JP2013137123A - Refrigerating apparatus - Google Patents

Refrigerating apparatus Download PDF

Info

Publication number
JP2013137123A
JP2013137123A JP2011287218A JP2011287218A JP2013137123A JP 2013137123 A JP2013137123 A JP 2013137123A JP 2011287218 A JP2011287218 A JP 2011287218A JP 2011287218 A JP2011287218 A JP 2011287218A JP 2013137123 A JP2013137123 A JP 2013137123A
Authority
JP
Japan
Prior art keywords
defrosting
refrigerant
cooling
heat exchanger
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011287218A
Other languages
Japanese (ja)
Other versions
JP5404761B2 (en
Inventor
Makoto Saito
信 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011287218A priority Critical patent/JP5404761B2/en
Publication of JP2013137123A publication Critical patent/JP2013137123A/en
Application granted granted Critical
Publication of JP5404761B2 publication Critical patent/JP5404761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Defrosting Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating apparatus which does not require hot gas piping for the exclusive use of defrosting for connecting a heat source unit with a plurality of cooling units, supplies a high-temperature coolant only to a part of cooler while continuing cooling operation without disposing a stop valve for channel switching on a piping part through which a low-pressure coolant flows and can perform defrosting operation.SOLUTION: A coolant branch unit 3 is connected between a liquid main pipe 4 extended from a heat source unit 1 and liquid branch pipes 40a, 40b extended from the plurality of cooling units 2, respectively. The coolant branch unit 3 has a defrosting coolant circuit B which branches a part of a liquid coolant flowing out of a condenser 7, causes makes branched liquid coolant flow into the low pressure side of an inner heat exchanger 13 via a defrosting flow adjusting valve 14, makes the liquid coolant having flown into the low pressure side of the inner heat exchanger 13 perform heat exchange with the liquid coolant (cooling coolant) of the high pressure side of the inner heat exchanger 13 and to be heated to produce the defrosting coolant. The cooling coolant or the defrosting coolant after passing through the high pressure side of the inner heat exchanger is selectively supplied to each of the plurality of cooling units 2 by the defrosting solenoid valves 15a, 15b.

Description

本発明は、冷蔵倉庫等の冷凍庫を冷却する冷却器を複数備えた冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus including a plurality of coolers for cooling a freezer such as a refrigerated warehouse.

この種の冷凍装置において、冷却運転時に冷却器に付着した霜を除去する除霜方法として、冷却器に加熱ヒータを密着させて除霜を行う外部加熱方式が知られている。しかし、この方法では、加熱ヒータから近い部分の霜は除去できるものの、遠い部分には熱が十分に伝わらないため、霜の溶け残りが生じる問題がある。溶け残りを無くすには加熱ヒータの加熱量を増やせばよいが、相当高温まで加熱する必要がある。このため、加熱ヒータの熱によって冷却負荷が増大したり、加熱によって蒸発した水分が庫内壁面に結露するなどの問題が生じることがある。このようなことから、内部加熱方式を採用する例も多い。   In this type of refrigeration apparatus, as a defrosting method for removing frost attached to a cooler during a cooling operation, an external heating method is known in which a heater is brought into close contact with the cooler to perform defrosting. However, in this method, although the frost in the portion near the heater can be removed, the heat is not sufficiently transmitted to the far portion, so that there is a problem that the frost remains unmelted. In order to eliminate unmelted residue, the heating amount of the heater may be increased, but it is necessary to heat to a considerably high temperature. For this reason, problems such as an increase in cooling load due to the heat of the heater, and condensation of moisture evaporated by heating on the inner wall surface may occur. For this reason, there are many examples that employ the internal heating method.

内部加熱方式を採用した冷凍装置は、圧縮機、凝縮器、膨張弁及び冷却器を備え、冷媒を循環させる冷媒回路を備えている。そして、圧縮機から吐出した高温のガス冷媒(以下、ホットガス冷媒という)の一部を直接冷却器に流すことにより、冷却器を加熱して除霜している(特許文献1参照)。このようにホットガス冷媒を冷却器に流して除霜している間は、その冷却器では冷却対象を冷却することができない。このため、特許文献1のように複数台の冷却器を備えた冷凍装置では、一部の冷却器で除霜運転している間も、他の冷却器で冷却運転を継続できるようにしている。   A refrigeration apparatus that employs an internal heating system includes a compressor, a condenser, an expansion valve, and a cooler, and includes a refrigerant circuit that circulates the refrigerant. And the cooler is heated and defrosted by flowing a part of hot gas refrigerant (henceforth hot gas refrigerant | coolant) discharged from the compressor directly to a cooler (refer patent document 1). Thus, while the hot gas refrigerant is passed through the cooler and defrosting, the cooler cannot cool the object to be cooled. For this reason, in the refrigeration apparatus provided with a plurality of coolers as in Patent Document 1, the cooling operation can be continued with other coolers while the defrosting operation is performed with some coolers. .

具体的には、特許文献1では、ホットガス冷媒を冷却器に導くためのホットガス配管の一端を圧縮機の吐出側に接続すると共に、他端に流路切替装置を設けて各冷却器それぞれに独立してホットガスを流せるように構成している。この構成により、各冷却器の各々で冷却運転と除霜運転とを独立に切り替え可能とし、除霜を行いつつ冷却運転も継続可能としている。   Specifically, in Patent Document 1, one end of a hot gas pipe for guiding the hot gas refrigerant to the cooler is connected to the discharge side of the compressor, and a flow path switching device is provided at the other end to each cooler. It is configured to allow hot gas to flow independently. With this configuration, the cooling operation and the defrosting operation can be independently switched in each cooler, and the cooling operation can be continued while performing the defrosting.

除霜運転中も他の冷却器で冷却運転を継続できる冷凍装置として、他に例えば、凝縮器を通過した高温の冷媒を、減圧することなく除霜対象の冷却器に流通させて除霜を行い、除霜対象の冷却器を通過後の冷媒を減圧した後、他の冷却器に流通させて冷却運転を行う除霜運転方法も知られている(例えば、特許文献2参照)。   As a refrigeration apparatus that can continue the cooling operation with another cooler even during the defrosting operation, for example, the high-temperature refrigerant that has passed through the condenser is circulated to the defrosting target cooler without depressurization to remove the defrosting. A defrosting operation method is also known in which the refrigerant after passing through the defroster target cooler is decompressed and then circulated to another cooler to perform a cooling operation (see, for example, Patent Document 2).

特開2010−255921号公報(14頁、第3図)JP 2010-255921 (page 14, FIG. 3) 特開2005−274057号公報(9頁、第7図)Japanese Patent Laying-Open No. 2005-274057 (page 9, FIG. 7)

ところで、圧縮機を有する熱源ユニットと冷却器を有する複数台の冷却ユニットとを、液主管とガス主管の2本の配管を介して接続した冷凍装置がある。この種の冷凍装置において、特許文献1のように圧縮機から吐出されたホットガス冷媒を冷却器に流して除霜を行う方法を適用した場合、熱源ユニットと複数台の冷却ユニットを、液主管とガス主管とに加えて更にホットガス配管を介して接続する必要がある。すなわち、熱源ユニットと複数台の冷却ユニットとの間に計3本の配管を設置する必要があり、このため据付工事コストが大きくなってしまうという問題がある。   By the way, there is a refrigeration apparatus in which a heat source unit having a compressor and a plurality of cooling units having a cooler are connected via two pipes of a liquid main pipe and a gas main pipe. In this type of refrigeration apparatus, when a method of performing defrosting by flowing hot gas refrigerant discharged from a compressor to a cooler as in Patent Document 1, a heat source unit and a plurality of cooling units are connected to a liquid main pipe. In addition to the gas main pipe, it is necessary to connect via a hot gas pipe. That is, it is necessary to install a total of three pipes between the heat source unit and the plurality of cooling units, which causes a problem that the cost of installation work increases.

また、特許文献2の冷凍装置の除霜方法では、ガス分岐管に流路切替用の開閉弁が必要になる。ガス分岐管は冷却器から流出した低圧のガス冷媒が通過する部分であり、この部分では僅かな圧力損失が機器性能の低下につながる。このため、ガス分岐管に設ける開閉弁にはできる限り大きな口径の弁を使用する必要があり、冷却器を有する冷却ユニットのサイズやコストが大きくなるという問題がある。   Moreover, in the defrosting method of the refrigerating apparatus of patent document 2, the gas branch pipe requires a switching valve for switching the flow path. The gas branch pipe is a portion through which the low-pressure gas refrigerant flowing out of the cooler passes, and a slight pressure loss in this portion leads to deterioration of the equipment performance. For this reason, it is necessary to use a valve with the largest possible opening / closing valve provided in the gas branch pipe, and there is a problem that the size and cost of the cooling unit having the cooler are increased.

本発明は、上記のような課題を解決するためになされたもので、熱源ユニットと複数台の冷却ユニットとの接続に除霜専用のホットガス配管を不要とし、且つ、低圧冷媒が流通する配管部分に流路切替用の開閉弁を設置することなく、冷却運転を継続しながら一部の冷却器だけに高温冷媒を供給して除霜運転を行うことが可能な冷凍装置を得ることを目的とする。   The present invention has been made in order to solve the above-described problems, and does not require a defrosting hot gas pipe for connection between a heat source unit and a plurality of cooling units, and a pipe through which a low-pressure refrigerant flows. An object is to obtain a refrigeration apparatus capable of performing a defrosting operation by supplying a high-temperature refrigerant only to some coolers while continuing a cooling operation without installing an on-off valve for switching a channel in a part. And

本発明に係る冷凍装置は、圧縮機、凝縮器、内部熱交換器の高圧側、減圧装置及び冷却器に冷却用冷媒が循環するように接続された冷却用冷媒回路と、冷却用冷媒回路の圧縮機及び凝縮器を有する熱源ユニットと、熱源ユニットから延びるガス主管にガス分岐管を介して接続されると共に、減圧装置及び冷却器を有する複数台の冷却ユニットと、熱源ユニットから延びる液主管と、複数台の冷却ユニットの各々から延びる液分岐管との間に接続される冷媒分岐部とを有し、冷媒分岐部は、内部熱交換器と、凝縮器を流出して内部熱交換器の高圧側に流入する前の液冷媒の一部を分岐し、除霜流量調整装置を介して内部熱交換器の低圧側に流入させ、凝縮器を流出して内部熱交換器の高圧側に流入する冷却用冷媒と熱交換させて加熱し、除霜用冷媒を生成する除霜用冷媒回路と、冷却用冷媒回路の内部熱交換器の高圧側を通過後の冷却用冷媒又は除霜用冷媒回路で生成した除霜用冷媒を複数台の冷却ユニットの各々に選択的に供給する冷媒流路切替装置とを備えたものである。   A refrigeration apparatus according to the present invention includes a cooling refrigerant circuit connected to a compressor, a condenser, a high-pressure side of an internal heat exchanger, a decompression apparatus, and a cooler so that the cooling refrigerant circulates, and a cooling refrigerant circuit A heat source unit having a compressor and a condenser; a gas main pipe extending from the heat source unit via a gas branch pipe; a plurality of cooling units having a decompression device and a cooler; and a liquid main pipe extending from the heat source unit A refrigerant branch portion connected between each of the plurality of cooling units and a liquid branch pipe extending from each of the cooling units. The refrigerant branch portion flows out of the internal heat exchanger and the condenser and flows out of the condenser. A part of the liquid refrigerant before flowing into the high-pressure side is branched, flows into the low-pressure side of the internal heat exchanger via the defrosting flow control device, flows out of the condenser, and flows into the high-pressure side of the internal heat exchanger Heat-exchange with cooling refrigerant to heat and defrost The defrosting refrigerant circuit that generates the medium and the cooling refrigerant after passing through the high-pressure side of the internal heat exchanger of the cooling refrigerant circuit or the defrosting refrigerant generated by the defrosting refrigerant circuit And a refrigerant flow switching device that selectively supplies each of them.

本発明によれば、熱源ユニットと複数台の冷却ユニットとをガス主管で接続すると共に、熱源ユニットから延びる液主管と複数台の冷却ユニットとの間に冷媒分岐部を設け、冷媒分岐部が、内部熱交換器と除霜流量調整装置とにより、液主管から流入する高圧液冷媒の一部を冷却用冷媒とすると共に、この冷却用冷媒を用いて残りの高圧液冷媒から除霜用冷媒を生成し、冷却用冷媒又は除霜用冷媒を各冷却ユニットに独立して選択的に供給可能とした。これにより、熱源ユニットと複数台の冷却ユニットとを除霜専用のホットガス配管で接続しなくとも、また、低圧冷媒が流通する配管部分に流路切替用の開閉弁を設けなくとも、冷却運転を継続しながら一部の冷却器だけに除霜用冷媒を供給して除霜運転を行うことが可能である。   According to the present invention, the heat source unit and the plurality of cooling units are connected by the gas main pipe, and the refrigerant branch portion is provided between the liquid main pipe extending from the heat source unit and the plurality of cooling units, and the refrigerant branch portion is A part of the high-pressure liquid refrigerant flowing from the liquid main pipe is used as a cooling refrigerant by the internal heat exchanger and the defrost flow rate adjusting device, and the defrosting refrigerant is removed from the remaining high-pressure liquid refrigerant using this cooling refrigerant. Thus, the cooling refrigerant or the defrosting refrigerant can be selectively supplied to each cooling unit independently. As a result, the cooling operation can be performed without connecting the heat source unit and a plurality of cooling units with hot gas piping dedicated to defrosting, or without providing an on-off valve for switching the flow path in the piping portion through which the low-pressure refrigerant flows. It is possible to perform the defrosting operation by supplying the defrosting refrigerant only to some of the coolers while continuing the operation.

本発明の実施の形態1における冷凍装置の冷媒回路の一例を示す図である。It is a figure which shows an example of the refrigerant circuit of the freezing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における冷凍装置の通常運転モード時のエンタルピと圧力との関係を示すモリエル線図である。It is a Mollier diagram which shows the relationship between the enthalpy and the pressure at the time of the normal operation mode of the freezing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における冷凍装置の除霜運転モード時の冷媒回路図である。It is a refrigerant circuit figure at the time of the defrost operation mode of the freezing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における冷凍装置における除霜運転モード時のエンタルピと圧力との関係を示すモリエル線図である。It is a Mollier diagram which shows the relationship between the enthalpy and pressure at the time of the defrost operation mode in the freezing apparatus in Embodiment 1 of this invention. 図1の除霜流量調整弁の開度を変化させたときの除霜用冷媒の挙動を示す特性図で、(a)は除霜熱量特性、(b)は内部熱交換器出口の除霜用冷媒温度(状態G)特性、(c)除霜流量特性、をそれぞれ示した図である。FIG. 2 is a characteristic diagram showing the behavior of the defrosting refrigerant when the opening degree of the defrosting flow rate adjusting valve in FIG. 1 is changed, (a) is the defrosting heat quantity characteristic, (b) is the defrosting at the outlet of the internal heat exchanger. It is the figure which respectively showed the refrigerant | coolant temperature (state G) characteristic for water, and (c) defrost flow volume characteristic. 本発明の実施の形態2における冷凍装置の冷媒回路の一例を示す図である。It is a figure which shows an example of the refrigerant circuit of the freezing apparatus in Embodiment 2 of this invention.

実施の形態1.
図1は、本発明の実施の形態1における冷凍装置の冷媒回路の一例を示す図である。図1及び後述の図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
冷凍装置は、熱源ユニット1と、冷凍庫(冷蔵倉庫や冷却室を含む)を冷却する複数台(ここでは2台)の冷却ユニット2a、2b(以下、総称して冷却ユニット2という場合がある)と、冷媒分岐部としての冷媒分岐ユニット3とを備えている。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating an example of a refrigerant circuit of a refrigeration apparatus in Embodiment 1 of the present invention. In FIG. 1 and the drawings to be described later, the same reference numerals denote the same or corresponding parts, which are common throughout the entire specification. Furthermore, the forms of the constituent elements appearing in the entire specification are merely examples and are not limited to these descriptions.
The refrigeration apparatus includes a heat source unit 1 and a plurality of (here, two) cooling units 2a and 2b (hereinafter sometimes collectively referred to as a cooling unit 2) for cooling a freezer (including a refrigerated warehouse and a cooling chamber). And a refrigerant branching unit 3 as a refrigerant branching unit.

熱源ユニット1と冷却ユニット2a、2bとは離れた位置に設置されており、熱源ユニット1から延びるガス主管5にガス分岐管50a、50bを介して冷却ユニット2a、2bが接続されている。また、熱源ユニット1からは、ガス主管5の他に液主管4も延びており、この液主管4と冷却ユニット2a、2bから延びる液分岐管40a、40bとの間に冷媒分岐ユニット3が接続されている。   The heat source unit 1 and the cooling units 2a and 2b are installed at positions separated from each other, and the cooling units 2a and 2b are connected to the gas main pipe 5 extending from the heat source unit 1 via the gas branch pipes 50a and 50b. In addition to the gas main pipe 5, the liquid main pipe 4 also extends from the heat source unit 1, and the refrigerant branch unit 3 is connected between the liquid main pipe 4 and the liquid branch pipes 40a and 40b extending from the cooling units 2a and 2b. Has been.

熱源ユニット1と複数台の冷却ユニット2a、2bとを、液主管4及びガス主管5で接続する構成は従来より一般的であり、本実施の形態1の冷凍装置は、いわばこの一般的な構成において、液主管4と冷却ユニット2a、2bとの間に冷媒分岐ユニット3を接続した構成に相当している。冷媒分岐ユニット3の構成の詳細については後述するが、冷媒分岐ユニット3により、冷却運転と除霜運転とを同時に行うことを可能としている。   A configuration in which the heat source unit 1 and the plurality of cooling units 2a and 2b are connected by the liquid main pipe 4 and the gas main pipe 5 is more general than before, and the refrigeration apparatus according to the first embodiment is a so-called general configuration. 2 corresponds to a configuration in which the refrigerant branch unit 3 is connected between the liquid main pipe 4 and the cooling units 2a and 2b. Although the details of the configuration of the refrigerant branch unit 3 will be described later, the refrigerant branch unit 3 enables the cooling operation and the defrosting operation to be performed simultaneously.

以下、冷凍装置を構成する熱源ユニット1、冷却ユニット2、冷媒分岐ユニット3のそれぞれの構成について順次説明する。   Hereinafter, each structure of the heat-source unit 1, the cooling unit 2, and the refrigerant | coolant branch unit 3 which comprises a freezing apparatus is demonstrated sequentially.

熱源ユニット1は、圧縮機6、凝縮器7及び受液器8を備え、これらが冷媒配管で接続されている。冷却ユニット2は、液電磁弁9、パルスモータで開度を調整可能な減圧装置としての膨張弁10及び冷却器11を備え、これらが冷媒配管で接続されている。各冷却ユニット2a、2bから延びる液分岐管40a、40bの端部は、冷媒分岐ユニット3の液分岐管側接続口3b、3cに接続されている。   The heat source unit 1 includes a compressor 6, a condenser 7, and a liquid receiver 8, which are connected by a refrigerant pipe. The cooling unit 2 includes a liquid electromagnetic valve 9, an expansion valve 10 as a pressure reducing device whose opening degree can be adjusted by a pulse motor, and a cooler 11, which are connected by a refrigerant pipe. The ends of the liquid branch pipes 40 a and 40 b extending from the cooling units 2 a and 2 b are connected to the liquid branch pipe side connection ports 3 b and 3 c of the refrigerant branch unit 3.

冷媒分岐ユニット3は、液主管4から液主管側接続口3aを介して冷媒分岐ユニット3内に流入した高圧液冷媒を、冷却運転を行うための冷却用冷媒又は除霜運転のための除霜用冷媒にして各冷却器11に独立して選択的に供給する機能を有するものである。冷媒分岐ユニット3は、内部熱交換器13と、除霜流量調整弁14と、冷媒流路切替装置としての除霜用電磁弁15a、15bと、逆止弁16a、16bとを備え、これらが冷媒配管で接続されている。   The refrigerant branching unit 3 is a cooling refrigerant for performing cooling operation or defrosting for defrosting operation of the high-pressure liquid refrigerant that has flowed into the refrigerant branching unit 3 from the liquid main pipe 4 through the liquid main pipe side connection port 3a. It has the function of supplying it selectively to each cooler 11 as a refrigerant for use. The refrigerant branching unit 3 includes an internal heat exchanger 13, a defrosting flow rate adjustment valve 14, defrosting electromagnetic valves 15a and 15b as refrigerant flow switching devices, and check valves 16a and 16b. Connected with refrigerant piping.

冷媒分岐ユニット3における具体的な接続構成について説明すると、内部熱交換器13の上流側は、液主管4に接続される液主管側接続口3aに接続され、内部熱交換器13の下流側は、各冷却ユニット2a、2bと同数に分岐され、分岐したそれぞれが除霜用電磁弁15a、15bを介して液分岐管側接続口3b、3cに接続されている。この構成によって、圧縮機6、凝縮器7、受液器8、内部熱交換器13の高圧側、除霜用電磁弁15a、15b、液電磁弁9、膨張弁10、冷却器11がこの順で環状に接続されて冷却用冷媒回路Aが構成されている。この冷却用冷媒回路A内には例えば、冷媒R410Aが封入されている。以下では、冷却用冷媒回路Aを循環する冷媒を冷却用冷媒と呼ぶ場合がある。   The specific connection configuration in the refrigerant branch unit 3 will be described. The upstream side of the internal heat exchanger 13 is connected to the liquid main pipe side connection port 3a connected to the liquid main pipe 4, and the downstream side of the internal heat exchanger 13 is The cooling units 2a and 2b are branched to the same number, and the branched branches are connected to the liquid branch pipe side connection ports 3b and 3c via the defrosting electromagnetic valves 15a and 15b, respectively. With this configuration, the compressor 6, the condenser 7, the liquid receiver 8, the high pressure side of the internal heat exchanger 13, the defrosting solenoid valves 15a and 15b, the liquid solenoid valve 9, the expansion valve 10, and the cooler 11 are arranged in this order. The cooling refrigerant circuit A is configured by being connected in an annular shape. For example, a refrigerant R410A is sealed in the cooling refrigerant circuit A. Hereinafter, the refrigerant circulating in the cooling refrigerant circuit A may be referred to as a cooling refrigerant.

冷媒分岐ユニット3には更に、液主管側接続口3aと内部熱交換器13との間から分岐し、除霜流量調整弁14及び内部熱交換器13の低圧側を介して、除霜用電磁弁15a、15bと液分岐管側接続口3b、3cとの間に合流する除霜用冷媒回路Bが形成されている。以下では、除霜用冷媒回路Bを通過する冷媒を除霜用冷媒と呼ぶ場合がある。   The refrigerant branching unit 3 is further branched from between the liquid main pipe side connection port 3a and the internal heat exchanger 13, and through the defrosting flow rate adjusting valve 14 and the low pressure side of the internal heat exchanger 13, the defrosting electromagnetic wave. A defrosting refrigerant circuit B that merges between the valves 15a and 15b and the liquid branch pipe side connection ports 3b and 3c is formed. Hereinafter, the refrigerant passing through the defrosting refrigerant circuit B may be referred to as a defrosting refrigerant.

このように構成された除霜用冷媒回路Bでは、内部熱交換器13の高圧側に流入する前の液冷媒を一部分岐し、除霜流量調整弁14で減圧した後に内部熱交換器13の低圧側に流入させ、凝縮器7を流出してそのまま内部熱交換器13の高圧側に流入する冷却用冷媒と熱交換させて加熱し、除霜用冷媒を生成する。そして、除霜用冷媒回路Bで生成された除霜用冷媒は、逆止弁16a、16bを介して液分岐管40a、40bに流入し、冷却ユニット2a、2bに供給される。   In the defrosting refrigerant circuit B configured as described above, a part of the liquid refrigerant before flowing into the high pressure side of the internal heat exchanger 13 is branched, and after the pressure is reduced by the defrosting flow rate adjusting valve 14, the internal heat exchanger 13 It flows into the low-pressure side, flows out of the condenser 7 and heat-exchanges with the cooling refrigerant that flows into the high-pressure side of the internal heat exchanger 13 as it is to produce defrosting refrigerant. The defrosting refrigerant generated in the defrosting refrigerant circuit B flows into the liquid branch pipes 40a and 40b via the check valves 16a and 16b, and is supplied to the cooling units 2a and 2b.

除霜用電磁弁15a、15bは、内部熱交換器13の高圧側を流出した冷却用冷媒又は除霜用冷媒回路Bで生成した除霜用冷媒を、冷却ユニット2a、2bの各々に選択的に供給する。すなわち、冷却ユニット2aに冷却用冷媒を供給し、冷却ユニット2bに除霜用冷媒を供給する場合は、除霜用電磁弁15aを開放、除霜用電磁弁15bを閉止し、冷却ユニット2aに除霜用冷媒を供給し、冷却ユニット2bに冷却用冷媒を供給する場合は、除霜用電磁弁15aを閉止、除霜用電磁弁15bを開放する。また、冷却ユニット2a、2bの両方に冷却用冷媒を供給する場合は、除霜用電磁弁15a、15bの両方を開放する。   The defrosting solenoid valves 15a and 15b selectively use the cooling refrigerant flowing out from the high pressure side of the internal heat exchanger 13 or the defrosting refrigerant generated by the defrosting refrigerant circuit B for each of the cooling units 2a and 2b. To supply. That is, when supplying the cooling refrigerant to the cooling unit 2a and supplying the defrosting refrigerant to the cooling unit 2b, the defrosting electromagnetic valve 15a is opened, the defrosting electromagnetic valve 15b is closed, and the cooling unit 2a is closed. When supplying the defrosting refrigerant and supplying the cooling refrigerant to the cooling unit 2b, the defrosting electromagnetic valve 15a is closed and the defrosting electromagnetic valve 15b is opened. Further, when supplying the cooling refrigerant to both the cooling units 2a and 2b, both the defrosting electromagnetic valves 15a and 15b are opened.

この冷凍装置には更に、冷凍装置全体を制御する制御装置60が設けられている。制御装置60はマイクロコンピュータで構成され、CPU、RAM及びROM等を備えている。制御装置60は、後述の通常運転モード又は除霜運転モードの切り替えや、除霜流量調整弁14の開度制御や、除霜用電磁弁15a、15bの開閉制御、液電磁弁9の開閉制御、膨張弁10の開度制御等を行う。なお、制御装置60は、熱源ユニット1に設けられていても良いし、冷却ユニット2又は冷媒分岐ユニット3に設けられていても良いし、また、各ユニットに分けて構成し、互いに連携処理を行う構成にしても良い。   The refrigeration apparatus is further provided with a control device 60 that controls the entire refrigeration apparatus. The control device 60 is constituted by a microcomputer and includes a CPU, a RAM, a ROM, and the like. The control device 60 switches between a normal operation mode or a defrosting operation mode, which will be described later, the opening degree control of the defrosting flow rate adjustment valve 14, the opening / closing control of the defrosting electromagnetic valves 15a, 15b, and the opening / closing control of the liquid electromagnetic valve 9. Then, the opening degree of the expansion valve 10 is controlled. The control device 60 may be provided in the heat source unit 1, may be provided in the cooling unit 2 or the refrigerant branching unit 3, and is configured separately for each unit, and performs cooperative processing with each other. You may make it the structure to perform.

(通常運転モード)
図2は、本発明の実施の形態1における冷凍装置における通常運転モード時のエンタルピと圧力との関係を示すモリエル線図である。図2における点A〜点E、点Hが示す各冷媒状態は、図1の冷凍装置における点A〜点E、点Hにおける冷媒の各状態に対応している。また、図1の矢印は、通常運転モード時の冷媒の流れを示している。また、図1において白抜きした弁は開放、黒塗りした弁は閉止していることを示している。この点は、後述の図においても同様である。
(Normal operation mode)
FIG. 2 is a Mollier diagram showing the relationship between enthalpy and pressure in the normal operation mode in the refrigeration apparatus in Embodiment 1 of the present invention. The refrigerant states indicated by points A to E and H in FIG. 2 correspond to refrigerant states at points A to E and H in the refrigeration apparatus of FIG. Moreover, the arrow of FIG. 1 has shown the flow of the refrigerant | coolant at the time of normal operation mode. In FIG. 1, the white valve is open, and the black valve is closed. This also applies to the drawings described later.

以下、冷凍装置の通常運転モード時の冷凍サイクル動作について図1及び図2を参照して説明する。通常運転モードとは、冷却ユニット2a、2bとも冷却運転を行う運転モードである。通常運転モードでは、冷媒分岐ユニット3の除霜流量調整弁14は閉止され、除霜用電磁弁15a、15bは開放される。また、冷却ユニット2a、2bの各々の液電磁弁9も開放される。   Hereinafter, the refrigeration cycle operation in the normal operation mode of the refrigeration apparatus will be described with reference to FIGS. 1 and 2. The normal operation mode is an operation mode in which the cooling units 2a and 2b perform the cooling operation. In the normal operation mode, the defrosting flow rate adjustment valve 14 of the refrigerant branching unit 3 is closed, and the defrosting electromagnetic valves 15a and 15b are opened. Further, the liquid electromagnetic valves 9 of the cooling units 2a and 2b are also opened.

圧縮機6を吐出した高温高圧のガス冷媒(状態B)は、凝縮器7で外気に放熱して凝縮し、受液器8に流入する。受液器8はこの冷凍サイクルで余剰となる液冷媒を貯留するため、この内部では液とガスの共存状態となり、受液器8から流出する液冷媒は飽和液(状態C)となる。   The high-temperature and high-pressure gas refrigerant (state B) discharged from the compressor 6 dissipates heat to the outside air in the condenser 7 and condenses, and flows into the liquid receiver 8. Since the liquid receiver 8 stores excess liquid refrigerant in this refrigeration cycle, the liquid and gas coexist in this state, and the liquid refrigerant flowing out of the liquid receiver 8 becomes a saturated liquid (state C).

受液器8から流出した高圧液冷媒は、熱源ユニット1を流出し、液主管4を経て液主管側接続口3aから冷媒分岐ユニット3に流入する。通常運転では、除霜流量調整弁14が閉止されているので、冷媒分岐ユニット3に流入した全ての液冷媒が内部熱交換器13に流入し、熱交換を行うことなく分岐され、除霜用電磁弁15a、15bを経由して冷却ユニット2a、2bに流入する。   The high-pressure liquid refrigerant that has flowed out of the liquid receiver 8 flows out of the heat source unit 1, passes through the liquid main pipe 4, and flows into the refrigerant branching unit 3 from the liquid main pipe side connection port 3 a. In normal operation, since the defrost flow rate adjusting valve 14 is closed, all the liquid refrigerant that has flowed into the refrigerant branch unit 3 flows into the internal heat exchanger 13 and is branched without performing heat exchange. It flows into the cooling units 2a and 2b via the electromagnetic valves 15a and 15b.

冷却ユニット2に流入した高圧液冷媒は、液電磁弁9を介して膨張弁10に流入し、主に膨張弁10によって減圧され、低圧二相冷媒(状態E,H)となって冷却器11に流入する。冷却器11に流入した低圧二相冷媒は庫内空気と熱交換して蒸発し、低圧ガス冷媒(状態A)となって冷却ユニット2を流出する。   The high-pressure liquid refrigerant that has flowed into the cooling unit 2 flows into the expansion valve 10 via the liquid electromagnetic valve 9, and is decompressed mainly by the expansion valve 10 to become a low-pressure two-phase refrigerant (states E and H). Flow into. The low-pressure two-phase refrigerant that has flowed into the cooler 11 evaporates by exchanging heat with the internal air, and becomes low-pressure gas refrigerant (state A) and flows out of the cooling unit 2.

各冷却ユニット2a、2bから流出した低圧ガス冷媒は、ガス分岐管50a、50bを介してガス主管5に流入し、再び圧縮機6に吸入される。このようにして、冷却用冷媒回路Aを冷媒が循環することにより、庫内の空気を冷却する。   The low-pressure gas refrigerant that has flowed out of the cooling units 2a and 2b flows into the gas main pipe 5 through the gas branch pipes 50a and 50b, and is sucked into the compressor 6 again. In this manner, the refrigerant in the cooling refrigerant circuit A circulates to cool the air in the warehouse.

前述の通常運転モードを長時間継続すると、冷却器11に霜が徐々に堆積し、堆積量が所定量を超えると冷却能力が著しく低下する。このため、所定の間隔で除霜運転を行う。以下、除霜運転について説明する。   If the above-described normal operation mode is continued for a long time, frost gradually accumulates in the cooler 11, and when the accumulation amount exceeds a predetermined amount, the cooling capacity is significantly reduced. For this reason, the defrosting operation is performed at predetermined intervals. Hereinafter, the defrosting operation will be described.

(除霜運転モード)
図3は、本発明の実施の形態1における冷凍装置の除霜運転モード時の冷媒回路図である。図4は、本発明の実施の形態1における冷凍装置における除霜運転モード時のエンタルピと圧力との関係を示すモリエル線図である。また、図4における点A〜点Hが示す各冷媒状態は、図3の冷凍装置における点A〜点Hにおける冷媒の各状態に対応している。
(Defrost operation mode)
FIG. 3 is a refrigerant circuit diagram in the defrosting operation mode of the refrigeration apparatus in Embodiment 1 of the present invention. FIG. 4 is a Mollier diagram showing the relationship between enthalpy and pressure in the defrosting operation mode in the refrigeration apparatus in Embodiment 1 of the present invention. Moreover, each refrigerant | coolant state which the point A-point H in FIG. 4 shows respond | corresponds to each state of the refrigerant | coolant in the point A-point H in the refrigeration apparatus of FIG.

除霜運転モードでは、除霜流量調整弁14を開放するとともに、除霜用電磁弁15a、15bのうち、除霜運転を行う冷却器11と内部熱交換器13との間の除霜用電磁弁を閉止し、冷却運転を継続する冷却器11と内部熱交換器13との間の除霜用電磁弁を開放する。また、除霜運転を行う冷却器11の膨張弁10を全開にする。冷却運転を継続する冷却器11の膨張弁10は、その冷却ユニット2の運転状態に応じて制御される。   In the defrosting operation mode, the defrosting flow rate adjustment valve 14 is opened, and the defrosting electromagnetic between the cooler 11 that performs the defrosting operation and the internal heat exchanger 13 among the defrosting electromagnetic valves 15a and 15b. The valve is closed, and the defrosting solenoid valve between the cooler 11 and the internal heat exchanger 13 that continues the cooling operation is opened. Further, the expansion valve 10 of the cooler 11 that performs the defrosting operation is fully opened. The expansion valve 10 of the cooler 11 that continues the cooling operation is controlled according to the operating state of the cooling unit 2.

以下、冷却ユニット2aを冷却運転、冷却ユニット2bを除霜運転する例で具体的に説明する。この場合、除霜用電磁弁15aは開放、除霜用電磁弁15bは閉止、冷却ユニット2bの膨張弁10は全開、冷却ユニット2a、2bの各々の液電磁弁9は開放されることになる。   Hereinafter, an example in which the cooling unit 2a is cooled and the cooling unit 2b is defrosted will be described in detail. In this case, the defrosting solenoid valve 15a is opened, the defrosting solenoid valve 15b is closed, the expansion valve 10 of the cooling unit 2b is fully opened, and the liquid solenoid valves 9 of the cooling units 2a and 2b are opened. .

以下では、冷凍サイクル動作を冷却用冷媒回路Aによる冷却側サイクルと除霜用冷媒回路Bによる除霜側サイクルとに分けて説明する。図3の実線矢印は冷却側サイクルの冷媒の流れを示し、点線矢印は除霜側サイクルの冷媒の流れを示している。また、図4の実線は冷却側サイクルにおけるモリエル線図を示し、点線は除霜側サイクルのモリエル線図を示している。   Hereinafter, the refrigeration cycle operation will be described separately for a cooling side cycle by the cooling refrigerant circuit A and a defrosting side cycle by the defrosting refrigerant circuit B. The solid line arrows in FIG. 3 indicate the refrigerant flow in the cooling side cycle, and the dotted line arrows indicate the refrigerant flow in the defrosting side cycle. Moreover, the continuous line of FIG. 4 has shown the Mollier diagram in a cooling side cycle, and the dotted line has shown the Mollier diagram of the defrost side cycle.

(冷却側サイクル:冷却運転)
まず、冷却側サイクルの動作について説明する。前述の通常運転モードと同様に、圧縮機6から吐出された高温高圧のガス冷媒(状態B)は、凝縮器7で外気に放熱し、高圧液冷媒(状態C)となって熱源ユニット1を流出する。この高圧液冷媒は、液主管4を経て液主管側接続口3aから冷媒分岐ユニット3に流入する。冷媒分岐ユニット3に流入した冷媒は2つに分岐し、一方は、そのまま内部熱交換器13の高圧側に流入し、他方は除霜用冷媒回路Bに流入して除霜流量調整弁14にて減圧された後、内部熱交換器13の低圧側に流入する。
(Cooling cycle: cooling operation)
First, the operation of the cooling side cycle will be described. As in the normal operation mode described above, the high-temperature and high-pressure gas refrigerant (state B) discharged from the compressor 6 radiates heat to the outside air by the condenser 7 and becomes a high-pressure liquid refrigerant (state C). leak. The high-pressure liquid refrigerant flows into the refrigerant branching unit 3 from the liquid main pipe side connection port 3a through the liquid main pipe 4. The refrigerant that has flowed into the refrigerant branching unit 3 branches into two, one flows directly into the high-pressure side of the internal heat exchanger 13, and the other flows into the defrosting refrigerant circuit B and enters the defrosting flow rate adjustment valve 14. The pressure is reduced and then flows into the low pressure side of the internal heat exchanger 13.

内部熱交換器13の高圧側に流入した冷却用冷媒は、除霜用冷媒回路Bからの除霜用冷媒と熱交換して冷却され、過冷却度を大きくした高圧液冷媒(状態D)となる。この高圧液冷媒は、除霜用電磁弁15aを経由して液分岐管側接続口3bから冷媒分岐ユニット3を流出し、冷却ユニット2aに流入する。冷却ユニット2aに流入した冷媒は、液電磁弁9を通過した後、膨張弁10で減圧されて低圧二相冷媒(状態E)となって冷却器11に流入する。冷却器11に流入した低圧二相冷媒は庫内空気と熱交換して蒸発し、低圧ガス冷媒(状態A)となって冷却ユニット2aを流出する。冷却ユニット2aを流出した低圧ガス冷媒は、ガス分岐管50a及びガス主管5を介して再び圧縮機6に吸入される。以上のようにして冷却用冷媒が冷却用冷媒回路Aを循環することにより庫内を冷却する。   The cooling refrigerant that has flowed into the high-pressure side of the internal heat exchanger 13 is cooled by exchanging heat with the defrosting refrigerant from the defrosting refrigerant circuit B, and has a high degree of supercooling (state D). Become. This high-pressure liquid refrigerant flows out of the refrigerant branch unit 3 from the liquid branch pipe side connection port 3b via the defrosting electromagnetic valve 15a and flows into the cooling unit 2a. The refrigerant that has flowed into the cooling unit 2 a passes through the liquid electromagnetic valve 9, and then is decompressed by the expansion valve 10 to become a low-pressure two-phase refrigerant (state E) and flows into the cooler 11. The low-pressure two-phase refrigerant that has flowed into the cooler 11 evaporates by exchanging heat with the internal air, and becomes low-pressure gas refrigerant (state A) and flows out of the cooling unit 2a. The low-pressure gas refrigerant that has flowed out of the cooling unit 2 a is again sucked into the compressor 6 through the gas branch pipe 50 a and the gas main pipe 5. As described above, the cooling refrigerant circulates in the cooling refrigerant circuit A to cool the inside of the warehouse.

(除霜側サイクル:除霜運転)
除霜用冷媒回路Bに流入した除霜用冷媒は、前述したように除霜流量調整弁14にて減圧された後、内部熱交換器13の低圧側に流入する。内部熱交換器13の低圧側に流入した除霜用冷媒は、内部熱交換器13の高圧側の高圧液冷媒(冷却用冷媒)と熱交換して加熱される。これにより、凝縮温度に近い温度まで上昇したホットガス冷媒である除霜用冷媒(状態G)が生成される。この除霜用冷媒は、逆止弁16bを経由して液分岐管側接続口3cから冷媒分岐ユニット3を流出し、冷却ユニット2bに流入する。
(Defrost side cycle: Defrost operation)
The defrosting refrigerant flowing into the defrosting refrigerant circuit B is depressurized by the defrosting flow rate adjusting valve 14 as described above, and then flows into the low pressure side of the internal heat exchanger 13. The defrosting refrigerant flowing into the low pressure side of the internal heat exchanger 13 is heated by exchanging heat with the high pressure liquid refrigerant (cooling refrigerant) on the high pressure side of the internal heat exchanger 13. Thereby, the defrosting refrigerant | coolant (state G) which is a hot gas refrigerant raised to the temperature close | similar to a condensation temperature is produced | generated. The defrosting refrigerant flows out of the refrigerant branch unit 3 from the liquid branch pipe side connection port 3c via the check valve 16b, and flows into the cooling unit 2b.

冷却ユニット2bに流入した除霜用冷媒は、液電磁弁9及び膨張弁10を通過する際の圧力損失により圧力が多少低下し(状態H)、冷却器11に流入する。冷却器11に流入した除霜用冷媒は、冷却器11に付着した霜を溶かしながら冷却器11内を進行し、霜温度である0℃まで温度低下したところで除霜する能力を失い、ガス分岐管50b及びガス主管5を経て再び圧縮機6に吸入される。以上のようにして除霜用冷媒を冷却ユニット2bに供給することにより除霜を行う。   The defrosting refrigerant that has flowed into the cooling unit 2 b is slightly reduced in pressure due to pressure loss when passing through the liquid electromagnetic valve 9 and the expansion valve 10 (state H) and flows into the cooler 11. The defrosting refrigerant that has flowed into the cooler 11 proceeds through the cooler 11 while melting the frost adhering to the cooler 11, and loses the ability to defrost when the temperature falls to 0 ° C., which is the frost temperature, and gas branching occurs. It is sucked again into the compressor 6 through the pipe 50b and the gas main pipe 5. Defrosting is performed by supplying the defrosting refrigerant to the cooling unit 2b as described above.

冷却ユニット2bの除霜が進んで除霜終了と判断すると、前述と同じ手順で冷却ユニット2aの除霜運転を開始し、冷却ユニット2bを冷却運転に切り替える。このように、冷却ユニット2を1台ずつ除霜し、また2台の冷却ユニット2の少なくとも1台は冷却運転を継続するので、庫内温度の変動(具体的には庫内温度の上昇)を抑制できる。   When the defrosting of the cooling unit 2b proceeds and it is determined that the defrosting is finished, the defrosting operation of the cooling unit 2a is started in the same procedure as described above, and the cooling unit 2b is switched to the cooling operation. In this way, the cooling units 2 are defrosted one by one, and at least one of the two cooling units 2 continues the cooling operation, so that the temperature inside the chamber varies (specifically, the temperature inside the chamber rises). Can be suppressed.

除霜側サイクルの除霜用冷媒は、除霜のための熱量を、冷却側サイクルの液冷媒(冷却用冷媒)との内部熱交換によって取得するので、ヒータ等の外部熱源を使用することなく、高効率な除霜を行うことができる。また、このとき冷却側サイクルでは、除霜用冷媒との熱交換によって冷却器前後のエンタルピ差がΔHCD(図4参照)だけ拡大されるので、冷却能力が増大し、高効率な冷却運転を行うことができる。 The defrosting refrigerant in the defrosting side cycle acquires the amount of heat for defrosting by internal heat exchange with the liquid refrigerant (cooling refrigerant) in the cooling side cycle, so that an external heat source such as a heater is not used. Highly efficient defrosting can be performed. At this time, in the cooling side cycle, the enthalpy difference before and after the cooler is expanded by ΔH CD (see FIG. 4) due to heat exchange with the defrosting refrigerant, so that the cooling capacity is increased and highly efficient cooling operation is performed. It can be carried out.

(除霜用冷媒流量の制御)
続いて、図4及び図5を参照して除霜用冷媒流量の制御方法について説明する。図5は、図1の除霜流量調整弁の開度を変化させたときの除霜用冷媒の挙動を示す特性図であり、(a)は除霜熱量特性、(b)は内部熱交換器出口の除霜用冷媒温度(状態G)特性、(c)除霜流量特性、をそれぞれ示している。
(Control of refrigerant flow for defrosting)
Next, a method for controlling the defrosting refrigerant flow rate will be described with reference to FIGS. 4 and 5. FIG. 5 is a characteristic diagram showing the behavior of the defrosting refrigerant when the opening degree of the defrosting flow rate adjusting valve in FIG. 1 is changed, (a) is the defrosting heat quantity characteristic, and (b) is the internal heat exchange. The defrosting refrigerant temperature (state G) characteristic at the vessel outlet, and (c) the defrosting flow rate characteristic are shown.

図5(c)に示すように、除霜流量調整弁14の開度を大きくするに従って、除霜流量は単調に増加する。除霜流量が増大すると、内部熱交換器13での除霜用冷媒のエンタルピ変化幅ΔHFG(状態Fと状態Gのエンタルピ差)(図4参照)が小さくなり、内部熱交換器13出口の除霜用冷媒温度(状態G)は、図5(b)に示すように単調に低下する。除霜流量が極度に小さい場合には除霜用冷媒温度(状態G)は凝縮温度に近い値となるが、除霜流量を大きくしていくと除霜用冷媒温度(状態G)は徐々に低下し、やがて0℃を下回る。 As shown in FIG.5 (c), a defrost flow volume increases monotonously as the opening degree of the defrost flow control valve 14 is enlarged. When the defrost flow rate increases, the enthalpy change width ΔH FG (difference of enthalpy between the state F and the state G) (see FIG. 4) of the refrigerant for defrosting in the internal heat exchanger 13 becomes small, and the internal heat exchanger 13 outlet The defrosting refrigerant temperature (state G) decreases monotonously as shown in FIG. When the defrosting flow rate is extremely small, the defrosting refrigerant temperature (state G) becomes a value close to the condensation temperature, but as the defrosting flow rate is increased, the defrosting refrigerant temperature (state G) gradually increases. It will fall and will eventually fall below 0 ° C.

除霜熱量は、状態Hと状態Aとのエンタルピ差ΔHHA(図4参照)と、除霜流量とで決まる。除霜用冷媒温度(状態G)が十分高い温度領域では、除霜流量が大きいほど除霜熱量も大きくなるので、除霜流量が図5(c)に示すように増加すると、除霜熱量も図5(a)に示すように増大する。一方で、除霜用冷媒温度(状態G)が0℃に接近すると、霜との温度差が小さくなり、除霜流量に関わらず除霜熱量が減少し、冷却器入口(状態H)の温度が0℃になったところで除霜熱量はゼロになる。 The amount of defrosting heat is determined by the enthalpy difference ΔH HA (see FIG. 4) between the state H and the state A and the defrosting flow rate. In the temperature region where the defrosting refrigerant temperature (state G) is sufficiently high, the larger the defrosting flow rate, the larger the defrosting heat amount. Therefore, when the defrosting flow rate increases as shown in FIG. It increases as shown in FIG. On the other hand, when the refrigerant temperature for defrosting (state G) approaches 0 ° C., the temperature difference from the frost becomes small, the amount of defrosting heat is reduced regardless of the defrosting flow rate, and the temperature at the cooler inlet (state H). When the temperature reaches 0 ° C., the defrosting heat becomes zero.

よって、図5(a)に示したように、除霜熱量が最大となる除霜流量がある。本実施の形態1においては、この除霜熱量が最大になる流量を狙って除霜流量調整弁14の開度を調節する。除霜熱量を最大にすることにより短時間で除霜を完了することができ、庫内温度の変動を抑制することができる。なお、除霜流量調整弁14の開度調節は、具体的には状態Cと状態Gとの温度差が所定値(例えば10[K]程度)を下回らないように除霜流量調整弁14の開度を決定している。   Therefore, as shown to Fig.5 (a), there exists a defrost flow volume which becomes the maximum amount of defrost heat. In the first embodiment, the opening degree of the defrosting flow rate adjusting valve 14 is adjusted aiming at the flow rate at which the defrosting heat amount is maximized. By maximizing the amount of heat for defrosting, defrosting can be completed in a short time, and fluctuations in the internal temperature can be suppressed. The opening degree of the defrosting flow rate adjustment valve 14 is specifically adjusted so that the temperature difference between the state C and the state G does not fall below a predetermined value (for example, about 10 [K]). The opening is determined.

以上説明したように、本実施の形態1によれば、液主管4と冷却ユニット2a、2bとの間に冷媒分岐ユニット3を設け、冷媒分岐ユニット3に設けた内部熱交換器13と除霜流量調整弁14とにより、液主管4から流入する高圧液冷媒の一部を冷却用冷媒とすると共に、この冷却用冷媒を用いて残りの高圧液冷媒から除霜用冷媒を生成し、冷却用冷媒又は除霜用冷媒を各冷却ユニット2a、2bに独立して選択的に供給する構成とした。この構成により、ある冷却ユニットで除霜運転している間もその他の冷却ユニットで冷却運転を行うことが可能となり、冷凍庫の温度変化を小さくすることができる。   As described above, according to the first embodiment, the refrigerant branch unit 3 is provided between the liquid main pipe 4 and the cooling units 2a and 2b, and the internal heat exchanger 13 provided in the refrigerant branch unit 3 and the defrosting are provided. A part of the high-pressure liquid refrigerant flowing in from the liquid main pipe 4 is used as a cooling refrigerant by the flow rate adjusting valve 14, and a defrosting refrigerant is generated from the remaining high-pressure liquid refrigerant using the cooling refrigerant. A refrigerant or a defrosting refrigerant is selectively supplied to each cooling unit 2a, 2b independently. With this configuration, it is possible to perform the cooling operation with other cooling units even while the defrosting operation is performed with a certain cooling unit, and the temperature change of the freezer can be reduced.

また、液主管4と冷却ユニット2a、2bとの間に冷媒分岐ユニット3を設けるだけで、冷却運転を継続しながら除霜運転を行える冷凍装置を構成できるため、従来のように液主管4及びガス主管5の他に、除霜専用のホットガス配管を追加する必要がなくなる。よって、据付工事に要する時間と費用を低減することができる。   In addition, since the refrigeration apparatus that can perform the defrosting operation while continuing the cooling operation can be configured only by providing the refrigerant branching unit 3 between the liquid main tube 4 and the cooling units 2a and 2b, In addition to the gas main pipe 5, there is no need to add a hot gas pipe dedicated to defrosting. Therefore, the time and cost required for installation work can be reduced.

また、冷媒分岐ユニット3は液主管4側に設けられ、ガス主管5側は、ガス主管5からガス分岐管50a、50b介して接続する、といった従来一般の簡素な構成で済む。よって、特許文献2のように、低圧冷媒が流通する配管部分に流路切替用の開閉弁を設置する必要が無い。   The refrigerant branch unit 3 is provided on the liquid main pipe 4 side, and the gas main pipe 5 side may be connected to the gas main pipe 5 via the gas branch pipes 50a and 50b. Therefore, unlike patent document 2, it is not necessary to install the on-off valve for flow path switching in the piping part through which the low-pressure refrigerant flows.

また、冷媒による内部加熱方式であるため、冷却器11に加熱ヒータを密着させて除霜を行う外部加熱方式に比べて冷却器11を比較的均一に加熱できる。よって、除霜に寄与しない余分な投入熱量が小さくなり、除霜時間の短縮が図れる。   Moreover, since it is the internal heating system by a refrigerant | coolant, the cooler 11 can be heated comparatively uniformly compared with the external heating system which sticks a heater to the cooler 11 and performs defrosting. Therefore, the amount of extra input heat that does not contribute to defrosting is reduced, and the defrosting time can be shortened.

また、熱源ユニット1は冷却ユニット2が冷却運転を行っているのか除霜運転を行っているかを認識する必要が無く、冷媒分岐ユニット3だけで冷却運転と除霜運転を切り替えることができる。よって、既設の冷凍装置に冷媒分岐ユニット3を追加設置することで、冷却運転中に除霜を行うことが可能な冷凍装置にリニューアルすることができる。   Further, the heat source unit 1 does not need to recognize whether the cooling unit 2 is performing the cooling operation or the defrosting operation, and the cooling operation and the defrosting operation can be switched only by the refrigerant branch unit 3. Therefore, by additionally installing the refrigerant branching unit 3 in the existing refrigeration apparatus, it can be renewed to a refrigeration apparatus capable of performing defrosting during the cooling operation.

なお、本実施の形態1では、内部熱交換器13、除霜流量調整弁14、除霜用電磁弁15a、15b及び逆止弁16a、16bの全てをまとめてユニット化した冷媒分岐ユニット3を示したが、必ずしもユニット化されていなくてもよく、要は、冷媒分岐ユニット3を構成する各要素を備えた構成とすればよい。   In the first embodiment, the refrigerant branching unit 3 in which all of the internal heat exchanger 13, the defrosting flow rate adjustment valve 14, the defrosting electromagnetic valves 15a and 15b and the check valves 16a and 16b are unitized is provided. Although shown, it does not necessarily need to be unitized, in short, what is necessary is just to set it as the structure provided with each element which comprises the refrigerant | coolant branch unit 3. FIG.

実施の形態2.
実施の形態2は、除霜時間の短時間化を図るための除霜熱量の増大策に関するものである。
Embodiment 2. FIG.
Embodiment 2 relates to a measure for increasing the amount of defrost heat for shortening the defrosting time.

図6は、本発明の実施の形態2における冷凍装置の冷媒回路の一例を示す図である。図6では、冷却ユニット2aを冷却運転、冷却ユニット2bを除霜運転する場合の例を示している。また、図6の実線矢印は冷却側サイクルの冷媒の流れを示し、点線矢印は除霜側サイクルの冷媒の流れを示している。なお、本実施の形態2では上述した実施の形態1との相違点を中心に説明するものとする。また、実施の形態1と同様の部分について適用される変形例は、本実施の形態2についても同様に適用される。   FIG. 6 is a diagram illustrating an example of a refrigerant circuit of the refrigeration apparatus according to Embodiment 2 of the present invention. FIG. 6 shows an example in which the cooling unit 2a is cooled and the cooling unit 2b is defrosted. Moreover, the solid line arrow of FIG. 6 has shown the flow of the refrigerant | coolant of a cooling side cycle, and the dotted line arrow has shown the flow of the refrigerant | coolant of a defrost side cycle. In the second embodiment, the difference from the first embodiment will be mainly described. Further, the modification applied to the same part as in the first embodiment is also applied to the second embodiment.

以下、図6を参照して除霜熱量の増大策1〜4について順に説明する。   Hereinafter, with reference to FIG. 6, measures 1 to 4 for increasing the amount of defrost heat will be described in order.

(除霜熱量の増大策1)
冷媒分岐ユニット3に第1補助加熱装置としての冷媒加熱ヒータ17を組込み、内部熱交換器13を流出した除霜用冷媒を冷媒加熱ヒータ17で更に加熱する。これにより、除霜熱量を大きくすることができる。
(Measures for increasing defrosting heat 1)
A refrigerant heater 17 as a first auxiliary heating device is incorporated in the refrigerant branch unit 3, and the refrigerant for defrost that has flowed out of the internal heat exchanger 13 is further heated by the refrigerant heater 17. Thereby, a defrost calorie | heat amount can be enlarged.

冷却器11を加熱する場合、前述したように、外部から加熱するよりも内部から加熱した方が熱が均等に伝わり、霜の溶け残りを抑制することが可能となる。よって、同じ熱量であれば、冷却器11の外部に冷却器加熱ヒータ18を設置して加熱するよりも、除霜用冷媒を直接加熱した方が、より均一に冷却器11を加熱することができ、除霜に要する時間を更に短縮することができる。   When the cooler 11 is heated, as described above, the heat is transmitted more uniformly when heated from the inside than when heated from the outside, and it is possible to suppress the remaining frost from melting. Therefore, if the heat quantity is the same, the cooler 11 can be heated more uniformly by directly heating the defrosting refrigerant than by installing the cooler heater 18 outside the cooler 11 and heating it. And the time required for defrosting can be further shortened.

(除霜熱量の増大策2)
冷却器11において霜が付着する伝熱部分に、第2補助加熱装置としての冷却器加熱ヒータ18を密着するように固定して設ける。そして、除霜運転を開始すると同時に冷却器加熱ヒータ18に通電する。
(Measure 2 for increasing defrosting heat)
A cooler heater 18 as a second auxiliary heating device is fixed and provided in close contact with the heat transfer portion to which frost adheres in the cooler 11. Then, the cooler heater 18 is energized simultaneously with the start of the defrosting operation.

従来から、冷却器11を冷却器加熱ヒータ18により加熱して除霜する方法は一般に知られている。この方法では、前述したように冷却器加熱ヒータ18から遠いところでの霜の溶け残りを無くすために、相当高温まで加熱する必要があり、冷却負荷の増大や結露などの問題が生じることがある。これに対し、本実施の形態2では、冷却器加熱ヒータ18を使用する際に冷却器11に冷媒が流通している。このため、冷却器11に流通した冷媒が、冷却器加熱ヒータ18近傍を通過する際に、冷却器加熱ヒータ18の熱を吸収し、熱を吸収した冷媒が、霜が溶け残る低温部分に流通する。よって、冷却器加熱ヒータ18の熱が冷却器11全体に効果的に行き渡り、冷却器11全体を均一に加熱することが可能となる。したがって、冷却負荷を増大させることなく除霜熱量を増大させることができ、より短時間に除霜運転を完了することができる。   Conventionally, a method of defrosting by heating the cooler 11 with the cooler heater 18 is generally known. In this method, as described above, it is necessary to heat to a considerably high temperature in order to eliminate unmelted frost far from the cooler heater 18, and problems such as an increase in cooling load and condensation may occur. On the other hand, in this Embodiment 2, when using the cooler heater 18, the refrigerant flows through the cooler 11. For this reason, when the refrigerant | coolant which distribute | circulated the cooler 11 passes the cooler heater 18 vicinity, it absorbs the heat | fever of the cooler heater 18 and the refrigerant | coolant which absorbed the heat | fever distribute | circulates to the low temperature part with which frost melt | dissolves. To do. Therefore, the heat of the cooler heater 18 is effectively spread over the entire cooler 11, and the entire cooler 11 can be heated uniformly. Therefore, the amount of defrosting heat can be increased without increasing the cooling load, and the defrosting operation can be completed in a shorter time.

(除霜熱量の増大策3)
凝縮器7に送風する送風ファン19を設け、送風ファン19の回転数制御により凝縮器7の放熱能力を調整する。
(Measure 3 for increasing defrosting heat)
A blower fan 19 that blows air is provided in the condenser 7, and the heat dissipation capability of the condenser 7 is adjusted by controlling the rotational speed of the blower fan 19.

除霜用冷媒温度は凝縮温度以上にはならないため、例えば冬季で外気温度が低く、凝縮温度も例えば30℃程度まで低下していると、除霜用冷媒温度も30℃よりも低い温度となる。このように除霜用冷媒温度が低いと十分な除霜熱量が得られない。よって、少なくとも1台以上で除霜運転を行う際に、凝縮温度が所定温度(例えば50℃)を下回る場合には、送風ファン19の回転数を低下させて凝縮放熱を抑制し、凝縮温度が所定温度を下回らないようにすることで、除霜熱量を増大させる。   Since the defrosting refrigerant temperature does not exceed the condensation temperature, for example, when the outside air temperature is low in winter and the condensation temperature is reduced to, for example, about 30 ° C, the defrosting refrigerant temperature is also lower than 30 ° C. . Thus, if the refrigerant temperature for defrosting is low, sufficient defrosting heat quantity cannot be obtained. Therefore, when the defrosting operation is performed with at least one unit, if the condensation temperature falls below a predetermined temperature (for example, 50 ° C.), the rotation speed of the blower fan 19 is reduced to suppress the condensation heat radiation, and the condensation temperature is reduced. By preventing the temperature from falling below a predetermined temperature, the amount of defrosting heat is increased.

(除霜熱量の増大策4)
図6の冷却ユニット2bに示すように、膨張弁10をバイパス(液電磁弁9を設けている場合には液電磁弁9と膨張弁10の両方をバイパス)するバイパス回路12を設ける。バイパス回路12にはバイパス弁12aが設けられており、冷却ユニット2bの除霜運転の際にバイパス弁12aを開放する。
(Measure 4 for increasing defrosting heat)
As shown in the cooling unit 2b of FIG. 6, a bypass circuit 12 is provided that bypasses the expansion valve 10 (when the liquid electromagnetic valve 9 is provided, bypasses both the liquid electromagnetic valve 9 and the expansion valve 10). The bypass circuit 12 is provided with a bypass valve 12a, and the bypass valve 12a is opened during the defrosting operation of the cooling unit 2b.

バイパス回路12は、除霜運転時に液電磁弁9や膨張弁10を通過することによる圧力低下が極力生じないことを目的に設けられている。なお、図6には、冷却ユニット2b側のみにバイパス回路12を設けた構成を示したが、冷却ユニット2a側にも設けた構成としてももちろん良い。   The bypass circuit 12 is provided for the purpose of minimizing the pressure drop caused by passing through the liquid electromagnetic valve 9 and the expansion valve 10 during the defrosting operation. FIG. 6 shows a configuration in which the bypass circuit 12 is provided only on the cooling unit 2b side. However, a configuration in which the bypass circuit 12 is also provided on the cooling unit 2a side may be used.

冷却ユニット2bの除霜を行う場合、バイパス回路12のバイパス弁12aを開放してバイパス回路12に冷媒を通過させることにより、状態Gからの状態Hへの圧力低下を小さくすることができる。このため、内部熱交換器13での熱交換駆動力、すなわち、状態Cと状態Fとの温度差が大きくなり、内部熱交換器13での熱交換量を大きくすることができる。よって、冷却ユニット2bの冷却器11に流入する除霜用冷媒の温度を、バイパス回路12を設けない場合に比べて高くすることができ、除霜に要する時間を短くすることができる。   When defrosting the cooling unit 2b, the pressure drop from the state G to the state H can be reduced by opening the bypass valve 12a of the bypass circuit 12 and allowing the refrigerant to pass through the bypass circuit 12. For this reason, the heat exchange driving force in the internal heat exchanger 13, that is, the temperature difference between the state C and the state F is increased, and the amount of heat exchange in the internal heat exchanger 13 can be increased. Therefore, the temperature of the defrosting refrigerant flowing into the cooler 11 of the cooling unit 2b can be made higher than when the bypass circuit 12 is not provided, and the time required for defrosting can be shortened.

図6には、以上に説明した全ての増大策を講じた構成を図示したが、一部を組み合わせた構成としてもよい。   Although FIG. 6 shows a configuration in which all the above-described increasing measures are taken, a configuration in which a part of them is combined may be used.

また、各実施の形態では、冷却ユニット2が2台接続された場合について説明したが、例えば食品店舗ショーケースのように、1台の熱源ユニットに10台程度の冷却ユニット2が接続された構成にも、本発明を適用できる。このような構成の場合において、除霜対象の冷却器11が必要とする除霜熱量が、その他の冷却器11の冷却容量よりも非常に小さい場合には、冷媒加熱ヒータ17や冷却器加熱ヒータ18などの補助加熱装置を設置しなくても十分大きな除霜熱量を得られ、簡易な構成で高効率な除霜運転を行うことができる。   Moreover, in each embodiment, although the case where two cooling units 2 were connected was demonstrated, the structure by which about 10 cooling units 2 were connected to one heat source unit like a food store showcase, for example Also, the present invention can be applied. In the case of such a configuration, when the amount of defrost heat required by the cooler 11 to be defrosted is much smaller than the cooling capacity of the other coolers 11, the refrigerant heater 17 or the cooler heater Even if an auxiliary heating device such as 18 is not installed, a sufficiently large amount of defrosting heat can be obtained, and a highly efficient defrosting operation can be performed with a simple configuration.

また、冷凍装置が、室内機(冷却ユニット)と室外機(熱源ユニット)とを備えた空気調和機としてもよい。また、室外機を複数備えたマルチシステムの構成に本発明を適用してももちろんよい。   The refrigeration apparatus may be an air conditioner including an indoor unit (cooling unit) and an outdoor unit (heat source unit). Of course, the present invention may be applied to a multi-system configuration including a plurality of outdoor units.

以上には、本発明の特徴事項を各実施の形態において説明したが、例えば、圧縮機・熱交換器・減圧装置等の冷媒回路要素の構成は各実施の形態で説明した内容に限定されるものではなく、本発明の課題の範囲内で適宜変更可能である。   The features of the present invention have been described above in each embodiment. For example, the configuration of refrigerant circuit elements such as a compressor, a heat exchanger, and a pressure reducing device is limited to the contents described in each embodiment. However, the present invention can be changed as appropriate within the scope of the present invention.

1 熱源ユニット、2(2a、2b) 冷却ユニット、3 冷媒分岐ユニット、3a 液主管側接続口、3b 液分岐管側接続口、3c 液分岐管側接続口、4 液主管、5 ガス主管、6 圧縮機、7 凝縮器、8 受液器、9 液電磁弁、10 膨張弁、11 冷却器、12 バイパス回路、12a バイパス弁、13 内部熱交換器、14 除霜流量調整弁、15a 除霜用電磁弁、15b 除霜用電磁弁、16a 逆止弁、16b 逆止弁、17 冷媒加熱ヒータ、18 冷却器加熱ヒータ、19 送風ファン、40a 液分岐管、40b 液分岐管、50a ガス分岐管、50b ガス分岐管、60 制御装置、A 冷却用冷媒回路、B 除霜用冷媒回路。   1 Heat source unit, 2 (2a, 2b) Cooling unit, 3 Refrigerant branch unit, 3a Liquid main pipe side connection port, 3b Liquid branch pipe side connection port, 3c Liquid branch pipe side connection port, 4 Liquid main pipe, 5 Gas main pipe, 6 Compressor, 7 Condenser, 8 Liquid receiver, 9 Liquid solenoid valve, 10 Expansion valve, 11 Cooler, 12 Bypass circuit, 12a Bypass valve, 13 Internal heat exchanger, 14 Defrost flow control valve, 15a For defrost Solenoid valve, 15b solenoid valve for defrosting, 16a check valve, 16b check valve, 17 refrigerant heater, 18 cooler heater, 19 blower fan, 40a liquid branch pipe, 40b liquid branch pipe, 50a gas branch pipe, 50b Gas branch pipe, 60 control device, A cooling refrigerant circuit, B defrosting refrigerant circuit.

Claims (6)

圧縮機、凝縮器、内部熱交換器の高圧側、減圧装置及び冷却器に冷却用冷媒が循環するように接続された冷却用冷媒回路と、
前記冷却用冷媒回路の前記圧縮機及び前記凝縮器を有する熱源ユニットと、
前記熱源ユニットから延びるガス主管にガス分岐管を介して接続されると共に、前記減圧装置及び前記冷却器を有する複数台の冷却ユニットと、
前記熱源ユニットから延びる液主管と、前記複数台の冷却ユニットの各々から延びる液分岐管との間に接続される冷媒分岐部とを有し、
前記冷媒分岐部は、
前記内部熱交換器と、
前記凝縮器を流出して前記内部熱交換器の高圧側に流入する前の液冷媒の一部を分岐し、除霜流量調整装置を介して前記内部熱交換器の低圧側に流入させ、前記凝縮器を流出して前記内部熱交換器の高圧側に流入する冷却用冷媒と熱交換させて加熱し、除霜用冷媒を生成する除霜用冷媒回路と、
前記冷却用冷媒回路の前記内部熱交換器の高圧側を通過後の冷却用冷媒又は前記除霜用冷媒回路で生成した前記除霜用冷媒を前記複数台の冷却ユニットの各々に選択的に供給する冷媒流路切替装置と
を備えたことを特徴とする冷凍装置。
A refrigerant circuit for cooling connected to the compressor, the condenser, the high-pressure side of the internal heat exchanger, the decompression device and the cooler so that the cooling refrigerant circulates;
A heat source unit having the compressor and the condenser of the cooling refrigerant circuit;
A plurality of cooling units connected to a gas main pipe extending from the heat source unit via a gas branch pipe, and having the pressure reducing device and the cooler;
A refrigerant branch connected to a liquid main pipe extending from the heat source unit and a liquid branch pipe extending from each of the plurality of cooling units;
The refrigerant branch is
The internal heat exchanger;
Branching a part of the liquid refrigerant before flowing out from the condenser and flowing into the high-pressure side of the internal heat exchanger, flowing into the low-pressure side of the internal heat exchanger via the defrosting flow control device, A refrigerant circuit for defrosting that generates heat by defrosting and heat-exchanging with a cooling refrigerant flowing out of the condenser and flowing into the high-pressure side of the internal heat exchanger;
The cooling refrigerant after passing through the high pressure side of the internal heat exchanger of the cooling refrigerant circuit or the defrosting refrigerant generated by the defrosting refrigerant circuit is selectively supplied to each of the plurality of cooling units. A refrigeration apparatus comprising a refrigerant flow switching device.
前記冷却用冷媒回路の前記凝縮器の出口温度と前記除霜用冷媒回路の前記内部熱交換器の出口温度との温度差が所定値となるように前記除霜流量調整装置の開度を調整することを特徴とする請求項1記載の冷凍装置。   The opening degree of the defrosting flow rate adjusting device is adjusted so that the temperature difference between the outlet temperature of the condenser of the cooling refrigerant circuit and the outlet temperature of the internal heat exchanger of the defrosting refrigerant circuit becomes a predetermined value. The refrigeration apparatus according to claim 1. 前記内部熱交換器を流出した除霜用冷媒を加熱する第1補助加熱装置を備えたことを特徴とする請求項1又は請求項2記載の冷凍装置。   The refrigeration apparatus according to claim 1 or 2, further comprising a first auxiliary heating device that heats the defrosting refrigerant that has flowed out of the internal heat exchanger. 複数の前記冷却器のうち少なくとも1台に、霜が付着する伝熱部分に密着するように第2補助加熱装置を固定して設けたことを特徴とする請求項1乃至請求項3の何れか一項に記載の冷凍装置。   4. The second auxiliary heating device is fixedly provided on at least one of the plurality of coolers so as to be in close contact with a heat transfer portion to which frost adheres. 5. The refrigeration apparatus according to one item. 前記凝縮器に送風する送風ファンを備え、前記複数台の冷却ユニットのうち、少なくとも1台以上で除霜運転を行う際に、凝縮温度が所定温度を下回らないように、前記送風ファンの回転数制御により前記凝縮器の放熱能力を調整することを特徴とする請求項1乃至請求項4の何れか一項に記載の冷凍装置。   When the defrosting operation is performed with at least one of the plurality of cooling units, the rotation speed of the blower fan is provided so that the condensation temperature does not fall below a predetermined temperature. The refrigeration apparatus according to any one of claims 1 to 4, wherein the heat dissipation capacity of the condenser is adjusted by control. 前記複数台の冷却ユニットのうち、少なくとも1台以上の所定の冷却ユニットは、自己の前記減圧装置をバイパスするバイパス回路を有し、自己の除霜運転の際に自己の前記バイパス回路のバイパス弁を開放することを特徴とする請求項1乃至請求項5の何れか一項に記載の冷凍装置。   Among the plurality of cooling units, at least one of the predetermined cooling units has a bypass circuit that bypasses the pressure reducing device of the self, and the bypass valve of the bypass circuit of the self in the defrosting operation. The refrigeration apparatus according to any one of claims 1 to 5, wherein the refrigeration apparatus is opened.
JP2011287218A 2011-12-28 2011-12-28 Refrigeration equipment Active JP5404761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011287218A JP5404761B2 (en) 2011-12-28 2011-12-28 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011287218A JP5404761B2 (en) 2011-12-28 2011-12-28 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2013137123A true JP2013137123A (en) 2013-07-11
JP5404761B2 JP5404761B2 (en) 2014-02-05

Family

ID=48912985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011287218A Active JP5404761B2 (en) 2011-12-28 2011-12-28 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5404761B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511849B1 (en) 2013-10-07 2015-04-15 랴오 중-쉔 Refrigerating machine
CN111536720A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device adopting secondary condensation of refrigerant
CN111536723A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device for secondary condensation and supercooling of main path refrigerant
CN111536724A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device for supercooling main pipeline refrigerant by using defrosting medium
CN111536719A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device adopting defrosted refrigerant to directly spray liquid for evaporation
CN111536722A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device for supercooling refrigerant of main path of refrigeration cycle
CN112013559A (en) * 2020-09-18 2020-12-01 珠海格力电器股份有限公司 Refrigeration system and refrigeration system control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231182A (en) * 1987-03-17 1988-09-27 中野冷機株式会社 Refrigerator
JPS63290369A (en) * 1987-05-22 1988-11-28 株式会社東芝 Air conditioner
JPH05296615A (en) * 1992-04-24 1993-11-09 Hitachi Ltd Defrosting system for freezer
JP2005274057A (en) * 2004-03-25 2005-10-06 Sanden Corp Showcase
JP2010255921A (en) * 2009-04-24 2010-11-11 Hitachi Appliances Inc Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231182A (en) * 1987-03-17 1988-09-27 中野冷機株式会社 Refrigerator
JPS63290369A (en) * 1987-05-22 1988-11-28 株式会社東芝 Air conditioner
JPH05296615A (en) * 1992-04-24 1993-11-09 Hitachi Ltd Defrosting system for freezer
JP2005274057A (en) * 2004-03-25 2005-10-06 Sanden Corp Showcase
JP2010255921A (en) * 2009-04-24 2010-11-11 Hitachi Appliances Inc Air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511849B1 (en) 2013-10-07 2015-04-15 랴오 중-쉔 Refrigerating machine
CN111536720A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device adopting secondary condensation of refrigerant
CN111536723A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device for secondary condensation and supercooling of main path refrigerant
CN111536724A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device for supercooling main pipeline refrigerant by using defrosting medium
CN111536719A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device adopting defrosted refrigerant to directly spray liquid for evaporation
CN111536722A (en) * 2020-05-26 2020-08-14 广东省现代农业装备研究所 Defrosting method and device for supercooling refrigerant of main path of refrigeration cycle
CN112013559A (en) * 2020-09-18 2020-12-01 珠海格力电器股份有限公司 Refrigeration system and refrigeration system control method

Also Published As

Publication number Publication date
JP5404761B2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5570531B2 (en) Heat pump equipment
WO2010070828A1 (en) Heat pump hot-water supply device and operation method therefor
JP5404761B2 (en) Refrigeration equipment
JP4974714B2 (en) Water heater
JP5427428B2 (en) Heat pump type hot water supply / air conditioner
US6170270B1 (en) Refrigeration system using liquid-to-liquid heat transfer for warm liquid defrost
JP5595140B2 (en) Heat pump type hot water supply / air conditioner
WO2016113850A1 (en) Air-conditioning device
JP2011127792A (en) Air heat source heat pump hot water supply and air conditioning device
KR101737365B1 (en) Air conditioner
US20230074034A1 (en) Air conditioner
JP5677472B2 (en) Refrigeration equipment
JP6771302B2 (en) Air conditioner
JP5320382B2 (en) Method and apparatus for defrosting air refrigerant refrigeration system
WO2016166873A1 (en) Heat pump system
JP2007247997A (en) Air conditioner
KR101533644B1 (en) Hotgas defrosting refrigerating cycle device
JP5642138B2 (en) Refrigeration equipment
JP2012251667A (en) Defrosting method and defrosting device of air refrigerant type freezing apparatus
WO2022195727A1 (en) Heat source machine for refrigeration apparatus and refrigeration apparatus equipped with same
JP2007127302A (en) Refrigeration unit
JP6704513B2 (en) Refrigeration cycle equipment
KR101100009B1 (en) Air conditioning system
JP6071540B2 (en) Heat pump cold / hot water system
JP5264973B2 (en) Heat pump hot water supply apparatus and operation method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131029

R150 Certificate of patent or registration of utility model

Ref document number: 5404761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250