WO2007029600A1 - 光学素子、光ヘッド装置、及び光情報処理装置 - Google Patents

光学素子、光ヘッド装置、及び光情報処理装置 Download PDF

Info

Publication number
WO2007029600A1
WO2007029600A1 PCT/JP2006/317251 JP2006317251W WO2007029600A1 WO 2007029600 A1 WO2007029600 A1 WO 2007029600A1 JP 2006317251 W JP2006317251 W JP 2006317251W WO 2007029600 A1 WO2007029600 A1 WO 2007029600A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
optical
optical element
head device
Prior art date
Application number
PCT/JP2006/317251
Other languages
English (en)
French (fr)
Inventor
Kousei Sano
Yoshiaki Komma
Naoto Shimada
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2007029600A1 publication Critical patent/WO2007029600A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/22Apparatus or processes for the manufacture of optical heads, e.g. assembly
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/16Housings; Caps; Mountings; Supports, e.g. with counterweight
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1376Collimator lenses

Definitions

  • Optical element optical head device, and optical information processing device
  • the present invention relates to a lens for condensing or diverging a light beam, an optical element including the lens, or an optical head device for recording, reproducing, or erasing information on an information storage medium, and optical information processing It relates to the device.
  • FIG. 15 shows a configuration of an optical head device in a conventional optical information processing apparatus.
  • the optical head device 5 irradiates an optical disc 201 as an information storage medium with a light beam, reproduces a signal recorded on the optical disc 201, and records a signal on the optical disc 201.
  • a semiconductor laser 202 as a light source emits a light beam 210.
  • the light beam 210 emitted from the semiconductor laser 202 is reflected by a beam splitter 230 as a branching unit, passes through the coupling lens 100, and enters an objective lens 222 as a condensing unit.
  • the objective lens 222 focuses the incident light beam on the recording layer of the optical disc 201.
  • the objective lens 222 is fixed on the movable element 231 and is moved by the actuator 230 in the optical axis direction of the objective lens 222 itself and in the radial direction of the optical disc 201.
  • An aperture 232 is also fixed to the mover 231, and the aperture 232 regulates the beam diameter and numerical aperture (NA) of light passing through the objective lens 222.
  • the light beam reflected and diffracted by the optical disc 201 passes through the objective lens 222 and the coupling lens 100 again, passes through the beam splitter 203, and is received by the photodetector 111 as the light detecting means.
  • the coupling lens 100 is used to increase the capturing efficiency of the light beam 210 emitted from the semiconductor laser 202 and to secure a desired overall optical path length.
  • FIGS. 16 (a) and 16 (b) are diagrams showing a configuration of a two-lens objective lens as an example of the objective lens 222 used in the optical head device 5 (for example, Patent Document 1 (for example, the 18th lens). (See page 1).
  • the objective lens 120 and the objective lens 121 form a combination of two objective lenses, and the light is condensed on the optical disk 122 to record or reproduce information.
  • Objective lens 120 and objective lens The position relationship of the lens 121 is fixed by the lens barrel 123.
  • the edge portion of the objective lens 120 has a plane that is perpendicular to the optical axis on the incident side 131 and a slanted slope on the emission side 132. This is the force that reflects the light on the incident side 131 and aligns the optical axis of the lens when adjusting the positional relationship between the objective lens 120 and the objective lens 121. If the exit side 132 is also at the same angle, two reflected lights appear. This is because an accurate angle cannot be obtained.
  • the light transmitted through the edge portion of the objective lenses 120 and 121 is controlled by the lens barrel 123, thereby restricting the beam diameter and numerical aperture (NA) of the light.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-67965
  • the light beam 210 emitted from the semiconductor laser 202 is reflected by the inside of the optical system constituting the optical head device in addition to the light beam 210 reflected from the optical disk 201 and directly incident on the coupling lens 100 via the objective lens 222.
  • the generated light may be guided to the coupling lens 100 as stray light.
  • FIGS. 17A and 17B show a configuration diagram of the coupling lens 100 of FIG. FIG. 17 (a) is a perspective view
  • FIG. 17 (b) is a cross-sectional view.
  • the edge portion 101 of the coupling lens 100 is provided as a brim-like portion on the edge (cone) of the lens body 102 when the coupling lens 100 is produced as a resin lens or glass lens by a molding method.
  • the edge portion 101 supports the lens body 102 that functions to converge and diverge light, and serves as a foot for fixing the coupling lens 100, or the lens body 102 is not distorted when the lens is molded. To act as a buffer area.
  • the edge portion 101 is flat, and in this case, its main surface is the light of the lens body 102. It is made perpendicular to the axis 103. As shown in FIG. 17 (c), when stray light 110 passes through the edge portion 101 and is substantially parallel to the optical axis 103, the stray light 110 travels straight in the edge portion 101 (dotted arrow), and the amount of light The light is incident on the light receiving area 11 la of the light detector 11 1, which deteriorates the signal quality.
  • the stray light passing through the edge portion of the coupling lens affects the quality of the signal to be detected.
  • the lens In addition to the optical head device, in an optical apparatus such as a microscope, a camera, or a scanner, when such stray light is generated in a lens having an edge portion such as the coupling lens, the lens Will affect the image that connects.
  • the present invention takes into consideration such a conventional problem, and even if directional stray light is present in the edge portion of the lens, the optical element prevents the stray light from affecting the detection signal and the image quality. , Lens, and optical head device using the same, and optical information processing device
  • the first aspect of the present invention is a lens having a lens main body and an edge portion
  • An optical element comprising an opening provided at a position corresponding to the lens body and a light blocking member having a light blocking portion provided to cover the position corresponding to the edge portion.
  • the light-shielding member has a cap-like shape corresponding to the outer shape of the lens, and is fixed to the lens by fitting into the outer shape of the lens.
  • 1 is an optical element according to a first aspect of the present invention.
  • the lens has a protruding portion outwardly from an outer peripheral portion, and the light-shielding member has a first cutout portion at a position corresponding to the protruding portion.
  • 1 is an optical element of the present invention.
  • the fourth aspect of the present invention further includes a support for supporting the lens
  • the lens has an outer peripheral part fixed to the support by an adhesive, and
  • the light-shielding member is the optical element according to the first aspect of the present invention, having a second notch corresponding to the bonding position.
  • the fifth aspect of the present invention is the optical element according to the first aspect of the present invention, wherein the light shielding portion shields light having a wavelength longer than 730 nm.
  • the sixth aspect of the present invention is the optical element according to the first aspect of the present invention, wherein the light shielding portion shields light having a wavelength shorter than 450 nm.
  • the seventh invention is the optical element of the first invention, wherein the light transmittance of the light shielding portion is 20% or less.
  • the eighth invention is the optical element of the first invention, wherein the light shielding portion is made of a material containing resin.
  • the ninth aspect of the present invention is the optical element according to the first aspect of the present invention, wherein the light shielding portion is made of a material containing metal.
  • the tenth aspect of the present invention is the optical element according to the first aspect of the present invention, wherein the light shielding portion is provided with a reflective film that reflects light of a desired wavelength.
  • the eleventh aspect of the present invention is a lens body
  • the edge portion is a lens having a refracting surface or a diffractive surface that, when incident light is received, is emitted as outgoing light bent in a direction away from the optical axis of the lens body.
  • the twelfth aspect of the present invention is the eleventh aspect of the present invention, wherein the refracting surface or the diffractive surface is formed in a mortar shape or a concave lens shape in which the outer peripheral side is thicker than the inner peripheral side. It is a lens.
  • the thirteenth aspect of the present invention is the lens according to the twelfth aspect of the present invention, wherein the mortar shape or the concave lens shape is formed in a plurality of stages.
  • the fourteenth aspect of the present invention is the lens according to the thirteenth aspect of the present invention, wherein the diffraction surface is a blazed diffraction grating whose diffraction efficiency is higher on the outer peripheral side than on the inner peripheral side. .
  • the refracting surface or the diffractive surface is provided at a position where an optical axis of light passing through the edge intersects at least one of the incident side and the outgoing side of the light.
  • the eleventh lens of the present invention is a light source that emits a light beam;
  • Condensing means for receiving the light beam and condensing on the information storage medium
  • An optical element that receives a light beam reflected by the information storage medium and changes a degree of convergence thereof
  • Photodetection means for receiving a light beam that has passed through the optical element and outputting a signal corresponding to the received light quantity
  • An optical head device having any one of the first to tenth optical elements of the present invention as the optical element.
  • the seventeenth aspect of the present invention is a light source that emits a light beam
  • Condensing means for receiving the light beam and condensing on the information storage medium
  • An optical element that receives a light beam reflected by the information storage medium and changes a degree of convergence thereof
  • Photodetection means for receiving a light beam that has passed through the optical element and outputting a signal corresponding to the received light quantity
  • An optical head device having any one of the eleventh to fourteenth lenses of the present invention as the optical element.
  • an eighteenth aspect of the present invention is an optical head device according to the sixteenth or seventeenth aspect of the present invention.
  • Transfer means for moving the optical head device relative to the information storage medium, a signal processing circuit for performing signal processing in response to a signal output from the optical head device, and receiving a signal from the signal processing circuit
  • an optical information processing apparatus comprising a control circuit for controlling the optical head device and the transfer means.
  • stray light can be prevented from affecting the detection signal and the image quality even when directional stray light is present at the edge of the lens.
  • FIG. 1 is a diagram showing a configuration of an optical head device according to a first embodiment of the present invention.
  • FIG. 2 (a) is a perspective view of a light-shielding cap 600 according to Embodiment 1 of the present invention.
  • (B) It is a perspective view of the coupling lens 100 of Embodiment 1 of the present invention.
  • C) Embodiment of the present invention It is a figure which shows a mode when there exists stray light with the lens of 1.
  • FIG. 5 (a) A perspective view of a light-shielding cap 800 according to Embodiment 3 of the present invention.
  • (B) A perspective view of a coupling lens 810 according to Embodiment 3 of the present invention.
  • C) It is a perspective view of the state where light-shielding cap 800 is fitted to coupling lens 810 of Embodiment 3 of the present invention.
  • 6] (a) is a perspective view of a light-shielding member 900 according to another embodiment of the present invention.
  • (b) is a perspective view of a corresponding coupling lens 100.
  • FIG. (C) It is a figure which shows the cross section of the state which attached the light-shielding member 900 to the lens 100.
  • FIG. 7 A diagram showing a configuration of the optical head device according to the fourth embodiment of the present invention.
  • FIG. 1 is a perspective view of the coupling lens 221 used in Embodiment 4 of the present invention, and (b) the configuration of the coupling lens 221 and the vicinity thereof in the optical head device of Embodiment 1 of the present invention.
  • FIG. 1 is a perspective view of the coupling lens 221 used in Embodiment 4 of the present invention, and (b) the configuration of the coupling lens 221 and the vicinity thereof in the optical head device of Embodiment 1 of the present invention.
  • FIG. 9 A diagram showing a configuration of the optical information processing apparatus according to the fourth embodiment of the present invention.
  • FIG. 10 A diagram showing a configuration of an optical head device according to a fifth embodiment of the present invention.
  • (a) is a perspective view of a detection lens 321 used in Embodiment 5 of the present invention.
  • FIG. 12 is a cross-sectional view of a coupling lens 400 according to Embodiment 6 of the present invention.
  • FIG. 13 is a view showing a cross section of a coupling lens 500 according to a seventh embodiment of the present invention.
  • FIG. 14 A diagram showing a configuration of an optical head device according to an eighth embodiment of the present invention.
  • Sono 15 is a diagram showing a configuration of an optical head device according to a conventional technique.
  • FIG. 1 shows the configuration of the optical head device according to the first embodiment of the present invention.
  • the optical head device 1 irradiates an optical disc 201 as an information storage medium with a light beam, reproduces a signal recorded on the optical disc 201, and records a signal on the optical disc 201.
  • a semiconductor laser 202 as a light source emits a light beam 210.
  • the light beam 210 emitted from the semiconductor laser 202 is reflected by the beam splitter 203 as a branching unit, passes through the coupling lens 100, and enters the objective lens 222 as the condensing unit.
  • the coupling lens 100 is used to increase the capturing efficiency of the light beam 210 emitted from the semiconductor laser 202 and to secure a desired overall optical path length.
  • the degree of convergence of the incident light beam 210 that is, Adjust the degree of divergence, convergence, or parallelism.
  • the objective lens 222 condenses the incident light beam on the recording layer of the optical disc 201.
  • the objective lens 222 is fixed on the movable element 231 and is moved by the actuator 230 in the optical axis direction of the objective lens 222 itself and in the radial direction of the optical disc 201. It is moved in the optical axis direction and the radial direction of the optical disk.
  • An aperture 232 is also fixed to the mover 231, and the aperture 232 regulates the beam diameter and numerical aperture (NA) of light passing through the objective lens 222.
  • the light beam reflected and diffracted by the optical disc 201 passes through the objective lens 222 and the coupling lens 100 again, passes through the beam splitter 203, and is received by the photodetector 111 as the light detecting means.
  • the optical head device 1 when the optical disc 201 is a two-layer disc, the light reflected by the information layer 252 different from the information layer that is the target of information reproduction becomes stray light. In some cases, the light passes through the optical path as indicated by the beam 253 and returns to the edge 101 of the coupling lens 100.
  • the first embodiment is characterized in that such stray light is blocked before the edge portion by providing the coupling lens 100 with an optical element provided with a light-shielding cap 600.
  • FIGS. 2A to 2C are diagrams showing the optical element of the present embodiment.
  • the optical element has a configuration in which the coupling lens 100 includes a light-shielding cap 600 that blocks stray light passing through the edge portion.
  • the light-shielding cap 600 is made of a light-shielding material having a U-shaped cross section along the optical axis of the coupling lens 100. It is designed to fit the outer shape of the coupling lens 100 in 2 (b).
  • the light shielding cap 600 has an opening 610 in the center thereof, and the opening 610 has a size that allows the lens body 102 that transmits the light beam to be inserted into the force coupling lens 100. Yes.
  • the light shielding cap 600 allows only light passing through a necessary portion of the lens body 102 from the opening 610.
  • the structure around the aperture 610 serves as a light-shielding part that blocks stray light 110 that passes around the edge 101 and the lens body 102, and acts as an aperture, so that stray light can reach the light-receiving area 11 la of the photodetector 111. Block it.
  • the inner diameter ra of the light-shielding cap 600 and the outer diameter rb of the coupling lens 100 are designed in consideration of the fitting tolerance.
  • the aperture of the aperture of the light-shielding cap 600 can be adjusted within a desired positional deviation without adjustment with the optical axis 103 of the coupling lens 100.
  • the tolerance between the outer diameter rb and the inner diameter ra is 0 to 50 ⁇ m
  • the deviation between the lens optical axis 103 and the aperture is 50 x m at the maximum.
  • the lens shape remains the same as before and stray light can be prevented from entering.
  • the position adjustment of the light-shielding cap 600 is uniquely determined by the dimension of the opening 610 corresponding to the shape of the coupling lens 100 and the inner diameter dimension of the cap body, so that a separate position adjustment process can be omitted.
  • the light-shielding cap 600 is connected to the coupling lens 100.
  • the force coupling described as being fitted on the incident light side may be fitted on the outgoing light side from the coupling lens 100 to the photodetector 111. Further, it may be provided on both sides of the incident light side and the emitted light side. It may be provided only on the side surface of the edge 101. In short, as long as it is possible to block the stray light 110 while allowing the necessary light to pass through the lens body 102, there is no limitation on the mounting position, size, and shape.
  • the light-shielding cap 600 is a material having a light-shielding property.
  • the type of light that can be blocked can be varied depending on the material, color, and the like. If it is black, unnecessary reflection of light in the visible light region can be reduced, and stray light reflected by the light-shielding cap 600 is further reflected at another location to avoid entering the light receiving region 111a of the photodetector 111. can do.
  • the light source is preferably made of a material that blocks infrared light.
  • the transmittance of light with a wavelength of 730 nm or less is low and light can be shielded, it is useful for an optical system that uses light with a wavelength of 760 nm to 820 nm, which is light when recording or reproducing a CD.
  • the material polycarbonate containing carbon or black diuracon can be used.
  • the color of appearance does not matter. The apparent color is determined by the absorption and reflection of visible light, but it does not always match the infrared characteristics. Therefore, any material that is transparent but shields infrared light can be used for the light-shielding cap 600.
  • blue light for example, 405 nm
  • a material that blocks blue light is used.
  • the transmittance of light having a wavelength shorter than 450 nm is 20% or less.
  • the material can be used for the light-shielding cap 600 as long as it is a material that blocks blue light even if it does not look black.
  • the transmittance of the light-shielding cap 600 is such that when the incident stray light is not so strong, even if the transmittance is about 20%, the amount of stray light after passing through the light-shielding portion is 1/5. effective. Furthermore, by setting the transmittance to about 1% or less, even if stray light is stronger, the effect can be reduced.
  • the light-shielding cap 600 may be made of resin. In that case, a free shape can be realized at low cost by molding, and the transmittance can be lowered by mixing a dye that absorbs light of a specific wavelength into the material. [0053]
  • the light shielding cap 600 may be made of metal. In that case, a light-shielding portion with low transmittance can be realized even if it is thin.
  • the light shielding portion of the light shielding cap 600 may be realized by a dielectric film layer or the like as a reflective film that reflects light having a desired wavelength. As a result, the transmittance of the desired wavelength can be lowered regardless of the type of material of the light shielding cap 600 main body.
  • FIG. 4 (a) shows a light shielding cap 700.
  • the light shielding cap 700 is different from the first embodiment in the point S where the side surface portion 760 has a notch portion 701 as a first notch portion.
  • FIG. 4 (b) shows the coupling lens 710.
  • Coupling lens 710 shows an example of a molded product made of resin.
  • the resin may harden even at the gate portion where the resin is poured into the mold, and the gate may be cut off when the force is cut to form individual lenses.
  • a gate 711 as an outward projecting portion provided on the outer peripheral portion of the coupling lens 710 indicates this uncut portion.
  • the notch 701 is positioned so as to correspond to the formation position of the gate 711.
  • the gate 71 1 can be released from the side surface 760 of the light-shielding cap 700, so that it can be completely attached to the coupling lens 710.
  • the light-shielding cap 700 has a central opening 750 that allows light to pass through the lens body, and the surrounding area becomes a light-shielding part.
  • the stray light is detected as an aperture that shields stray light 110 that passes through the lens edge.
  • the aperture of the light-shielding cap 700 is designed by considering the fitting tolerance between the inner diameter of the light-shielding cap 700 and the outer diameter of the coupling lens 710, so that the optical axis of the coupling lens 710 And can be adjusted within the desired misalignment without adjustment. If such a configuration is used, it is possible to easily obtain a configuration in which a light-shielding cap is attached even if the lens is formed by resin molding or the like and has a gate notch.
  • FIG. 5 (a) shows a light-shielding cap 800.
  • FIG. The light-shielding cap 800 is different from the first and second embodiments having the two notches 801 and 811 as the second notches on the side surface 860. It is fixed and supported by two adhesives 812 and 813 on a transparent substrate 811 as a support.
  • the force coupling lens 810 is in contact with the transparent substrate 811 at the bottom, and is bonded after the position of the coupling lens 810 is adjusted with respect to the transparent substrate to adjust the optical axis. Even if you try to put the light-shielding cap 600 as shown in Fig. 2 (a) on the lens in such a state, the adhesive 812, 813 force S devils will be used.
  • the positions of the notches 801 and 802 are set at the positions where the adhesives 812 and 813 are attached.
  • the adhesives 812 and 813 can be released from the side surface 860 of the light-shielding cap 800, so that it can be completely attached to the coupling lens 810.
  • Fig. 5 (c) shows the coupling lens 810 with the light-shielding cap 800 attached.
  • the inner diameter of the light-shielding cap 800 and the outer diameter of the coupling lens 810 are designed in consideration of fitting tolerances, so that the aperture of the light-shielding cap 800 is designed. Can be adjusted within a desired positional shift without adjustment with the optical axis of the coupling lens 810.
  • the aperture can be attached without the position adjustment process even after the coupling lens is bonded to the transparent substrate, and the optical pickup device and other products using the lens can be attached. The cost can be reduced.
  • the beam splitter 203 shown in FIG. 1 of Embodiment 1 may be used as a support. In this case, the same effect can be obtained.
  • the structure of the notch for avoiding the gate and the notch for avoiding the adhesive of the present embodiment shown in Embodiment 2 may be combined.
  • the gate part may be one adhesive part, and the light-shielding cap may have two cutouts, or a gate cutout may be provided separately, and the cutout part may have three cutouts.
  • the shape of the notch may be in accordance with the shape of the gate part or adhesive, and if the gate part or adhesive can escape from the side of the light-shielding cap, the size of the gate part or adhesive As described above, a sufficient margin may be provided.
  • the number of places to be bonded is two and the number of notches is two.
  • the number of places to be bonded is three, four, and so on. It may be the number. This configuration of the number of notches may be applied to the second embodiment.
  • UV adhesive or the like is applied from the side after the light-shielding cap is mounted, and then cured and adhered. That's fine.
  • an instantaneous adhesive or a thermosetting adhesive may be used.
  • it has a fitting structure, and once the fitting is completed, it may be configured such that the claws or the like are pulled and cannot be easily removed.
  • the light-shielding cap in each of the above embodiments has been described as an example of the light-shielding member of the present invention.
  • the light-shielding member is not limited to a cap-shaped configuration. .
  • a plate-like configuration having only a contact surface 950 that does not have a portion that wraps around the side surface portion of the coupling lens 100 and is in surface contact with the edge portion 101. Also good.
  • the edge portion 101 and the contact surface 950 can be accurately aligned.
  • the configuration as an optical element can be reduced.
  • the configuration in which these coupling lenses are combined with the light-shielding cap and the light-shielding member is not limited to the coupling lens used in the optical head device or the optical information processing device. It can also be applied to other lenses. For example, microscope lenses, telescope lenses, camera lenses, binocular lenses, projector optical lenses, laser printer optical lenses, copier optical lenses, semiconductor projector mask projections, etc. It can also be used as a shadow-type lens and has the same effect of avoiding stray light.
  • FIG. 7 shows the configuration of the optical head device according to the fourth embodiment of the present invention.
  • the same or corresponding parts as those in FIG. 7 are identical or corresponding parts as those in FIG. 7;
  • the optical head device when the optical disc 201 is a two-layer disk, the light reflected by the information layer 252 different from the information layer to be reproduced is stray light. Then, the light beam 253 may pass through the optical path as shown in FIG. 253 and return to the edge of the coupling lens.
  • the optical head device 2 according to the fourth embodiment is provided with a lens having an edge portion that refracts stray light as the coupling lens 221, thereby preventing stray light from entering the light receiving region. It is characterized by that.
  • FIG. 8A is a perspective view of the coupling lens 221 of FIG. 7 and the vicinity of the optical head device 2.
  • the concavity 221b is provided on the outer periphery of the lens body 221a through which the light beam is transmitted, and the thickness thereof increases as it goes away from the lens body 221a.
  • FIG. 8 (b) shows an enlarged view of the detection unit including the coupling lens 221.
  • the hologram element 220 divides the light beam 210 into two in the radial direction and separately detects them, thereby obtaining a tracking signal by the push-pnore method. Further, the hologram element 220 changes the position of the condensing point by changing the curvature of the wavefront of the light beam 210. As a result, the positions of the condensing points of + first-order diffracted light 26 6 and _first-order diffracted light 267 are reversed. By comparing the spot size of the light on the photodetector 250 with the spot size on the photodetector 251, a focus signal is obtained by the spot size method.
  • the coupling lens 221 is used to increase the capturing efficiency of the light beam 210 emitted from the semiconductor laser 202 and to secure a desired overall optical path length.
  • stray light 260 and 261 force S generated in the head and substantially parallel to the optical axis 103 of the lens body 221a of the coupling lens 221 exist.
  • Coupling lens 221 edge 221b is outside The circumference is thicker than the inner circumference. Therefore, stray light 260 and 261 passing through here is refracted to ⁇ J, which is far from the optical axis 103 of the lens body 221a, as shown by solid arrows 262 and 263, and away from the photodetector 250 and the photodetector 251. Reach position.
  • the edge portion of the coupling lens 221 is flat as in the conventional example, that is, has an incident surface substantially orthogonal to the optical axis 103
  • the stray light 260, 261 is represented by a dotted arrow 264. 265, and passes straight through the edge portion and the hologram element 220 and enters the photodetectors 250 and 251. For this reason, it becomes an error of a tracking signal or a focus signal.
  • the coupling lens 221 having the edge portion 221b as in the fourth embodiment, it is possible to prevent the stray light from entering the photodetectors 250 and 251.
  • a stable tracking signal and focus signal can be obtained, and the signal recorded on the information storage medium can be reproduced with a low error rate, and can be accurately recorded on the information storage medium.
  • the coupling lens 221 having such a configuration when the coupling lens 221 having such a configuration is used, the light passing through the edge portion 221b of the coupling lens 221 with the light emitted from the semiconductor laser 202 also bends in a direction further away from the optical axis 103. The stray light that has passed through here does not enter the objective lens 222. For this reason, there is an effect that unnecessary stray light is not included in the light emitted from the objective lens 222.
  • FIG. 9 shows a configuration of an optical disk drive as an optical information processing apparatus using the optical pickup of the present embodiment.
  • An optical disk 201 as an information storage medium is rotated by a motor 270.
  • the optical head device 2 is moved between the inner periphery and the outer periphery of the optical disk 201 by a traverse system 271 as a transfer means.
  • the signal obtained from the optical head device 2 is subjected to various calculations by the signal processing circuit 272.
  • the signal output from the signal processing circuit 272 enters the control circuit 273, and the control circuit 273 controls the optical head device 2, the motor 270 and the traverse system 271 using this signal.
  • the push-pull method is used as an example of a tracking signal
  • the scan signal is used as an example of a focus signal.
  • the power of showing the pot size method The present invention is not limited to this, and the effect will not change even when combined with other detection methods.
  • the edge portion 221b may be a mortar-like force-concave lens shape.
  • the incident stray light is separated from the optical axis of the lens main body 221a when it becomes the outgoing light from the edge portion 221b. If the optical path can be refracted in such a manner as not to enter the photodetector, the same effect can be obtained regardless of the specific details of the shape.
  • the refractive index of the edge portion is determined according to the optical arrangement of the coupling lens 221 and the photodetector (and its light receiving area) in the optical head device 2, and is always deviated from the light receiving area of the emitted light force from the edge portion 221b. So that
  • a layer other than the recording layer currently being reproduced causes unintentional stray light in a two-layer disc. May cause such stray light.
  • the light reflected from the end face of another lens or optical element in the optical head device may become stray light. Even in such a case, if the coupling lens of this embodiment is used, the effect of avoiding stray light can be obtained.
  • FIG. 10 shows the configuration of an optical head device as another embodiment of the present invention.
  • the optical head device 3 irradiates an optical disk 201 as an information storage medium with a light beam, reproduces a signal recorded on the optical disk 201, and records a signal on the optical disk 201.
  • a semiconductor laser 301 as a light source emits a light beam 310.
  • the light beam 310 emitted from the semiconductor laser 301 passes through a beam splitter 320 as a branching unit and is incident on an objective lens 222 as a condensing unit.
  • the objective lens 222 condenses the incident light beam on the recording layer of the optical disc 201.
  • the objective lens 222 is moved by the actuator 230 in the optical axis direction and in the radial direction of the optical disc 201.
  • the light beam reflected and diffracted by the optical disc 201 passes through the objective lens 222 again, is reflected by the beam splitter 320, passes through the detection lens 321, and is received by the photodet
  • the detection lens 321 is coupled to the coupling lens 2 of the fourth embodiment. It is characterized by having the same function as 21.
  • FIG. 11 (a) shows a perspective view of the detection lens 321.
  • the detection lens 321 is provided with a two-stage mortar-shaped edge portion 321b around the lens body 321a.
  • the shape of the mortar constituting the edge portion 321b is such that the thickness increases toward the outer peripheral side of the lens body 321a.
  • FIG. 11 (b) shows an enlarged view of the detection unit.
  • the detection lens 321 has a toric surface and gives astigmatism to light passing through the lens body 321a.
  • the photodetector 350 has a four-divided light receiving region 350a, and is the minimum complex of a light beam given astigmatism when the focal point of the light beam emitted from the objective lens 222 is on the recording layer of the optical disc 201. It is arranged to come to the position of the circle.
  • the astigmatism focus signal is generated from the difference signal between the diagonal sums of the four-divided light receiving area 350a.
  • the tracking signal is obtained by the push-pnore method.
  • the edge portion 321 b of the detection lens 321 has a mortar shape with a thick outer periphery formed in a two-stage concentric shape. Therefore, stray light passing through here, 360, 361 ⁇ , ⁇ , ⁇ , 362, 363 is refracted to the side away from the optical axis 303 of the lens body 321a and away from the light receiving portion of the photodetector 350. Reached the position.
  • the edge portion of the detection lens 321 is flat as in the conventional example, that is, has a plane of incidence substantially orthogonal to the optical axis 303, the stray light 360 and 361 are indicated by dotted arrows 370 and 371.
  • the light travels in the direction shown and enters the light receiving area 350a of the photodetector 350. For this reason, it becomes an error of a tracking signal or a focus signal.
  • the detection lens 321 having the edge portion 321b as in the present embodiment when used, a stable tracking signal and focus signal can be obtained without entering the photodetector 350 even if stray light is present. Thus, it is possible to reproduce the signal recorded on the information storage medium with a low error rate and to accurately record the signal on the information storage medium.
  • the lens thickness can be increased even if the angle of the slope is increased in the shape of each mortar, that is, the change in thickness is large. Since the increase in direction can be suppressed, it is easy to incorporate the optical head device. [0095] If the thickness of the same edge portion is the same as that of the fourth embodiment, the angle of the mortar-shaped slope can be increased, so that the effect of bending stray light can be further increased.
  • the force S is assumed to be two mortar shapes, and it is needless to say that the mortar shape is three or more.
  • the concave lens shape may be multistaged.
  • FIG. 1 Another embodiment of a coupling lens having a beveled slope is shown.
  • the present embodiment is characterized in that even if only a part of the edge portion is formed in a mortar shape, it can have the same function as that of the fourth embodiment.
  • the edge 400b of the coupling lens 400 has two outer peripheral areas on concentric circles and is provided on the first surface.
  • the outer peripheral area 401 of one surface is a mortar surface whose outer side is thicker than the inner side, and the first peripheral surface area 402 of the inner side of the first outer peripheral area 401 is a flat surface.
  • the second surface outer peripheral region 403 is a flat portion, and the second surface middle peripheral region 404 inside the first surface outer peripheral region 401 is The outer surface is thicker than the inner surface.
  • the operation of the edge portion 400b having the above-described configuration is as follows.
  • the stray light 410 entering the first surface outer peripheral area 401 having a mortar surface is refracted and travels away from the optical axis (not shown) of the lens body 400a.
  • the second surface outer peripheral region 403 is a flat surface, but the light directed outward is directed to the side away from the optical axis even if it exits the second surface outer peripheral region 403.
  • the stray light 411 that has entered the first surface middle peripheral region 402, which is a flat surface travels straight inside the edge portion 400b.
  • the second surface middle peripheral region 404 which is a mortar surface
  • the light is refracted to the side away from the optical axis of the lens body 400a.
  • the edge portion 400a when the edge portion is divided into the front and back surfaces of the first surface and the second surface, even if each part has a flat surface, a corresponding portion on another surface
  • stray light is more distant from the optical axis of the lens body 400a because it has a mortar shape with a slope. Refracts in the direction.
  • the corresponding part of the other surface refers to the part through which the light beam passing through the flat surface passes. That is, the light incident on the edge portion 400b has a slope on either the first surface or the second surface that is thicker on the outer side than the inner surface, and all the light that passes through the edge portion 400b is transmitted.
  • the lens body 400a is refracted so as to be directed toward the side away from the optical axis. If such a shape is used, the effect of avoiding stray light can be obtained while giving a design freedom to the edge of the coupling lens.
  • the present embodiment is characterized in that a function similar to that of the fourth embodiment is provided by providing a blazed diffraction grating in the edge portion.
  • FIG. 13 shows a cross-sectional view of the coupling lens of the present embodiment.
  • the edge portion on the first surface side of the coupling lens 500 is provided with a blazed diffraction grating 501.
  • the diffraction grating 501 is blazed so that the efficiency of light diffracted outside the optical axis (not shown) of the lens body 500a of the coupling lens 500 is maximized.
  • the stray light 510 incident on the edge portion is diffracted by the blazed diffraction grating 501 and, when exiting from the edge portion, travels away from the optical axis of the lens body 500a.
  • stray light entering a photodetector, CCD, or the like provided near the optical axis can be reduced.
  • the height (thickness) of the edge portion is almost the same as that in the flat case, so that the size can be reduced, and it is incorporated into an optical head device or the like. It becomes easy.
  • the configuration of the edge portions of the coupling lenses and detection lenses described in Embodiments 4 to 7 leaves stray light away from the optical axis of the lens body even when used interchangeably in each optical head device. It can be bent in the direction, and the same effect of keeping stray light away can be obtained, and is not limited to a configuration that is integrated into a specific optical head device or optical information processing device.
  • the configuration of the lens of the present invention having these edge portions is not limited to a coupling lens used for an optical head device or an optical information processing device, but a lens for a microscope, a lens for a telescope, Camera lenses, binocular lenses, projector optical lenses, laser printer optical lenses, copier optical lenses, semiconductor manufacturing equipment A similar effect of avoiding stray light can be obtained with lenses for other applications such as a mask projection lens.
  • FIG. 14 shows a configuration having two light sources.
  • the optical head device 4 includes a DVD L DPD module 902 equipped with a red laser and a photodetector for DVD recording or reproduction, and an infrared laser and photodetector for recording and reproduction of a CD. Includes LDPD module 903 for CD.
  • a part of the light beam 904 emitted from the semiconductor laser 902a in the LDPD module 902 for DVD is reflected by the hologram 905 for the front light and used as the front light for monitoring the light quantity of the light beam.
  • the This light is detected by the front light detector of the LDPD module 902 for DVD.
  • the light beam 904 that has passed through the front hologram 905 is reflected by the surface of the prism 906, and becomes substantially parallel light by the collimator lens 907.
  • the substantially parallel light beam 904 is reflected by the reflecting surface 908 a of the rising prism 908 and passes through the polarization hologram ⁇ / 4 wavelength plate 909.
  • the light beam 904 is linearly polarized so far and is not diffracted because it is arranged so as to be linearly polarized in a direction that is not diffracted by the polarization hologram, and the / 4 wavelength plate converts the linearly polarized light into circularly polarized light. .
  • Polarization hologram ⁇ The light beam 904 that has passed through the ⁇ / 4 wavelength plate 909 is limited in its beam diameter by the aperture 911 and becomes convergent light by the objective lens 910.
  • the objective lens 910, the aperture 911, the polarization hologram ⁇ / 4 wavelength plate 909 are integrally driven by the mover 912 of the actuator.
  • the light converged by the objective lens 910 is irradiated onto the information surface of an optical disk 920 such as a DVD.
  • recording or playback on an optical disk 920 such as a DVD, or recording or playback on an optical disk 921 such as a CD the figure shows the ability to write two types of optical disks on top of each other. Or play.
  • the light beam reflected and diffracted by the optical disk 920 such as a DVD is returned to substantially parallel light again by the objective lens 910. After that, it passes through the polarization hologram ⁇ 4 wavelength plate 909, but again; by passing through the ⁇ ⁇ 4 wavelength plate, circularly polarized light is converted into linearly polarized light in a direction orthogonal to the forward path by 90 degrees.
  • the linearly polarized light beam is diffracted by the polarization hologram and passes through a different optical path.
  • the diffracted light beam is reflected by the reflecting surface 908a of the rising prism 908.
  • the LDPD module for DVD 902 outputs an electrical signal according to the received light, an RF signal reflecting the signal recorded on the optical disc 920, and a focus error signal and tracking for realizing focus servo and tracking servo. An error signal is generated.
  • the optical beam 930 emitted from the semiconductor laser 903a in the LDPD module for CD 903 passes through the hologram 903b integrated in the LDPD module for CD 903, and is slightly converged by the force coupling lens 931. .
  • a part of the light beam 930 is reflected from the back surface of the prism 906 and incident on the front light monitor 932 for CD.
  • Most of the light transmitted through the prism 906 passes through the collimator lens 907 and is reflected by the reflecting surface 908a of the rising prism 908.
  • the reflected light beam 930 passes through the polarization hologram ⁇ Z4 wavelength plate 990.
  • the light beam 930 is linearly polarized light and is arranged so as to be linearly polarized light in a direction not diffracted by the polarization hologram.
  • the ⁇ / 4 wave plate is designed to function as a ⁇ plate at the wavelength of the light beam for CD, and remains linearly polarized after passing through the ⁇ / 4 wave plate.
  • the light beam 930 that has passed through the polarization hologram ⁇ ⁇ / 4 wavelength plate 909 becomes convergent light at the objective lens 910 and is irradiated onto the information surface of the optical disk 921 such as a CD.
  • the light beam reflected and diffracted by the optical disk 921 such as a CD passes through the objective lens 910 and passes through the polarization hologram / 4 wavelength plate 909. Again, it passes through the / 4 wavelength plate, but still acts as a ⁇ plate, so it passes through the polarization hologram with the same linear polarization as the first, without being diffracted.
  • the transmitted light beam is reflected by the reflecting surface 908a of the rising prism 908, becomes convergent light by the collimator lens 907, passes through the prism 906, passes through the coupling lens 931, and is diffracted by the hologram 903b.
  • the diffracted light passes through a different optical path from the forward path, and is received by the photodetector of the LDPD module 903 for CD.
  • the LDPD module for CD 903 outputs an electrical signal according to the received light, an RF signal reflecting the signal recorded on the optical disk 921, and a focus error for realizing focus servo and tracking servo. Signals and tracking error signals are generated.
  • the coupling lens 931 has the same configuration as in the first to third embodiments, and has a light-shielding cap. Since 933 is an optical element attached, unintentional stray light generated in the optical head device 4 is prevented from passing through the edge of the coupling lens 931 and entering the photodetector of the LDPD module for CD. . As a result, unnecessary stray light does not adversely affect the recording and reproduction of the optical disk, and information can be stably recorded and information can be reproduced with a low error rate. The same effect can be obtained even when the coupling lens 931 having the edge portion of the fourth to seventh embodiments is used as the coupling lens 931.
  • the coupling lens, the optical element, the optical head device, and the optical information processing device that are effective in the above embodiments can realize an optical information processing device capable of recording or reproducing information with high reliability. It is useful for a lens that collects or diverges a light beam, or an optical head device that records, reproduces, or erases information on an information storage medium, and an optical information processing device.
  • microscope lenses, telescope lenses, camera lenses, binocular lenses, projector optical lenses, laser printer optical lenses, copier optical lenses, and semiconductor manufacturing equipment This is useful as a lens relating to a mask projection system.
  • the lens, optical element, optical head device, and optical information processing device according to the present invention have an effect on the detection signal and the image quality even if stray light exists in the edge of the lens.
  • An optical element including a lens for condensing or diverging a light beam, or an optical head device for recording, reproducing, or erasing information on an information storage medium, and It is useful as an optical information processing device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Head (AREA)

Abstract

 光ヘッド装置、顕微鏡、カメラ、スキャナその他の光学機器において、コバ部を備えたレンズを備えた場合、レンズのコバ部に向かう迷光が存在しても、迷光が検出信号や像の質に影響を与えないようにする。  レンズ本体102及びコバ部101を有するカップリングレンズ100と、レンズ本体102に対応する位置に開口610が設けられるとともに、コバ部101に対応する位置を覆うように設けられた遮光部を有する遮光性キャップ600とを備えた光学素子。

Description

明 細 書
光学素子、光ヘッド装置、及び光情報処理装置
技術分野
[0001] 本発明は、光ビームの集光又は発散を行うレンズ、レンズを含む光学素子に関する もの、又は情報記憶媒体に対して情報の記録、再生又は消去を行う光ヘッド装置、 及び光情報処理装置に関するものである。
背景技術
[0002] 図 15に、従来の光情報処理装置における光ヘッド装置の構成を示す。光ヘッド装 置 5は、光ビームを情報記憶媒体としての光ディスク 201に照射し、光ディスク 201に 記録された信号の再生を行ったり、光ディスク 201に信号を記録する。光源としての 半導体レーザ 202は、光ビーム 210を出射する。半導体レーザ 202から出射された 光ビーム 210は、分岐手段としてのビームスプリッタ 230で反射した後、カップリング レンズ 100を通過し、集光手段としての対物レンズ 222に入射する。対物レンズ 222 は入射した光ビームを光ディスク 201の記録層上に集光する。
[0003] 対物レンズ 222は可動子 231上に固定され、ァクチユエータ 230により対物レンズ 2 22自身の光軸方向及び、光ディスク 201の半径方向に移動させられる。可動子 231 にはアパーチャ 232も固定されており、アパーチャ 232は、対物レンズ 222を通過す る光のビーム径と開口数 (NA)を規制する。光ディスク 201で反射 ·回折された光ビ ームは再び、対物レンズ 222とカップリングレンズ 100を通り、ビームスプリッタ 203を 透過して、光検出手段としての光検出器 111により受光される。なお、カップリングレ ンズ 100は半導体レーザ 202から出る光ビーム 210の取り込み効率を上げ、全体の 光路長を所望の長さ確保するために用いられる。
[0004] 図 16 (a) (b)は、上記光ヘッド装置 5で用いる対物レンズ 222の例として、 2枚組み 対物レンズの構成を示した図である(例えば、特許文献 1 (例えば第 18頁、第 1図)参 照)。
[0005] 対物レンズ 120と対物レンズ 121は 2枚の組み合わせで対物レンズを構成し、光デ イスク 122に光を集光し、情報を記録したり、再生したりする。対物レンズ 120と対物レ ンズ 121は鏡筒 123によりその位置関係が固定される。
[0006] 対物レンズ 120は図 16 (b)に示すように、そのコバ部は入射側 131は光軸に対して 垂直な平面、出射側 132は斜めの斜面となっている。これは対物レンズ 120と対物レ ンズ 121の位置関係を調整する際、入射側 131に光を反射させてレンズの光軸を合 わせる力 出射側 132も同じ角度だと反射光が 2つ見えてしまい、正確な角度が出せ ないためである。
[0007] この光学系においては、対物レンズ 120、 121のコバ部を透過する光は、鏡筒 123 がアパーチャの役割を兼ねて、これにより光のビーム径と開口数 (NA)を規制してい る。
特許文献 1 :特開 2003— 67965号公報
発明の開示
発明が解決しょうとする課題
[0008] ところで、図 15のような光ヘッド装置 5においては、光検出器 111に侵入する迷光 の処理が問題となっていた。すなわち、半導体レーザ 202から出射された光ビーム 2 10は、光ディスク 201から反射して対物レンズ 222を経て直接カップリングレンズ 100 に入射するものの他に、光ヘッド装置を構成する光学系内部で反射によって生じる 光が、迷光としてカップリングレンズ 100に導かれることがある。
[0009] このとき、迷光がカップリングレンズ 100のレンズ本体部分のみならず、ツバ状の部 分であるコバ部 101を通過して光検出器 250、 251に達した場合、信号の品質を劣 ィ匕させてしまうこととなっていた。
[0010] ここで、図 17 (a) (b)に、図 17のカップリングレンズ 100の構成図を示す。図 17 (a) は斜視図を、図 17 (b)を断面図をそれぞれ示す。カップリングレンズ 100のコバ部 10 1は、カップリングレンズ 100を樹脂レンズやガラスレンズとして成形工法で作製する 際に、レンズ本体 102の縁部(コノく)にツバ状の部分として設けられる。
[0011] コバ部 101は、光の収束や発散の機能を担うレンズ本体 102を支え、カップリングレ ンズ 100を固定するための足として働いたり、レンズ成形時にレンズ本体 102に歪み がでなレ、ように緩衝領域として働く。
[0012] し力、し、通常このコバ部 101はフラット、この場合はその主面がレンズ本体 102の光 軸 103に対して垂直をなすように作られる。図 17 (c)に示すように、このコバ部 101を 通過して光軸 103に略平行な迷光 110があると、その迷光 110はコバ部 101内を直 進して(点線矢印)、光量の検出器である光検出器 11 1の受光領域 11 laに入射して 、信号の品質を劣化させている。
[0013] このように、従来の光ヘッド装置においては、カップリングレンズのコバ部を通過す る迷光が、検出対象となる信号の質に影響を与えてしまう。
[0014] また、光ヘッド装置以外にも、顕微鏡やカメラ、スキャナのような光学機器において 、上記カップリングレンズのようなコバ部を備えたレンズにおいて、このような迷光が生 じた場合、レンズが結ぶ像に影響を与えてしまう。
[0015] 本発明は、従来のこのような課題を考慮し、レンズのコバ部に向力 迷光が存在し ても、その迷光が検出信号や像の質に影響を与えないようにする光学素子、レンズ、 及びそれらを用いた光ヘッド装置、及び光情報処理装置を提供することを目的とする 課題を解決するための手段
[0016] 上記の目的を達成するために、第 1の本発明は、レンズ本体及びコバ部を有するレ ンズと、
前記レンズ本体に対応する位置に開口が設けられるとともに、前記コバ部に対応す る位置を覆うように設けられた遮光部を有する遮光性部材とを備えた、光学素子であ る。
[0017] また、第 2の本発明は、前記遮光性部材は、前記レンズの外形に対応したキャップ 状の形状を有し、前記レンズの外形に嵌り込むことにより、前記レンズに固定される、 第 1の本発明の光学素子である。
[0018] また、第 3の本発明は、前記レンズは外周部外向きに突起部を有し、前記遮光性部 材は前記突起部に対応する位置に第 1の切り欠き部を有する、第 1の本発明の光学 素子である。
[0019] また、第 4の本発明は、前記レンズを支持する支持体をさらに備え、
前記レンズは接着剤によりその外周部の一部が前記支持体に固定されるものであ つて、 前記遮光性部材は接着位置に対応する第 2の切り欠き部を有する、第 1の本発明 の光学素子である。
[0020] また、第 5の本発明は、前記遮光部は 730nmより長い波長の光を遮光する、第 1の 本発明の光学素子である。
[0021] また、第 6の本発明は、前記遮光部は 450nmより短い波長の光を遮光する、第 1の 本発明の光学素子である。
[0022] また、第 7の本発明は、前記遮光部の光の透過率は 20%以下である、第 1の本発 明の光学素子である。
[0023] また、第 8の本発明は、前記遮光部は樹脂を含んだ材質である、第 1の本発明の光 学素子である。
[0024] また、第 9の本発明は、前記遮光部は金属を含んだ材質である、第 1の本発明の光 学素子である。
[0025] また、第 10の本発明は、前記遮光部は所望の波長の光を反射する反射膜が設け られている、第 1の本発明の光学素子である。
[0026] また、第 11の本発明は、レンズ本体と、
前記レンズ本体の外周に設けられたコバ部とを備え、
前記コバ部は、入射光を受けると、前記レンズ本体の光軸から離れる向きに曲がつ た出射光として出射させる屈折面又は回折面を有する、レンズである。
[0027] また、第 12の本発明は、前記屈折面又は回折面は、外周側が内周側より厚くなる すり鉢状の形状、又は凹レンズ状の形状として形成されている、第 11の本発明のレ ンズである。
[0028] また、第 13の本発明は、前記すり鉢状の形状、又は前記凹レンズ状の形状は複数 段形成されている、第 12の本発明のレンズである。
[0029] また、第 14の本発明は、前記回折面は、その回折効率が外周側が内周側より高く なっている、ブレーズ化された回折格子である、第 13の本発明のレンズである。
[0030] また、第 15の本発明は、前記屈折面又は回折面は、前記コバ部を通過する光の光 軸が、その光の入射側又は出射側の少なくとも一方と交わるような位置に設けられて いる、第 11の本発明のレンズである。 [0031] また、第 16の本発明は、光ビームを出射する光源と、
前記光ビームを受けて情報記憶媒体上に集光する集光手段と、
前記情報記憶媒体で反射された光ビームを受け、その収束度合いを変化させる光 学素子と、
前記光学素子を通過した光ビームを受け、その受けた光量に応じた信号を出力す る光検出手段とを備え、
前記光学素子として、第 1から第 10のいずれかの本発明の光学素子を有する、光 ヘッド装置である。
[0032] また、第 17の本発明は、光ビームを出射する光源と、
前記光ビームを受けて情報記憶媒体上に集光する集光手段と、
前記情報記憶媒体で反射された光ビームを受け、その収束度合いを変化させる光 学素子と、
前記光学素子を通過した光ビームを受け、その受けた光量に応じた信号を出力す る光検出手段とを備え、
前記光学素子として、第 11から第 14のいずれかの本発明のレンズを有する、光へ ッド装置である。
[0033] また、第 18の本発明は、第 16又は第 17の本発明の光ヘッド装置と、
前記光ヘッド装置を情報記憶媒体に対して相対的に移動させる移送手段と、 前記光ヘッド装置から出力される信号をうけて信号処理を行う信号処理回路と、 前記信号処理回路からの信号を受けて、前記光ヘッド装置及び前記移送手段を制 御する制御回路とを備えた、光情報処理装置である。
発明の効果
[0034] 以上のように本発明によれば、レンズのコバ部に向力 迷光が存在しても、迷光が 検出信号や像の質に影響を与えないようにすることができる。
図面の簡単な説明
[0035] [図 1]本発明の実施の形態 1の光ヘッド装置の構成を示す図である。
[図 2] (a)本発明の実施の形態 1の遮光性キャップ 600の斜視図である。 (b)本発明 の実施の形態 1のカップリングレンズ 100の斜視図である。 (c)本発明の実施の形態 1のレンズで迷光がある時の様子を示す図である。
園 3] (a)本発明の実施の形態 1の遮光性キャップ 600の内径を参照する図である。 ( b)本発明の実施の形態 1のカップリングレンズ 100の外径を参照する図である。 園 4] (a)本発明の実施の形態 2の遮光性キャップ 700の斜視図である。 (b)本発明 の実施の形態 2のカップリングレンズ 710の斜視図である。 (c)本発明の実施の形態 2のレンズで迷光がある時の様子を示す図である。
園 5] (a)本発明の実施の形態 3の遮光性キャップ 800の斜視図である。 (b)本発明 の実施の形態 3のカップリングレンズ 810の斜視図である。 (c)本発明の実施の形態 3のカップリングレンズ 810に遮光性キャップ 800を嵌めた状態の斜視図である。 園 6] (a)本発明の他の実施例である遮光性部材 900の斜視図である。 (b)対応する カップリングレンズ 100の斜視図である。 (c)レンズ 100に遮光性部材 900を装着した 状態の断面を示す図である。
園 7]本発明の実施の形態 4の光ヘッド装置の構成を示す図である。
園 8] (a)本発明の実施の形態 4で用いるカップリングレンズ 221の斜視図であり、 (b) 本発明の実施の形態 1の光ヘッド装置におけるカップリングレンズ 221及びその近傍 の構成を示す図である。
園 9]本発明の実施の形態 4の光情報処理装置の構成を示す図である。
園 10]本発明の実施の形態 5の光ヘッド装置の構成を示す図である。
園 11] (a)本発明の実施の形態 5で用いる検出レンズ 321の斜視図である。 (b)本発 明の実施の形態 2の光ヘッド装置における検出レンズ 321及びその近傍の構成を示 す図である。
[図 12]本発明の実施の形態 6のカップリングレンズ 400の断面を示す図である。
[図 13]本発明の実施の形態 7のカップリングレンズ 500の断面を示す図である。
園 14]本発明の実施の形態 8の光ヘッド装置の構成を示す図である。
園 15]従来の技術による光ヘッド装置の構成を示す図である。
園 16] (a)従来の技術による光ヘッド装置における対物レンズの例としての組レンズ の構成の断面図である。 (b)組レンズをなす一のレンズの断面図である。
園 17] (a)従来例の技術による光ヘッド装置におけるカップリングレンズの斜視図で ある。 (b)カップリングレンズの断面図である。 (C)カップリングレンズで迷光がある時 の様子を示す図である。
符号の説明
1、 2、 3、 4、 5 光ヘッド装置
100、 221、 400、 500、 710、 810 カツフ
101 コバ部
102 レンズ本体
112 アパーチャ
120、 121 対物レンズ
123 鏡筒
201 光ディスク
202、 301 半導体レーザ(光源)
220 ホログラム素子(分岐手段)
222 対物レンズ (集光手段)
230 ァクチユエータ
250、 251、 350 光検出器 (光検出手段)
270 モータ
271 トラバース系(移送手段)
272 信号処理回路
273 制御回路
320 ビームスプリッタ(分岐手段)
321 検出レンズ
600、 700 遮光性キャップ
610、 750、 850、 910 開口
701 切り欠き部(第 1の切り欠き部)
711 ゲート (突起部)
800 遮光性キャップ
801、 802 切り欠き部(第 2の切り欠き部) 811 透明基板 (支持体)
812、 813 接着剤
900 遮光性部材
発明を実施するための最良の形態
[0037] 以下、本発明の光学素子、レンズ、光ヘッド装置、光情報処理装置の実施の形態 について添付の図面を参照して説明する。なお、各図面において同一の符号は同 一の構成要素又は同様の作用、動作をなすものを表す。
[0038] (実施の形態 1)
図 1は、本発明の第 1の実施の形態の光ヘッド装置の構成を示している。光ヘッド 装置 1は、光ビームを情報記憶媒体としての光ディスク 201に照射し、光ディスク 201 に記録された信号の再生を行ったり、光ディスク 201に信号を記録する。光源として の半導体レーザ 202は、光ビーム 210を出射する。半導体レーザ 202から出射され た光ビーム 210は、分岐手段としてのビームスプリッタ 203で反射し、カップリングレン ズ 100を通過し、集光手段としての対物レンズ 222に入射する。カップリングレンズ 1 00は半導体レーザ 202から出る光ビーム 210の取り込み効率を上げ、全体の光路 長を所望の長さ確保するために用いられ、入射した光ビーム 210の収束度合レ、、す なわち発散、収束、又は平行の度合いを調整する。
[0039] 対物レンズ 222は入射した光ビームを光ディスク 201の記録層上に集光する。対物 レンズ 222は可動子 231上に固定され、ァクチユエータ 230により対物レンズ 222自 身の光軸方向及び、光ディスク 201の半径方向に移動させられる。光軸方向及び、 光ディスクの半径方向に移動させられる。可動子 231にはアパーチャ 232も固定され ており、アパーチャ 232は、対物レンズ 222を通過する光のビーム径と開口数(NA) を規制する。
[0040] 光ディスク 201で反射'回折された光ビームは再び、対物レンズ 222とカップリング レンズ 100を通り、ビームスプリッタ 203を透過して、光検出手段としての光検出器 11 1により受光される。
[0041] 以上のような光ヘッド装置 1において、光ディスク 201が 2層ディスクである場合、本 来情報再生の対象である情報層とは異なる情報層 252で反射した光が迷光となり光 ビーム 253に示したような光路を通り、カップリングレンズ 100のコバ部 101に戻って くることがある。
[0042] 本実施の形態 1は、カップリングレンズ 100に遮光性キャップ 600を設けてなる光学 素子を備えたことにより、このような迷光をコバ部の手前で遮断するようにしたことを特 徴とする。
[0043] 図 2 (a)〜(c)は、本実施の形態の光学素子を示す図である。光学素子は、カツプリ ングレンズ 100に、コバ部を通過する迷光を遮る遮光性キャップ 600を備えた構成を 有する。
[0044] 遮光性キャップ 600は、図 2 (c)に示すように、カップリングレンズ 100の光軸に沿つ た断面がコの字状のキャップ形状を有する遮光性の材料により構成され、図 2 (b)の カップリングレンズ 100の外形に嵌め合うように設計されている。また、図 2 (a)に示す ように、遮光性キャップ 600はその中央に開口 610が設けられており、開口 610は力 ップリングレンズ 100にて光ビームを透過するレンズ本体 102が嵌り込む大きさを有 する。
[0045] したがって、遮光性キャップ 600を含むカップリングレンズ 100に光ディスクからの 反射光が入射すると、遮光性キャップ 600は、開口 610からレンズ本体 102の必要な 部分を通る光のみを通過させる。開口 610の周りの構造は遮光部となり、コバ部 101 やレンズ本体 102の周辺を通る迷光 110を遮光し、アパーチャとして働くことで、迷光 が光検出器 111の受光領域 11 laへ到達するのを遮る。
[0046] 図 3 (a) (b)に示すように、遮光性キャップ 600の内径 raとカップリングレンズ 100の 外径 rbとは嵌め合い公差を考えて設計する。これにより、遮光性キャップ 600のァパ 一チヤの開口はカップリングレンズ 100の光軸 103との調整なしで、所望の位置ずれ 以内に合わせることができる。例えば外形 rbと内径 raの公差が 0〜50 μ mである場 合、レンズ光軸 103とアパーチャのずれも最大 50 x mとなる。これによりレンズ形状 は今までのままで、迷光の侵入を防ぐことが出来る。また、遮光性キャップ 600の位 置調整は、カップリングレンズ 100の形状に対応した開口 610の寸法及びキャップ本 体の内径寸法により一意に定まるので、別途位置調整の工程を省くことができる。
[0047] なお、図 2 (c)に示す構成では、遮光性キャップ 600は、カップリングレンズ 100へ の入射光の側に嵌め込むものとして説明を行った力 カップリングレンズ 100から光 検出器 111への出射光の側に嵌め込むようにしてもよい。また、入射光の側及び出 射光の側の両側に設けるようにしてもよい。コバ部 101の側面部分のみに設けるよう にしてもよレ、。要するに、レンズ本体 102に必要な光を通過させつつ、迷光 110を遮 ることが可能であれば、装着位置、大きさ、形状によって限定されることはない。
[0048] なお、遮光性キャップ 600は遮光性を有する材料であるとした力 その材質、色等 に応じて遮断できる光の種類を異ならせることができる。黒色であれば、可視光領域 の光の不要な反射を減らすことができ、遮光性キャップ 600で反射した迷光が別の 場所で更に反射して光検出器 111の受光領域 111aに入ることを回避することができ る。
[0049] また、光源に赤外光を用いる場合には赤外光を遮光する材質で作製すると良い。
例えば 730nm以下の波長の光の透過率が低く遮光できれば、 CDを記録や再生す る場合の光である 760nm〜820nmの波長の光を使う光学系には有用である。材料 としては、カーボンを含有したポリカーボネートや、黒色のジユラコンを用いることがで きる。また、この場合は見た目の色は問わない。見た目の色は可視光の吸収や反射 によって決まるが、赤外の特性とは必ずとも一致しないからである。したがって、透明 でも赤外光を遮光する材質であれば、遮光性キャップ 600に使用することができる。
[0050] また、光源として青色光(例えば 405nm)を用いる場合には青色光を遮光する材質
(例えば 450nmより短波長の光の透過率が 20%以下)で作製すると良レ、。この場合 も見た目は黒色でなくても青色光を遮光する材質であれば、遮光性キャップ 600に 使用すること力できる。
[0051] また、遮光性キャップ 600の透過率としては、入射する迷光がそれほど強くない場 合には透過率が 20%程度でも、遮光部透過後の迷光の光量は 5分の 1になるため 効果がある。さらに、透過率が 1 %以下程度とすることでより迷光が強い場合でも、そ の影響を減じることができる。
[0052] また、遮光性キャップ 600は樹脂で作製しても良い。その場合、成形により自由な 形状を安価に実現できるし、特定の波長の光を吸収する色素を材料に混ぜることで 透過率を低くすることができる。 [0053] また、遮光性キャップ 600の材質は金属でも良い。その場合、薄くても透過率の小 さい遮光部を実現できる。
[0054] また、遮光性キャップ 600の遮光部は所望の波長の光を反射する反射膜を誘電膜 層等で実現しても良い。これにより、遮光性キャップ 600本体の素材の種類にかかわ らず、その所望の波長の透過率を低くすることができる。
[0055] (実施の形態 2)
次に本発明の別の実施の形態として、遮光性キャップの嵌合対象となるカップリン グレンズが、ゲートの残りを含んでいる場合に対応した一例を示す。
[0056] 図 4(a)に遮光性キャップ 700を示す。遮光性キャップ 700は、側面部 760に、第 1 の切り欠き部としての切り欠き部 701を有する点力 S、実施の形態 1と異なる。
[0057] 図 4 (b)にカップリングレンズ 710を示す。カップリングレンズ 710は樹脂による成形 品の例を示している。一般にレンズの作成において、樹脂で成形をした場合、成形 型に樹脂を流し込むゲート部でも樹脂が固まり、これを切断して個別のレンズとなる 力 切断時にゲートの切れ残りができる場合がある。カップリングレンズ 710の外周部 に設けられている、外向きの突起部としてのゲート 711はこの切れ残りを示している。
[0058] このようなカップリングレンズに実施の形態 1の図 2 (a)で示したような遮光性キヤッ プ 600を嵌めようとしても、ゲート 711が邪魔をして入らない。
[0059] これに対し、図 4 (a)で示したような切り欠き部 701を有する遮光性キャップ 700では 、ゲート 71 1の形成位置に対応するように切り欠き部 701の位置を合わせた設計とす ることにより、遮光性キャップ 700の側面部 760からゲート 71 1を逃がすことができる ため、カップリングレンズ 710に完全に装着することができる。図 4 (c)に示すように遮 光性キャップ 700は中央の開口 750がレンズ本体を通る光を通し、その周りが遮光部 となりレンズコバ部を通る迷光 110を遮光するアパーチャとして、迷光が光検出器 11 1へ到達するのを遮る。
[0060] なお、実施の形態 1と同様、遮光性キャップ 700の内径とカップリングレンズ 710の 外径は嵌め合い公差を考えて設計することで遮光性キャップ 700のアパーチャは力 ップリングレンズ 710の光軸と調整なしで所望の位置ずれ以内に合わせることができ る。 [0061] このような構成を用いれば、樹脂成形等により作成したレンズであってゲートの切れ 残りがあるようなものでも容易に遮光性キャップを取り付けた構成を得ることができる。
[0062] (実施の形態 3)
次に本発明の別の形態として、遮光性キャップの嵌合対象となるカップリングレンズ が支持体に接着されたものである場合に対応した一例を示す。
[0063] 図 5 (a)に遮光性キャップ 800を示す。遮光性キャップ 800は、側面部 860に、第 2 の切り欠き部として 2箇所の切り欠き部 801と 811を有する点力 実施の形態 1、 2と 異なる。 支持体としての透明基板 811に 2箇所の接着剤 812、 813にて固定され支持される。 力ップリングレンズ 810は底面で透明基板 811に接しており、光軸調整のために透明 基板に対してカップリングレンズ 810の位置が調整された後、接着される。このような 状態のレンズに図 2 (a)で示したような遮光性キャップ 600をはめようとしても、接着剤 812、 813力 S牙魔をして人らなレヽ。
[0065] これに対し、図 5 (a)で示したようにな切り欠き部 801、 802を有する遮光性キャップ 800では、接着剤 812、 813の付着位置に切り欠き部 801、 802の位置を合わせた 設計とすることにより、遮光性キャップ 800の側面部 860から接着剤 812、 813を逃が すことができるため、カップリングレンズ 810に完全に装着することができる。図 5 (c) にカップリングレンズ 810に遮光性キャップ 800をはめた状態の図を示す。
[0066] 本実施の形態でも、上記他の実施の形態と同様、遮光性キャップ 800の内径とカツ プリングレンズ 810の外径は嵌め合い公差を考えて設計することで遮光性キャップ 8 00のアパーチャはカップリングレンズ 810の光軸と調整なしで所望の位置ずれ以内 に合わせることができる。
[0067] このような構成を用いれば、カップリングレンズを透明基板に接着した後であっても 位置調整の工程を省いてアパーチャを取り付けることができ、光ピックアップ装置や、 その他レンズを使用する製品のコストダウンを行うことができる。
[0068] なお、透明基板 811の代わりに実施の形態 1の図 1で示したビームスプリッタ 203を 支持体としても良い。この場合も同様の効果を得ることができる。 [0069] また実施の形態 2で示した、ゲートを避けるための切り欠き部と、本実施の形態の接 着剤を避けるための切り欠き部の構造を組み合わせても良い。その場合、ゲート部を 一方の接着部とし、遮光性キャップの切り欠きとしては 2箇所にしても良いし、ゲート 用の切り欠きを別に設け、切り欠き部を 3箇所としても良い。また、切り欠き部の形状 は、ゲート部や接着剤の形状に応じたものとしてもよいし、ゲート部や接着剤によって 遮光性キャップの側面から逃がすことができれば、ゲート部や接着剤の大きさ以上の 、十分な余裕を持たせるようにしてもよい。
[0070] また、本実施の形態では接着する箇所を 2箇所とし、切り欠き部も 2箇所としたが、 接着箇所を 3箇所や 4箇所 · ·と更に多い場合でも切り欠き部をそれに応じた個数とし ても良い。この切り欠き部の個数の構成は、実施の形態 2にも応用して良い。
[0071] なお、上記の実施の形態:!〜 3において、遮光性キャップをカップリングレンズに固 定する方法としては、遮光性キャップ装着後に横から UV接着剤等を塗布し硬化して 接着すればよい。又は、瞬間接着剤や熱硬化性接着剤を用いてもよい。また、はめ 込みの構造になっており、一度嵌合が完成すると、爪等がひつ力かり簡単には外れ ないような構成としても良い。
[0072] また、上記の各実施の形態における遮光性キャップを、本発明の遮光性部材のー 例として説明を行った力 遮光性部材は、キャップ状の構成に限定されるものではな レ、。図 6 (a)の遮光性部材 900に示すように、カップリングレンズ 100の側面部に回り 込む部分を持たず、コバ部 101と面接触する接触面 950のみを有する板状の構成と しても良い。この場合、開口 940と、カップリングレンズ 100のレンズ本体 102との形 状を合わせておくことにより、コバ部 101と接触面 950との位置合わせを的確に行うこ とができる。また、側面部を有さないため、光学素子としての構成の小型化も可能とな る。
[0073] また、これらのカップリングレンズと遮光性キャップ、遮光性部材を組み合わせた構 成は、光ヘッド装置や光情報処理装置に用いるカップリングレンズのみに限るもので はなぐ他の種類、用途のレンズにも適用できる。例えば、顕微鏡用レンズ、望遠鏡 用レンズ、カメラ用レンズ、双眼鏡用レンズ、プロジェクタの光学系のレンズ、レーザ プリンタの光学系のレンズ、コピー機の光学系のレンズ、半導体製造装置のマスク投 影系のレンズ等のレンズとしても用いることが出来、迷光を避けるという同様の効果を 得ること力 Sできる。
[0074] (実施の形態 4)
図 7は、本発明の第 4の実施の形態の光ヘッド装置の構成を示している。図 7にお いて、図 1と同一または相当部には、同一符号を付した。
[0075] 実施の形態 1にて説明したように、光ヘッド装置において、光ディスク 201が 2層デ イスクである場合、情報再生の対象となる情報層とは異なる情報層 252で反射した光 が迷光となり光ビーム 253に示したような光路を通り、カップリングレンズのコバ部に 戻ってくることがある。
[0076] 本実施の形態 4の光ヘッド装置 2は、カップリングレンズ 221として、迷光を屈折させ るコバ部を有するレンズを備えたことにより、迷光が受光領域に侵入することを防ぐよ うにしたことを特徴とする。
[0077] 図 8 (a)に、図 7のカップリングレンズ 221及び、光ヘッド装置 2における近傍部分の 斜視図を示す。
[0078] カップリングレンズ 221において、コノく部 221bは、光ビームが透過するレンズ本体 221aの外周に設けられており、その厚みは、レンズ本体 221aから遠ざかる外周側に 行くほど大きくなる。
[0079] 次に、図 8 (b)に、カップリングレンズ 221を含む検出部の拡大図を示す。ホログラム 素子 220は光ビーム 210をラジアル方向に 2つに分割し、それらを別々に検出するこ とで、プッシュプノレ法でトラッキング信号を得る。また、ホログラム素子 220は光ビーム 210の波面の曲率を変えることで集光点の位置を変える。これにより + 1次回折光 26 6と _ 1次回折光 267とは集光点の位置が逆にずれる。これらの光の光検出器 250 上でのスポットの大きさと光検出器 251上でのスポットの大きさを比較することでスポ ットサイズ法によるフォーカス信号を得る。カップリングレンズ 221は半導体レーザ 20 2から出る光ビーム 210の取り込み効率を上げ、全体の光路長を所望の長さ確保す るために用いられる。
[0080] ここに、ヘッド内で発生し、カップリングレンズ 221のレンズ本体 221aの光軸 103と ほぼ平行な迷光 260、 261力 Sあるとする。カップリングレンズ 221のコバ部 221bは外 周が内周より厚いすり鉢状になっている。従って、ここを通る迷光 260、 261は実線矢 印 262、 263で示したように、レンズ本体 221aの光軸 103より離れた佃 Jに屈折され、 光検出器 250や光検出器 251から離れた位置に到達する。これに対し、カップリング レンズ 221のコバ部が従来例のようにフラット、すなわち光軸 103に対して実質的に 直交する入射面を有するものであった場合、迷光 260、 261は、点線矢印 264、 265 で示した方向に進み、コバ部とホログラム素子 220をまっすぐ通過して光検出器 250 、 251に入射する。このためトラッキング信号やフォーカス信号の誤差となる。
[0081] このように、本実施の形態 4のようなコバ部 221bをもつカップリングレンズ 221を用 いれば、迷光があっても光検出器 250、 251に入射されることを防ぐことができ、安定 なトラッキング信号やフォーカス信号を得ることができ、情報記憶媒体に記録された 信号を低い誤り率で再生したり、情報記憶媒体に正確な記録が可能となる。
[0082] また、このような構成のカップリングレンズ 221を用いると、半導体レーザ 202から出 た光でカップリングレンズ 221のコバ部 221bを通過する光も光軸 103からより離れる 方向に曲がるため、ここを通った迷光が対物レンズ 222に入ることは無くなる。このた め対物レンズ 222から出射される光に余計な迷光が含まれることがなくなるという効 果もある。
[0083] 次に、図 9に本実施の形態の光ピックアップを用いた光情報処理装置としての光デ イスクドライブの構成を示す。情報記憶媒体としての光ディスク 201はモータ 270によ り回転させられる。光ヘッド装置 2は移送手段としてのトラバース系 271により光デイス ク 201の内周と外周の間を移動させられる。光ヘッド装置 2から得られた信号は信号 処理回路 272によりさまざまな演算がなされる。信号処理回路 272から出力された信 号は制御回路 273に入り、この信号を用いて、制御回路 273は光ヘッド装置 2ゃモ ータ 270、トラバース系 271を制御する。
[0084] これにより情報記憶媒体としての光ディスク 201に記録された信号が再生され、音 楽や映像、ファイル等が得られる。また記録可能な光ディスクでは、これらの情報の 記録が可能となる。これらを用いれば、映像再生機や映像記録再生機、音楽再生機 、音楽記録再生機、コンピュータ用情報記録再生装置を実現できる。
[0085] ここでは、トラッキング信号の例としてプッシュプル法、フォーカス信号の例としてス ポットサイズ法を示した力 本発明はこれに限るものでは無ぐ他の検出方式と組み 合わせてもその効果は変わらなレ、。
[0086] なお、ここではコバ部 221bはすり鉢状とした力 凹レンズ状をしていても良レ、。要す るに、レンズ本体側から外周に向かって、その厚みを変化させることにより、入射した 迷光が、コバ部 221bからの出射光となる際に、レンズ本体 221aの光軸に対して離 れるように屈折させて、光検出器に入射しないような光路を作ることができれば、その 形状の具体的な詳細によらず、同様の効果を得ることができる。コバ部の屈折率は、 光ヘッド装置 2内におけるカップリングレンズ 221と光検出器 (及びその受光領域)と の光学的配置に応じて定め、コバ部 221bからの出射光力 受光領域から必ず逸れ るようにする。
[0087] また、ここでは 2層ディスクにおいて、現在再生の対象となる記録層以外の層が意 図しない迷光の原因となる例を示したが、 2層ディスクに限らず、多層ディスクの場合 にはこのような迷光が発生する場合がある。また、多層ディスク以外でも光ヘッド装置 内での別のレンズや光学素子の端面で反射した光が迷光となる場合もある。そのよう な場合でも本実施の形態のカップリングレンズを用いれば、迷光を避ける効果を得る こと力 Sできる。
[0088] (実施の形態 5)
図 10は、本発明の別の実施の形態としての光ヘッド装置の構成を示している。光 ヘッド装置 3は、光ビームを情報記憶媒体としての光ディスク 201に照射し、光デイス ク 201に記録された信号の再生を行ったり、光ディスク 201に信号を記録する。光源 としての半導体レーザ 301は、光ビーム 310を出射する。半導体レーザ 301から出射 された光ビーム 310は、分岐手段としてのビームスプリッタ 320を通過し、集光手段と しての対物レンズ 222に入射する。対物レンズ 222は入射した光ビームを光ディスク 201の記録層上に集光する。対物レンズ 222はァクチユエータ 230により光軸方向 及び、光ディスク 201の半径方向に移動させられる。光ディスク 201で反射 '回折され た光ビームは再び、対物レンズ 222を通り、ビームスプリッタ 320により反射され、検 出レンズ 321を通り、光検出手段としての光検出器 350により受光される。
[0089] 本実施の形態においては、検出レンズ 321に、実施の形態 4のカップリングレンズ 2 21と同様の機能を持たせたことを特徴とする。
[0090] 図 11(a)に検出レンズ 321の斜視図を示す。検出レンズ 321は、レンズ本体 321aの 周囲に、 2段のすり鉢状になったコバ部 321bが設けられている。コバ部 321bを構成 するすり鉢の形状は、それぞれ、レンズ本体 321aから遠ざ力^)外周側に行くほど厚 みが大きくなるものである。
[0091] 図 11 (b)に検出部の拡大図を示す。検出レンズ 321は、詳しく図示はしないがー方 の面がトーリック面でレンズ本体 321aを通過する光に非点収差を与える。光検出器 3 50は、 4分割の受光領域 350aを持ち、対物レンズ 222から出射される光ビームの焦 点が光ディスク 201の記録層上にある時に非点収差を与えられた光ビームの最小錯 乱円の位置に来るように配置される。 4分割の受光領域 350aの対角の和同士の差 信号から非点収差法のフォーカス信号を生成する。トラッキング信号はプッシュプノレ 法で得る。
[0092] ここに光軸とほぼ平行な迷光 360、 361力 Sあるとする。検出レンズ 321のコバ部 321 bは、上述のように外周が厚いすり鉢状の形状が 2段同心円状に形成されている。従 つて、ここを通る迷光 360、 361 ίま実 ,線矢 卩 362、 363で示したようにレンズ本体 321 aの光軸 303より離れた側に屈折され、光検出器 350の受光部から離れた位置に到 達する。一方、検出レンズ 321のコバ部が従来例のようにフラット、すなわち光軸 303 に対して実質的に直交する入射面を有するものであった場合、迷光 360や 361は、 点線矢印 370、 371で示した方向に進み、光検出器 350の受光領域 350aに入射す る。このためトラッキング信号やフォーカス信号の誤差となる。
[0093] このように、本実施の形態のようなコバ部 321bをもつ検出レンズ 321を用いれば、 迷光があっても光検出器 350には入らず、安定なトラッキング信号やフォーカス信号 を得ることができ、情報記憶媒体に記録された信号を低い誤り率で再生したり、情報 記憶媒体に正確な記録が可能となる。
[0094] 特に本実施の形態のようにコバ部を 2段のすり鉢形状にすることで、個々のすり鉢 の形状において斜面の角度を大きくとる、すなわち厚みの変化を大きくとっても、レン ズの厚さ方向の増加量を抑えることができるため、光ヘッド装置に組み込みやすくな る。 [0095] また同じコバ部全体の厚みを実施の形態 4と同一とした場合、すり鉢形状の斜面の 角度を大きく取れるので、迷光を曲げる効果をより大きくすることができる。
[0096] なお、上記の構成においては、すり鉢形状は 2段であるとした力 S、 3段以上にしてよ レ、ことは言うまでもなレ、。
[0097] また、すり鉢形状の代わりに、凹レンズ状の形状を多段化した構成としてもよい。
[0098] また、ここでは、情報記憶媒体として光ディスクを利用する例を示したが、光カード のような情報記憶媒体を使用したとしても同様の効果を得ることができる。
[0099] (実施の形態 6)
コバ部を斜面にしたカップリングレンズの、他の実施の形態を示す。本実施の形態 は、コバ部の全部でなく一部のみをすり鉢状の形状としても、上記実施の形態 4と同 様の機能を持たせることを可能としたことを特徴とする。
[0100] 以下、図 12に、カップリングレンズ 400の断面図を示して説明する。カップリングレ ンズ 400のコバ部 400bは同心円上の 2つの外周領域を有し、第 1面に設けられた第
1面外周領域 401は外側が内側より厚いすり鉢面、第 1面外周領域 401よりも内側の 第 1面中周領域 402はフラット面となっている。
[0101] 一方、第 1面側の裏面となる第 2面側のコバ部では、第 2面外周領域 403がフラット 部、第 1面外周領域 401よりも内側の第 2面中周領域 404は外側が内側より厚いすり 鉢面となっている。
[0102] 以上のような構成を有するコバ部 400bの作用は以下のようになる。すり鉢面を有す る第 1面外周領域 401に入る迷光 410は屈折され、レンズ本体 400aの光軸(図示省 略)から離れる側に向かう。第 2面外周領域 403はフラット面だが外側に向力う光は第 2面外周領域 403を出ても光軸よりも離れる側に向かう。
[0103] また、フラット面である第 1面中周領域 402に入った迷光 411は、コバ部 400bの内 部では直進する。しかし、すり鉢面である第 2面中周領域 404から出射する際に、レ ンズ本体 400aの光軸より離れる側に屈折する。
[0104] このように、本実施の形態においては、コバ部を第 1面と第 2面の表裏面に分けた 場合、それぞれの一部にフラット面があっても別の面の対応する部分が、斜面を有す るすり鉢形状になっていることにより、迷光はレンズ本体 400aの光軸よりも離れる方 向に向かって屈折する。ここで、別の面の対応する部分とは、フラット面を通った光束 が通過する部分を指す。すなわち、コバ部 400bに入射した光は、何処を通っても、 第 1面と第 2面の何れか一方は必ず外側が内側より厚い斜面になっており、コバ部 4 00bを通る光は全て、レンズ本体 400aの光軸から離れる側に向力 ように屈折される 。このような形状を用いれば、カップリングレンズのコバ部に設計自由度を与えつつ、 迷光を避けるという効果を得ることができる。
[0105] (実施の形態 7)
本実施の形態は、コバ部にブレーズ化した回折格子を設けたことにより、上記実施 の形態 4と同様の機能を持たせたことを特徴とする。
[0106] 図 13に本実施の形態のカップリングレンズの断面図を示す。カップリングレンズ 50 0の第 1面側のコバ部は、ブレーズィ匕された回折格子 501が設けられている。回折格 子 501は、カップリングレンズ 500のレンズ本体 500aの光軸(図示省略)より外側に 回折される光の効率が最大になるようにブレーズィ匕されている。コバ部に入射した迷 光 510はブレーズィ匕された回折格子 501で回折され、コバ部から出射するときには、 レンズ本体 500aの光軸から離れる方向へ向かう。これにより光軸付近に設けられる 光検出器や CCD等に入る迷光を減らすことができる。
[0107] 本実施の形態に力かるカップリングレンズ 500を用いれば、コバ部の高さ(厚み)は 、フラットな場合とほとんど変わらないため小型化が可能となり、光ヘッド装置等に組 み込みやすくなる。
[0108] なお、実施の形態 4〜7に述べた各カップリングレンズ、検出レンズのコバ部の構成 は、各光ヘッド装置において互いに入替えて用いたとしても、迷光をレンズ本体の光 軸から離れる方向に曲げることができ、迷光を遠ざけるという同様の効果を得ることが でき、特定の光ヘッド装置や光情報処理装置にぉレ、て組み込まれた構成に限るもの ではない。
[0109] また、これらのコバ部を備えた本発明のレンズの構成は光ヘッド装置や光情報処理 装置に用いるカツプリングレンズゃ検出レンズのみに限るものではなぐ顕微鏡用レ ンズ、望遠鏡用レンズ、カメラ用レンズ、双眼鏡用レンズ、プロジェクタの光学系のレ ンズ、レーザプリンタの光学系のレンズ、コピー機の光学系のレンズ、半導体製造装 置のマスク投影系のレンズ等の他の用途のレンズでも迷光を避けるという同様の効果 を得ること力 Sできる。
[0110] (実施の形態 8)
更に別の実施の形態として、 2つの光源を持つ場合の構成を、図 14に示す。光へ ッド装置 4は、 DVDの記録又は再生用の赤色レーザと光検出器を備えた DVD用 L DPDモジユーノレ 902と、 CDの記録又は再生用の赤外レーザと光検出器を備えた、 CD用 LDPDモジュール 903を備える。
[0111] DVD用 LDPDモジュール 902内の半導体レーザ 902aから出射された光ビーム 90 4の一部は、前光用ホログラム 905により反射され、光ビームの光量をモニターするた めの前光として利用される。この光は DVD用 LDPDモジュール 902の前光用検出部 により検出される。前光用ホログラム 905を透過した光ビーム 904はプリズム 906の表 面で反射し、コリメータレンズ 907で略平行光となる。略平行となった光ビーム 904は 立ち上げプリズム 908の反射面 908aにより反射され、偏光ホログラム · λ /4波長板 909を透過する。光ビーム 904は、ここまで直線偏光であり、偏光ホログラムでは回折 しない方向の直線偏光になるよう配置されているため回折されず、 え /4波長板によ り直線偏光は円偏光に変換される。偏光ホログラム · λ /4波長板 909を通過した光 ビーム 904はアパーチャ 911で光束径を制限され、対物レンズ 910で収束光となる。 対物レンズ 910とアパーチャ 911、偏光ホログラム · λ /4波長板 909はァクチユエ一 タの可動子 912で一体に駆動される。対物レンズ 910で収束された光は、 DVD等の 光ディスク 920の情報面に照射される。
[0112] ここでは DVD等の光ディスク 920に記録又は再生したり、 CD等の光ディスク 921 に記録又は再生するため、図では 2種類の光ディスクを重ねて書いている力 実際に はどちらか一方を記録又は再生する。
[0113] DVD等の光ディスク 920で反射.回折された光ビームは対物レンズ 910で再び略 平行光に戻される。その後偏光ホログラム · λ Ζ4波長板 909を通るが、再び; Ι Ζ4 波長板を通ることで円偏光の光は往路とは 90度直交した向きの直線偏光に変換さ れる。直線偏光となった光ビームは偏光ホログラムにより回折され、往路とはことなる 光路を通る。回折された光ビームは、立ち上げプリズム 908の反射面 908aで反射さ れ、コリメータレンズ 907で収束光となり、プリズム 906の表面で更に反射し、前光用 ホログラム 905を透過し、 DVD用 LDPDモジュール 902の光検出器で受光される。 DVD用 LDPDモジュール 902からは、受光された光に応じた電気信号が出力され、 光ディスク 920に記録された信号を反映した RF信号や、フォーカスサーボやトラツキ ングサーボを実現するためのフォーカス誤差信号やトラッキング誤差信号が生成され る。
[0114] 一方、 CD用 LDPDモジュール 903内の半導体レーザ 903aから出射された光ビー ム 930は、 CD用 LDPDモジュール 903に一体化されたホログラム 903bを透過し、力 ップリングレンズ 931により、やや収束される。光ビーム 930はプリズム 906の裏面で 一部の光が反射され、 CD用前光モニタ 932に入射され、受光される。プリズム 906を 透過した大部分の光は、コリメータレンズ 907を通り、立ち上げプリズム 908の反射面 908aにより反射される。反射された光ビーム 930は、偏光ホログラム · λ Z4波長板 9 09を通る。光ビーム 930は直線偏光で、偏光ホログラムでは回折しない方向の直線 偏光になるよう配置されている。また λ /4波長板は CD用の光ビームの波長では λ 板として働くように意図して設計されており、 λ /4波長板透過後も直線偏光のままで ある。偏光ホログラム · λ /4波長板 909を透過した光ビーム 930は対物レンズ 910 で収束光となり、 CD等の光ディスク 921の情報面に照射される。
[0115] CD等の光ディスク 921で反射'回折された光ビームは対物レンズ 910をとおり、偏 光ホログラム ·ぇ/4波長板 909を通る。再びえ /4波長板を通るが、やはり λ板とし て作用するため、最初と同じ直線偏光のまま偏光ホログラムをとおり、回折されずに 透過する。透過した光ビームは、立ち上げプリズム 908の反射面 908aで反射され、 コリメータレンズ 907で収束光となり、プリズム 906を透過し、カップリングレンズ 931を 通り、ホログラム 903bで回折される。回折された光は往路とは異なる光路を通り、 CD 用 LDPDモジュール 903の光検出器で受光される。 CD用 LDPDモジュール 903か らは、受光された光に応じた電気信号が出力され、光ディスク 921に記録された信号 を反映した RF信号や、フォーカスサーボやトラッキングサーボを実現するためのフォ 一カス誤差信号やトラッキング誤差信号が生成される。
[0116] カップリングレンズ 931は本実施の形態 1〜3と同様の構成を有し、遮光性キャップ 933が取り付けられた光学素子となっているため、光ヘッド装置 4内で発生した意図 しない迷光がカップリングレンズ 931のコバ部を透過して CD用 LDPDモジュールの 光検出器に入射するのを妨げる。これにより不要な迷光が光ディスクの記録や再生 時に悪影響を及ぼすことが無くなり、安定に情報を記録したり、低い誤まり率で情報 を再生することができる。なお、カップリングレンズ 931として、本実施の形態 4〜7の コバ部を備えたカップリングレンズを用いても、同様の効果が得られる。
[0117] 以上の各実施の形態に力かるカップリングレンズ、光学素子、光ヘッド装置、及び 光情報処理装置は、情報を信頼性高く記録又は再生することができる光情報処理装 置を実現でき、光ビームの集光又は発散を行うレンズに関するもの、又は情報記憶 媒体に対して情報の記録、再生又は消去を行う光ヘッド装置、及び光情報処理装置 に関するものとして有用である。
[0118] また、顕微鏡用レンズ、望遠鏡用レンズ、カメラ用レンズ、双眼鏡用レンズ、プロジェ クタの光学系のレンズ、レーザプリンタの光学系のレンズ、コピー機の光学系のレン ズ、半導体製造装置のマスク投影系のレンズ等に関するものとして有用である。 産業上の利用可能性
[0119] 本発明にかかるレンズ、光学素子、光ヘッド装置、及び光情報処理装置は、レンズ のコバ部に向力、う迷光が存在しても、その迷光が検出信号や像の質に影響を与えな レ、ようにする効果を有し、光ビームの集光又は発散を行うレンズを含む光学素子、又 は情報記憶媒体に対して情報の記録、再生又は消去を行う光ヘッド装置、及び光情 報処理装置等として有用である。

Claims

請求の範囲
[I] レンズ本体及びコバ部を有するレンズと、
前記レンズ本体に対応する位置に開口が設けられるとともに、前記コバ部に対応す る位置を覆うように設けられた遮光部を有する遮光性部材とを備えた、光学素子。
[2] 前記遮光性部材は、前記レンズの外形に対応したキャップ状の形状を有し、前記レ ンズの外形に嵌り込むことにより、前記レンズに固定される、請求の範囲第 1項記載 の光学素子。
[3] 前記レンズは外周部外向きに突起部を有し、前記遮光性部材は前記突起部に対 応する位置に第 1の切り欠き部を有する、請求の範囲第 1項記載の光学素子。
[4] 前記レンズを支持する支持体をさらに備え、
前記レンズは接着剤によりその外周部の一部が前記支持体に固定されるものであ つて、
前記遮光性部材は接着位置に対応する第 2の切り欠き部を有する、請求の範囲第 1項記載の光学素子。
[5] 前記遮光部は 730nmより長い波長の光を遮光する、請求の範囲第 1項記載の光 学素子。
[6] 前記遮光部は 450nmより短い波長の光を遮光する、請求の範囲第 1項記載の光 学素子。
[7] 前記遮光部の光の透過率は 20%以下である、請求の範囲第 1項記載の光学素子
[8] 前記遮光部は樹脂を含んだ材質である、請求の範囲第 1項記載の光学素子。
[9] 前記遮光部は金属を含んだ材質である、請求の範囲第 1項記載の光学素子。
[10] 前記遮光部は所望の波長の光を反射する反射膜が設けられている、請求の範囲 第 1項記載の光学素子。
[II] 光ビームを出射する光源と、
前記光ビームを受けて情報記憶媒体上に集光する集光手段と、
前記情報記憶媒体で反射された光ビームを受け、その収束度合いを変化させる光 学素子と、 前記光学素子を通過した光ビームを受け、その受けた光量に応じた信号を出力す る光検出手段とを備え、
前記光学素子として、請求の範囲第 1項から第 10項のいずれかに記載の光学素 子を有する、光ヘッド装置。
請求の範囲第 11項記載の光ヘッド装置と、
前記光ヘッド装置を情報記憶媒体に対して相対的に移動させる移送手段と、 前記光ヘッド装置から出力される信号をうけて信号処理を行う信号処理回路と、 前記信号処理回路からの信号を受けて、前記光ヘッド装置及び前記移送手段を制 御する制御回路とを備えた、光情報処理装置。
PCT/JP2006/317251 2005-09-07 2006-08-31 光学素子、光ヘッド装置、及び光情報処理装置 WO2007029600A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-259207 2005-09-07
JP2005259207 2005-09-07
JP2006053231 2006-02-28
JP2006-053231 2006-02-28

Publications (1)

Publication Number Publication Date
WO2007029600A1 true WO2007029600A1 (ja) 2007-03-15

Family

ID=37835719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317251 WO2007029600A1 (ja) 2005-09-07 2006-08-31 光学素子、光ヘッド装置、及び光情報処理装置

Country Status (1)

Country Link
WO (1) WO2007029600A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246801A (ja) * 1997-03-05 1998-09-14 Asahi Optical Co Ltd プラスチックレンズ
JP2001110085A (ja) * 1999-10-08 2001-04-20 Toshiba Corp 受発光一体素子およびそれを用いた光ピックアップ
JP2001331967A (ja) * 2000-05-22 2001-11-30 Matsushita Electric Ind Co Ltd 光学ヘッド
JP2002319699A (ja) * 2001-04-23 2002-10-31 Ricoh Co Ltd 光学装置
JP2003196877A (ja) * 2001-12-21 2003-07-11 Sankyo Seiki Mfg Co Ltd 光ヘッド装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246801A (ja) * 1997-03-05 1998-09-14 Asahi Optical Co Ltd プラスチックレンズ
JP2001110085A (ja) * 1999-10-08 2001-04-20 Toshiba Corp 受発光一体素子およびそれを用いた光ピックアップ
JP2001331967A (ja) * 2000-05-22 2001-11-30 Matsushita Electric Ind Co Ltd 光学ヘッド
JP2002319699A (ja) * 2001-04-23 2002-10-31 Ricoh Co Ltd 光学装置
JP2003196877A (ja) * 2001-12-21 2003-07-11 Sankyo Seiki Mfg Co Ltd 光ヘッド装置

Similar Documents

Publication Publication Date Title
US6747939B2 (en) Semiconductor laser device and optical pickup device using the same
KR100657247B1 (ko) 고밀도 광집속을 위한 대물렌즈 및 이를 채용한광픽업장치
US5602383A (en) Optical apparatus for optically reading and recording information
US6304540B1 (en) Optical pickup compatible with a digital versatile disk and a recordable compact disk using a holographic ring lens
KR19980087526A (ko) 광 헤드 및 광 디스크 장치
KR100390195B1 (ko) 복합광학유닛
JP2002006210A (ja) 光記録媒体用対物レンズおよびこれを用いた光ピックアップ装置
JP3677200B2 (ja) 光ピックアップ装置
US20040022141A1 (en) Optical head and optical information media recording/reproduction apparatus using the same
JPH10269605A (ja) 光ピックアップ装置
KR20030078654A (ko) 광 픽업 장치 및 광 디스크 장치
JP2877044B2 (ja) 光ヘッド装置
US6661765B2 (en) Optical pickup apparatus
JP2006172605A (ja) 光ピックアップ装置
TWI240262B (en) Optical pickup and compact disk drive system
WO2007029600A1 (ja) 光学素子、光ヘッド装置、及び光情報処理装置
JPH0943510A (ja) 光情報記録媒体の記録再生用光学系
CN101276615A (zh) 拾光头装置
JP3564829B2 (ja) 光学ピックアップ
JP4012926B2 (ja) 対物レンズ
JP2001101703A (ja) 複合光学ユニット
JP4474454B2 (ja) 対物レンズ
JP4742159B2 (ja) 光情報再生方法
JP4248597B2 (ja) 対物レンズ
JP2005063572A (ja) 光ピックアップおよび光ディスク再生装置

Legal Events

Date Code Title Description
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06797211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP