WO2007028709A2 - Generateur de vapeur, centrale electrique comprenant un generateur de vapeur et procede pour faire fonctionner un generateur de vapeur - Google Patents

Generateur de vapeur, centrale electrique comprenant un generateur de vapeur et procede pour faire fonctionner un generateur de vapeur Download PDF

Info

Publication number
WO2007028709A2
WO2007028709A2 PCT/EP2006/065568 EP2006065568W WO2007028709A2 WO 2007028709 A2 WO2007028709 A2 WO 2007028709A2 EP 2006065568 W EP2006065568 W EP 2006065568W WO 2007028709 A2 WO2007028709 A2 WO 2007028709A2
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
steam generator
fluidized bed
combustion
oxygen
Prior art date
Application number
PCT/EP2006/065568
Other languages
German (de)
English (en)
Other versions
WO2007028709A3 (fr
Inventor
Jürgen Karl
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP06792951A priority Critical patent/EP1926935A2/fr
Publication of WO2007028709A2 publication Critical patent/WO2007028709A2/fr
Publication of WO2007028709A3 publication Critical patent/WO2007028709A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/0007Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus with combustion in a fluidized bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/002Fluidised bed combustion apparatus for pulverulent solid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/002Supplying water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the invention relates to a steam generator which is heated by the combustion of a carbonaceous fuel according to the oxyfuel process.
  • the invention further relates to a power plant with such a steam generator and to a method for operating a steam generator.
  • an oxygen stream of high purity (up to 99, 9%) is used as an oxidant in the combustion chamber of a
  • combustion chamber and its exhaust-carrying components connected downstream must be designed for comparatively high volume or mass flows, which results in a correspondingly bulky design with large flow cross sections. This results in relatively high completion costs for such a power plant.
  • flame cooling by injecting water or steam or by the use of moist fuels can also be provided according to a second combustion concept.
  • Such as reducing Feuerungs ⁇ temperature of the flue gas mass flow in the flue gas recirculation however, also bought with increased exhaust gas losses, as the Erhö- hung efficiency moderate energy conversion principle ⁇ lowers.
  • the present invention is therefore based on the object of specifying a steam generator of the type mentioned and an associated power plant, the combustion of a koh ⁇ lenstoff Anlagenn fuel according to the oxyfuel process in a simple and cost-effective construction and operation by resorting to suitable Feuerungslosee with a particularly high energy efficiency and with especially low residual emissions. Furthermore, a particularly suitable operating method for a system based on such principles is to be specified.
  • the object is it dissolved ⁇ inventively by the steam generator comprises a cooled by a number of immersion heating surfaces fluidized bed combustor, which has a number of arranged in the region of the combustion chamber bottom oxygen inlet openings through which during operation of an associated air separation plant he ⁇ staunch is introduced as an oxidant and as a fluidizing effective pure oxygen into the fluidized bed combustor, wherein the fluidized bed combustor is designed for egg ⁇ NEN operation with a stationary fluidized bed.
  • the invention is based on the consideration that for a particularly compact and cost-saving construction of a steam generator operated according to the oxyfuel principle, the volume flows through the combustion chamber and the downstream flue gas should be kept as low as possible. Therefore, the usually provided for controlling the high combustion temperatures flue gas recirculation should be largely avoided, or the proportion of recirculated in the combustion chamber exhaust gases should be kept at least lower than previously designed systems. In this case, however, the released heat in the combustion chamber should be as they arise are still at the site removed, fertil to the structural integrity of the containment walls and in the Verwen- constant of less quality or temperaturbe ⁇ and not to endanger therefore more cost-effective materials.
  • combustion of the carbonaceous fuel in a fluidized bed combustion chamber cooled by a number of immersion heating surfaces is provided for this purpose, the fluidized bed combustion chamber being designed for operation with a stationary (non-circulating) fluidized bed.
  • the stream of pure oxygen which ⁇ voltages of the fluidized bed combustor via arranged in the region of the combustion chamber bottom Einlassöff, for example in the form of inlet nozzle or egg nes intake grille is supplied while an in Vertika ⁇ ler (upward produced in the air separation unit ) Has direction-pointing pulse component, serves on the one hand as an oxidizing agent for the combustion processes taking place in the combustion ⁇ chamber and on the other hand as a fluidizing medium for the fluid contained in the combustion chamber.
  • the fine-grained sand or dust-like fluidizable material Due to the upward flow of the oxygen, the fine-grained sand or dust-like fluidizable material is whirled up ⁇ and placed in a fluid-like state of flow.
  • the turbulence of the particles leads on the one hand due to the particle-particle shocks to a particularly efficient combustion (catalytic effect of the fluidized bed) and on ⁇ because of the particle wall shocks to a particularly intense ⁇ sive heat transfer to the guided through the combustion chamber , Conveniently to so-called Tauchsammlung vom bundled ⁇ th heating or evaporator tubes and the flow medium guided therein, preferably water or a water / steam mixture.
  • particularly efficient heat dissipation comparatively low combustion temperatures of, for example, less than 1000 0 C are therefore also in the oxyfuel combustion feasible, so that the relevant requirements for the combustion chamber walls and other installations in the combustion chamber are relatively low.
  • the inflow velocity and the volume or mass flow of the introduced into the fluidized bed combustor oxygen are sized to be that a stationary fluidized bed, before ⁇ preferably a weakly fluidized or a so-called bubbling fluidized bed with a well defined obe ⁇ ren Boundary forms, a comparatively complex recycling of discharged from the combustion chamber fluidized particles, as would be necessary at higher inflow velocities of the fluidizing, not required. That is, the circulation of circulating fluidized beds in the context of conventional, in a nitrogenous combustion atmosphere running combustion processes known equipment and operating expenses - return line, blower ⁇ se, gas cyclone for solids separation and so - - falls.
  • the ratio of the total surface area is sitting all Tauchsammlungflä- chen to the average cross-sectional area of the fluidized bed combustor is preferably a value that is greater than thermal in a conventional steam generator, "air-blown" fluidized bed of comparable . performance It is the planar dimension of the surface of a Tauchsammlung Structure - without considering the geometry or curvature of the individual heating tubes - meant, each of said heating ⁇ surfaces usually two effective for the heat exchange surfaces, comprising namely front and back, which at ⁇ de must be considered in the calculation.
  • the cross-sectional area of the combustion chamber is a vertical boiler ⁇ construction in a horizontal, transverse to the flow direction of the flue gas extending plane.
  • the fine-grained fluidized material reduces the oxygen concentration in the immediate vicinity of the heating surfaces, improves the cooling effect and "delete" a If appropriate onset of oxidation. Also, by a smaller particle size and mass reduces the mechanical erosion (sand-blasting effect).
  • the effect can vorteilhaf ⁇ ingly be reinforced by the fact that the swirl ⁇ layer in the field of Tauchsammlung vom only weakly, ie just above the Fluidmaschinesschwelle, fluidized.
  • the metallic immersion heating surfaces are provided with a highly thermally conductive, oxidation-inhibiting or -verhindernden- coating, in particular with a ceramic coating, whereby an iron firing is excluded. Furthermore, it is advantageous if a number of ceramic or ceramic coating installations are arranged in the combustion chamber between the oxygen inlet openings and the immersion heating surfaces so that the immersion heating surfaces lie at least partially in the flow shadow of the installations that reduce erosion in this way, do not be "blown" directly from the oxygen flow.
  • the combustion chamber before ⁇ geous enough a Eindüsevorraum for water. It is particularly advantageous in terms of energy, when the water injected into the combustion chamber is condensed out together with the water vapor resulting from the combustion processes in a flue gas condensation plant and the heat absorbed in the evaporation is recovered again as Nutz ⁇ heat.
  • the steam generator is part of a power plant, which also has a Luftzerlegungsanla ge, z.
  • a cryogenic air separation plant or a membrane air separation plant, for generating the required sour ⁇ material stream comprises.
  • the figure shows a steam generator with fluidized bed combustion in longitudinal section.
  • the steam generator 2 shown schematically in the Figure in longitudinal section has an upright boiler 4, the containment walls 6 made of gas-tight ver together ⁇ welded respectively to the evaporator, superheater and economiser miserSystemflachen combined steam generator tubes are formed in which one is to be evaporated flow medium , z. B. water or a water / steam mixture flows.
  • a carbonaceous fossil fuel usually in the soil den nurse arranged combustion chamber 8, in particular coal, ver ⁇ is burned.
  • the combustion takes place according to the so-called oxyfuel principle with supply of pure oxygen (O 2 ) which acts as an oxidant, which is obtained in an associated air separation plant (not shown) and introduced into the combustion chamber 8 via pipelines.
  • O 2 pure oxygen
  • the flue gas R produced during combustion consisting essentially of carbon dioxide (CO 2 ) and water vapor (H 2 O) leaves the combustion chamber 8 in the vertical flow direction 10 and then flows through the section of the vertical gas flue which adjoins the combustion chamber 8 at the top 12, while at the same time deliver a large part of the residual heat contained in it by convective heat exchange via the convection heating surfaces 14 suspended in the gas flue 12 to the flow medium guided therein, for.
  • the water fraction contained in the flue gas R is separated off in a condenser (not shown) connected downstream of the steam generator 2 on the flue gas side, so that only pure carbon dioxide can be disposed of as an environmentally harmful combustion product or supplied to another utilization.
  • the combustion chamber 8 is designed for a particularly effective and complete combustion of the fuel and constant for a particular ⁇ DERS effective heat transfer to the flow medium to be evaporated as a fluidized bed combustion chamber. It contains a loose bed of fine-grained fluid, z. As quartz sand, which is swirled under the action of the inflowing through the inlet nozzles 16 of a nozzle bottom 18 oxygen and is placed in a flow state. The Ver ⁇ incineration of carbon-containing fuel takes place within half of the forming "oxygen Blow-molded" fluidized bed 20. The fuel introduced into the combustion chamber 8 oxygen accepts therefore both the function of the oxidizing agent for combustion as well as the fluidizing medium for the generation and maintenance of the fluidized bed.
  • the input flow rate of the oxygen into the combustion chamber 8 is selected to be that a comparatively weak fluidically ized, stationary fluidized bed 20 having an upper limit ⁇ surface the slightly expanded screened 22 in the transition region between the combustion chamber 8 and with respect to the combustion chamber 8 in cross-section Convection gas train 12 forms.
  • a number of immersion heating surfaces 24 "immersing" in the fluidized bed 20 are provided, of which only one is shown schematically in the figure
  • Each of the immersion heating surfaces 24 is defined by a number of meandering, extensively bundled heating tubes formed in which is guided the (vapor-water or water) to be vaporized or already partially or completely evaporated flow medium. Due to the good heat transfer Zvi ⁇ rule the fluidized bed and the respective Tauchsammlung Structure 24 large heat flows can the combustion chamber 8 comparatively be withdrawn so that the combustion chamber 8 even without the otherwise conventional flue gas recirculation is cooled well, the temperatures in the combustion zone lie with at ⁇ match, 900 0 C relatively low thereby, -.. supported by the homogenizing and catalytic action of the fluidised bed - the m öglichst complete conversion of the carbonaceous fuel H 2 O and CO 2 drying products conveyed in the desired combustion.
  • the combustion chamber 8 is charged with a particularly fine-grained fluidized material on ⁇ due to the high oxygen concentration in the combustion chamber 8 and the prevailing therein temperatures is given, in principle, which heating surfaces evenly to the dive ⁇ 24 and other vulnerable metallic components anneals or reflected and thereby any oxidation onsvortician "nipped in the bud.”
  • the immersion heating surfaces 24 and / or the inner walls of the combustion chamber 8, and optionally further metal compo ⁇ can components with an iron fire and other erosion processes preventing or
  • ceramic internals or the like not shown in the figure, in the flow path of the oxygen injected into the combustion chamber 8 in such a way that the immersion heating surfaces 24 are not directly "blown” which also reduces erosion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Air Supply (AREA)

Abstract

La présente invention concerne un générateur de vapeur (2) chauffé grâce à la combustion d'un combustible carboné selon le procédé Oxyfuel (combustion à oxygène). L'objectif de la présente invention est d'obtenir un rendement énergétique particulièrement élevé et de maintenir de faibles niveaux d'émissions résiduelles, tout en conservant une construction et un fonctionnement simples et économiques et en revenant à des concepts de chauffage adaptés. A cette fin, le générateur de vapeur (2) présente une chambre de combustion en lit fluidisé (8) qui est refroidie par une pluralité de surfaces de chauffage à immersion (24) et qui comprend un certain nombre d'ouvertures d'entrée d'oxygène (16) situées dans la région de fond de la chambre de combustion. En service, de l'oxygène pur (O2) est introduit dans ces ouvertures d'entrée d'oxygène par l'intermédiaire de la chambre de combustion en lit fluidisé (8). Cet oxygène pur est produit par une installation de séparation de l'air associée et sert à la fois d'agent d'oxydation et de milieu de fluidisation. Ladite chambre de combustion en lit fluidisé (8) est conçue pour fonctionner avec un lit fluidisé fixe (20).
PCT/EP2006/065568 2005-09-05 2006-08-22 Generateur de vapeur, centrale electrique comprenant un generateur de vapeur et procede pour faire fonctionner un generateur de vapeur WO2007028709A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06792951A EP1926935A2 (fr) 2005-09-05 2006-08-22 Generateur de vapeur, centrale electrique comprenant un generateur de vapeur et procede pour faire fonctionner un generateur de vapeur

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005042232.2 2005-09-05
DE102005042232 2005-09-05

Publications (2)

Publication Number Publication Date
WO2007028709A2 true WO2007028709A2 (fr) 2007-03-15
WO2007028709A3 WO2007028709A3 (fr) 2007-06-28

Family

ID=37836188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/065568 WO2007028709A2 (fr) 2005-09-05 2006-08-22 Generateur de vapeur, centrale electrique comprenant un generateur de vapeur et procede pour faire fonctionner un generateur de vapeur

Country Status (2)

Country Link
EP (1) EP1926935A2 (fr)
WO (1) WO2007028709A2 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559387A1 (fr) * 1992-03-02 1993-09-08 Foster Wheeler Energy Corporation Joint de dilatation
JPH07269828A (ja) * 1994-03-30 1995-10-20 Kawasaki Heavy Ind Ltd 流動物質の混合促進方法及び装置
EP1030150A1 (fr) * 1997-11-04 2000-08-23 Ebara Corporation Four de gazeification et de chauffage a lit fluidise
US6505567B1 (en) * 2001-11-26 2003-01-14 Alstom (Switzerland) Ltd Oxygen fired circulating fluidized bed steam generator
DE102004059359A1 (de) * 2003-12-01 2005-06-23 Technische Universität Dresden Verfahren zur Verbrennung von fossilen Brennstoff in nach dem Oxyfuel-Prozess arbeitenden Kraftwerken

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0559387A1 (fr) * 1992-03-02 1993-09-08 Foster Wheeler Energy Corporation Joint de dilatation
JPH07269828A (ja) * 1994-03-30 1995-10-20 Kawasaki Heavy Ind Ltd 流動物質の混合促進方法及び装置
EP1030150A1 (fr) * 1997-11-04 2000-08-23 Ebara Corporation Four de gazeification et de chauffage a lit fluidise
US6505567B1 (en) * 2001-11-26 2003-01-14 Alstom (Switzerland) Ltd Oxygen fired circulating fluidized bed steam generator
DE102004059359A1 (de) * 2003-12-01 2005-06-23 Technische Universität Dresden Verfahren zur Verbrennung von fossilen Brennstoff in nach dem Oxyfuel-Prozess arbeitenden Kraftwerken

Also Published As

Publication number Publication date
EP1926935A2 (fr) 2008-06-04
WO2007028709A3 (fr) 2007-06-28

Similar Documents

Publication Publication Date Title
DE69205161T2 (de) Pulsierende atmosphärische wirbelschichtverbrennungsanlage und verfahren.
DE3930037C2 (de) Wasserrohrkessel zur Dampferzeugung
DE3517987A1 (de) Verfahren und vorrichtung zur steuerung der funktion eines wirbelschichtreaktors mit zirkulierender wirbelschicht
EP0001569A1 (fr) Procédé et installation de production d'énergie électrique
DE69735410T2 (de) Fluidbett-Vergasungs- und Verbrennungsofen und Verfahren
EP2787279B1 (fr) Procédé de fonctionnement d'une chaudière à combustible solide et chaudière à combustible solide
DE69513106T2 (de) Erneuerung von Industrie- und Kraftwerkkessel mit einem zirkulierendem Wirbelbett zur Reduzierung von NOx- und SOx-Emissionen
DE102011110842A1 (de) Vorrichtung und Verfahren zur thermischen Behandlung von stückigem oder agglomeriertem Material
DE60120756T2 (de) Rekuperatives und konduktives wärmeübertragungssystem
DE19722070C2 (de) Verfahren zur NO¶x¶-armen Verbrennung von Steinkohle bei trockenentaschten Dampferzeugern
DD296542A5 (de) Feuerung, insbesondere wirbelschichtfeuerung
WO2013057187A2 (fr) Procédé et dispositif pour chauffer un fluide par combustion de combustibles à base de carbone
DE10254780B4 (de) Durchlaufdampferzeuger mit zirkulierender atmosphärischer Wirbelschichtfeuerung
DE69313274T2 (de) Verfahren zum einhalten einer nennbetriebstemperatur der rauchgase in einem kraftwerk mit druckwirbelschichtverbrennung
EP1926936A1 (fr) Ensemble de bruleurs pour une chambre de combustion, chambre de combustion correspondante et procede pour bruler un combustible
DE3133298A1 (de) Dampferzeuger mit einem hauptkessel und einer wirbelschichtfeuerung
WO2007028709A2 (fr) Generateur de vapeur, centrale electrique comprenant un generateur de vapeur et procede pour faire fonctionner un generateur de vapeur
WO1996021825A1 (fr) Procede d'incineration de dechets avec recuperation d'energie thermique
EP0363812A2 (fr) Procédé et installation pour la génération de vapeur dans une centrale de cogénération de puissance et de chaleur
EP2397756A2 (fr) Installation de chauffe pour la combustion de matières solides
DE2854170A1 (de) Verfahren zum betrieb eines umweltfreundlichen kohlekraftwerks sowie einrichtung zur ausfuehrung des verfahrens
EP1447622B1 (fr) Chaudière à tube-foyer à combustible pulvérulant
DE102014100692B4 (de) Feuerraum eines Kessels, Kessel, Verfahren zur Verbrennung wenigstens eines Brennstoffes sowie Verfahren zur Erzeugung von Dampf
EP0475029A2 (fr) Foyer à lit fluidisé avec un lit stationnaire
DE19855670A1 (de) Verfahren zum Betreiben eines Dampferzeugers und Dampferzeuger zur Durchführung des Verfahrens

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006792951

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06792951

Country of ref document: EP

Kind code of ref document: A2

WWP Wipo information: published in national office

Ref document number: 2006792951

Country of ref document: EP