JP2008122064A - Frost preventing refrigerating machine and defrosting device for refrigerating machine - Google Patents

Frost preventing refrigerating machine and defrosting device for refrigerating machine Download PDF

Info

Publication number
JP2008122064A
JP2008122064A JP2007282411A JP2007282411A JP2008122064A JP 2008122064 A JP2008122064 A JP 2008122064A JP 2007282411 A JP2007282411 A JP 2007282411A JP 2007282411 A JP2007282411 A JP 2007282411A JP 2008122064 A JP2008122064 A JP 2008122064A
Authority
JP
Japan
Prior art keywords
evaporator
pressure vessel
air
frost
refrigerating machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007282411A
Other languages
Japanese (ja)
Other versions
JP2008122064A5 (en
Inventor
Isamu Kuramoto
勇 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007282411A priority Critical patent/JP2008122064A/en
Publication of JP2008122064A publication Critical patent/JP2008122064A/en
Publication of JP2008122064A5 publication Critical patent/JP2008122064A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that the quality of a refrigeration function is deteriorated and cost is increased due to frost adhering to an evaporator of a refrigerating machine, causing the deterioration of the efficiency of the refrigerating machine, and the operation of the refrigerating machine must be stopped to carry out defrosting for the removal of the frost. <P>SOLUTION: The evaporator of the refrigerating machine is put in a pressure vessel, cooled to a temperature of 0°C or higher at high temperatures and high pressure, and a low temperature is obtained by expanding it. The leeward side of the pressure vessel can be opened and closed, operation is constantly carried out under atmospheric pressure, the leeward side is closed when the evaporator is frosted, the frost is melted at high temperatures and high pressure, and the cooled air is expanded to obtaine low temperature air. The size and the shape of the evaporator is made coincident with the size and the shape of a portion of the pressure vessel housing the evaporator wherein the air to be cooled is passed through the evaporator. A press-in opening and a discharge opening of the pressure vessel housing the evaporator is made plural in number, or guide plates are provided in the fore-and-aft direction of the evaporator. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、蒸発器に霜がつかない冷凍機および、冷凍機の除霜装置に関する。  The present invention relates to a refrigerator that does not frost in an evaporator and a defroster for the refrigerator.

冷凍機を運転すると蒸発器に霜が着く。霜の熱伝導率は、金属の1/200〜1/300といわれ、霜の厚みが厚くなると冷媒と冷却されるべき空気との間の熱交換は著しく悪くなる。蒸発器のフィンの間を流れる空気の抵抗も大きくなり、冷凍機の効率ははなはだしく悪くなる。  When the refrigerator is operated, frost forms on the evaporator. The heat conductivity of frost is said to be 1/200 to 1/300 of metal, and heat exchange between the refrigerant and the air to be cooled becomes significantly worse when the thickness of the frost increases. The resistance of the air flowing between the fins of the evaporator is also increased, and the efficiency of the refrigerator is greatly deteriorated.

冷凍機の蒸発器の除霜方法については、自然に溶かす方法、圧縮機から吐出されるホットガスを利用する方法、電気ヒ−タ−方式などがあり、蒸発器を複数持って交代で使用する方法もある。
また、冷却されるべき空気を除湿剤などで水分の少ない空気としてから冷却して霜が着かないようにしている例もある。この場合、除湿剤は2セット用意し、1セットを除湿中に他の1セットを再生している。
As for the defrosting method of the evaporator of the refrigerator, there are a natural melting method, a method using hot gas discharged from the compressor, an electric heater method, etc. There is also a method.
There is also an example in which the air to be cooled is cooled with air having a low moisture content using a dehumidifying agent or the like to prevent frost from forming. In this case, two sets of dehumidifying agents are prepared, and the other set is regenerated while one set is dehumidified.

上記の霜対策方法では、冷凍機の運転を停止して除霜する場合は、被冷却物の温度が上昇し質が悪化するなどの不都合が起き、冷凍機の稼働率も悪くなる。蒸発器を複数持つと冷却機能の中断はなくなるがコストが上昇する。除湿剤で除湿し、その除湿剤を再生する方法もコストがかかる。
さらに、冷凍機の蒸発器が発生する冷熱は、冷却されるべき空気を冷却しているが、その一部は、空気中に含まれている水分を冷却凍結して、霜としてフィンに付着させるという無駄なだけでなく更に有害なことを行っている。
In the frost countermeasure method described above, when the operation of the refrigerator is stopped and defrosting is performed, inconveniences such as an increase in the temperature of the object to be cooled and deterioration in quality occur, and the operating rate of the refrigerator is also deteriorated. Having multiple evaporators eliminates the interruption of the cooling function but increases costs. A method of dehumidifying with a dehumidifier and regenerating the dehumidifier is also costly.
Furthermore, the cooling heat generated by the evaporator of the refrigerator cools the air to be cooled, but a part of it cools and freezes the moisture contained in the air and attaches it to the fins as frost. It is not only useless, but doing more harmful things.

この霜の持つ冷熱は、蒸発器で発生している冷熱と同様の冷熱源であるにもかかわらず、有効利用されず、霜はただ加熱溶解され廃棄されているだけである。
本発明は、蒸発器に霜が着くことを防止できる冷凍機、または効率的に除霜できる冷凍機をつくり、冷凍機能の中断の防止ないし中断の弊害を縮小し、霜が持つ冷熱源の有効利用を図ろうとするものである。
The cold heat of the frost is not used effectively despite the fact that it is a cold heat source similar to the cold heat generated in the evaporator, and the frost is merely heated and melted and discarded.
The present invention creates a refrigerator that can prevent frost from forming on the evaporator, or a refrigerator that can efficiently defrost, and prevents the interruption of the refrigeration function or reduces the adverse effects of the interruption, and the effective use of the cold source of frost. It is intended to be used.

発明を解決するための手段Means for Solving the Invention

冷凍機の蒸発器を収納する圧力容器と、冷却されるべき空気をこの圧力容器内へ圧入する空気圧縮機を備える。
上記冷凍機の1方式として、蒸発器を収納する圧力容器について、蒸発器の風下部分を開閉できるようにする。
蒸発器を収納する圧力容器は、冷却されるべき空気が蒸発器を通過する部分では、大きさ、形状が蒸発器の大きさ、形状に合致し、冷却されるべき空気が蒸発器の外側をバイパスする量が極小となるようにする。
圧力容器の圧入口、放出口を複数持ち、あるいは、圧力容器内で、蒸発器の前部、後部に空気誘導板を設け、蒸発器のフィンに満遍なく空気が接触するようにする。
A pressure vessel that houses the evaporator of the refrigerator and an air compressor that press-fits air to be cooled into the pressure vessel.
As one method of the refrigerator, the leeward portion of the evaporator can be opened and closed with respect to the pressure vessel that houses the evaporator.
The pressure vessel that houses the evaporator has a size and shape that match the size and shape of the evaporator where the air to be cooled passes through the evaporator. Try to minimize the amount of bypass.
A plurality of pressure inlets and outlets of the pressure vessel are provided, or air guide plates are provided in the front and rear of the evaporator in the pressure vessel so that the air uniformly contacts the evaporator fins.

発明の効果The invention's effect

本発明のうち、圧力容器の蒸発器風下側が開閉しない方式では、冷却されるべき空気を圧力容器内へ圧入することにより高温高圧化させる一方で、蒸発器で気化する冷媒の蒸発潜熱で霜が着かない温度まで冷却し、圧力容器外へ放出すれば、霜が着くことなく低温の空気を得ることができるようになり、霜の弊害を除去することができ、また、蒸発器の冷熱源が霜を作るという無駄な作用を防止できる。  In the present invention, in the system in which the leeward side of the evaporator of the pressure vessel does not open and close, the air to be cooled is pressed into the pressure vessel to increase the temperature and pressure, while frost is generated by the latent heat of evaporation of the refrigerant vaporized by the evaporator. If it is cooled to a temperature where it does not reach and is released outside the pressure vessel, low-temperature air can be obtained without frost formation, and the harmful effects of frost can be eliminated. The useless effect of creating frost can be prevented.

圧力容器の蒸発器風下側が開閉できる方式では、常時は蒸発器の風下側を開放し、従来どおりの運転を行い、霜が着くと風下側を閉じ、圧力容器内を高圧高温にして霜を溶かす。
霜を溶かすことによって冷却された空気は、圧力容器外へ放出され、温度を下げる。即ち、除霜効率の向上と、霜の冷熱の有効利用が図れる。
現在効率的除霜方法として一般に使用されている方法はホットガス方式であるが、この方法では、冷媒配管やフィンを加熱してその熱で霜を溶かしている。これに対して本発明は、高温の空気が直接霜を溶かし、冷媒配管やフィンは、ほとんど加熱されない。
In the system that can open and close the evaporator leeward side of the pressure vessel, the leeward side of the evaporator is normally opened and the operation is performed as usual. .
The air cooled by melting frost is released out of the pressure vessel, and the temperature is lowered. That is, the defrosting efficiency can be improved and the frost can be effectively used.
Currently, a method generally used as an efficient defrosting method is a hot gas method. In this method, refrigerant pipes and fins are heated and frost is melted by the heat. In contrast, in the present invention, high-temperature air directly melts frost, and the refrigerant pipes and fins are hardly heated.

圧力容器の冷却されるべき空気が蒸発器を通過する部分では大きさ形状を蒸発器に合致させることにより、冷却されるべき空気が蒸発器の外側を通過することがなくなり、蒸発器の効率化が図られ、所要送風エネルギ−の節減が図れる。
圧力容器への高圧空気の圧入口、更に圧力容器からの放出口を複数配備することにより、また、蒸発器の前後に誘導板を設けることにより、蒸発器のフィンに均等に空気を接触させることができ蒸発器の効率化ができる。
以上のように、冷却効率が向上し、また、冷却機能が中断することなく、あるいは中断してもある程度低温の空気が供給されることになり、安定した冷却が行えるようになる。
By matching the size and shape of the pressure vessel where the air to be cooled passes through the evaporator, the air to be cooled will not pass outside the evaporator, thus increasing the efficiency of the evaporator. And the required blast energy can be saved.
By providing multiple pressure inlets for high-pressure air to the pressure vessel and multiple outlets from the pressure vessel, and by providing guide plates before and after the evaporator, air can be brought into uniform contact with the fins of the evaporator. Can improve the efficiency of the evaporator.
As described above, the cooling efficiency is improved, and the cooling function is not interrupted, or even if it is interrupted, air that is low in temperature to some extent is supplied, so that stable cooling can be performed.

特に0℃以下で食料品などを凍結させずに貯蔵や輸送する場合、庫内温度の変動許容幅が小さい場合が多く、除霜中にその上限幅を超え、貯蔵中の品物が傷むことが多いので、これが解消されるとそのメリットは大きい。
また、低温熟成、低温乾燥などにもメリットが大きい。
圧力容器といっても、表1「圧縮、冷却と膨張後の温度との関係表」を見てわかるように、0.2MPa以下の、第二種圧力容器に達しない、規制の少ない圧力容器で十分所期の低温を得ることができ、さらに、圧力容器内では、空気は圧縮され高温化するので、蒸発器あるいは霜との温度差は大きくなるだけでなく、空気密度も高くなり、熱交換率は高くなり、あるいは霜を溶かす速度は速くなる。
Especially when storing and transporting foods etc. at 0 ° C or lower without freezing, the allowable temperature fluctuation range is often small, exceeding the upper limit during defrosting, and the goods being stored may be damaged. Since there are many, if this is solved, the merit is great.
In addition, it has great merit for low temperature aging and low temperature drying.
Even if it is a pressure vessel, as can be seen from Table 1 “Relationship table between compression, cooling and temperature after expansion”, a pressure vessel of 0.2 MPa or less, which does not reach the second type pressure vessel, and is less regulated In the pressure vessel, air is compressed and heated to a high temperature, which not only increases the temperature difference from the evaporator or frost, but also increases the air density and heat. The exchange rate increases or the speed of melting frost increases.

Figure 2008122064
注1、本表は、逆ブレイトンサイクルによる計算値であって、圧縮後圧力と冷却後温度は、設定値であり、圧縮後温度と膨張後温度は理論計算値である。したがって、実際の値は、これに効率が加えられた数値になる。また、実際は、圧入されながら冷却されているため計算は複雑なものになる。
注2、膨張後温度欄の等圧とは等圧膨張の場合の計算値、等容とは等容膨張の場合の計算値である。
また、圧縮エネルギ−と温度との関係式Ic=C(T−T)から見ても、霜を溶かすのに、多大なエネルギ−を必要とはしない。
Figure 2008122064
Note 1, this table is a calculated value by the reverse Brayton cycle, the pressure after compression and the temperature after cooling are set values, and the temperature after compression and the temperature after expansion are theoretical calculation values. Therefore, the actual value is a value obtained by adding efficiency to this. In fact, the calculation is complicated because it is cooled while being pressed.
Note 2: The constant pressure in the post-expansion temperature column is a calculated value in the case of constant pressure expansion, and the equal volume is a calculated value in the case of constant volume expansion.
The compression energy - even from a relational expression between the temperature Ic = C p (T 2 -T 1), to melt the frost, great energy - do not require.

図1は、本発明による圧力容器と蒸発器(誘導板を持たない方式)の横面図である。
空気圧縮機1によって圧縮された空気は圧縮空気配管2を通って、一つまたは複数の圧縮空気圧入口3から圧力容器4に圧入され、高温になりつつ凍結着霜しない程度まで蒸発器5(本図で見えるのは、蒸発器のうち冷媒配管を固定する側面の板6と、冷媒配管7が冷媒配管を固定する側面の板を貫通してUタ−ンする部分である)で冷却され、一つまたは複数の空気放出口8から放出され、所期の低温の空気となる。冷却されるときに発生する凝縮水はドレン排水管9から排水される。
FIG. 1 is a side view of a pressure vessel and an evaporator (a system having no induction plate) according to the present invention.
The air compressed by the air compressor 1 passes through the compressed air pipe 2 and is pressed into the pressure vessel 4 from one or a plurality of compressed air pressure inlets 3, and reaches the evaporator 5 (main unit) until it becomes hot and does not freeze and freeze. What is visible in the figure is the side plate 6 that fixes the refrigerant pipe in the evaporator and the refrigerant pipe 7 that is U-turned through the side plate that fixes the refrigerant pipe), It is discharged from one or a plurality of air discharge ports 8 and becomes the desired low-temperature air. Condensed water generated when cooled is drained from the drain drain pipe 9.

圧縮空気圧入口、空気放出口の数は多いほど蒸発器のフィンに接触する空気量は平均化する。
その数を少なくすると、構造は簡単になるので設備費は安くつくが、空気の流れは一様とならないので、その場合は、冷却後温度を高めに設定し、空気の流量の少ない場所のフィンでも、冷却後の温度が273K以下にならないようにする必要がある。
空気放出口には、温度センサ−が設けられ、フィンに霜が着いて空気の温度が上昇すると、圧力容器内の圧力、温度を上昇させ、その影響を見て霜の溶ける状況を判断して圧力容器内の圧力を元に戻す。(本図では、温度センサ−関係は省略)
As the number of compressed air inlets and air outlets increases, the amount of air contacting the evaporator fins becomes more average.
If the number is reduced, the structure will be simple and the equipment cost will be cheap. However, the air flow will not be uniform, so in that case, set the temperature higher after cooling and place fins in a place where the air flow rate is low. However, it is necessary to prevent the temperature after cooling from falling below 273K.
A temperature sensor is provided at the air outlet, and when the temperature of the air rises due to frost on the fins, the pressure and temperature in the pressure vessel are increased, and the effect of frost melting is determined by looking at the effect. Restore the pressure in the pressure vessel. (In this figure, the temperature sensor relationship is omitted.)

圧力容器の蒸発器風下側(空気放出口のある面)を開閉する方式では、冷却運転中、風下側は開放され、空気圧縮機で送り込まれた空気は、圧力を上げることなく流れ出てゆく。霜が着いて除霜する必要が起きると開放されていた風下側が閉じられ、圧力容器となって空気が圧入され、高温になった空気が霜を溶かす。
図2は、図1のX−X部分の断面図である。空気の通過する部分のほぼ100%を蒸発器が占めていることがわかる。蒸発器内の冷媒配管にはフィンが僅かの隙間を空けてぎっしりとついているが、図が複雑になるので省略してある。
In the method of opening and closing the evaporator leeward side (surface with the air discharge port) of the pressure vessel, the leeward side is opened during the cooling operation, and the air sent by the air compressor flows out without increasing the pressure. When the frost arrives and it is necessary to remove the frost, the open leeward side is closed, the pressure container becomes air, and the hot air melts the frost.
FIG. 2 is a cross-sectional view taken along a line XX in FIG. It can be seen that the evaporator occupies almost 100% of the portion through which air passes. Although the fins are tightly attached to the refrigerant piping in the evaporator with a slight gap, they are omitted because the figure becomes complicated.

蒸発器の側面の板を通って出てきた冷媒配管のUタ−ン部はフィンを持たない。この部分には空気が流れないよう遮蔽されているが、冷媒配管が側面の板を貫通する部分に気密性がなく、圧力容器と蒸発器の間にも隙間があるので、この部分の圧力はこの容器内の圧力に従って変動する。この板を冷媒配管の貫通部分に気密性を持たせてこの圧力容器の一部に使えば、圧力容器の無駄な部分が減り、経済性はそれだけ向上する。  The U-turn part of the refrigerant pipe coming out through the side plate of the evaporator has no fins. This part is shielded from air flow, but the part where the refrigerant pipe penetrates the side plate is not airtight and there is a gap between the pressure vessel and the evaporator. It fluctuates according to the pressure in this container. If this plate is used as a part of the pressure vessel with airtightness in the through-hole portion of the refrigerant pipe, the wasteful portion of the pressure vessel is reduced and the economy is improved accordingly.

図3は、本発明のうち、蒸発器の前部、後部に誘導板がつけられている方式で、さらに膨張エネルギ−を膨張タ−ビンで回収する方式の圧力容器と蒸発器の横面図である。
モータ−10に連結した空気圧縮機(この場合は圧縮タ−ビンのみ)から圧力容器の前部11へ圧入された空気は、誘導板12に誘導されて圧力容器蒸発器部13の蒸発器のフィンの間へ均等に流入する。圧力容器後部14の空気の流れ方で、この均等な流れが乱されないよう圧力容器後部にも誘導板がついている。
FIG. 3 is a side view of a pressure vessel and an evaporator according to the present invention, in which induction plates are attached to the front and rear of the evaporator, and further, the expansion energy is recovered by an expansion turbine. It is.
The air press-fitted into the front portion 11 of the pressure vessel from the air compressor (in this case, only the compression turbine) connected to the motor 10 is guided to the induction plate 12 and is supplied to the evaporator of the pressure vessel evaporator section 13. Evenly flows between the fins. An induction plate is also attached to the rear portion of the pressure vessel so that the air flow in the rear portion of the pressure vessel 14 does not disturb this uniform flow.

除霜運転をする方式では、通常運転時には、この圧力容器の後部が開放されており、蒸発器で冷却された空気はそのまま流れて出てゆくが、フィンに霜が着いて除霜するときは、圧力容器後部が接続閉鎖される。この圧力容器後部の誘導板でまとめられた空気は圧力容器蒸発器部に固定された空気放出口を通って除湿装置15に入り、除湿されて膨張タ−ビン16を通って圧縮エネルギ−の一部を回収して大気圧に戻る。
この方式の場合も圧力容器蒸発器部の断面図は、図2のとおりである。
In the defrosting system, the rear part of the pressure vessel is opened during normal operation, and the air cooled by the evaporator flows out as it is, but when the frost gets on the fins and defrosts, The rear part of the pressure vessel is closed. The air collected by the induction plate at the rear of the pressure vessel enters the dehumidifying device 15 through an air discharge port fixed to the pressure vessel evaporator, is dehumidified, passes through the expansion turbine 16, and is supplied with one of the compression energy. The part is recovered and returned to atmospheric pressure.
Also in this system, a cross-sectional view of the pressure vessel evaporator is as shown in FIG.

図4は、本発明のうちの図3に示した蒸発器前部、後部に誘導板があり、後部は冷却運転中は開放される方式を採用した冷蔵庫の図である。冷媒圧縮機17で圧縮され高温高圧のガスになった冷媒は、冷媒配管を通って凝縮器18に入り、冷却されて液化し、膨張弁19を通って冷蔵室20の圧力容器内の蒸発器へ行き、気化して蒸発器を通過する空気を冷却した後冷媒圧縮機へ戻る。
圧力容器後部は通常運転中はAの位置にあるが、蒸発器のフィンに霜が着いて蒸発器から出てくる空気の温度が上昇すると、それを感知可能で、圧力容器の後部の移動に邪魔にならない位置に設置した1個または複数のセンサ−(図では省略してある)がこれを感知し、圧力容器蒸発器部の風下側に接続密着される。
FIG. 4 is a diagram of a refrigerator that employs a system in which induction plates are provided at the front and rear of the evaporator shown in FIG. 3 of the present invention, and the rear is opened during the cooling operation. The refrigerant compressed into the high-temperature and high-pressure gas by the refrigerant compressor 17 enters the condenser 18 through the refrigerant pipe, is cooled and liquefied, passes through the expansion valve 19, and is an evaporator in the pressure vessel of the refrigerator compartment 20. Go to, evaporate and cool the air passing through the evaporator, and then return to the refrigerant compressor.
The rear of the pressure vessel is in position A during normal operation. However, if the temperature of the air coming out of the evaporator rises due to frost on the fins of the evaporator, it can be detected and the rear of the pressure vessel can be moved. One or a plurality of sensors (not shown in the figure) installed in an unobstructed position sense this, and are connected and intimately connected to the leeward side of the pressure vessel evaporator.

冷蔵室の空気は、圧縮機用モ−タ−に連結された圧縮タ−ビンによって圧力容器内へ圧入され、温度は上昇して霜を溶かす。霜を溶かしながら温度を下げた空気は、圧力容器から出て、膨張し、温度を下げて冷蔵室へ返る。大規模な冷蔵庫では、図のように除湿装置内の除湿膜などで残った水分を除去した後、膨張タ−ビンを回転させ、圧縮時に消費するエネルギ−の一部を回収することもできる。  The air in the refrigerator compartment is pressed into the pressure vessel by a compression turbine connected to a compressor motor, and the temperature rises to melt frost. Air whose temperature has been lowered while melting frost exits from the pressure vessel, expands, lowers the temperature, and returns to the refrigerator compartment. In a large-scale refrigerator, as shown in the figure, after removing moisture remaining by a dehumidifying film or the like in the dehumidifying device, the expansion turbine can be rotated to recover a part of energy consumed during compression.

ヒ−トポンプ、冷却除湿式乾燥機も圧力容器部分については冷蔵庫とほぼ同様であるが、ヒ−トポンプに霜が着くのは暖房時であるので霜の冷熱の有効利用はできない。
冷却除湿式乾燥機では、放出される空気は、温度を下げるとき、空気中に残っている水分が凝縮するので、ろ過や遠心分離などの方法で取り除くと乾燥効率は高くなる(膨張タ−ビンを使用する場合は、通常、タ−ビンへ行く前に除湿している)。また、蒸発器を出た空気は、乾燥温度を調節する再熱凝縮器へ均等に行くように、誘導または撹拌する必要がある。
The heat pump and the cooling and dehumidifying dryer are almost the same as the refrigerator in the pressure vessel portion, but since the frost forms on the heat pump at the time of heating, the cold heat of the frost cannot be effectively used.
In the cooling and dehumidifying dryer, when the temperature is lowered, the moisture remaining in the air is condensed when the temperature is lowered. Therefore, if the air is removed by a method such as filtration or centrifugation, the drying efficiency is increased (expanded turbine). Is usually dehumidified before going to the turbine). Also, the air leaving the evaporator needs to be induced or stirred so that it goes evenly to the reheat condenser that regulates the drying temperature.

圧力容器と蒸発器(誘導板を持たない方式)の横面図である。It is a side view of a pressure vessel and an evaporator (method without an induction plate). 圧力容器の蒸発器の部分の断面図である。(図1、図3の横面図共通)It is sectional drawing of the part of the evaporator of a pressure vessel. (Common to the lateral views of FIGS. 1 and 3) 蒸発器の前後部に誘導板がある方式の圧力容器と蒸発器部分の横面図である。It is a side view of a pressure vessel and an evaporator part of a system with a guidance board in the front and rear parts of an evaporator. 図3の圧力容器の方式を採用した冷蔵庫の機器配管などの配置図であるFIG. 4 is a layout diagram of equipment piping of a refrigerator that employs the pressure vessel method of FIG. 3.

符号の説明Explanation of symbols

1空気圧縮機
2圧縮空気配管
3圧縮空気圧入口
4圧力容器
5蒸発器
6冷媒配管を固定する側面の板
7冷媒配管
8空気放出口
9ドレン排水管
10モ−タ−
11圧力容器前部
12誘導板
13圧力容器蒸発器部
14圧力容器後部
15除湿装置
16膨張タ−ビン
17冷媒圧縮機
18凝縮器
19膨張弁
20冷蔵室
1 Air compressor 2 Compressed air piping 3 Compressed air pressure inlet 4 Pressure vessel 5 Evaporator 6 Side plate for fixing refrigerant piping 7 Refrigerant piping 8 Air outlet 9 Drain drainage pipe 10 Motor
11 pressure vessel front 12 induction plate 13 pressure vessel evaporator 14 pressure vessel rear 15 dehumidifier 16 expansion turbine 17 refrigerant compressor 18 condenser 19 expansion valve 20 refrigerator compartment

Claims (4)

冷凍機の蒸発器を収納する圧力容器と、冷却されるべき空気をこの圧力容器内へ圧入する空気圧縮機を備えた冷凍機。  A refrigerator having a pressure vessel for storing an evaporator of the refrigerator and an air compressor for press-fitting air to be cooled into the pressure vessel. 蒸発器を収納する圧力容器について、蒸発器の風下部分が開閉できるようになっている請求項1の冷凍機。The refrigerator according to claim 1, wherein a leeward portion of the evaporator can be opened and closed with respect to a pressure vessel that houses the evaporator. 蒸発器を収納する圧力容器の、冷却されるべき空気が蒸発器を通過する部分では、大きさ、形状が蒸発器の大きさ形状に合致する請求項1および請求項2の冷凍機。  The refrigerator according to claim 1 or 2, wherein a size and a shape of a portion of the pressure vessel accommodating the evaporator through which the air to be cooled passes through the evaporator match a size of the evaporator. 蒸発器を収納する圧力容器の圧入口、および放出口が複数である、あるいは、圧力容器内で、蒸発器の前後に、蒸発器のフィンに満遍なく空気が接触するように誘導板が設けられている請求項1および請求項2の冷凍機。  There are a plurality of pressure inlets and outlets of the pressure vessel containing the evaporator, or in the pressure vessel, an induction plate is provided in front of and behind the evaporator so that air uniformly contacts the fins of the evaporator. The refrigerator according to claim 1 and claim 2.
JP2007282411A 2006-10-20 2007-10-02 Frost preventing refrigerating machine and defrosting device for refrigerating machine Pending JP2008122064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282411A JP2008122064A (en) 2006-10-20 2007-10-02 Frost preventing refrigerating machine and defrosting device for refrigerating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006312194 2006-10-20
JP2007282411A JP2008122064A (en) 2006-10-20 2007-10-02 Frost preventing refrigerating machine and defrosting device for refrigerating machine

Publications (2)

Publication Number Publication Date
JP2008122064A true JP2008122064A (en) 2008-05-29
JP2008122064A5 JP2008122064A5 (en) 2008-07-10

Family

ID=39506993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282411A Pending JP2008122064A (en) 2006-10-20 2007-10-02 Frost preventing refrigerating machine and defrosting device for refrigerating machine

Country Status (1)

Country Link
JP (1) JP2008122064A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255920A (en) * 2009-04-24 2010-11-11 Nishimatsu Constr Co Ltd Hot water supply system
JP2011052935A (en) * 2009-09-04 2011-03-17 Hitachi Appliances Inc Refrigerator
EP4001806A4 (en) * 2019-07-17 2022-08-31 Qingdao Haier Refrigerator Co., Ltd Refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010255920A (en) * 2009-04-24 2010-11-11 Nishimatsu Constr Co Ltd Hot water supply system
JP2011052935A (en) * 2009-09-04 2011-03-17 Hitachi Appliances Inc Refrigerator
EP4001806A4 (en) * 2019-07-17 2022-08-31 Qingdao Haier Refrigerator Co., Ltd Refrigerator
AU2020314014B2 (en) * 2019-07-17 2023-02-16 Haier Smart Home Co., Ltd. Refrigerator

Similar Documents

Publication Publication Date Title
KR100885583B1 (en) Refrigerator
US20090320504A1 (en) Method for Defrosting an Evaporator in a Refrigeration Circuit
KR100431348B1 (en) refrigerator
JP2010532462A (en) High temperature gas defrosting method and apparatus
JP6420686B2 (en) Refrigeration cycle equipment
CN104011472A (en) Air conditioner
JP5677472B2 (en) Refrigeration equipment
JP2009109110A (en) Refrigeration system
JP2013137123A (en) Refrigerating apparatus
JP2008122064A (en) Frost preventing refrigerating machine and defrosting device for refrigerating machine
WO1996010156A3 (en) Method and device for cooling gases
US10443913B2 (en) Refrigerator and method for controlling the same
RU2708761C1 (en) Refrigerating and/or freezing device
JP2019100603A (en) Hot gas defrosting operation method of refrigeration circuit
KR100597748B1 (en) Cooling system
JP5260684B2 (en) Refrigeration circuit
JP2010014362A (en) Showcase
JP2006118772A (en) Air refrigerant type refrigeration device
JP3467407B2 (en) Refrigeration equipment
JP2012122652A (en) Refrigerator
KR20150054448A (en) Apparatus for circuiting of refrigerant, heat pump and ice-maker including the same
JP4699181B2 (en) Refrigeration circuit used for container refrigeration unit, container refrigeration unit equipped with the same, and operation method of container refrigeration unit
WO2015149840A1 (en) Refrigeration appliance provided with an improved defrost circuit
JPH0424447A (en) Thermo-hygrostat device
WO2016015768A1 (en) Refrigeration appliance having freezer evaporator defrost circuit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325