such as glycerin; and nonionic surfactants such as polyoxyethylene alkyl phenyl ether and polyoxyethylene higher alcohol ether. These molding aids may be used alone or in combination of two or more. These molding aids can be used as needed depending on the type and combination of the fluorine-free polymer to be used, and may be used as a solvent for the dispersion medium and the dispersant of the elastomer.
特に前記エラストマ一は水または水以外の溶剤に分散させて用いるのが好ましく、 環境面に配慮すると水分散させたエラストマ一を使用することが特に好ましい。エラ ストマ一は水または水以外の溶剤に分散した粒子として用いると、炭素材料表面に均 一に付着させることが可能なので使用量を減らすことができる。  In particular, the above-mentioned elastomer is preferably used by dispersing it in water or a solvent other than water, and it is particularly preferable to use a water-dispersed elastomer in consideration of the environment. When the elastomer is used as particles dispersed in water or a solvent other than water, the amount of the elastomer can be reduced because it can be uniformly attached to the surface of the carbon material.
本発明の製造方法において成形助剤は、炭素質材料(前記活物質および導電性付与 剤の合計量) に対して 0 . 1〜1 0 0質量%、 さらには 5〜 5 0質量%含まれるよう に配合されることが好ましい。 成形助剤の添加量を 0 . 1質量%以上とすることで、 十分に成形改良の効果を得ることができる。 また、 1 0 0質量%以下とすることで、 押し出し圧力を上げることができ、電極ペースト I Iが逆流して押出機ホッパーから 流出する事態を、 効果的に防ぐことができる。 In the production method of the present invention, the molding aid is contained in an amount of 0.1 to 100% by mass, and more preferably 5 to 50% by mass, based on the carbonaceous material (total amount of the active material and the conductivity-imparting agent). It is preferable to mix them as follows. By setting the amount of the molding aid to 0.1% by mass or more, the effect of improving the molding can be sufficiently obtained. Also, by setting the content to 100% by mass or less, The extrusion pressure can be increased, and it is possible to effectively prevent the electrode paste II from flowing backward and flowing out of the extruder hopper.
< 3 > スクリュー押出機 <3> Screw extruder
本発明の製造方法では、スクリユー押出機 1を使用してスクリユー押出成形を行う。 スクリュー押出機 1を使用することで、 上記の各原材料成分が均一に混練され、均一 な電極シートを連続的に成形することができる。 スクリュー押出機 1は、 押出機のバ レル内において回転する環状の溝を有するスクリユーを有し、活物質、導電性付与剤、 フッ素非含有ポリマー、並びに必要に応じて成形助剤を含む混合物をスクリユーの回 転によってバレル內を移動させながら混練して電極ペースト I Iとし、それを押し出 して電極シート IIIとするものである。電極シート IIIの厚みは通常 1 0〜 5 0 0 0 μ πι、好ましくは 2 0〜 1 0 0 0 μ πιである。 押し出された電極シート IIIの厚みが 大きい場合は、後述のプレス処理により電気二重層キャパシタ用電極として好適な厚 みになるよう圧延することもできる。 本宪明の製造方法では、 樹脂用、 ゴム用、 建材 用の各スクリュー押出機のいずれも使用することができる。 また、 一軸押出機、 多軸 押出機のいずれも使用することができる。 押出機のバレルの長さ (L) と内径 (D) との比 L/Dは、 通常、 1 0〜 5 0である。 スクリュー形状としては、 フルフライ ト スクリュー、 ノ リアブルピッチスクリュー、 ミキシングピッチ付きスクリュー等種々 の形状を採用できるが、押し出し圧力の調整が容易なフルフライトスクリューを使用 することが特に好ましい。  In the production method of the present invention, the screw extruder 1 is used to perform screw extrusion. By using the screw extruder 1, each of the above-mentioned raw material components is uniformly kneaded, and a uniform electrode sheet can be continuously formed. The screw extruder 1 has a screw having an annular groove that rotates in the barrel of the extruder, and a mixture containing an active material, a conductivity-imparting agent, a fluorine-free polymer, and, if necessary, a molding aid. The kneading is performed while rotating barrel に よ っ て by rotating the screw to form electrode paste II, which is extruded to form electrode sheet III. The thickness of the electrode sheet III is usually from 10 to 500 μπι, preferably from 20 to 100 μπι. When the thickness of the extruded electrode sheet III is large, it can be rolled to a thickness suitable for an electrode for an electric double layer capacitor by a pressing process described later. In the production method of the present invention, any of screw extruders for resin, rubber, and building materials can be used. Further, either a single screw extruder or a multi-screw extruder can be used. The ratio L / D between the length (L) and the inner diameter (D) of the extruder barrel is usually 10-50. As the screw shape, various shapes such as a full-flight screw, a noble pitch screw, and a screw with a mixing pitch can be adopted, but it is particularly preferable to use a full-flight screw whose extrusion pressure can be easily adjusted.
ダイとしては、 ストレートマニホルドダイ、 フィッシュテーノレダイ、 コートハンガ 一ダイ等のフィルムダイが使用される。  As the die, a film die such as a straight manifold die, a fish-tail die, and a coat hanger die is used.
スクリュー押し出し成形における押し出し温度は 5〜 1 0 0 °Cが好ましく、特に 3 0〜 8 0 °Cが好ましい。 押し出し温度を 5 °C以上とすることで、押し出し物が脆くな ることを効果的に防ぐことができ、形状を容易に保持することができる。 また、 押し 出し温度を 1 0 o °c以下とすることで、加工助剤の蒸発を防ぎ、 押し出しが困難とな る事態を効果的に防ぐことができる。  The extrusion temperature in the screw extrusion molding is preferably from 5 to 100 ° C, particularly preferably from 30 to 80 ° C. By setting the extrusion temperature to 5 ° C or more, the extruded material can be effectively prevented from becoming brittle, and the shape can be easily maintained. In addition, by setting the extrusion temperature to 10 ° C. or less, it is possible to prevent the processing aid from evaporating and to effectively prevent a situation in which extrusion becomes difficult.
スクリュー押し出し成形における押し出し圧力は、 0 . 2〜 1 O MP aが好ましく、 さらに好ましくは 0 . 3〜 5 MP aである。  The extrusion pressure in screw extrusion molding is preferably from 0.2 to 1 OMPa, more preferably from 0.3 to 5 MPa.
0 < 4 > 集電体と導電性接着剤 0 <4> Current collector and conductive adhesive
( 1 ) 集電体  (1) Current collector
電極ペースト I Iは前記スクリユー押出機 1により電極シート IIIに成形されて集 電体上に押し出され、 乾燥後、 必要に応じてプレス処理されて、 電気二重層キャパシ タ用電極 V Iが形成される。集電体としては金属箔、特にアルミニウム箔が好ましい。 アルミ-ゥム箔は、 口ール状の圧延箔コィルから連続的に引き出して使用できる。  The electrode paste II is formed into an electrode sheet III by the screw extruder 1, extruded onto a current collector, dried, and optionally pressed to form an electrode VI for an electric double layer capacitor. The current collector is preferably a metal foil, particularly an aluminum foil. The aluminum foil can be continuously drawn from the rolled foil coil and used.
( 2 ) 導電性接着剤  (2) Conductive adhesive
集電体には予め導電性接着剤 I bを塗布しておくことで電極シート IIIと集電体間 の内部抵抗を小さくすることが容易となる。 導電性接着剤 I bは、 導電性付与剤を、 前記のフッ素非含有ポリマーを用いて混練して得ることができる。具体的にはァセチ レンブラック、 ケチェンブラック、 カーボンブラック等の導電性付与剤 1 0 0質量部 に対して前記のエラストマ一を乾燥質量基準で 5〜 2 0質量部、分散剤としてのフッ 素非含有ポリマーを乾燥質量基準で 1〜 5質量部加えて、剪断を加えることができる 混練機を用いて調製することができる。  By applying the conductive adhesive Ib to the current collector in advance, it becomes easy to reduce the internal resistance between the electrode sheet III and the current collector. The conductive adhesive Ib can be obtained by kneading a conductivity-imparting agent using the above-mentioned fluorine-free polymer. Specifically, the elastomer is 5 to 20 parts by mass on a dry mass basis with respect to 100 parts by mass of a conductivity-imparting agent such as acetylene black, Ketjen black, and carbon black, and fluorine as a dispersant is used. The non-containing polymer can be prepared by adding 1 to 5 parts by mass on a dry mass basis and using a kneader capable of applying shearing.
上記エラストマ一の使用量を 5質量部以上とすることで、電極シート ΠΙと集電体 とを十分に接着することができる。 また、 上記エラストマ一の使用量を 2 0質量部以 下とすることで、 導電性付与剤を十分に分散させ、 内部抵抗を/ J、さくできる。 また、 上記分散剤としてのフッ素非含有ポリマーの使用量を 1質量部以上とすることで、導 電性材料を十分に分散させ、 内部抵抗を小さくできる。 また、 分散剤としてのフッ素 非含有ポリマーの使用量を 5質量部以下とすることで、該導電性付与剤が分散剤とし てのフッ素非含有ポリマーによつて被覆されることによる内部抵抗の増加を防ぐこ とができる。  When the amount of the elastomer used is 5 parts by mass or more, the electrode sheet 電極 and the current collector can be sufficiently bonded. When the amount of the above-mentioned elastomer is not more than 20 parts by mass, the conductivity-imparting agent can be sufficiently dispersed, and the internal resistance can be reduced by / J. When the amount of the fluorine-free polymer used as the dispersant is 1 part by mass or more, the conductive material can be sufficiently dispersed and the internal resistance can be reduced. In addition, when the amount of the fluorine-free polymer used as the dispersant is set to 5 parts by mass or less, the internal resistance increases due to the fact that the conductivity-imparting agent is coated with the fluorine-free polymer as the dispersant. Can be prevented.
導電性接着剤 I bの製造に用いる混練機としては、 ボールミル、 サンドミル、顔料 分散機、 らい潰機、 超音波分散機、 ホモジナイザー、 プラネタリーミキサーなどを用 いることができる。  As a kneader used for producing the conductive adhesive Ib, a ball mill, a sand mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, or the like can be used.
導電性接着剤 I bの集電体への塗布方法も特に制限されない。 例えば、 ドクタープ レード法、 ディップ法、 リパースロール法、 ダイレクトロール法、 グラビア法、 エタ ストルージョン法、 ハケ塗りなどによって塗布される。 塗布する量も特に制限されな  The method of applying the conductive adhesive Ib to the current collector is not particularly limited. For example, it is applied by a doctor blade method, a dip method, a rippers roll method, a direct roll method, a gravure method, an eta-strusion method, a brush coating, or the like. The amount to be applied is not particularly limited.
1 いが、 乾燥した後に形成される導電層の厚さが通常 0 . 5〜1 0 μ ιη、 好ましくは 2 〜7 μ πιとなるように調整される。 One However, the thickness of the conductive layer formed after drying is adjusted to be usually 0.5 to 10 μιη, preferably 2 to 7 μπι.
< 5 > 乾燥とプレス処理 <5> Drying and pressing
乾燥炉 1 6の形式は特に制限されず、 例えば温風、 熱風、 低湿風による乾燥、 (遠) 赤外線や電子線などの照射による乾燥が挙げられる。 乾燥条件は、応力集が起こって 電極層に亀裂が入ったり、電極層が集電体から剥離したりしない程度の速度範囲の中 で、 できるだけ早く成形助剤が除去できるように調整する。  The type of the drying oven 16 is not particularly limited, and includes, for example, drying by warm air, hot air, low-humidity air, and drying by irradiation with (far) infrared rays or electron beams. The drying conditions are adjusted so that the molding aid can be removed as soon as possible within a speed range where stress collection does not occur and the electrode layer does not crack or the electrode layer does not peel from the current collector.
さらに、 乾燥後の集電体をプレス処理することにより電極を安定させてもよい。 プ レス処理方法は、 特に限定されないが、 金型プレスやロールプレスなどの方法を使用 することができる。 これらの方法の中でも、 量産化に適したロールプレスが好ましく 採用される。  Further, the electrode may be stabilized by pressing the dried current collector. The press treatment method is not particularly limited, but a method such as a die press or a roll press can be used. Among these methods, a roll press suitable for mass production is preferably employed.
(実施例) (Example)
以下に、 実施例を挙げて本発明を説明するが、本発明はこれに限定されるものでは ない。 なお、 本実施例における部および%は、 特に断りがない限り質量基準である。 ぐ測定方法 >  Hereinafter, the present invention will be described with reference to Examples, but the present invention is not limited thereto. In the examples, parts and% are based on mass unless otherwise specified. Measuring method>
( 1 ) 電極密度  (1) Electrode density
キャパシタ用電極シートを 5 c m X 5 c mに切り出してその質量および厚さを測 定し、集電体の質量および厚さをそれぞれ差し引いて算出される電極層の密度 (g / c m 3) として求めた。 An electrode sheet for a capacitor cut into 5 cm X 5 cm to measure its mass and thickness, determined the current collector weight and thickness as the density of the electrode layer is calculated by subtracting respectively (g / cm 3) Was.
( 2 ) 電極のピール強度  (2) Peel strength of electrode
キャパシタ用電極シートを長さ 1 0 0 mm、幅 2 5 mmの長方形に切り出して試験 片とし、 電極層面を上にして固定する。 試験片の電極層表面にセロハンテープを貼り 付けた後、セロハンテープの一端を垂直方向に引っ張り速度 5 O mmZ分で引っ張つ て剥がしたときの応力を測定した。 測定を 3回行い、 その平均値を求めてこれをピー ル強度とした。 ピール強度が大きいほど電極層の集電体への結着力が大きいことを示 す。  Cut a capacitor electrode sheet into a rectangle of 100 mm in length and 25 mm in width to form a test piece, and fix it with the electrode layer side up. After a cellophane tape was attached to the surface of the electrode layer of the test piece, the stress was measured when one end of the cellophane tape was peeled off by pulling it vertically at a speed of 5 O mmZ. The measurement was performed three times, the average value was determined, and this was used as the peel strength. The higher the peel strength, the higher the binding force of the electrode layer to the current collector.
( 3 ) 電気二重層キャパシタの静電容量およぴ内部抵抗  (3) Capacitance and internal resistance of electric double layer capacitor
2 電気二重層キャパシタについて、 25°Cにおいて、 10mAの定電流で 2. 7Vま で 10分間充電を行い、 その後 0Vまで、 1mAの一定電流で放電を行った。 得られ た充放電曲線より静電容量を求め、電極の質量から集電体の質量を引いて得られる電 極層の質量で除して、 電極層の単位質量あたりの静電容量を求めた。 また、 内部抵抗 は、充放電曲線より社団法人電子情報技術産業協会が定める規格 RC— 2377の計 算方法に従って算出した。 く導電性接着剤 I bの作製〉 Two The electric double layer capacitor was charged at a constant current of 10 mA to 2.7 V for 10 minutes at 25 ° C, and then discharged at a constant current of 1 mA to 0 V. The capacitance per unit mass of the electrode layer was obtained by calculating the capacitance from the obtained charge / discharge curve, dividing the mass of the electrode by the mass of the electrode layer obtained by subtracting the mass of the current collector from the mass of the electrode. . The internal resistance was calculated from the charge / discharge curve according to the calculation method of the standard RC-2377 specified by the Japan Electronics and Information Technology Industries Association. Preparation of conductive adhesive Ib>
アセチレンブラック 100部、 10 %カルボキシメチルセルロース水溶液 (セロゲ ン 7 H;第一工業製薬製) 30部、 40 %カルボキシ変性スチレンーブタジェン共重 合体ラテックス (BM—400B ; 日本ゼオン製) 30部、 軟水 10. 2部を、 ニー ダーを用いて混練した後、 軟水を用いて希釈した。 これにより、 光散乱法で測定した アセチレンブラックの平均粒子径が、 0. 5 mの固形分濃度 30 %の導電性接着剤 I bを得た。 く導電材ペレツト I aの調製 > Acetylene black 100 parts, 10% carboxymethylcellulose aqueous solution (Cellogen 7H; manufactured by Daiichi Kogyo Pharmaceutical) 30 parts, 40% carboxy-modified styrene-butadiene copolymer latex (BM-400B; Nippon Zeon) 30 parts, soft water 10. Two parts were kneaded using a kneader, and then diluted using soft water. Thus, a conductive adhesive Ib having an average particle size of acetylene black of 0.5 m and a solid concentration of 30% as measured by a light scattering method was obtained. Preparation of Ku conductive material Peretsuto I a>
アセチレンブラック 100部、 10%カルボキシメチルセルロース水溶液(セロゲ ン 7H;第一工業製薬製) 30部、 40%カルボキシ変性スチレン一ブタジエン共重 合体ラテックス (BM— 400B; 日本ゼオン製) 30部、 軟水 10. 2部を、 ニー ダーを用いて混練したものを押出機で押し出し、 1 mm φ、 長さ 2 mmの固形分 7 2%の導電材ペレツト I aを得た。 実施例 1  Acetylene black 100 parts, 10% carboxymethylcellulose aqueous solution (Cellogen 7H; Daiichi Kogyo Pharmaceutical) 30 parts, 40% carboxy-modified styrene-butadiene copolymer latex (BM-400B; Nippon Zeon) 30 parts, soft water 10. Two parts were kneaded using a kneader and extruded using an extruder to obtain a conductive material pellet Ia having a solid content of 72% with a diameter of 1 mm and a length of 2 mm. Example 1
比表面積 1 500 m2/ g、 平均粒径 10 μ mの高純度活性炭粉末 83部、 導電材 ペレット I a 13. 9部、 ジェン系エラストマ一としてガラス転移温度が一 5°Cで固 形分濃度 40%のカルボキシ変性スチレン一ブタジエン共重合体ラテックス (BM— 400B) 12. 5部、 分散剤として 10%カルボキシメチルセルロース水溶液 (セ ロゲン 7 H;第一工業製薬製) 20部、 および成形助剤としてエチレングリコール 1 部、 軟水 37. 9部をニーダーを用いて混練した。 この混練物を、 スクリュー径 40 83 parts of high-purity activated carbon powder with a specific surface area of 1,500 m 2 / g and an average particle size of 10 μm, 13.9 parts of conductive material pellets Ia, solid matter with a glass transition temperature of 15 ° C as a gen-based elastomer 12.5 parts of a 40% carboxy-modified styrene-butadiene copolymer latex (BM-400B), 20 parts of a 10% carboxymethylcellulose aqueous solution (cellogen 7H; manufactured by Daiichi Kogyo Seiyaku) as a dispersant, and a molding aid Of ethylene glycol and 37.9 parts of soft water were kneaded using a kneader. This kneaded material is screwed with a screw diameter of 40
3 mmでバレルの長さ (L) と内径 (D) との比 LZDが 22である二軸押出機に毎分 20 gの速度で供給し、 幅 4 Omm、 厚さ 150 μιηのダイから、 乾燥後厚さが 5 μ mになるように導電性接着剤 I bを予め塗布した集電体上に、シート状に押し出した。 押し出し温度は 40°C、 押し出し圧力は IMP a、 圧縮比は 2、 スクリュー回転数は 20 r p mであった。 上記シートを 150 °Cで 1時間乾燥した後、 ロールプレス機を 用いてプレス処理を行い、 電極密度 0. 65 g/c c、 電極厚さ 130 /imのキャパ シタ用電極シートを得た。 Three Feeding at a rate of 20 g / min to a twin screw extruder with a barrel length (L) and inner diameter (D) ratio of 22 mm in LZD and drying from a 4 Omm wide, 150 μιη thick die The sheet was extruded on a current collector to which a conductive adhesive Ib had been previously applied so that the thickness became 5 μm. The extrusion temperature was 40 ° C, the extrusion pressure was IMPa, the compression ratio was 2, and the screw rotation speed was 20 rpm. After drying the above-mentioned sheet at 150 ° C for 1 hour, a press treatment was performed using a roll press machine to obtain a capacitor electrode sheet having an electrode density of 0.65 g / cc and an electrode thickness of 130 / im.
また、 上記押し出し成形を 20分間連続して行い、長尺状のキャパシタ用電極シー トを安定して形成することができることを確認した。  In addition, it was confirmed that the extrusion molding was continuously performed for 20 minutes, and that a long-sized capacitor electrode sheet could be formed stably.
上記キャパシタ用電極シートを、 リード端子を残し、 4 (:111 髙6 (;111に、 2枚切 り抜き、 2枚のキャパシタ用電極シートの電極面を対向させ、厚さ 25 のポリエ チレン製セパレータを挟んだ。 これを厚さ 2mm、 幅 5 cm、 高さ 7 cmの 2枚のポ リプロピレン製の板で挟持し、 素子とした。 The above capacitor electrode sheet is cut out of 4 (: 111 髙 6 ( ; 111), leaving two lead electrodes, and the electrode surfaces of the two capacitor electrode sheets are opposed to each other. This was sandwiched between two polypropylene plates 2 mm thick, 5 cm wide, and 7 cm high to form a device.
電解液としてはプロピレンカーボネートに 1. 5 mo 1 ZLのトリェチルモノメチ ルアンモニゥムテトラフルォロポレートを溶解した溶液を用いた。 上記素子を 20 0°Cで 3時間真空加熱することにより素子に含まれる水等の不純分を除去した後、電 解液を真空含浸させてポリプロピレン製の容器に収容し、電気二重層キャパシタを作 製した。 電流密度 2 OmAZ cm2で直流抵抗と容量を測定し、 電極層の単位質量あ たりの容量 (容量密度) と体積抵抗を算出し、 キャパシタとしての良好な性能を確認 した。得られた電極シートおよび電気二重層キャパシタについて各種特性を評価した 結果を表 1に示す。 実施例 2 As the electrolytic solution, a solution in which 1.5 mol 1 ZL of triethyl monomethylammonium tetrafluoroporate was dissolved in propylene carbonate was used. The above element was vacuum-heated at 200 ° C for 3 hours to remove impurities such as water contained in the element.Then, the electrolytic solution was impregnated in vacuum and housed in a polypropylene container to form an electric double layer capacitor. Made. The DC resistance and capacitance were measured at a current density of 2 OmAZ cm 2 , and the capacitance per unit mass (capacity density) and volume resistance of the electrode layer were calculated, confirming good performance as a capacitor. Table 1 shows the results of evaluating various characteristics of the obtained electrode sheet and electric double layer capacitor. Example 2
フッ素非含有ポリマーとして実施例 1において添加した 40 %カル.ボキシ変性ス チレン一ブタジエン共重合体ラテックス (BM— 400B) (導電性接着剤 l bおよ ぴ導電材ペレツト I aに含まれる BM— 400 Bも含む。) に代えてァクリロ二トリ ル 1 5部、 アクリル酸 2—ェチルへキシル 80部、 メタクリル酸 2部およびエチレン グリコールジメタクリレート 3部からなる単量体混合物を乳化重合して得られた架 橋型ァクリレート系エラストマ一(ガラス転移温度一 40°C) の水分散体 (固形分濃  40% carboxy-modified styrene-butadiene copolymer latex (BM-400B) added as a fluorine-free polymer in Example 1 (BM-400 contained in conductive adhesive lb and conductive material pellet Ia) B).) Instead of 15 parts of acrylonitrile, 80 parts of 2-ethylhexyl acrylate, 2 parts of methacrylic acid and 3 parts of ethylene glycol dimethacrylate by emulsion polymerization. Acrylate-based elastomer (glass transition temperature-40 ° C) aqueous dispersion (solids concentration)
4 度 4 0 %) を用いる以外は実施例 1と同様にしてキャパシタ用電極シートおょぴ電気 二重層キャパシタを作製し同様の測定を行った。長尺状のキャパシタ用電極シートを 安定して形成することができること、およびキャパシタとしての良好な性能を確認す ることができた。 結果を表 1に示す。 実施例 3 Four In this manner, an electrode sheet for a capacitor and an electric double layer capacitor were prepared in the same manner as in Example 1 except that the temperature was 40%. It was confirmed that a long electrode sheet for a capacitor could be formed stably and good performance as a capacitor could be confirmed. Table 1 shows the results. Example 3
フッ素非含有ポリマーとして実施例 1において添加した 4 0 %カルボキシ変性ス チレンーブタジェン共重合体ラテックス (B M—4 0 0 B ) (導電性接着剤 I bおよ び導電材ペレツト I aに含まれる B M— 4 0 0 Bも含む。)、に代えてプチルァクリレ ート 7 5部おょぴメチルメタタリレート 2 5部からなる単量体混合物を、 5部のポリ ビニルアルコールの存在下に乳化重合して得られた高分子水分散体 (固形分濃度 3 0 %) を用い、 1 0 %カルポキシメチルセルロース水溶液 (セロゲン 7 H) を使用し ない以外は実施例 1と同様にしてキャパシタ用電極シートおよび電気二重層キャパ シタを作製し同様の測定を行った。長尺状のキャパシタ用電極シートを安定して形成 することができること、およびキャパシタとしての良好な性能を確認することができ た。 結果を表 1に示す。 比較例 1  40% carboxy-modified styrene-butadiene copolymer latex (BM-400B) added in Example 1 as a fluorine-free polymer (included in conductive adhesive Ib and conductive material pellet Ia) BM-400 B)), but emulsify a monomer mixture consisting of 75 parts of butyl acrylate and 25 parts of methyl methacrylate in the presence of 5 parts of polyvinyl alcohol. An electrode for a capacitor was prepared in the same manner as in Example 1 except that a polymer aqueous dispersion (solid content: 30%) obtained by polymerization was used, and an aqueous solution of 10% carboxymethylcellulose (cellogen 7H) was not used. A sheet and an electric double layer capacitor were prepared, and the same measurement was performed. It was confirmed that a long capacitor electrode sheet could be formed stably, and good performance as a capacitor was confirmed. Table 1 shows the results. Comparative Example 1
実施例 1で用いたものと同じ高純度活性炭粉末 8 3部、 4 0 %カルボキシ変性スチ レン一ブタジエン共重合体ラテックス (B M—4 0 0 B ) 1 2 . 5部、 1 0 %カルボ キシメチルセルロース水溶液 (セロゲン 7 H) 2 0部、 導電性接着剤 I b 3 3 . 3部 およぴ水をプラネタリーミキサーを用いて混合し、固形分濃度 4 0 %の電極スラリー を得た。 このスラリーをアルミ箔製集電体上に塗布、 1 5 0 °Cで乾燥させた後、 実施 例 1と同様の操作で電気二重層キャパシタを作製し同様の測定を行った。 なお、 作製 したスラリーをガラス製ビーカーに移して、 1時間撹拌したところスラリーは流動性 を失った。 その時の固形分濃度は 4 1 %であった。 このように比表面積の大きい炭素 材料のスラリ一は僅かな濃度変化で流動性を失うため連続操業が難しいことが確認 された。 結果を表 1に示す。  83 parts of the same high-purity activated carbon powder as used in Example 1, 40% carboxy-modified styrene-butadiene copolymer latex (BM-400B) 12.5 parts, 10% carboxymethylcellulose An aqueous solution (cellogen 7H) (20 parts), conductive adhesive Ib (33.3 parts) and water were mixed using a planetary mixer to obtain an electrode slurry having a solid concentration of 40%. The slurry was applied on a current collector made of aluminum foil and dried at 150 ° C., and then an electric double layer capacitor was produced in the same operation as in Example 1 and the same measurement was performed. When the prepared slurry was transferred to a glass beaker and stirred for 1 hour, the slurry lost its fluidity. The solid content at that time was 41%. Thus, it was confirmed that continuous operation was difficult because the slurry of carbon material with a large specific surface area lost its fluidity due to a slight concentration change. Table 1 shows the results.
5 比較例 2 Five Comparative Example 2
比表面積 1 500 m2/ g、 平均粒径 1 0 mの高純度活性炭粉末 80部、 ァセチ レンブラック 1 0部、 PTFE 1 0部、 および成形助剤としてエチレングリコール 1 部、 軟水 58. 5部をニーダーを用いて混練した。 この混練物を、 実施例 1と同様に 二軸押出機を用いて、 シート状に押し出したところ間欠的にシートはちぎれて、連続 したシートは得られなかった。 80 parts of high-purity activated carbon powder with a specific surface area of 1,500 m 2 / g and an average particle size of 10 m, 10 parts of acetylene black, 10 parts of PTFE, 1 part of ethylene glycol as a molding aid, 58.5 parts of soft water Was kneaded using a kneader. This kneaded material was extruded into a sheet using a twin-screw extruder in the same manner as in Example 1, but the sheet was intermittently torn off, and a continuous sheet was not obtained.
シートが得られた部分を 1 5 0°Cで 1時間乾燥した後、 ロールプレス機を用いてプ レス処理を行い、 電極密度 0. 66 g/c c、 電極厚さ 1 3 Ο μπιのキャパシタ用電 極シートを得た。 結果を表 1に示す。 表 1 産業上の利用可能十生 After drying the part where the sheet was obtained at 150 ° C for 1 hour, it was pressed using a roll press machine to produce a capacitor with an electrode density of 0.66 g / cc and an electrode thickness of 13 μμπι. An electrode sheet was obtained. Table 1 shows the results. table 1 Industrial availability
以上に説明したように、 本発明によれば、 電極に柔軟性を与えることができ、 容量 密度が大きく内部抵抗の小さい電気二重層キャパシタ用電極の量産可能な製造方法 を提供することが容易なものとなる。 これに加えて、 バインダーとして PTFEを使 用した場合は、 1 00質量部の炭素質材料に対して 1 0質量部以上のバインダーが必 要であったものが、 バインダーとしてフッ素非含有ポリマーを使用した場合は、 8質 量部程度の比較的少量のバインダーの使用でより高い結着力を得ることができる。 こ の結果全体として炭素質材料の割合を増加することができ、その結果電気二重層キヤ パシタ用電極の容量密度をさらに大きなものとすることができる。 また、 バインダー としてのフッ素非含有ポリマー系材料は微細な形状にて炭素質材料の間を結合する ので、 P T F Eをバインダーとして使用した場合のように電極の柔軟性に欠けること がない。  As described above, according to the present invention, it is easy to provide a manufacturing method capable of giving flexibility to an electrode and capable of mass-producing an electrode for an electric double layer capacitor having a large capacitance density and a small internal resistance. It will be. In addition, when PTFE was used as the binder, 100 parts by mass or more of the carbonaceous material required 10 parts by mass or more of the binder, but a fluorine-free polymer was used as the binder. In this case, a higher binding force can be obtained by using a relatively small amount of a binder of about 8 parts by mass. As a result, the ratio of the carbonaceous material can be increased as a whole, and as a result, the capacitance density of the electrode for the electric double layer capacitor can be further increased. Further, since the fluorine-free polymer-based material as the binder bonds between the carbonaceous materials in a fine shape, the flexibility of the electrode is not lacking as in the case of using PTFE as the binder.
6 6

Claims

請求の範囲 The scope of the claims
1.炭素質材料およびフッ素非含有ポリマーを含む混合物をスクリユー押し出し成形 する工程を含む、 電気二重層キャパシタ用電極の製造方法。 ' 1. A method for producing an electrode for an electric double layer capacitor, comprising a step of extruding a mixture containing a carbonaceous material and a fluorine-free polymer by screw extrusion. '
2. 前記フッ素非含有ポリマーが、 エラストマ一を含むものである請求項 1記載の製 造方法。 2. The production method according to claim 1, wherein the fluorine-free polymer contains an elastomer.
3. 前記フッ素非含有ポリマーが、 さらに分散剤を含むものである請求項 2記載の製 造方法。  3. The method according to claim 2, wherein the fluorine-free polymer further contains a dispersant.
4. 前記フッ素非含有ポリマーが、炭素質材料に対し 1〜20質量%含まれる請求項 1〜3のいずれかに記載の製造方法。  4. The production method according to any one of claims 1 to 3, wherein the fluorine-free polymer is contained in an amount of 1 to 20% by mass based on the carbonaceous material.
5. 前記混合物には、 さらに成形助剤が含まれる請求項 1〜4のいずれかに記載の製 造方法。  5. The method according to claim 1, wherein the mixture further contains a molding aid.
6. 前記成形助剤が、 炭素質材料に対し 0. 1〜100質量%含まれる請求項 5に記 載の製造方法。  6. The method according to claim 5, wherein the molding aid is contained in an amount of 0.1 to 100% by mass based on the carbonaceous material.
7. 前記エラストマ一が、 ジェン系エラストマ一または架橋型アタリレート系エラス トマ一のいずれかである請求項 2〜 6のいずれかに記載の製造方法。  7. The method according to any one of claims 2 to 6, wherein the elastomer is one of a gen-based elastomer and a cross-linked acrylate-based elastomer.
8. 前記混合物をスクリュー押し出し成形する工程に加え、 さらにプレス処理するェ 程を含む請求項 1〜 7のいずれかに記載の製造方法。  8. The production method according to any one of claims 1 to 7, further comprising a step of performing a press treatment in addition to the step of extruding the mixture with a screw.
9. 前記スクリュー押し出し成形された混合物を、 導電性接着剤にて集電体に接着す る工程をさらに含む請求項 1〜 8のいずれかに記載の製造方法。  9. The method according to any one of claims 1 to 8, further comprising a step of bonding the mixture extruded with the screw to a current collector with a conductive adhesive.
10. 前記スクリュー押し出し成形における押し出し温度が、 5〜100°Cである請 求項 1〜 9のいずれかに記載の製造方法。 10. The production method according to any one of claims 1 to 9, wherein the extrusion temperature in the screw extrusion molding is 5 to 100 ° C.
(原材料群 B) (原材料群 A) (Raw material group B) (Raw material group A)
1/3 1/3
Z60t90請 OAV Z60t90 contract OAV
ZZ000/l700Zdf/X3d ZZ000 / l700Zdf / X3d
PCT/JP2004/000220 2003-01-15 2004-01-15 Production method for electric double-layer capacitor-use electrode WO2004064092A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005508008A JP4678301B2 (en) 2003-01-15 2004-01-15 Method for manufacturing electrode for electric double layer capacitor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003-006619 2003-01-15
JP2003006619 2003-01-15
JP2003185217 2003-06-27
JP2003-185217 2003-06-27

Publications (1)

Publication Number Publication Date
WO2004064092A1 true WO2004064092A1 (en) 2004-07-29

Family

ID=32716399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000220 WO2004064092A1 (en) 2003-01-15 2004-01-15 Production method for electric double-layer capacitor-use electrode

Country Status (2)

Country Link
JP (1) JP4678301B2 (en)
WO (1) WO2004064092A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115272A1 (en) * 2005-04-26 2006-11-02 Zeon Corporation Composite particles for electrochemical element electrode
WO2006118235A1 (en) * 2005-04-28 2006-11-09 Zeon Corporation Electro-chemical element electrode
WO2007032374A1 (en) * 2005-09-16 2007-03-22 Zeon Corporation Composite particle for electrochemical device electrode, method for producing same, electrochemical device electrode material, and electrochemical device electrode
JP2011077070A (en) * 2009-09-29 2011-04-14 Nippon Zeon Co Ltd Electrode active material sheet with support and method for producing electrode for electrochemical element
JP2011216751A (en) * 2010-03-31 2011-10-27 Nippon Chemicon Corp Electric double layer capacitor
JP2014075597A (en) * 2008-08-28 2014-04-24 Nippon Zeon Co Ltd Electrode for lithium ion capacitor and lithium ion capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467610A (en) * 1990-07-09 1992-03-03 Matsushita Electric Ind Co Ltd Manufacture of polarized electrode for electric double-layer capacitor
JPH08148388A (en) * 1994-11-25 1996-06-07 Matsushita Electric Ind Co Ltd Electric double layer capacitor and manufacture thereof
JP2001511825A (en) * 1997-02-06 2001-08-14 ボロール In particular, a porous composite having a large specific surface area, a production method, and an electrode made of a porous composite film for an electrochemical assembly
JP2001307965A (en) * 2000-04-12 2001-11-02 Ness Co Ltd Electric double layer capacitor and the manufacturing method
JP2002175950A (en) * 2000-09-26 2002-06-21 Asahi Glass Co Ltd Manufacturing method of electrode body for electric double-layer capacitor
JP2002270470A (en) * 2001-03-09 2002-09-20 Osaka Gas Co Ltd Electric double-layered capacitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100582518B1 (en) * 1997-03-04 2006-05-24 제온 코포레이션 Binder composition for cell, slurry for cell electrode, electrode for lithium secondary cell and lithium secondary cell
JP4280891B2 (en) * 2000-07-26 2009-06-17 日本ゼオン株式会社 Binder for lithium ion secondary battery electrode and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467610A (en) * 1990-07-09 1992-03-03 Matsushita Electric Ind Co Ltd Manufacture of polarized electrode for electric double-layer capacitor
JPH08148388A (en) * 1994-11-25 1996-06-07 Matsushita Electric Ind Co Ltd Electric double layer capacitor and manufacture thereof
JP2001511825A (en) * 1997-02-06 2001-08-14 ボロール In particular, a porous composite having a large specific surface area, a production method, and an electrode made of a porous composite film for an electrochemical assembly
JP2001307965A (en) * 2000-04-12 2001-11-02 Ness Co Ltd Electric double layer capacitor and the manufacturing method
JP2002175950A (en) * 2000-09-26 2002-06-21 Asahi Glass Co Ltd Manufacturing method of electrode body for electric double-layer capacitor
JP2002270470A (en) * 2001-03-09 2002-09-20 Osaka Gas Co Ltd Electric double-layered capacitor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006115272A1 (en) * 2005-04-26 2006-11-02 Zeon Corporation Composite particles for electrochemical element electrode
US8182944B2 (en) 2005-04-26 2012-05-22 Zeon Corporation Composite particles for electrochemical element electrode
US8377150B2 (en) 2005-04-26 2013-02-19 Zeon Corporation Composite particles for electrochemical element electrode
KR101296983B1 (en) 2005-04-26 2013-08-14 니폰 제온 가부시키가이샤 Composite particles for electrochemical element electrode
WO2006118235A1 (en) * 2005-04-28 2006-11-09 Zeon Corporation Electro-chemical element electrode
US8119289B2 (en) 2005-04-28 2012-02-21 Zeon Corporation Electro-chemical element electrode
WO2007032374A1 (en) * 2005-09-16 2007-03-22 Zeon Corporation Composite particle for electrochemical device electrode, method for producing same, electrochemical device electrode material, and electrochemical device electrode
JP2014075597A (en) * 2008-08-28 2014-04-24 Nippon Zeon Co Ltd Electrode for lithium ion capacitor and lithium ion capacitor
JP2011077070A (en) * 2009-09-29 2011-04-14 Nippon Zeon Co Ltd Electrode active material sheet with support and method for producing electrode for electrochemical element
JP2011216751A (en) * 2010-03-31 2011-10-27 Nippon Chemicon Corp Electric double layer capacitor

Also Published As

Publication number Publication date
JP4678301B2 (en) 2011-04-27
JPWO2004064092A1 (en) 2006-05-18

Similar Documents

Publication Publication Date Title
US8048478B2 (en) Method of manufacturing electrode for electrochemical device
KR102479910B1 (en) Conductive flake-reinforced, polymer-stabilized electrode composition and manufacturing method thereof
TWI587561B (en) Storage device spacer, laminated body and porous membrane
JP4483783B2 (en) Binder for electric double layer capacitor electrode
JP4605467B2 (en) Method for producing electrochemical element
JP2016511937A (en) Method for making carbon electrode material using a twin screw extruder
WO2007116718A1 (en) Composite particles for electrochemical element electrode, process for producing composite particles for electrochemical element electrode, and electrochemical element electrode
WO2005117043A1 (en) Method for manufacturing electrochemical device electrode and apparatus therefor
JP2012129536A (en) Electrochemical element electrode material and composite particle
JP7088189B2 (en) Manufacturing method of members for electrochemical elements and laminates for electrochemical elements
WO2004064092A1 (en) Production method for electric double-layer capacitor-use electrode
KR101062563B1 (en) Binder for Electric Double Layer Capacitor Electrode
JP4678302B2 (en) Method for manufacturing electrode for electric double layer capacitor
JP4608862B2 (en) Method for producing slurry composition for lithium ion secondary battery electrode
JP2005191425A (en) Production process of electrode for capacitor
JP4507517B2 (en) Method for manufacturing electrode for electric double layer capacitor
JP3580153B2 (en) Method of manufacturing electrode for electric double layer capacitor
JP4236227B2 (en) Method and apparatus for producing thermoplastic resin sheet
JP2004119160A (en) Separator for storage battery
JP2010153262A (en) Electrode composition layer with support body and manufacturing method of electrode for electrochemical element

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005508008

Country of ref document: JP

122 Ep: pct application non-entry in european phase