WO2007032275A1 - Liquid receiver unit - Google Patents

Liquid receiver unit Download PDF

Info

Publication number
WO2007032275A1
WO2007032275A1 PCT/JP2006/317857 JP2006317857W WO2007032275A1 WO 2007032275 A1 WO2007032275 A1 WO 2007032275A1 JP 2006317857 W JP2006317857 W JP 2006317857W WO 2007032275 A1 WO2007032275 A1 WO 2007032275A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
liquid receiver
pipe
liquid
receiver unit
Prior art date
Application number
PCT/JP2006/317857
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Kuroishi
Hiroki Ishihara
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Publication of WO2007032275A1 publication Critical patent/WO2007032275A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Definitions

  • the present invention relates to a liquid receiver unit that has a liquid receiver, a fusing plug, and a service port, and is incorporated in a refrigerant circuit of a refrigeration apparatus.
  • Patent Document 1 discloses a refrigeration apparatus that cools the inside of a container used for maritime transportation or the like.
  • This refrigeration apparatus includes a refrigerant circuit to which a compressor, a condenser, an expansion valve, and an evaporator are connected.
  • the refrigerant circulates to perform a vapor compression refrigeration cycle.
  • the refrigerant flowing through the evaporator absorbs heat from the internal air and evaporates to cool the container.
  • the refrigerant circuit of the refrigeration apparatus is also provided with a liquid receiver between the condenser and the expansion valve.
  • This liquid receiver is constituted by a cylindrical airtight container, in which liquid refrigerant that is excessive in the refrigerant circuit is stored.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-327964
  • the liquid receiver and the peripheral device of the liquid receiver are integrated together before being installed in the refrigeration apparatus. May be configured as an instrument.
  • FIG. 7 shows a configuration example of a conventional liquid receiver unit.
  • the refrigerant inflow pipe (82) is connected to the top of the liquid receiver (81), and the refrigerant outflow pipe (83) is connected to the bottom of the liquid receiver unit (80).
  • the outflow pipe (83) includes a fusing plug (84) to prevent damage to the receiver (81) due to high pressure rise, a plurality of service ports (85,85) for charging refrigerant, a solenoid valve ( 86) and a plurality of branch pipes (87, 87, 87) are attached.
  • these peripheral devices are configured integrally with the receiver (81), so that this receiver unit (80) can be easily installed in the refrigeration system.
  • the liquid receiver (81) may be coated to prevent the surface of the refrigerant pipe from sticking.
  • the surface of the liquid receiver (81) is easily rusted due to the influence of salt in the outdoor air. Therefore, such painting is indispensable.
  • the surface of the liquid receiver (81) is so-called “brush coating” in which a paint is applied to the refrigerant pipe with a brush or the like.
  • brush coating there was a problem that it took time and effort to apply paint to the entire area of the receiver (81) by brush painting.
  • the present invention has been made in view of the strong point, and an object of the present invention is to perform painting work in a liquid receiver unit in which a liquid receiver, a plug, and a service port are connected by a refrigerant pipe.
  • the aim is to ensure the quality of the receiver unit while shortening the length.
  • a first invention includes a tubular liquid receiver (14), a refrigerant pipe (41, 42, 47, 48, 49) connected to the liquid receiver (14), and the refrigerant pipe ( 42) It is assumed that the receiver unit is equipped with a fusing plug (43) and a service port (44, 46) provided in 42) and is incorporated in the refrigerant circuit (10) of the refrigeration apparatus (1).
  • this liquid receiver unit is the open end of the refrigerant pipe (41, 42, 47, 48, 49), The fusing plug (43) and the service port (44,46) 1S Virtual plane parallel to the axis C of the liquid receiver (14) and separated from the axis C of the liquid receiver (14) by a predetermined distance L It is characterized in that it is arranged on the opposite side of the axis C of the liquid receiver (14) with respect to X.
  • the refrigerant pipe (41, 42, 47, 48, 49), the fusing plug (43), and the service port (44, 46) are integrated with the liquid receiver (14).
  • the open end of the refrigerant pipe (41, 42, 47, 48, 49), the plug (43), and the service port (44, 46) are received with respect to the virtual plane X.
  • the plug (43), and the service port (44, 46) are received with respect to the virtual plane X.
  • the liquid receiver (14) is immersed in the coating liquid so that the axial direction of the liquid receiver (14) is in a horizontal state and the liquid level of the coating liquid and the virtual plane coincide with each other,
  • the paint can be attached to the part below the virtual plane of 14).
  • a second invention is the receiver unit of the first invention, wherein the refrigerant pipe (42) is provided with an electromagnetic valve (SV-1), and the electromagnetic valve (SV-1) is , On the same side as the open end of the cooling pipe (41, 42, 47, 48, 49), the plug (43), and the service port (44, 46) with respect to the virtual plane X It is characterized by being arranged.
  • an electromagnetic valve (SV-1) for opening and closing the refrigerant pipe is integrally incorporated.
  • the solenoid valve (SV-1) is virtually the same as the open end of the refrigerant pipe (41, 42, 47, 48, 49), the plug (43), and the service port (44, 46). Since it is placed on the opposite side of the axis C of the liquid receiver (14) with respect to the plane X, the solenoid valve (SV-1) can be used even if the liquid receiver (14) is immersed in the paint liquid up to the virtual plane X. The paint does not adhere to the surface.
  • a third invention is the first invention, wherein the opening end portion of the refrigerant pipe (41, 42, 47, 48, 49) is in the direction parallel to the virtual plane X or opposite to the virtual plane X. It is characterized by facing the side.
  • the open end of the refrigerant pipe (41, 42, 47, 48, 49) is the liquid of the paint liquid. In a direction parallel to the surface or facing upward Become. In other words, when the liquid receiver (14) is immersed, the open end of the refrigerant pipe (41, 42, 47, 48, 49) will not face downward (the liquid level side of the coating liquid). It is possible to prevent the paint splashed when dripping from entering the refrigerant pipe (41, 42, 47, 48, 49) from the open end.
  • the open end of the refrigerant pipe (41, 42, 47, 48, 49), the plug (43), and the service port (with respect to the virtual plane X of the liquid receiver (14)) 44, 46) are arranged on the opposite side of the center C of the receiver (14). For this reason, when the receiver (14) is immersed in the paint, the paint can be prevented from entering the pipe from the open end of the refrigerant pipe (41, 42, 47, 48, 49). It is possible to prevent paint from adhering to the fastening part of the filler plug (43) and service port (44, 46). Therefore, it is possible to reduce the time required for the painting operation of the liquid receiver unit while ensuring the quality of the liquid receiver unit.
  • the electromagnetic valve (SV-1) when the liquid receiver (14) of the liquid receiver unit in which the electromagnetic valve (SV-1) is incorporated, the electromagnetic valve (SV-1) It is possible to prevent the paint from adhering to the surface. Therefore, it is possible to avoid the occurrence of problems in the opening / closing operation of the solenoid valve (SV-1), and to ensure the quality of this liquid receiver unit.
  • FIG. 1 is an external view of a refrigeration apparatus and a container to which a liquid receiver unit of the present embodiment is applied.
  • FIG. 2 is a schematic configuration diagram of the refrigeration apparatus viewed from the front.
  • FIG. 3 is a piping system diagram showing a schematic configuration of a refrigerant circuit of a refrigeration apparatus.
  • FIG. 4 is a perspective view of the liquid receiver unit installed in the container body.
  • FIG. 5 is a plan view of a state in which the receiver unit is viewed from the lower side, or a state in which the receiver unit is immersed in the coating liquid.
  • FIG. 6 is a piping system diagram showing a refrigerant flow during refrigeration operation of the refrigeration apparatus.
  • FIG. 7 is a perspective view of a conventional liquid receiver unit.
  • the liquid receiver unit (40) of the present embodiment is incorporated in the refrigerant circuit (10) of the refrigeration apparatus (1) for cooling the interior of a container used for marine transportation.
  • the refrigeration apparatus (1) is attached to the opening (3) on the front surface of the container body (2) in which stored items are refrigerated and frozen.
  • the refrigeration apparatus (1) includes a flat casing (11) at the front and rear.
  • the inside of the casing (11) is partitioned into a space facing the outside (outside the store) and a space facing the inside of the container body (2) (in the store).
  • the refrigeration apparatus (1) includes a refrigerant circuit (10) that performs a vapor compression refrigeration cycle by circulating refrigerant.
  • the refrigerant circuit (10) is connected to the compressor (12), the condenser (13), the receiver (14), the electronic expansion valve (15), and the evaporator (16). .
  • the compressor (12) is a fixed-capacity scroll compressor in which the rotation speed of the compressor motor is constant.
  • the condenser (13) constitutes a so-called air-cooled condenser that exchanges heat between the outdoor air blown by the outdoor fan (18) and the refrigerant.
  • the liquid receiver (14) is formed of a cylindrical sealed container and stores excess liquid refrigerant in the refrigerant circuit (10).
  • the liquid receiver (14) constitutes a part of a liquid receiver unit (40) described later in detail.
  • the electronic expansion valve (15) is configured such that the opening degree can be adjusted according to the degree of refrigerant superheat of the evaporator (16).
  • the evaporator (16) constitutes a heat exchanger for cooling the inside which exchanges heat between the inside air blown by the inside fan (19) and the refrigerant.
  • the refrigerant circuit (10) also includes double pipe heat exchange (21), ⁇ conomizer heat exchange (22), reheat coil (23), drain pan heater (24), and suction proportional valve (25). Is provided.
  • the double pipe heat exchanger (21) exchanges heat between the refrigerant flowing through the first refrigerant channel (21a) and the refrigerant flowing through the second refrigerant channel (21b).
  • the first refrigerant flow path (21a) has an inflow side connected to the receiver (14), and an outflow side connected to the high pressure side of the economizer heat exchanger (22) via the first solenoid valve (SV-1). Connected to the inflow end of the channel (22a).
  • the second refrigerant flow path (21 b) is connected at its inflow side to the outflow end of the low pressure side flow path (22b) of the economizer heat exchanger (22), and its outflow side is compressed by the compressor (12). It is connected to a path in the middle of refrigerant compression in the mechanism.
  • the economizer heat exchanger (22) exchanges heat between the refrigerant flowing through the high-pressure channel (22a) and the refrigerant flowing through the low-pressure channel (22b).
  • the outflow side of the high-pressure channel (22a) is connected to the electronic expansion valve (15).
  • the inflow side of the low-pressure channel (22b) is connected to the double pipe via the first capillary tube (CT-1) and the second solenoid valve (SV-2). Connect / connect between tube heat exchanger (21) and solenoid valve (SV-1).
  • the reheat coil (23) is installed inside the warehouse and constitutes a reheat heat exchanger for heating the air cooled by the evaporator (16) with a refrigerant.
  • the reheat coil (23) is provided in a reheat pipe (31) having one end connected to the discharge side of the compressor (12) and the other end connected between the electronic expansion valve (15) and the evaporator (16). It has been.
  • the reheat pipe (31) is provided with a third solenoid valve (SV-3) on the inflow side of the reheat coil (23) and a second capillary tube (CT-2) on the outflow side thereof. Yes.
  • the refrigerant discharged from the compressor (12) flows through the reheat coil (23) via the reheat pipe (31).
  • the internal air cooled by the evaporator (16) is heated by the refrigerant flowing in the reheat coil (23).
  • the reheat coil (23) when dehumidifying the internal air by dehydrating the moisture in the internal air with the evaporator (16), heats the internal air that has been cooled too much to reduce the humidity of the internal air. Keep temperature optimal.
  • the refrigerant condensed in the reheat coil (23) is depressurized in the second capillary tube (CT-2) and then flows into the evaporator (16).
  • the drain pan heater (24) is disposed inside a drain pan (not shown) that collects frost and ice blocks that have peeled off the evaporator (16), and heats the ice blocks in the drain pan with a refrigerant. For melting.
  • This drain pan heater (24) has one end connected to the discharge side of the compressor (12) and the other end connected between the electronic expansion valve (15) and the evaporator (16). Is provided.
  • the drain pan heating pipe (32) is provided with a fourth solenoid valve (SV-4) on the inflow side of the drain pan heater (24). When the fourth solenoid valve (SV-4) is opened, the refrigerant discharged from the compressor (12) flows through the drain pan heater (24) via the drain pan heating pipe (32). As a result, the ice blocks collected in the drain pan are heated and melted by the refrigerant flowing in the drain pan heater (32).
  • the suction proportional valve (25) is provided on the suction side of the compressor (12).
  • the suction proportional valve (25) constitutes a flow rate adjusting valve that adjusts the refrigerant circulation amount in the refrigerant circuit (10) by adjusting the amount of refrigerant sucked by the compressor (12). That is, the suction proportional valve (25) adjusts the cooling capacity of the evaporator (16) by adjusting the refrigerant circulation amount according to the opening degree.
  • the refrigerant circuit (10) includes a liquid injection pipe (33), a defrost pipe (34), and a discharge gas bar.
  • a bypass pipe (35) is provided.
  • the liquid injection pipe (33) is a so-called liquid injection pipe that returns the liquid refrigerant flowing out of the liquid receiver (14) to the suction side of the compressor (12).
  • One end of the liquid injection pipe (33) is connected between the double pipe heat exchanger (21) and the second solenoid valve (SV-2), and the other end is connected to the suction side of the compressor (12). ing.
  • the liquid injection pipe (33) is provided with a fifth solenoid valve (SV-5) and a third capillary tube (CT-3).
  • the defrost pipe (34) is a defrost pipe for heating and melting the frost adhering to the evaporator (16) with the refrigerant discharged from the compressor (12).
  • the defrost pipe (34) has one end connected to the suction side of the compressor (12) and the other end connected between the electronic expansion valve (15) and the evaporator (16).
  • the defrost pipe (34) is provided with a sixth solenoid valve (SV-6) that is opened when the defrost operation is performed to defrost the evaporator (16).
  • the discharge gas bypass pipe (35) is used for returning the refrigerant discharged from the compressor (12) to the suction side of the compressor (12) when the cooling capacity of the evaporator (16) becomes excessive. It is piping.
  • the discharge gas bypass pipe (35) also serves as an oil return pipe for returning the refrigeration oil in the refrigerant discharged from the compressor (12) to the suction side of the compressor (12).
  • the discharge gas bypass pipe (35) has one end connected to the drain pan heating pipe (32) and the other end connected to the suction side of the compressor (12).
  • the discharge gas bypass pipe (35) is provided with a seventh solenoid valve (SV-7) that is appropriately opened according to operating conditions.
  • the refrigerant circuit (10) incorporates a liquid receiver unit (40) including the liquid receiver (14) described above.
  • the liquid receiver unit (40) includes the above-described liquid receiver (14), and an inflow pipe (41) and an outflow pipe (42) of the liquid receiver (14). .
  • the inlet pipe (41) is connected to the top of the receiver (14), while the outlet pipe (42) is received by the receiver (14).
  • the inflow pipe (41) is bent from the top of the liquid receiver (14) and extends to the front side of the liquid receiver (14).
  • the outflow pipe (42) extends from the bottom of the liquid receiver (14) to the front side of the liquid receiver (14), and then curves to the back so as to be bent in a V shape. ing. Thereafter, the outflow pipe (42) extends in parallel and upward with the liquid receiver (14), then bends further forward, and then extends downward in parallel with the liquid receiver (14). Further, the subsequent outflow pipe (42) extends rightward in FIG. 4 and is bent upward again at the front side of the liquid receiver (14).
  • the outflow pipe (42) includes, in order from the upstream side to the downstream side, the fusing plug (43), the first service port (44), the filter (45), and the double pipe heat exchanger ( 21), the first solenoid valve (SV-1), and the second service port (46) are provided.
  • the fusing plug (43) melts itself and discharges the refrigerant to the outside of the refrigerant circuit (10).
  • (14) Prevents accidental damage to refrigerant piping.
  • the first and second service ports (44, 46) constitute a refrigerant charging port in the refrigerant circuit (10), and nut lids (44a, 46a) are fastened to end portions thereof.
  • the filter (45) is housed in a pipe whose diameter has been expanded in the outflow pipe (42), and removes foreign substances and the like in the refrigerant.
  • the double pipe heat exchanger (21) includes an inflow side pipe (47) of the second refrigerant flow path (21b) and an outflow side pipe (47) of the second refrigerant flow path (21b). 48) is connected.
  • the low pressure side flow path (of the economizer heat exchanger (22) (see FIG. 1) between the double pipe heat exchanger (21) and the first solenoid valve (SV-1). 22b)
  • the branch pipe (49) connected to the side is connected!
  • the receiver unit (40) having the above-described configuration includes the open end (41a) of the inflow pipe (41), the open end (42a) of the outflow pipe (42), and the inflow side pipe (47).
  • the open end (47a), the open end (48a) of the outflow side pipe (48), and the open end (49a) of the branch pipe (49) are connected to the corresponding refrigerant pipes.
  • the refrigerant circuit (10) described above is configured (see FIG. 3).
  • each peripheral device connected to the liquid receiver (14) is arranged on the same side with respect to the liquid receiver (14). ing. Specifically, as shown in FIG. 5, a virtual plane X parallel to the axis C of the liquid receiver (14) and separated from the axis C of the liquid receiver (14) by a predetermined distance L is used as a reference.
  • the inflow pipe (41), the outflow pipe (42), the inflow side pipe (47), the outflow side pipe (48), and the open end of the branch pipe (49) (41a, 42 a, 47a , 48a, 49a) are opposite to the axis C of the receiver (14) with respect to the virtual plane X, that is, in FIG. It is placed above the virtual plane X.
  • each refrigerant pipe 41, 42, 47, 48, 49.
  • the parts (41a, 42a, 47a, 48a, 49a) are respectively positioned closer to the front side of the casing (11). For this reason, the pipe connection work of each refrigerant pipe (41, 42, 47, 48, 49) becomes relatively easy.
  • the fusing plug (43), the first service port (44), the second service port (46), and the first solenoid valve (SV-1) also receive the liquid with respect to the virtual plane X. It is arranged on the opposite side to the axis C of (14).
  • these peripheral devices (43, 44, 46, SV-1) are respectively connected to the casing (11 It will be located in front of). This makes it relatively easy to replace the melt plug (43) and to fill the refrigerant with the service port (44, 46) force.
  • the open end (41a) of the inflow pipe (41) faces away from the virtual plane X (upper side in FIG. 5), while the remaining refrigerant pipes (42, 47). , 48, 49) each open end (42a, 47a, 48a, 49a) faces in a direction parallel to the virtual plane X (paper surface direction in FIG. 5).
  • the surface of the receiver unit (40) becomes glazed with long-term use. ⁇ ⁇ ⁇ may end up.
  • the outdoor air is likely to contain salt, so that corrosion of the surface of the receiver unit (40) is promoted. Therefore, the liquid receiver unit (40) of the present embodiment is subjected to surface coating at a stage before being incorporated into the refrigerant circuit (10).
  • the receiver (14) is immersed in the coating liquid. Loose dowel immersion is performed. As shown in FIG. 5, when dripping, the axis C of the liquid receiver (14) is parallel to the liquid surface of the coating liquid, and the liquid is received from the lower side of the virtual plane X (the liquid receiver side). Immerse the liquid container (14) in the paint liquid so that the virtual plane X and the liquid level of the paint liquid match. In this state, when the liquid receiver unit (40) is pulled up from the coating liquid, the paint adheres to the lower part of the virtual plane X in the liquid receiver (14).
  • each refrigerant pipe (41, 4 2, 47, 48, 49) and peripheral devices (43, 44, 46, SV) -1) is located above the imaginary plane X, so the coating liquid can be applied to each open end (41a, 42a, 47a, 48a, 49a) and peripheral devices (43, 44, 46, SV). -1) will not adhere.
  • the open end (41a) of the inflow pipe (41) is directed to the opposite side of the coating liquid surface, and the open end of the remaining pipes (42, 47, 48, 49).
  • (42a, 47a, 48a, 49a) faces in a direction parallel to the paint liquid surface, so that the scattered paint does not adhere to the piping (41, 42, 47, 48, 49). Is done.
  • the necessary part of the receiver unit (40) is painted by brush painting.
  • This brush coating is mainly applied to the outer peripheral surface of each refrigerant pipe.
  • the plug (43) or the nut lid (44a, 46a) of each service port (44, 46) the plug (43) can be replaced or each nut lid (44a, 46a) can be removed. Since it becomes difficult, brush painting is not performed on these parts.
  • the refrigeration apparatus (1) can be refrigerated for refrigerated storage in the container body (2) and refrigeration for freezing these storage.
  • the refrigeration operation of the refrigeration apparatus (1) will be described with reference to FIG.
  • the compressor (12), the external fan (18), and the internal fan (19) are operated, and the opening degree of the electronic expansion valve (15) and the suction proportional valve (25) is set appropriately. Adjusted.
  • the first solenoid valve (SV-1) and the second solenoid valve (SV-2) are opened at the same time as the sixth solenoid valve (SV-6) is closed.
  • the solenoid valves (SV-3, SV-4, SV-5, SV-7) are opened and closed appropriately according to the operating conditions.
  • the discharged refrigerant compressed by the compressor (12) first flows into the condenser (13). In the condenser (13), the refrigerant dissipates heat to the outdoor air and condenses. Thereafter, the refrigerant passes through the liquid receiver (14) and then flows into the first refrigerant flow path (21a) of the double pipe heat exchanger (21). Double tube heat exchanger (21 ), The refrigerant flowing through the first refrigerant flow path (21a) dissipates heat to the refrigerant flowing through the second refrigerant flow path (21b) described later and is cooled. That is, in the double pipe heat exchanger (21), the refrigerant flowing through the first refrigerant channel (21a) is supercooled.
  • CT first capillary tube
  • the refrigerant flowing through the high-pressure channel (22a) is cooled by releasing heat into the refrigerant flowing through the low-pressure channel (22b). That is, in the economizer heat exchanger (22), the refrigerant flowing through the high pressure side flow path (22a) is further subcooled.
  • the refrigerant flowing out of the low pressure side flow path (22b) evaporates in the second refrigerant flow path (21b) of the double pipe heat exchanger (21) described above, and then is compressed in the compression mechanism of the compressor (12). Returned to the route.
  • the stopper (43), service port (44, 46), and electromagnetic valve (SV-1) are arranged on the opposite side of the axis C of the liquid receiver (14). For this reason, the receiver (14) can be immersed in the paint to allow the paint to adhere to the periphery of the receiver (14) in a short time, while each refrigerant pipe (41, 42, 47, 48, 49 ) Can be prevented from entering the refrigerant pipe from the open end (41a, 42a, 47a, 48a, 49a).
  • the open ends (41a, 42a, 47a, 48a, 49a) of the refrigerant pipes (41, 42, 47, 48, 49) are opposite to the virtual plane X, or since the facing virtual plane parallel to the direction, when Dobo pickled liquid receiver (14), each open end is scattered paint (41a, 42 a, 47a, 48 a, 49a) force refrigerant pipe It is possible to more surely prevent entering into the interior. Therefore, the quality of the receiver unit (40) can be ensured more reliably.
  • the present invention is useful for a liquid receiver unit that has a liquid receiver, a fusing plug, and a service port and is incorporated in a refrigerant circuit of a refrigeration apparatus.

Abstract

A liquid receiver unit (40) is provided with a liquid receiver (14), refrigerant piping (41, 42, 47, 48, 49), a plug (43), service ports (44, 46), and a solenoid valve (SV-1). Open ends (41a, 42a, 47a, 48a, 49a) of the refrigerant piping (41, 42, 47, 48, 49), the plug (43), the service ports (44, 46), and the solenoid valve (SV-1) are arranged on the side reverse to the axis center (C) of the liquid receiver (14) for a virtual plane (X) parallel with the axis center (C) of the liquid receiver (14) and separated by a predetermined distance (L) from the axis center (C) so that the peripheral apparatuses are not immersed in paint when the liquid receiver (14) is immersed in paint.

Description

明 細 書  Specification
受液器ユニット  Receiver unit
技術分野  Technical field
[0001] 本発明は、受液器と、溶栓と、サービスポートとを有し、冷凍装置の冷媒回路に組 み込まれる受液器ユニットに関するものである。  The present invention relates to a liquid receiver unit that has a liquid receiver, a fusing plug, and a service port, and is incorporated in a refrigerant circuit of a refrigeration apparatus.
背景技術  Background art
[0002] 従来より、冷蔵庫や冷凍庫等の庫内を冷却するための冷凍装置が知られている。  Conventionally, a refrigeration apparatus for cooling the inside of a refrigerator or a freezer is known.
[0003] 例えば特許文献 1には、海上輸送等に用いられるコンテナの庫内を冷却する冷凍 装置が開示されている。この冷凍装置は、圧縮機、凝縮器、膨張弁、及び蒸発器が 接続された冷媒回路を備えている。この冷凍装置の冷媒回路では、冷媒が循環して 蒸気圧縮式の冷凍サイクルが行われる。その結果、蒸発器を流れる冷媒は庫内空気 から吸熱して蒸発し、コンテナ内の冷却が行われる。 [0003] For example, Patent Document 1 discloses a refrigeration apparatus that cools the inside of a container used for maritime transportation or the like. This refrigeration apparatus includes a refrigerant circuit to which a compressor, a condenser, an expansion valve, and an evaporator are connected. In the refrigerant circuit of this refrigeration system, the refrigerant circulates to perform a vapor compression refrigeration cycle. As a result, the refrigerant flowing through the evaporator absorbs heat from the internal air and evaporates to cool the container.
[0004] また、この冷凍装置の冷媒回路には、凝縮器と膨張弁との間に受液器も設けられて いる。この受液器は、筒状の密閉容器で構成され、その内部には冷媒回路で過剰と なる液冷媒が貯留される。 [0004] The refrigerant circuit of the refrigeration apparatus is also provided with a liquid receiver between the condenser and the expansion valve. This liquid receiver is constituted by a cylindrical airtight container, in which liquid refrigerant that is excessive in the refrigerant circuit is stored.
特許文献 1:特開 2002— 327964号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-327964
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] ところで、上述のような冷凍装置の冷媒回路の施工性を高めるため、上記受液器と 、この受液器の周辺機器を冷凍装置に設置する前に一体ィ匕し、いわゆる受液器ュ- ットとして構成することがある。  [0005] By the way, in order to improve the workability of the refrigerant circuit of the refrigeration apparatus as described above, the liquid receiver and the peripheral device of the liquid receiver are integrated together before being installed in the refrigeration apparatus. May be configured as an instrument.
[0006] 図 7は、従来の受液器ユニットの構成例を示すものである。この受液器ユニット(80) は、受液器 (81)の頂部に冷媒の流入管 (82)が接続され、その底部に冷媒の流出管 (83)が接続されている。更に、上記流出管 (83)には、高圧上昇に伴う受液器 (81)の 破損を防ぐための溶栓 (84)、冷媒充填用の複数のサービスポート (85,85)、電磁弁( 86)、及び複数の分岐管(87,87,87)が取り付けられている。この受液器ユニット(80) では、これらの周辺機器が受液器 (81)と一体的に構成されることで、この受液器ュ- ット (80)を冷凍装置に容易に据え付け可能となる。 FIG. 7 shows a configuration example of a conventional liquid receiver unit. In the liquid receiver unit (80), the refrigerant inflow pipe (82) is connected to the top of the liquid receiver (81), and the refrigerant outflow pipe (83) is connected to the bottom of the liquid receiver unit (80). Furthermore, the outflow pipe (83) includes a fusing plug (84) to prevent damage to the receiver (81) due to high pressure rise, a plurality of service ports (85,85) for charging refrigerant, a solenoid valve ( 86) and a plurality of branch pipes (87, 87, 87) are attached. In this receiver unit (80), these peripheral devices are configured integrally with the receiver (81), so that this receiver unit (80) can be easily installed in the refrigeration system.
[0007] ところで、このような受液器ユニット (80)では、受液器 (81)ゃ冷媒配管の表面の鲭 び付き防止のための塗装を施すことがある。特に、上述の特許文献 1のような海上輸 送用コンテナに搭載される冷凍装置では、受液器 (81)ゃ冷媒配管の表面が室外空 気中の塩分の影響を受けて鲭び付き易くなるので、このような塗装が必要不可欠とな る。 [0007] By the way, in such a liquid receiver unit (80), the liquid receiver (81) may be coated to prevent the surface of the refrigerant pipe from sticking. In particular, in the refrigeration apparatus mounted on a marine transport container as described in Patent Document 1 above, the surface of the liquid receiver (81) is easily rusted due to the influence of salt in the outdoor air. Therefore, such painting is indispensable.
[0008] このような受液器ユニット(80)の塗装方法としては、槽などに溜めた塗料に受液器 ( 81)を浸ける、 V、わゆる「ドボ漬け」を行 、受液器 (81)の表面に塗料を付着させること が考えられる。しかし、従来は、溶栓 (84)やサービスポート(85)等が、受液器 (81)の 軸心上に配置されており、ドボ浸けを行う際、上記溶栓 (84)やサービスポート(85)の 締結部に塗料が付着してしまい、溶栓 (84)の交換や、サービスポート(85)のナット蓋 の取り外しが困難となってしまう恐れがあった。また、ドボ浸けを行う際に、受液器ュ ニット (80)の流入管 (82)や流出管 (83)、更には分岐管 (87)の開口端部から冷媒配 管内に塗料が入り込んでしまう恐れもあった。つまり、受液器 (81)をドボ浸けすると、 受液器ユニット (80)につ 、ての塗装が不要な箇所にも塗料が付着してしまうことがあ り、受液器ユニット (80)の品質の低下を招!、てしまう t 、う問題があった。  [0008] As a method of coating such a receiver unit (80), soak the receiver (81) in paint accumulated in a tank, etc. It is conceivable to attach paint to the surface of 81). However, conventionally, the plug (84), service port (85), etc. are arranged on the axial center of the liquid receiver (81). There was a risk that paint would adhere to the fastening part of (85), making it difficult to replace the plug (84) or remove the nut cover of the service port (85). In addition, when the dowel is immersed, paint enters the refrigerant pipe from the open end of the inflow pipe (82) and outflow pipe (83) of the receiver unit (80) and the branch pipe (87). There was also a fear. In other words, if the receiver (81) is submerged, paint may adhere to the receiver unit (80) where no coating is required. There was a problem that caused the quality of the product to deteriorate!
[0009] このため、従来は、受液器 (81)の表面ゃ冷媒配管に筆などで塗料を塗布する、い わゆる「筆塗り」を行うようにしていた。し力しながら、この筆塗りで受液器 (81)の全周 域に塗料を塗布するのには手間がかかり、作業時間を多く費やしてしまうという問題 かあつた。  [0009] For this reason, conventionally, the surface of the liquid receiver (81) is so-called “brush coating” in which a paint is applied to the refrigerant pipe with a brush or the like. However, there was a problem that it took time and effort to apply paint to the entire area of the receiver (81) by brush painting.
[0010] 本発明は、力かる点に鑑みてなされたものであり、その目的は、受液器、溶栓、及 びサービスポートが冷媒配管で接続された受液器ユニットにおいて、塗装作業の短 縮化を図りながら、受液器ユニットの品質を確保できるようにすることにある。  [0010] The present invention has been made in view of the strong point, and an object of the present invention is to perform painting work in a liquid receiver unit in which a liquid receiver, a plug, and a service port are connected by a refrigerant pipe. The aim is to ensure the quality of the receiver unit while shortening the length.
課題を解決するための手段  Means for solving the problem
[0011] 第 1の発明は、筒状の受液器 (14)と、該受液器 (14)に接続される冷媒配管 (41,42, 47,48,49)と、該冷媒配管 (42)に設けられる溶栓 (43)及びサービスポート (44,46)とを 備え、冷凍装置(1)の冷媒回路(10)に組み込まれる受液器ユニットを前提としている 。そして、この受液器ユニットは、上記冷媒配管 (41,42,47,48,49)の開口端部、上記 溶栓 (43)、及び上記サービスポート (44,46) 1S 受液器(14)の軸心 Cに平行で且つ 該受液器 (14)の軸心 Cから所定距離 Lだけ離れた仮想平面 Xに対して上記受液器 ( 14)の軸心 Cと逆側に配置されていることを特徴とするものである。 [0011] A first invention includes a tubular liquid receiver (14), a refrigerant pipe (41, 42, 47, 48, 49) connected to the liquid receiver (14), and the refrigerant pipe ( 42) It is assumed that the receiver unit is equipped with a fusing plug (43) and a service port (44, 46) provided in 42) and is incorporated in the refrigerant circuit (10) of the refrigeration apparatus (1). And this liquid receiver unit is the open end of the refrigerant pipe (41, 42, 47, 48, 49), The fusing plug (43) and the service port (44,46) 1S Virtual plane parallel to the axis C of the liquid receiver (14) and separated from the axis C of the liquid receiver (14) by a predetermined distance L It is characterized in that it is arranged on the opposite side of the axis C of the liquid receiver (14) with respect to X.
[0012] 第 1の発明では、受液器(14)に、冷媒配管 (41,42,47,48,49)と、溶栓 (43)と、サー ビスポート (44,46)とが一体的に接続され、受液器ユニットが構成される。この受液器 ユニットでは、上記仮想平面 Xに対して、上記冷媒配管 (41,42,47,48,49)の開口端部 、溶栓 (43)、及びサービスポート (44,46)が受液器(14)の軸心 Cと逆側に配置される 。このため、受液器(14)の軸方向を水平な状態として、塗料液の液面と仮想平面 と を一致させるように受液器(14)を塗料液中に浸けると、受液器(14)の仮想平面 より 下側の部位に塗料を付着させることができる。  [0012] In the first invention, the refrigerant pipe (41, 42, 47, 48, 49), the fusing plug (43), and the service port (44, 46) are integrated with the liquid receiver (14). To the receiver unit. In this liquid receiver unit, the open end of the refrigerant pipe (41, 42, 47, 48, 49), the plug (43), and the service port (44, 46) are received with respect to the virtual plane X. Located on the opposite side to the axis C of the fluid container (14). Therefore, if the liquid receiver (14) is immersed in the coating liquid so that the axial direction of the liquid receiver (14) is in a horizontal state and the liquid level of the coating liquid and the virtual plane coincide with each other, The paint can be attached to the part below the virtual plane of 14).
[0013] 一方、このようなドボ漬け時には、上記冷媒配管 (41,42,47,48,49)の開口端部、溶 栓 (43)、及びサービスポート (44,46)力 仮想平面 X、即ち塗料液面の上側に位置す るので、冷媒配管 (41,42,47,48,49)の開口端部力 塗料が入り込んだり、上記溶栓( 43)やサービスポート (44,46)に塗料が付着することはな!/、。  [0013] On the other hand, during such doweling, the open end of the refrigerant pipe (41, 42, 47, 48, 49), the plug (43), and the service port (44, 46) force virtual plane X, In other words, because it is located above the paint liquid level, the force at the open end of the refrigerant pipe (41, 42, 47, 48, 49) enters the paint or enters the above-mentioned plug (43) or service port (44, 46). The paint will not stick!
[0014] 第 2の発明は、第 1の発明の受液器ユニットにおいて、上記冷媒配管 (42)には、電 磁弁 (SV-1)が設けられ、上記電磁弁 (SV-1)は、上記仮想平面 Xに対して、上記冷 媒配管(41,42,47,48,49)の開口端部、上記溶栓 (43)、及び上記サービスポート (44,4 6)と同じ側に配置されていることを特徴とするものである。  [0014] A second invention is the receiver unit of the first invention, wherein the refrigerant pipe (42) is provided with an electromagnetic valve (SV-1), and the electromagnetic valve (SV-1) is , On the same side as the open end of the cooling pipe (41, 42, 47, 48, 49), the plug (43), and the service port (44, 46) with respect to the virtual plane X It is characterized by being arranged.
[0015] 第 2の発明の受液器ユニットには、冷媒配管を開閉するための電磁弁 (SV-1)がー 体的に組み込まれる。ここで、電磁弁 (SV-1)は、上記冷媒配管 (41,42,47,48,49)の 開口端部、上記溶栓 (43)、及びサービスポート (44,46)と同様、仮想平面 Xに対して 受液器(14)の軸心 Cと逆側に配置されるので、受液器(14)を仮想平面 Xまで塗料液 に浸けても、上記電磁弁 (SV-1)に塗料が付着することはない。  [0015] In the liquid receiver unit of the second invention, an electromagnetic valve (SV-1) for opening and closing the refrigerant pipe is integrally incorporated. Here, the solenoid valve (SV-1) is virtually the same as the open end of the refrigerant pipe (41, 42, 47, 48, 49), the plug (43), and the service port (44, 46). Since it is placed on the opposite side of the axis C of the liquid receiver (14) with respect to the plane X, the solenoid valve (SV-1) can be used even if the liquid receiver (14) is immersed in the paint liquid up to the virtual plane X. The paint does not adhere to the surface.
[0016] 第 3の発明は、第 1の発明において、上記冷媒配管 (41,42,47,48,49)の開口端部 力 上記仮想平面 Xと平行な方向、又は上記仮想平面 Xと逆側を向いていることを特 徴とするちのである。  [0016] A third invention is the first invention, wherein the opening end portion of the refrigerant pipe (41, 42, 47, 48, 49) is in the direction parallel to the virtual plane X or opposite to the virtual plane X. It is characterized by facing the side.
[0017] 第 3の発明では、受液器(14)を仮想平面 Xまで塗料液に浸けた際、冷媒配管 (41,4 2,47,48,49)の開口端部が塗料液の液面に対して平行な方向、又は上方を向くことに なる。つまり、受液器(14)のドボ漬け時において、冷媒配管(41,42,47,48,49)の開口 端部が下側(塗料液の液面側)を向くことはな 、ので、ドボ漬け時に飛び跳ねた塗料 が冷媒配管 (41,42,47,48,49)の開口端部から内部へ入り込んでしまうことは阻止され る。 [0017] In the third invention, when the liquid receiver (14) is immersed in the paint liquid up to the virtual plane X, the open end of the refrigerant pipe (41, 42, 47, 48, 49) is the liquid of the paint liquid. In a direction parallel to the surface or facing upward Become. In other words, when the liquid receiver (14) is immersed, the open end of the refrigerant pipe (41, 42, 47, 48, 49) will not face downward (the liquid level side of the coating liquid). It is possible to prevent the paint splashed when dripping from entering the refrigerant pipe (41, 42, 47, 48, 49) from the open end.
発明の効果  The invention's effect
[0018] 本発明では、受液器(14)の仮想平面 Xに対して、冷媒配管(41,42,47,48,49)の開 口端部、溶栓 (43)、及びサービスポート (44,46)を受液器(14)の軸心 Cと逆側に配 置するようにしている。このため、受液器(14)を塗料に浸ける際、冷媒配管 (41,42,47 ,48,49)の開口端部から配管内に塗料が入り込んでしまうのを回避でき、更には、上 記溶栓 (43)やサービスポート (44,46)の締結部に塗料が付着してしまうのを回避でき る。したがって、この受液器ユニットの塗装作業に要する時間を短縮ィ匕できる一方、こ の受液器ユニットの品質を確保することができる。  [0018] In the present invention, the open end of the refrigerant pipe (41, 42, 47, 48, 49), the plug (43), and the service port (with respect to the virtual plane X of the liquid receiver (14)) 44, 46) are arranged on the opposite side of the center C of the receiver (14). For this reason, when the receiver (14) is immersed in the paint, the paint can be prevented from entering the pipe from the open end of the refrigerant pipe (41, 42, 47, 48, 49). It is possible to prevent paint from adhering to the fastening part of the filler plug (43) and service port (44, 46). Therefore, it is possible to reduce the time required for the painting operation of the liquid receiver unit while ensuring the quality of the liquid receiver unit.
[0019] また、上記第 2の発明によれば、電磁弁 (SV-1)が組み込まれた受液器ユニットの 受液器(14)のドボ漬けを行う際、電磁弁 (SV-1)に塗料が付着してしまうのを防止で きる。したがって、電磁弁 (SV-1)の開閉動作に不具合が生じてしまうのを回避でき、 この受液器ユニットの品質を確保することができる。  [0019] Further, according to the second aspect of the invention, when the liquid receiver (14) of the liquid receiver unit in which the electromagnetic valve (SV-1) is incorporated, the electromagnetic valve (SV-1) It is possible to prevent the paint from adhering to the surface. Therefore, it is possible to avoid the occurrence of problems in the opening / closing operation of the solenoid valve (SV-1), and to ensure the quality of this liquid receiver unit.
[0020] 更に、上記第 3の発明によれば、ドボ漬け時に飛散した塗料が冷媒配管 (41,42,47, 48,49)の開口端部力 配管内へ入り込んでしまうことを回避できるので、この受液器 ユニットの品質を一層確実に確保することができる。  [0020] Further, according to the third aspect of the invention, it is possible to avoid the paint scattered during the dowel immersion from entering the opening end force pipe of the refrigerant pipe (41, 42, 47, 48, 49). Thus, the quality of the liquid receiver unit can be ensured more reliably.
図面の簡単な説明  Brief Description of Drawings
[0021] [図 1]図 1は、本実施形態の受液器ユニットが適用される冷凍装置及びコンテナの外 観図である。  FIG. 1 is an external view of a refrigeration apparatus and a container to which a liquid receiver unit of the present embodiment is applied.
[図 2]図 2は、冷凍装置を前面から視た概略構成図である。  FIG. 2 is a schematic configuration diagram of the refrigeration apparatus viewed from the front.
[図 3]図 3は、冷凍装置の冷媒回路の概略構成を示す配管系統図である。  FIG. 3 is a piping system diagram showing a schematic configuration of a refrigerant circuit of a refrigeration apparatus.
[図 4]図 4は、コンテナ本体内に設置された状態の受液器ユニットの斜視図である。  [Fig. 4] Fig. 4 is a perspective view of the liquid receiver unit installed in the container body.
[図 5]図 5は、受液器ユニットを下側力 視た状態、又は受液器ユニットを塗料液中に 浸けた状態の平面図である。  FIG. 5 is a plan view of a state in which the receiver unit is viewed from the lower side, or a state in which the receiver unit is immersed in the coating liquid.
[図 6]図 6は、冷凍装置の冷蔵運転時における冷媒の流れを示す配管系統図である [図 7]図 7は、従来例の受液器ユニットの斜視図である。 [Fig. 6] Fig. 6 is a piping system diagram showing a refrigerant flow during refrigeration operation of the refrigeration apparatus. FIG. 7 is a perspective view of a conventional liquid receiver unit.
符号の説明  Explanation of symbols
[0022] 1 冷凍装置 [0022] 1 Refrigeration equipment
10 冷媒回路  10 Refrigerant circuit
14 受液器  14 Receiver
40 受液器ユニット  40 Receiver unit
41 流入管 (冷媒配管)  41 Inflow pipe (refrigerant pipe)
42 流出管 (冷媒配管)  42 Outflow pipe (refrigerant pipe)
43 溶栓  43 Plug
44,46サービスポート  44,46 service port
47 流入側配管 (冷媒配管)  47 Inlet piping (refrigerant piping)
48 流出側配管 (冷媒配管)  48 Outflow side piping (refrigerant piping)
49 分岐管 (冷媒配管)  49 Branch pipe (refrigerant pipe)
SV-1 第 1電磁弁 (電磁弁)  SV-1 1st solenoid valve (solenoid valve)
X 仮想平面  X virtual plane
C 軸心  C axis
L 距離  L distance
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0024] 本実施形態の受液器ユニット (40)は、海上輸送に用いられるコンテナの庫内を冷 却する冷凍装置(1)の冷媒回路(10)に組み込まれるものである。 [0024] The liquid receiver unit (40) of the present embodiment is incorporated in the refrigerant circuit (10) of the refrigeration apparatus (1) for cooling the interior of a container used for marine transportation.
[0025] く冷凍装置の全体構成〉 [0025] Overall configuration of refrigeration system>
図 1に示すように、冷凍装置(1)は、貯蔵物が冷蔵及び冷凍されるコンテナ本体 (2) の前面の開口部(3)に取り付けられている。この冷凍装置(1)は、前後に扁平なケー シング(11)を備えている。このケーシング(11)の内部は、室外 (庫外)に臨む空間と、 上記コンテナ本体 (2)内(庫内)に臨む空間とに仕切られている。  As shown in FIG. 1, the refrigeration apparatus (1) is attached to the opening (3) on the front surface of the container body (2) in which stored items are refrigerated and frozen. The refrigeration apparatus (1) includes a flat casing (11) at the front and rear. The inside of the casing (11) is partitioned into a space facing the outside (outside the store) and a space facing the inside of the container body (2) (in the store).
[0026] 図 2に示すように、ケーシング(11)の庫外側には、主要機器として、圧縮機(12)、 凝縮器(13)、受液器(14)、及び庫外ファン(18)が設置されている。一方、ケーシン グ(11)の庫内側には、主要機器として、蒸発器 (16)及び庫内ファン (19)が設置され ている。 [0026] As shown in FIG. 2, on the outside of the casing (11), as a main device, a compressor (12), A condenser (13), a liquid receiver (14), and an external fan (18) are installed. On the other hand, an evaporator (16) and an internal fan (19) are installed as main equipment inside the casing (11).
[0027] く冷媒回路の構成〉  [0027] Configuration of Refrigerant Circuit>
冷凍装置(1)は、冷媒が循環して蒸気圧縮式冷凍サイクルを行う冷媒回路(10)を 備えている。この冷媒回路(10)には、上記圧縮機(12)、上記凝縮器(13)、上記受液 器 (14)、電子膨張弁 (15)、及び上記蒸発器 (16)が接続されている。  The refrigeration apparatus (1) includes a refrigerant circuit (10) that performs a vapor compression refrigeration cycle by circulating refrigerant. The refrigerant circuit (10) is connected to the compressor (12), the condenser (13), the receiver (14), the electronic expansion valve (15), and the evaporator (16). .
[0028] 上記圧縮機(12)は、圧縮機モータの回転速度が一定となる固定容量型のスクロー ル圧縮機で構成されている。上記凝縮器(13)は、上記庫外ファン(18)が送風する室 外空気と冷媒とを熱交換させる、いわゆる空冷凝縮器を構成している。上記受液器( 14)は、円筒状の密閉容器で構成され、冷媒回路(10)における過剰な液冷媒を貯留 するものである。この受液器(14)は、詳細は後述する受液器ユニット (40)の一部を構 成している。上記電子膨張弁(15)は、蒸発器 (16)の冷媒過熱度に応じて開度が調 節可能に構成されている。上記蒸発器(16)は、上記庫内ファン(19)が送風する庫内 空気と冷媒とを熱交換させる、庫内冷却用の熱交換器を構成している。  [0028] The compressor (12) is a fixed-capacity scroll compressor in which the rotation speed of the compressor motor is constant. The condenser (13) constitutes a so-called air-cooled condenser that exchanges heat between the outdoor air blown by the outdoor fan (18) and the refrigerant. The liquid receiver (14) is formed of a cylindrical sealed container and stores excess liquid refrigerant in the refrigerant circuit (10). The liquid receiver (14) constitutes a part of a liquid receiver unit (40) described later in detail. The electronic expansion valve (15) is configured such that the opening degree can be adjusted according to the degree of refrigerant superheat of the evaporator (16). The evaporator (16) constitutes a heat exchanger for cooling the inside which exchanges heat between the inside air blown by the inside fan (19) and the refrigerant.
[0029] 冷媒回路(10)には、二重管熱交翻 (21)、ヱコノマイザ熱交翻 (22)、レヒートコ ィル (23)、ドレンパンヒータ(24)、及び吸入比例弁 (25)も設けられている。  [0029] The refrigerant circuit (10) also includes double pipe heat exchange (21), ヱ conomizer heat exchange (22), reheat coil (23), drain pan heater (24), and suction proportional valve (25). Is provided.
[0030] 上記二重管熱交換器 (21)は、第 1冷媒流路 (21a)を流れる冷媒と、第 2冷媒流路( 21b)を流れる冷媒とを熱交換させるものである。第 1冷媒流路 (21a)は、その流入側 が受液器(14)と接続し、その流出側が第 1電磁弁 (SV-1)を介して上記ェコノマイザ 熱交換器 (22)の高圧側流路 (22a)の流入端と接続している。一方、第 2冷媒流路 (21 b)は、その流入側が上記ェコノマイザ熱交換器 (22)の低圧側流路 (22b)の流出端と 接続し、その流出側が上記圧縮機(12)の圧縮機構における冷媒の圧縮途中の経路 に接続している。  [0030] The double pipe heat exchanger (21) exchanges heat between the refrigerant flowing through the first refrigerant channel (21a) and the refrigerant flowing through the second refrigerant channel (21b). The first refrigerant flow path (21a) has an inflow side connected to the receiver (14), and an outflow side connected to the high pressure side of the economizer heat exchanger (22) via the first solenoid valve (SV-1). Connected to the inflow end of the channel (22a). On the other hand, the second refrigerant flow path (21 b) is connected at its inflow side to the outflow end of the low pressure side flow path (22b) of the economizer heat exchanger (22), and its outflow side is compressed by the compressor (12). It is connected to a path in the middle of refrigerant compression in the mechanism.
[0031] 上記ェコノマイザ熱交換器 (22)は、上記高圧側流路 (22a)を流れる冷媒と上記低 圧側流路 (22b)を流れる冷媒とを熱交換させるものである。上記高圧側流路 (22a)の 流出側は、上記電子膨張弁(15)と接続している。一方、上記低圧側流路 (22b)の流 入側は、第 1キヤビラリ一チューブ (CT-1)及び第 2電磁弁 (SV-2)を介して上記二重 管熱交翻 (21)と電磁弁 (SV- 1)との間に接続して!/ヽる。 [0031] The economizer heat exchanger (22) exchanges heat between the refrigerant flowing through the high-pressure channel (22a) and the refrigerant flowing through the low-pressure channel (22b). The outflow side of the high-pressure channel (22a) is connected to the electronic expansion valve (15). On the other hand, the inflow side of the low-pressure channel (22b) is connected to the double pipe via the first capillary tube (CT-1) and the second solenoid valve (SV-2). Connect / connect between tube heat exchanger (21) and solenoid valve (SV-1).
[0032] 上記レヒートコイル (23)は、庫内側に設置されており、蒸発器(16)で冷却された空 気を冷媒で加熱するための再熱用熱交換器を構成して ヽる。このレヒートコイル (23) は、一端が圧縮機 (12)の吐出側と接続し、他端が電子膨張弁 (15)と蒸発器 (16)と の間に接続するレヒート用配管(31)に設けられている。このレヒート用配管(31)には 、レヒートコイル (23)の流入側に第 3電磁弁 (SV-3)が設けられ、その流出側に第 2キ ャピラリーチューブ (CT-2)が設けられている。上記第 3電磁弁 (SV-3)が開放されると 、圧縮機(12)の吐出冷媒は、レヒート用配管(31)を経由してレヒートコイル (23)を流 通する。その結果、蒸発器(16)で冷却された庫内空気はレヒートコイル (23)内を流 れる冷媒で加熱される。つまり、レヒートコイル (23)は、蒸発器(16)で庫内空気中の 水分を結露させることで庫内空気の除湿を行う際、冷えすぎた庫内空気を加熱して 庫内空気の湿度と温度を最適に維持させる。なお、上記レヒートコイル (23)で凝縮し た冷媒は、第 2キヤビラリ一チューブ (CT-2)で減圧された後、蒸発器 (16)へ流入す る。 [0032] The reheat coil (23) is installed inside the warehouse and constitutes a reheat heat exchanger for heating the air cooled by the evaporator (16) with a refrigerant. The reheat coil (23) is provided in a reheat pipe (31) having one end connected to the discharge side of the compressor (12) and the other end connected between the electronic expansion valve (15) and the evaporator (16). It has been. The reheat pipe (31) is provided with a third solenoid valve (SV-3) on the inflow side of the reheat coil (23) and a second capillary tube (CT-2) on the outflow side thereof. Yes. When the third solenoid valve (SV-3) is opened, the refrigerant discharged from the compressor (12) flows through the reheat coil (23) via the reheat pipe (31). As a result, the internal air cooled by the evaporator (16) is heated by the refrigerant flowing in the reheat coil (23). In other words, the reheat coil (23), when dehumidifying the internal air by dehydrating the moisture in the internal air with the evaporator (16), heats the internal air that has been cooled too much to reduce the humidity of the internal air. Keep temperature optimal. The refrigerant condensed in the reheat coil (23) is depressurized in the second capillary tube (CT-2) and then flows into the evaporator (16).
[0033] 上記ドレンパンヒータ (24)は、蒸発器(16)力 剥がれ落ちた霜や氷塊を回収するド レンパン(図示省略)の内部に配設されており、冷媒でドレンパン内の氷塊を加熱し て溶融させるためのものである。このドレンパンヒータ (24)は、一端が圧縮機(12)の 吐出側と接続し、他端が電子膨張弁(15)と蒸発器 (16)との間に接続するドレンパン 加熱用配管(32)に設けられている。このドレンパン加熱用配管(32)には、ドレンパン ヒータ (24)の流入側に第 4電磁弁 (SV-4)が設けられて 、る。第 4電磁弁 (SV-4)が開 放されると、圧縮機(12)の吐出冷媒は、ドレンパン加熱用配管 (32)を経由してドレン パンヒータ(24)内を流通する。その結果、ドレンパン内に回収された氷塊は、ドレン パンヒータ(32)内を流れる冷媒で加熱されて溶融する。  [0033] The drain pan heater (24) is disposed inside a drain pan (not shown) that collects frost and ice blocks that have peeled off the evaporator (16), and heats the ice blocks in the drain pan with a refrigerant. For melting. This drain pan heater (24) has one end connected to the discharge side of the compressor (12) and the other end connected between the electronic expansion valve (15) and the evaporator (16). Is provided. The drain pan heating pipe (32) is provided with a fourth solenoid valve (SV-4) on the inflow side of the drain pan heater (24). When the fourth solenoid valve (SV-4) is opened, the refrigerant discharged from the compressor (12) flows through the drain pan heater (24) via the drain pan heating pipe (32). As a result, the ice blocks collected in the drain pan are heated and melted by the refrigerant flowing in the drain pan heater (32).
[0034] 上記吸入比例弁 (25)は、圧縮機(12)の吸入側に設けられて!/、る。吸入比例弁 (25 )は、圧縮機(12)の吸入冷媒量を調節することで冷媒回路(10)における冷媒循環量 を調節する流量調整弁を構成している。つまり、吸入比例弁 (25)は、その開度に応じ て冷媒循環量を調節し上記蒸発器 (16)の冷却能力を調整する。  [0034] The suction proportional valve (25) is provided on the suction side of the compressor (12). The suction proportional valve (25) constitutes a flow rate adjusting valve that adjusts the refrigerant circulation amount in the refrigerant circuit (10) by adjusting the amount of refrigerant sucked by the compressor (12). That is, the suction proportional valve (25) adjusts the cooling capacity of the evaporator (16) by adjusting the refrigerant circulation amount according to the opening degree.
[0035] 冷媒回路(10)には、液インジヱクシヨン管 (33)、デフロスト管(34)、及び吐出ガスバ ィパス管(35)が設けられて 、る。 [0035] The refrigerant circuit (10) includes a liquid injection pipe (33), a defrost pipe (34), and a discharge gas bar. A bypass pipe (35) is provided.
[0036] 上記液インジェクション管(33)は、受液器(14)を流出した液冷媒を、圧縮機(12)の 吸入側に戻す、いわゆる液インジェクション用の配管である。液インジェクション管(33 )は、一端が上記二重管熱交 (21)と第 2電磁弁 (SV-2)との間に接続し、他端が 圧縮機(12)の吸入側に接続している。この液インジェクション管(33)には、第 5電磁 弁 (SV-5)と第 3キヤビラリ一チューブ (CT-3)とが設けられて 、る。  The liquid injection pipe (33) is a so-called liquid injection pipe that returns the liquid refrigerant flowing out of the liquid receiver (14) to the suction side of the compressor (12). One end of the liquid injection pipe (33) is connected between the double pipe heat exchanger (21) and the second solenoid valve (SV-2), and the other end is connected to the suction side of the compressor (12). ing. The liquid injection pipe (33) is provided with a fifth solenoid valve (SV-5) and a third capillary tube (CT-3).
[0037] 上記デフロスト管 (34)は、蒸発器 (16)に付着した霜を圧縮機(12)の吐出冷媒で加 熱して融解させるデフロスト用の配管である。デフロスト管 (34)は、一端が圧縮機(12 )の吸入側に接続し、他端が電子膨張弁(15)と蒸発器 (16)との間に接続している。こ のデフロスト管(34)には、蒸発器(16)の除霜を行うデフロスト運転時になると開放さ れる第 6電磁弁 (SV-6)が設けられて 、る。  [0037] The defrost pipe (34) is a defrost pipe for heating and melting the frost adhering to the evaporator (16) with the refrigerant discharged from the compressor (12). The defrost pipe (34) has one end connected to the suction side of the compressor (12) and the other end connected between the electronic expansion valve (15) and the evaporator (16). The defrost pipe (34) is provided with a sixth solenoid valve (SV-6) that is opened when the defrost operation is performed to defrost the evaporator (16).
[0038] 上記吐出ガスバイパス管 (35)は、蒸発器(16)の冷却能力が過剰となる場合等に圧 縮機(12)の吐出冷媒を圧縮機(12)の吸入側に戻すための配管である。なお、この 吐出ガスバイパス管 (35)は、圧縮機(12)カゝら吐出された冷媒中の冷凍機油を圧縮 機(12)の吸入側に戻すための油戻し配管も兼ねている。吐出ガスバイパス管(35)は 、一端が上記ドレンパン加熱用配管 (32)に接続し、他端が圧縮機(12)の吸入側に 接続している。この吐出ガスバイパス管(35)には、運転条件に応じて適宜開放される 第 7電磁弁 (SV-7)が設けられて 、る。  [0038] The discharge gas bypass pipe (35) is used for returning the refrigerant discharged from the compressor (12) to the suction side of the compressor (12) when the cooling capacity of the evaporator (16) becomes excessive. It is piping. The discharge gas bypass pipe (35) also serves as an oil return pipe for returning the refrigeration oil in the refrigerant discharged from the compressor (12) to the suction side of the compressor (12). The discharge gas bypass pipe (35) has one end connected to the drain pan heating pipe (32) and the other end connected to the suction side of the compressor (12). The discharge gas bypass pipe (35) is provided with a seventh solenoid valve (SV-7) that is appropriately opened according to operating conditions.
[0039] く受液器ユニットの構成〉  [0039] Configuration of the liquid receiver unit>
図 3に示すように、冷媒回路(10)には、上述の受液器(14)を含む受液器ユニット (4 0)が組み込まれている。図 4に示すように、受液器ユニット (40)は、上述の受液器(14 )と、該受液器(14)の流入管 (41)及び流出管 (42)とを備えている。受液器ユニット (4 0)がケーシング(11)内に設置される状態において、上記流入管 (41)は受液器(14) の頂部に接続される一方、上記流出管 (42)は受液器(14)の底部に接続されている  As shown in FIG. 3, the refrigerant circuit (10) incorporates a liquid receiver unit (40) including the liquid receiver (14) described above. As shown in FIG. 4, the liquid receiver unit (40) includes the above-described liquid receiver (14), and an inflow pipe (41) and an outflow pipe (42) of the liquid receiver (14). . In a state where the receiver unit (40) is installed in the casing (11), the inlet pipe (41) is connected to the top of the receiver (14), while the outlet pipe (42) is received by the receiver (14). Connected to the bottom of the liquid container (14)
[0040] 具体的には図 4に示すように、上記流入管 (41)は、受液器(14)の頂部から屈曲し て受液器(14)の手前側に延びている。一方、上記流出管 (42)は、受液器(14)の底 部から受液器(14)の手前側に延びた後、 V字状に折れ曲がるようにて奥側に湾曲し ている。その後、流出管 (42)は、受液器(14)と平行にー且上方に延びた後、更に手 前側に屈曲し、その後に受液器(14)と平行に下方に延びている。更に、その後の流 出管 (42)は、受液器(14)の手前側寄りにおいて、図 4の右方向に延びた後、再び上 方に屈曲している。 [0040] Specifically, as shown in Fig. 4, the inflow pipe (41) is bent from the top of the liquid receiver (14) and extends to the front side of the liquid receiver (14). On the other hand, the outflow pipe (42) extends from the bottom of the liquid receiver (14) to the front side of the liquid receiver (14), and then curves to the back so as to be bent in a V shape. ing. Thereafter, the outflow pipe (42) extends in parallel and upward with the liquid receiver (14), then bends further forward, and then extends downward in parallel with the liquid receiver (14). Further, the subsequent outflow pipe (42) extends rightward in FIG. 4 and is bent upward again at the front side of the liquid receiver (14).
[0041] 上記流出管 (42)には、その上流側から下流側に亘つて順に、溶栓 (43)、第 1サー ビスポート (44)、フィルタ (45)、上記二重管熱交換器 (21)、上記第 1電磁弁 (SV-1)、 及び第 2サービスポート (46)が設けられている。上記溶栓 (43)は、冷媒回路(10)の 冷媒圧力の異常上昇に伴い冷媒温度が高くなると、自身が溶融することで冷媒を冷 媒回路(10)の外部に排出し、受液器 (14)ゃ冷媒配管の破損事故を防止するもので ある。上記第 1,第 2サービスポート (44,46)は、冷媒回路(10)における冷媒充填用の ポートを構成しており、その端部にはナット蓋 (44a,46a)が締結されている。上記フィ ルタ (45)は、流出管 (42)において拡径された配管内に収納されており、冷媒中の異 物等を除去するものである。  [0041] The outflow pipe (42) includes, in order from the upstream side to the downstream side, the fusing plug (43), the first service port (44), the filter (45), and the double pipe heat exchanger ( 21), the first solenoid valve (SV-1), and the second service port (46) are provided. When the refrigerant temperature rises as the refrigerant pressure in the refrigerant circuit (10) rises abnormally, the fusing plug (43) melts itself and discharges the refrigerant to the outside of the refrigerant circuit (10). (14) Prevents accidental damage to refrigerant piping. The first and second service ports (44, 46) constitute a refrigerant charging port in the refrigerant circuit (10), and nut lids (44a, 46a) are fastened to end portions thereof. The filter (45) is housed in a pipe whose diameter has been expanded in the outflow pipe (42), and removes foreign substances and the like in the refrigerant.
[0042] また、上記二重管熱交換器 (21)には、上記第 2冷媒流路 (21b)の流入側配管 (47) と、該第 2冷媒流路 (21b)の流出側配管 (48)とが接続されている。また、流出管 (42) において、上記二重管熱交 (21)と第 1電磁弁 (SV-1)との間には、上記ェコノマ ィザ熱交換器 (22)の低圧側流路 (22b)側と接続される分岐管 (49)が接続されて!、る 。以上の構成の受液器ユニット (40)は、上記流入管 (41)の開口端部 (41a)、上記流 出管 (42)の開口端部 (42a)、上記流入側配管 (47)の開口端部 (47a)、上記流出側 配管 (48)の開口端部 (48a)、及び上記分岐管 (49)の開口端部 (49a)が、それぞれに 対応する冷媒配管に接続されることで、上述した冷媒回路(10)が構成される(図 3参 照)。  [0042] Further, the double pipe heat exchanger (21) includes an inflow side pipe (47) of the second refrigerant flow path (21b) and an outflow side pipe (47) of the second refrigerant flow path (21b). 48) is connected. In addition, in the outflow pipe (42), the low pressure side flow path (of the economizer heat exchanger (22) (see FIG. 1) between the double pipe heat exchanger (21) and the first solenoid valve (SV-1). 22b) The branch pipe (49) connected to the side is connected! The receiver unit (40) having the above-described configuration includes the open end (41a) of the inflow pipe (41), the open end (42a) of the outflow pipe (42), and the inflow side pipe (47). The open end (47a), the open end (48a) of the outflow side pipe (48), and the open end (49a) of the branch pipe (49) are connected to the corresponding refrigerant pipes. The refrigerant circuit (10) described above is configured (see FIG. 3).
[0043] また、本発明の特徴として、受液器ユニット (40)では、受液器(14)に対して、受液 器(14)に接続される各周辺機器が全て同一側に配置されている。具体的には、図 5 に示すように、受液器(14)の軸心 Cに平行で、且つ該受液器(14)の軸心 Cから所定 距離 Lだけ離れた仮想平面 Xを基準として視た場合、上記流入管 (41)、流出管 (42) 、流入側配管 (47)、流出側配管 (48)、及び分岐管 (49)の各開口端部 (41a,42a,47a, 48a,49a)は、それぞれ仮想平面 Xに対して受液器(14)の軸心 Cと逆側、即ち図 5に おける仮想平面 Xの上側に配置されて 、る。 [0043] Further, as a feature of the present invention, in the liquid receiver unit (40), each peripheral device connected to the liquid receiver (14) is arranged on the same side with respect to the liquid receiver (14). ing. Specifically, as shown in FIG. 5, a virtual plane X parallel to the axis C of the liquid receiver (14) and separated from the axis C of the liquid receiver (14) by a predetermined distance L is used as a reference. when viewed as, the inflow pipe (41), the outflow pipe (42), the inflow side pipe (47), the outflow side pipe (48), and the open end of the branch pipe (49) (41a, 42 a, 47a , 48a, 49a) are opposite to the axis C of the receiver (14) with respect to the virtual plane X, that is, in FIG. It is placed above the virtual plane X.
[0044] 一方、図 4に示すように、受液器ユニット (40)がケーシング(11)内に設置された状 態では、各冷媒配管(41,42,47,48,49)の開口端部(41a,42a,47a,48a,49a)は、それぞ れケーシング(11)の手前側寄りに位置することになる。このため、各冷媒配管 (41,42, 47,48,49)の配管接続作業等が比較的容易となる。  On the other hand, as shown in FIG. 4, when the receiver unit (40) is installed in the casing (11), the open end of each refrigerant pipe (41, 42, 47, 48, 49). The parts (41a, 42a, 47a, 48a, 49a) are respectively positioned closer to the front side of the casing (11). For this reason, the pipe connection work of each refrigerant pipe (41, 42, 47, 48, 49) becomes relatively easy.
[0045] 更に、上記溶栓 (43)、第 1サービスポート (44)、第 2サービスポート (46)、及び第 1 電磁弁 (SV-1)も、上記仮想平面 Xに対して受液器(14)の軸心 Cと逆側に配置されて いる。一方、図 4に示すように、受液器ユニット (40)がケーシング(11)内に設置される 状態では、これらの周辺機器 (43,44,46,SV-1)は、それぞれケーシング(11)の手前 側寄りに位置することになる。このため、溶栓 (43)の交換や各サービスポート (44,46) 力 の冷媒の充填作業等が比較的容易となる。  [0045] Further, the fusing plug (43), the first service port (44), the second service port (46), and the first solenoid valve (SV-1) also receive the liquid with respect to the virtual plane X. It is arranged on the opposite side to the axis C of (14). On the other hand, as shown in FIG. 4, when the receiver unit (40) is installed in the casing (11), these peripheral devices (43, 44, 46, SV-1) are respectively connected to the casing (11 It will be located in front of). This makes it relatively easy to replace the melt plug (43) and to fill the refrigerant with the service port (44, 46) force.
[0046] また、上記流入管 (41)の開口端部 (41a)は、上記仮想平面 Xと逆側(図 5の上側)を 向!ヽて 、る一方、残りの冷媒配管(42,47,48,49)の各開口端部(42a,47a,48a,49a)は 、上記仮想平面 Xと平行な方向(図 5の紙面方向)を向いている。  [0046] The open end (41a) of the inflow pipe (41) faces away from the virtual plane X (upper side in FIG. 5), while the remaining refrigerant pipes (42, 47). , 48, 49) each open end (42a, 47a, 48a, 49a) faces in a direction parallel to the virtual plane X (paper surface direction in FIG. 5).
[0047] 一方、図 4に示すように、受液器ユニット (40)がケーシング(11)内に設置された状 態では、流入管 (41)の開口端部 (41a)が、ケーシング(11)の手前側を向くことになり 、残りの配管(42,47,48,49)の各開口端部(42a,47a,48a,49a)は、上方を向くことにな る。これら上方を向いて開口する配管(42,47,48,49)は、その上方に位置する他の配 管の下端開口部と、いわゆる下向きろう付けによって接続されることになるので、配管 接合部の密着性が確保され、冷媒回路(10)の品質の向上を図ることができる。  On the other hand, as shown in FIG. 4, when the receiver unit (40) is installed in the casing (11), the open end (41a) of the inflow pipe (41) is connected to the casing (11 ) And the open ends (42a, 47a, 48a, 49a) of the remaining pipes (42, 47, 48, 49) are directed upward. These upwardly opening pipes (42, 47, 48, 49) are connected to the lower end openings of the other pipes located above by so-called downward brazing. Thus, the quality of the refrigerant circuit (10) can be improved.
[0048] く受液器ユニットの塗装工程〉  [0048] Ku liquid receiver unit painting process>
ところで、上記受液器ユニット (40)を冷媒回路(10)に組み込んでコンテナの冷凍装 置(1)として用いる場合、長期の使用に伴 、受液器ユニット (40)の表面が鲭び付 ヽ てしまうことがある。特に、このコンテナを海上輸送に用いる場合、室外空気中に塩分 が含まれ易くなるので、受液器ユニット (40)の表面の腐食が促進されてしまう。このた め、本実施形態の受液器ユニット (40)は、冷媒回路(10)に組み込む前の段階で、表 面塗装が施される。  By the way, when the receiver unit (40) is incorporated into the refrigerant circuit (10) and used as a container refrigeration unit (1), the surface of the receiver unit (40) becomes glazed with long-term use.し ま う may end up. In particular, when this container is used for marine transportation, the outdoor air is likely to contain salt, so that corrosion of the surface of the receiver unit (40) is promoted. Therefore, the liquid receiver unit (40) of the present embodiment is subjected to surface coating at a stage before being incorporated into the refrigerant circuit (10).
[0049] 受液器ユニット (40)の塗装工程では、まず、受液器(14)を塗料液中に浸ける、 Vヽゎ ゆるドボ浸けが行われる。このドボ漬け時には、図 5に示すように、塗料液の液面に対 して受液器(14)の軸心 Cを平行とし、上記仮想平面 Xの下側 (受液器側)から受液器 (14)を塗料液に浸け、仮想平面 Xと塗料液の液面とがー致するようにする。この状態 から、受液器ユニット (40)を塗料液中から引き上げると、受液器(14)における仮想平 面 Xの下側の部位に塗料が付着する。一方、このドボ浸け時には、各冷媒配管 (41,4 2,47,48,49)の開口端部(41a,42a,47a,48a,49a)や、各周辺機器 (43,44,46,SV-1)は、 仮想平面 Xの上側に位置することになるので、塗料液が各開口端部 (41a,42a,47a,48 a,49a)や、各周辺機器 (43,44,46,SV-1)に付着することはない。 [0049] In the coating process of the receiver unit (40), first, the receiver (14) is immersed in the coating liquid. Loose dowel immersion is performed. As shown in FIG. 5, when dripping, the axis C of the liquid receiver (14) is parallel to the liquid surface of the coating liquid, and the liquid is received from the lower side of the virtual plane X (the liquid receiver side). Immerse the liquid container (14) in the paint liquid so that the virtual plane X and the liquid level of the paint liquid match. In this state, when the liquid receiver unit (40) is pulled up from the coating liquid, the paint adheres to the lower part of the virtual plane X in the liquid receiver (14). On the other hand, at the time of soaking, the open ends (41a, 42a, 47a, 48a, 49a) of each refrigerant pipe (41, 4 2, 47, 48, 49) and peripheral devices (43, 44, 46, SV) -1) is located above the imaginary plane X, so the coating liquid can be applied to each open end (41a, 42a, 47a, 48a, 49a) and peripheral devices (43, 44, 46, SV). -1) will not adhere.
[0050] 更に、このドボ浸け時には、流入管 (41)の開口端部 (41a)が塗料液面と逆側を向く 状態となり、残りの配管 (42,47,48,49)の開口端部 (42a,47a,48a,49a)は、塗料液面と 平行な方向を向く状態となるので、飛散した塗料が配管 (41,42,47,48,49)内に付着し てしまうことも回避される。  [0050] Further, when the dowel is immersed, the open end (41a) of the inflow pipe (41) is directed to the opposite side of the coating liquid surface, and the open end of the remaining pipes (42, 47, 48, 49). (42a, 47a, 48a, 49a) faces in a direction parallel to the paint liquid surface, so that the scattered paint does not adhere to the piping (41, 42, 47, 48, 49). Is done.
[0051] このドボ漬けの後には、筆塗りによって受液器ユニット (40)の必要部位を塗装する 。この筆塗りは、主に各冷媒配管の外周面に施される。一方、溶栓 (43)や各サービ スポート (44,46)のナット蓋 (44a,46a)などに塗装を行うと、溶栓 (43)の交換や各ナット 蓋 (44a,46a)の取り外しが困難となるので、これらの箇所には筆塗りが行われない。  [0051] After the soaking, the necessary part of the receiver unit (40) is painted by brush painting. This brush coating is mainly applied to the outer peripheral surface of each refrigerant pipe. On the other hand, if paint is applied to the plug (43) or the nut lid (44a, 46a) of each service port (44, 46), the plug (43) can be replaced or each nut lid (44a, 46a) can be removed. Since it becomes difficult, brush painting is not performed on these parts.
[0052] 運転動作  [0052] Driving action
この冷凍装置(1)は、コンテナ本体 (2)内の貯蔵物を冷蔵する冷蔵運転や、これら の貯蔵物を冷凍する冷凍運転が可能となっている。ここでは、冷凍装置(1)の冷蔵運 転について図 6を参照しながら説明する。  The refrigeration apparatus (1) can be refrigerated for refrigerated storage in the container body (2) and refrigeration for freezing these storage. Here, the refrigeration operation of the refrigeration apparatus (1) will be described with reference to FIG.
[0053] 冷蔵運転時には、圧縮機(12)、庫外ファン(18)、及び庫内ファン(19)が運転され るとともに電子膨張弁(15)及び吸入比例弁 (25)の開度が適宜調節される。また、冷 蔵運転時には、原則として、第 1電磁弁 (SV-1)及び第 2電磁弁 (SV-2)が開放される と同時に第 6電磁弁(SV- 6)が閉鎖され、その他の電磁弁(SV-3,SV-4,SV-5,SV-7) は運転条件に応じて適宜開閉される。  [0053] During the refrigeration operation, the compressor (12), the external fan (18), and the internal fan (19) are operated, and the opening degree of the electronic expansion valve (15) and the suction proportional valve (25) is set appropriately. Adjusted. During refrigeration operation, the first solenoid valve (SV-1) and the second solenoid valve (SV-2) are opened at the same time as the sixth solenoid valve (SV-6) is closed. The solenoid valves (SV-3, SV-4, SV-5, SV-7) are opened and closed appropriately according to the operating conditions.
[0054] 圧縮機(12)で圧縮された吐出冷媒は、まず、凝縮器 (13)へ流入する。凝縮器 (13) では、冷媒が室外空気へ放熱して凝縮する。その後、冷媒は、受液器(14)を通過し た後、二重管熱交換器 (21)の第 1冷媒流路 (21a)へ流入する。二重管熱交換器 (21 )では、第 1冷媒流路 (21a)を流れる冷媒が、後述の第 2冷媒流路 (21b)を流れる冷 媒に放熱して冷却される。つまり、二重管熱交換器 (21)では、第 1冷媒流路 (21a)を 流れる冷媒が過冷却される。 [0054] The discharged refrigerant compressed by the compressor (12) first flows into the condenser (13). In the condenser (13), the refrigerant dissipates heat to the outdoor air and condenses. Thereafter, the refrigerant passes through the liquid receiver (14) and then flows into the first refrigerant flow path (21a) of the double pipe heat exchanger (21). Double tube heat exchanger (21 ), The refrigerant flowing through the first refrigerant flow path (21a) dissipates heat to the refrigerant flowing through the second refrigerant flow path (21b) described later and is cooled. That is, in the double pipe heat exchanger (21), the refrigerant flowing through the first refrigerant channel (21a) is supercooled.
[0055] 二重管熱交換器 (21)を流出した冷媒は、一部がェコノマイザ熱交換器 (22)の高圧 側流路 (22a)へ流入する一方、残りは第 1キヤビラリ一チューブ (CT-1)で減圧されて 力 ェコノマイザ熱交^^ (22)の低圧側流路 (22b)へ流入する。ェコノマイザ熱交換 器 (22)では、高圧側流路 (22a)を流れる冷媒が低圧側流路 (22b)を流れる冷媒に放 熱して冷却される。つまり、ェコノマイザ熱交換器 (22)では、高圧側流路 (22a)を流 れる冷媒が更に過冷却される。低圧側流路 (22b)を流出した冷媒は、上述の二重管 熱交換器 (21)の第 2冷媒流路 (21b)で蒸発した後、圧縮機 (12)の圧縮機構の圧縮 途中の経路に返送される。  [0055] A part of the refrigerant flowing out of the double-pipe heat exchanger (21) flows into the high-pressure side flow path (22a) of the economizer heat exchanger (22), while the rest flows through the first capillary tube (CT The pressure is reduced at -1) and flows into the low pressure side flow path (22b) of the heat exchanger ^^ (22). In the economizer heat exchanger (22), the refrigerant flowing through the high-pressure channel (22a) is cooled by releasing heat into the refrigerant flowing through the low-pressure channel (22b). That is, in the economizer heat exchanger (22), the refrigerant flowing through the high pressure side flow path (22a) is further subcooled. The refrigerant flowing out of the low pressure side flow path (22b) evaporates in the second refrigerant flow path (21b) of the double pipe heat exchanger (21) described above, and then is compressed in the compression mechanism of the compressor (12). Returned to the route.
[0056] ェコノマイザ熱交換器 (22)の高圧側流路 (22a)を流出した冷媒は、電子膨張弁(15 )を通過する際に減圧されて力も蒸発器(16)へ流入する。蒸発器(16)では、冷媒が 庫内空気から吸熱して蒸発する。その結果、コンテナ本体 (2)内の冷却が行われる。 蒸発器 (16)で蒸発した冷媒は、吸入比例弁 (25)を通過した後、圧縮機(12)に吸入 される。  [0056] The refrigerant that has flowed out of the high-pressure channel (22a) of the economizer heat exchanger (22) is reduced in pressure when passing through the electronic expansion valve (15), and the force also flows into the evaporator (16). In the evaporator (16), the refrigerant absorbs heat from the internal air and evaporates. As a result, the inside of the container body (2) is cooled. The refrigerant evaporated in the evaporator (16) passes through the suction proportional valve (25) and is then sucked into the compressor (12).
[0057] 一実施形態の効果  [0057] Effects of one embodiment
上記実施形態では、受液器(14)の仮想平面 Xに対して、各冷媒配管 (41,42,47,48, 49)の開口端部(41a,42a,47a,48a,49a)、溶栓(43)、サービスポート (44,46)、及び電 磁弁 (SV-1)を受液器(14)の軸心 Cと逆側に配置するようにしている。このため、受液 器 (14)を塗料に浸けて、受液器 (14)の周囲に短時間で塗料を付着させることができ る一方、各冷媒配管(41,42,47,48,49)の開口端部(41a,42a,47a,48a,49a)から冷媒配 管内に塗料が入り込んでしまうのを回避できる。また、ドボ漬け時には、上記溶栓 (43 )やサービスポート (44,46)の締結部、及び電磁弁 (SV-1)に塗料が付着してしまうの も回避できるので、溶栓(43)の交換やサービスポート (44,46)のナット蓋(44a,46a)の 取り外しが困難となってしまったり、電磁弁 (SV-1)の動作に不具合が生じたりするの も防止できる。したがって、受液器ユニット (40)の塗装作業に要する時間を短縮ィ匕で きる一方、この受液器ユニット (40)の品質を確保できる。 [0058] また、上記実施形態では、各冷媒配管 (41,42,47,48,49)の開口端部 (41a,42a,47a, 48a,49a)は、仮想平面 Xに対して逆側、又は仮想平面と平行な方向を向くようにして いるので、受液器(14)のドボ漬け時に、飛散した塗料が各開口端部 (41a,42a,47a,48 a,49a)力 冷媒配管の内部へ入り込んでしまうのを一層確実に防ぐことができる。した がって、受液器ユニット (40)の品質を一層確実に確保することができる。 In the above embodiment, the open ends (41a, 42a, 47a, 48a, 49a) of the refrigerant pipes (41, 42, 47, 48, 49), the melt plane with respect to the virtual plane X of the liquid receiver (14). The stopper (43), service port (44, 46), and electromagnetic valve (SV-1) are arranged on the opposite side of the axis C of the liquid receiver (14). For this reason, the receiver (14) can be immersed in the paint to allow the paint to adhere to the periphery of the receiver (14) in a short time, while each refrigerant pipe (41, 42, 47, 48, 49 ) Can be prevented from entering the refrigerant pipe from the open end (41a, 42a, 47a, 48a, 49a). In addition, it is possible to avoid paint from adhering to the fastening parts of the above-mentioned plug (43) and service ports (44, 46) and the solenoid valve (SV-1) when immersed in the dowel. It is possible to prevent the replacement of the nut and the removal of the nut lid (44a, 46a) of the service port (44, 46) or the malfunction of the solenoid valve (SV-1). Therefore, the time required for the painting operation of the liquid receiver unit (40) can be shortened, and the quality of the liquid receiver unit (40) can be ensured. [0058] In the above embodiment, the open ends (41a, 42a, 47a, 48a, 49a) of the refrigerant pipes (41, 42, 47, 48, 49) are opposite to the virtual plane X, or since the facing virtual plane parallel to the direction, when Dobo pickled liquid receiver (14), each open end is scattered paint (41a, 42 a, 47a, 48 a, 49a) force refrigerant pipe It is possible to more surely prevent entering into the interior. Therefore, the quality of the receiver unit (40) can be ensured more reliably.
[0059] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。  [0059] The above embodiments are essentially preferable examples, and are not intended to limit the scope of the present invention, its application, or its use.
産業上の利用可能性  Industrial applicability
[0060] 以上説明したように、本発明は、受液器と、溶栓と、サービスポートとを有し、冷凍装 置の冷媒回路に組み込まれる受液器ユニットについて有用である。 [0060] As described above, the present invention is useful for a liquid receiver unit that has a liquid receiver, a fusing plug, and a service port and is incorporated in a refrigerant circuit of a refrigeration apparatus.

Claims

請求の範囲 The scope of the claims
[1] 筒状の受液器と、該受液器に接続される冷媒配管と、該冷媒配管に設けられる溶 栓及びサービスポートとを備え、冷凍装置の冷媒回路に組み込まれる受液器ユニット であって、  [1] A liquid receiver unit that includes a cylindrical liquid receiver, a refrigerant pipe connected to the liquid receiver, a plug and a service port provided in the refrigerant pipe, and is incorporated in a refrigerant circuit of a refrigeration apparatus Because
上記冷媒配管の開口端部、上記溶栓、及び上記サービスポートは、受液器の軸心 The opening end of the refrigerant pipe, the fusing plug, and the service port are the center of the liquid receiver
Cに平行で且つ該受液器の軸心 Cから所定距離 Lだけ離れた仮想平面 Xに対して上 記受液器の軸心 Cと逆側に配置されていることを特徴とする受液器ユニット。 The liquid receiver is disposed on the opposite side to the axis C of the liquid receiver with respect to a virtual plane X that is parallel to C and separated from the axial center C of the liquid receiver by a predetermined distance L. Unit.
[2] 請求項 1において、 [2] In claim 1,
上記冷媒配管には、電磁弁が設けられ、  The refrigerant pipe is provided with a solenoid valve,
上記電磁弁は、上記仮想平面 Xに対して、上記冷媒配管の開口端部、上記溶栓、 及び上記サービスポートと同じ側に配置されていることを特徴とする受液器ユニット。  The receiver unit, wherein the solenoid valve is disposed on the same side as the open end of the refrigerant pipe, the melt plug, and the service port with respect to the virtual plane X.
[3] 請求項 1において、 [3] In claim 1,
上記冷媒配管の開口端部は、上記仮想平面 Xと平行な方向、又は上記仮想平面 X と逆側を向 、て 、ることを特徴とする受液器ユニット。  The liquid receiver unit, wherein an opening end of the refrigerant pipe faces in a direction parallel to the virtual plane X or in a direction opposite to the virtual plane X.
PCT/JP2006/317857 2005-09-13 2006-09-08 Liquid receiver unit WO2007032275A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-265846 2005-09-13
JP2005265846A JP3928651B2 (en) 2005-09-13 2005-09-13 Method for manufacturing receiver unit

Publications (1)

Publication Number Publication Date
WO2007032275A1 true WO2007032275A1 (en) 2007-03-22

Family

ID=37864869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317857 WO2007032275A1 (en) 2005-09-13 2006-09-08 Liquid receiver unit

Country Status (2)

Country Link
JP (1) JP3928651B2 (en)
WO (1) WO2007032275A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10962264B2 (en) * 2017-12-28 2021-03-30 Daikin Industries, Ltd. Heat source unit for refrigeration apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7479902B2 (en) 2020-03-31 2024-05-09 高砂熱学工業株式会社 Refrigerant charging method and refrigerant charging system for cold heat supply system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532665B2 (en) * 1985-02-25 1993-05-17 Nippon Denso Co
JPH06137726A (en) * 1991-05-31 1994-05-20 Suzuki Motor Corp Mounting layout of high and low pressure switch and fusible plug for car air conditioning device
JP2005156094A (en) * 2003-11-28 2005-06-16 Jfe Engineering Kk Liquid return device and cold generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532665B2 (en) * 1985-02-25 1993-05-17 Nippon Denso Co
JPH06137726A (en) * 1991-05-31 1994-05-20 Suzuki Motor Corp Mounting layout of high and low pressure switch and fusible plug for car air conditioning device
JP2005156094A (en) * 2003-11-28 2005-06-16 Jfe Engineering Kk Liquid return device and cold generation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10962264B2 (en) * 2017-12-28 2021-03-30 Daikin Industries, Ltd. Heat source unit for refrigeration apparatus

Also Published As

Publication number Publication date
JP2007078238A (en) 2007-03-29
JP3928651B2 (en) 2007-06-13

Similar Documents

Publication Publication Date Title
US9746221B2 (en) Defrost system for refrigeration apparatus, and cooling unit
CN103026154B (en) Refrigeration device
US4215555A (en) Hot gas defrost system
WO2011064928A1 (en) Refrigeration device for container
JP2009109110A (en) Refrigeration system
WO2007032275A1 (en) Liquid receiver unit
JP2008286489A (en) Air-conditioning system
US4279129A (en) Hot gas defrost system
JP2008128570A (en) Refrigerating apparatus
KR100253417B1 (en) Air conditioner for a car
JP4869320B2 (en) Refrigeration cycle apparatus and water heater equipped with the same
RU2708761C1 (en) Refrigerating and/or freezing device
JP2013139948A (en) Refrigeration device and method for detecting filling of wrong refrigerant
AU2017239161B2 (en) Defrost system
WO2017094594A1 (en) Refrigeration device
KR20090119092A (en) Apparatus of defrosting for maintaining fixed temperature for a refrigerator and method thereof
JP2008122064A (en) Frost preventing refrigerating machine and defrosting device for refrigerating machine
CN107917570A (en) Refrigerator and its control method
JP5260684B2 (en) Refrigeration circuit
JP7235473B2 (en) refrigeration equipment
JP4699181B2 (en) Refrigeration circuit used for container refrigeration unit, container refrigeration unit equipped with the same, and operation method of container refrigeration unit
KR101525530B1 (en) Condensation waste heat defrost supercooling freeze apparatus and controlling method thereof
JP2012122652A (en) Refrigerator
JP2013036650A (en) Refrigerator
JP3617854B2 (en) Engine heat pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797711

Country of ref document: EP

Kind code of ref document: A1