WO2007028335A1 - Method for restraining cross-slot interference in slot cdma system - Google Patents

Method for restraining cross-slot interference in slot cdma system Download PDF

Info

Publication number
WO2007028335A1
WO2007028335A1 PCT/CN2006/002309 CN2006002309W WO2007028335A1 WO 2007028335 A1 WO2007028335 A1 WO 2007028335A1 CN 2006002309 W CN2006002309 W CN 2006002309W WO 2007028335 A1 WO2007028335 A1 WO 2007028335A1
Authority
WO
WIPO (PCT)
Prior art keywords
code
cell
channel
base station
neighboring cell
Prior art date
Application number
PCT/CN2006/002309
Other languages
English (en)
French (fr)
Inventor
Yingmin Wang
Shiyan Ren
Jinling Hu
Original Assignee
Datang Mobile Communications Equipment Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Datang Mobile Communications Equipment Co., Ltd filed Critical Datang Mobile Communications Equipment Co., Ltd
Priority to US12/066,176 priority Critical patent/US7978624B2/en
Priority to EP06775619.7A priority patent/EP1931154B1/en
Priority to JP2008529452A priority patent/JP4637956B2/ja
Publication of WO2007028335A1 publication Critical patent/WO2007028335A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7105Joint detection techniques, e.g. linear detectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70702Intercell-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/04Scheduled or contention-free access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to slotted CDMA systems, and more particularly to a method for slotted CDMA systems to suppress cross-slot interference.
  • Time division duplex CDMA/TDMA mobile communication systems are widely used for data transmission of asymmetric services because of their flexibility to control and change the length of uplink and downlink data transmission periods.
  • the uplink and downlink services are carried in different time slots of the same carrier.
  • the bearer capacity of the uplink and downlink services can be flexibly adjusted to match the uplink and downlink ratio of the service, which can cause service asymmetry. Minimize system capacity loss, increase system capacity, and achieve optimal spectrum utilization.
  • time slots may carry services in different directions in the neighboring cell.
  • Such a time slot is called a cross slot.
  • the so-called cross-slot interference means that the downlink or uplink signal of one cell interferes with the uplink or downlink signals of another intra-frequency neighboring cell.
  • the time slots in the dashed box are used for uplink in cell 1 and downlink in cell 2.
  • the base station of the cell 1 when receiving the uplink signal of the cell, it may receive strong interference from the downlink signal of the cell 2 base station, and the interference is referred to as the cross-slot interference of the base station and the base station;
  • the terminal for example, the terminal A of the cell 2 may receive the interference of the uplink signal of the terminal B of the cell 1, and the interference is referred to as the cross-slot interference of the terminal and the terminal.
  • the base station has a large transmit power, the antenna gain is high, and the path loss is small. Therefore, the base station interferes with the base station more prominently, and the cell that assumes the uplink service in the cross-slot can hardly work, which seriously affects the communication quality, and the system performance is obvious. decline.
  • the radio network controller controls the neighboring base stations to adopt the same frame synchronization and the same upper and lower slot switching points.
  • FIG. 2 shows a flow chart of the configuration of the prior art to adopt the same time slot switching point in order to avoid the occurrence of cross-slots.
  • Rate resources Another way is to use the method of different time slot switching point configuration.
  • FIG. 3 shows a flow chart of a configuration in which the sacrificial capacity is adopted in order to avoid cross-slot interference in the prior art.
  • the sacrificial capacity is adopted in order to avoid cross-slot interference in the prior art.
  • the RNC informs its own base station (Node B) of its own configuration information, such as cell number, absolute frequency point number, maximum transmission power, through the cell establishment process as shown in FIG.
  • the configuration of the synchronization channel, the configuration information of the common channel on which the broadcast is located, the configuration information of the time slot, and the like, and the related information mainly related to the time slot is the time slot configuration information, including the number of time slots, the direction of the time slot (for uplink or downlink). , time slot status (whether activated).
  • the base station's frame structure of the cell that is, the location of the time slot transition point can be determined.
  • the base station can only obtain its own configuration information, and cannot know the configuration information of its neighboring cells, so that the corresponding method cannot be used to suppress or eliminate the cross-slot interference.
  • joint detection techniques are commonly used to suppress interference, mainly intersymbol interference and multiple access interference, to improve the performance of the code division multiple access system.
  • the joint detection method utilizes the transmission signals of all users in the cell and the information of its channel response, and performs signal detection as a unified interrelated joint detection process.
  • Most of the current receiver algorithms are single-cell joint detection algorithms.
  • the algorithm only uses the structural information (including the spreading code and channel response) of the signals transmitted by all users in the cell, and treats the interference signals of other cells as time Gaussian white noise. Therefore, the single cell joint detection algorithm can strongly suppress inter-symbol interference and local cell multiple access interference.
  • e is the sampled data received by the receiver
  • d is the transmitted data
  • n is the received noise
  • matrix A is the transmission matrix.
  • the transmission matrix A is composed of the combined response vectors of the respective code channels
  • k is the code channel number, assuming that there are a total of L code channels (according to " ⁇ ", the A matrix can be calculated
  • is the matrix distributed in the respective blocks on the diagonal
  • the soft output value of the demodulated transmitted data d is estimated as:
  • F in (6) is the matching filter, corresponding to the matching filtering method
  • ZF-BLE is the Zero-Forcing Block Liner Equaliaer method, corresponding to the maximum likelihood Linear solution
  • MMSE-BLE is the method of Zero-Forcing Block Liner Equaliaer, which corresponds to the linear solution of the minimum mean square error.
  • the above three methods for solving T can be selected, usually choose the second ZF-BLE or the third MMSE-BLE. method.
  • the same-frequency networking there is strong mutual interference between the signals of the same-frequency neighboring cells, and the interference between the adjacent-frequency neighboring cells has a very important influence on the performance of the system, especially in the same-frequency neighbor.
  • the same-frequency interference is often the most important interference.
  • the single-cell joint detection method will be incapable of interference to the same-frequency neighboring cell, and the system performance will be significantly reduced when there is interference in the same-frequency neighboring cell.
  • the present invention provides a method for suppressing cross-slot interference in a time slot CDMA system, including:
  • the base station determines, according to the configuration information of the cell and the configuration information of the intra-frequency neighboring cell, the location of the cross-slot, and performs multi-cell channel estimation on the cross-slot to obtain a channel estimation result;
  • the base station performs joint detection according to the multi-cell channel estimation result and the determined code channels of the base stations participating in the joint detection, and obtains the detection data.
  • the base station obtains the configuration information of the current cell and the configuration information of the intra-frequency neighboring cell by using the following:
  • the radio network controller acquires configuration information of the local cell of the base station and configuration information of the intra-frequency neighboring cell, and notifies the base station.
  • the radio network controller notifies the base station that the configuration information of the local cell and the configuration information of the intra-frequency neighboring cell are implemented by two messages.
  • the radio network controller notifies the base station that the configuration information of the intra-frequency neighboring cell is implemented through the Iub interface NBAP signaling or the operation and maintenance channel.
  • the radio network controller notifies the base station of the configuration information of the local cell and the configuration information of the intra-frequency neighboring cell as follows:
  • the information configured by the base station of each cell is extended to increase the configuration information of the intra-frequency neighboring cell; the radio network controller notifies the configuration information of the local cell and the configuration information of the intra-frequency neighboring cell by a message.
  • the radio network controller informs the base station that the configuration information of the local cell and the configuration information of the intra-frequency neighboring cell are implemented by the Iub interface NBAP signaling through a message.
  • the configuration information of the intra-frequency neighboring cell includes: time slot configuration information, a distance from the same-frequency neighboring cell base station to the local base station, or a transmission delay information of the same-frequency neighboring cell base station signal to the local base station, and the same-frequency neighboring cell.
  • the parameter number or the type of time slot used by the basic Midamble code and the downlink time slot, the time slot type includes a spreading coefficient, a Midamble K, and a correspondence between the spreading code and the cyclic shift of the basic Midamble code.
  • the base station performs multi-cell channel estimation on the cross-slot, and obtaining the channel estimation result further includes: the base station determining, according to the slot configuration information of the intra-frequency neighboring cell, the location where the cross-slot exists, and then according to the basic midamble code or The basic midamble code determined by the parameter number of the intra-frequency neighboring cell uses the multi-cell channel estimation method to perform multi-cell channel estimation on the time slot in which the cross-slot interference exists, and obtains the channel estimation result.
  • the base station determines the code channel configuration information of the intra-frequency neighboring cell, and performs the grouping on the determined code channel, and determining the code channel of the intra-frequency neighboring cell participating in the joint detection further includes: the base station according to the same-frequency neighboring cell base station signal The transmission delay of the base station or the transmission delay, the midamble K, the spreading factor, and the correspondence between the spreading code and the basic midamble code cyclic shift obtained according to the distance from the neighboring base station to the base station, and the above channel estimation
  • the maximum set of code channels or code channels used by the intra-frequency neighboring cells is determined by the activation detection, wherein all the code channels in the largest set of code channels are listed as the same frequency neighbors.
  • the code channel used by the area
  • the configuration information of the intra-frequency neighboring cell includes: time slot configuration information, a distance from a neighboring base station to the local base station, or a transmission delay of the neighboring cell base station signal to the base station, a parameter number of the same-frequency neighboring cell, or a basic midamble.
  • the code, the spreading code used by the intra-frequency neighboring cell, the midamble K, and the corresponding relationship between the spreading code and the cyclic shift of the basic midamble code is a basic midamble.
  • the base station performs multi-cell channel estimation on the cross-slot, and obtaining the channel estimation result further includes: the base station determining, according to the slot configuration information, a location where the cross-slot exists, according to the basic midamble code or by the same-frequency neighboring cell
  • the basic midamble code determined by the parameter number uses the multi-cell channel estimation method to perform multi-cell channel estimation on the time slot in which the cross-slot interference exists, and obtains the channel estimation result.
  • the base station determines the code channel configuration information of the intra-frequency neighboring cell, and performs the grouping on the determined code channel, and determining the code channel of the neighboring cell participating in the joint detection further includes: a spreading code used by the base station to the same-frequency neighboring cell
  • the midamble K the mapping relationship between the spreading code and the basic midamble code cyclic shift determines the code channel configuration information of the intra-frequency neighboring cell, thereby determining the code channel used by the intra-frequency neighboring cell.
  • the configuration information of the intra-frequency neighboring cell further includes a scrambling code, and the scrambling code can be obtained by using the basic Midamble code or the parameter number of the neighboring cell.
  • the correspondence between the spreading code and the basic midamble code cyclic shift is in a form defined by the 3GPP 25.221 default mode.
  • the time slot configuration information includes: a same-frequency neighbor cell number, a time slot number of a cross-slot in the same-frequency neighboring cell; or: a same-frequency neighbor cell number, a time slot number of each time slot, and Up and down direction.
  • the transmission delay is obtained by configuring a measurement command to enable a base station to measure a pilot signal of a co-frequency neighboring cell.
  • the base station determines that the code channel of the same-frequency neighboring cell is grouped according to the code channel of the cell to which the code channel belongs to the code channel of the same-frequency neighboring cell, and the number of code channel packets is the same as the number of the same-frequency neighboring cells, and the code in each packet The track is the code channel of the corresponding cell.
  • the base station performs the grouping on the determined intra-frequency adjacent cell code channel based on the code channel amplitude or power to the code channel of the same-frequency neighboring cell, and is divided into the code channel group participating in the joint detection according to the code channel amplitude or power strength. And interference code channel grouping.
  • the grouping according to the code channel amplitude or the strength of the code includes: a channel estimation result of the neighboring cell, or a combined channel response of each code channel obtained by the channel estimation result of the neighboring cell, and estimated The amplitude or power of each code channel signal; the code channel to be detected, and the interference code channel whose amplitude or power is greater than the threshold value are allocated to the code channel group participating in the joint detection, and will not include the amplitude of the user to be detected and The interference code channel whose power is lower than the threshold is divided into the interference code channel packet.
  • the determining, by the base station, that the code channel of the intra-frequency neighboring cell is grouped by the code channel correlation is performed on the code channel of the same-frequency neighboring cell, and is divided into code channel packets and interference codes that participate in joint detection according to the strength of the code channel correlation. Road grouping.
  • the strong and weak packet according to the code channel correlation includes: a channel estimation result of a neighboring cell, or a combined channel response of each code channel obtained by a channel estimation result of a neighboring cell, and estimating a multi-cell Correlation between each code channel in the signal; all the code channels to be detected and the interference code channel whose correlation is greater than the threshold value are divided into the code channel packets participating in the joint detection, and will not contain the relevant users to be detected and related The interference code that is below the threshold is assigned to the interference code channel packet.
  • the correlation between the code channels includes an average correlation, a maximum correlation, and a minimum correlation, from which a correlation is selected and grouped by size.
  • the determined code channel of each base station participating in the joint detection is: the selected participation joint
  • the detected code channels of each base station perform matched filtering and activate the active code channels after the detection processing.
  • the method for the base station to perform joint detection according to the multi-cell channel estimation result and the determined code channel of each base station participating in the joint detection is: the base station adopts single-cell "linear block equalization" in each packet and adopts between groups.
  • the method of interference cancellation is: the base station adopts single-cell "linear block equalization" in each packet and adopts between groups.
  • a method of using a single cell "linear block equalization" within each packet and employing “interference cancellation” between packets further includes:
  • the detection result of the group of the user to be detected is output;
  • the detected grouping results recover the interference component caused by the response of each packet signal, and the received signal cancels the interference component of the non-group, and obtains each group.
  • the net signal then the net signal is used as the result of the grouping of the next step.
  • performing single-cell joint detection on each packet, and detecting each packet result further includes:
  • the joint detection result of each packet is obtained by performing matched filtering with the data portion segmented from the received signal, and performing single-cell "linear block equalization" on the result of the matched filtering.
  • obtaining a joint detection result of each packet by performing matched filtering with a data portion divided from the received signal, and performing single-cell "linear block equalization" on the result of the matched filtering further includes:
  • the result of the matched filtering is activated, and the transmission matrix is reconstructed according to the activation detection result, and then the single-cell "linear block equalization" is performed to obtain the joint detection result of each packet.
  • the method for performing joint detection by the base station according to the multi-cell channel estimation result and the determined code channel of each base station participating in the joint detection is: using a joint detection method of linear block equalization for the code channel group participating in the joint detection.
  • detecting the code channel group participating in the joint detection by using the joint detection method of linear block equalization further includes:
  • the transmission matrix participating in the joint detection code channel group, the covariance matrix of the colored noise interference, and the data portion segmented from the received signal are matched and filtered;
  • the joint detection algorithm of the linear block equalization is used to jointly detect the matched filtering result, and the obtained soft output value of the transmitted data is output as the detected data.
  • the covariance matrix of the colored noise interference is calculated by using the transmission matrix of the interference code channel grouping and the background noise.
  • the covariance matrix of the colored noise interference is obtained by processing the co-channel interference in the interference code channel packet as white noise, and includes: calculating a power sum of each code channel in the interference code channel packet; Calculate the sum of power and background noise power.
  • a joint detector for linear block equalization is used for code channel packets participating in joint detection.
  • the detecting further comprises: constructing a transmission matrix of the joint detection code channel packet and a transmission matrix of the interference code channel packet by using the combined channel response of each code channel;
  • the transmission matrix participating in the joint detection code channel group, the covariance matrix of the colored noise interference, and the data portion segmented from the received signal are matched and filtered;
  • the base station performs activation detection on the matched filtered output result, and reconstructs the transmission matrix according to the activation detection result;
  • the joint detection algorithm constructed based on the activation detection result is jointly detected by the joint detection algorithm of linear block equalization, and the obtained soft output value of the transmitted data is output as the detection data.
  • the invention utilizes the information provided by the cross-slots to make the code channel packets more accurate, so that the multi-cell joint detection method can well suppress the cross-slot interference of the base station and the base station, and improve the time slot.
  • 1 is a slot configuration diagram of two cells in which intersecting slots exist between each other;
  • FIG. 2 is a flow chart showing a configuration method of using the same time slot switching point in order to avoid occurrence of cross-slots in the prior art
  • FIG. 3 is a flow chart of a configuration method for using a sacrificial capacity in order to avoid cross-slot interference in the prior art
  • Figure 5 is a TD-SCDMA service slot burst structure
  • FIG. 6 is a flow chart showing an embodiment of a method for suppressing cross-slot interference in a time slot CDMA system
  • FIG. 7 is a schematic diagram of a neighbor cell information configuration process according to the present invention.
  • FIG. 8 is a schematic diagram of a neighbor cell information reconfiguration process according to the present invention.
  • FIG. 10 is a system flow diagram of a joint detection embodiment of a slot CDMA system for suppressing cross-slot interference
  • FIG. 11 is a flow chart showing a manner in which the RNC of the present invention configures information to a base station
  • Figure 12 shows the correspondence between the spreading code and the intermediate code defined in the default mode of 3GPP 25.221.
  • FIG. 13 is a schematic diagram showing the correspondence between the cell parameter number and the uplink and downlink pilot codes, the scrambling code, and the basic midamble code in 3GPP 25.223.
  • the joint detection method for suppressing cross-slot interference includes the following steps:
  • the base station of the cell acquires its own configuration information and configuration information of the intra-frequency neighboring cell.
  • Cross-slot interference is the main limiting factor affecting the flexible configuration of adjacent transition points.
  • the existing signaling needs to be modified, for example, by adding a message or expanding the original message content, so that the base station can obtain not only its own configuration information but also some necessary configuration information of the neighboring cell.
  • the base station In order for the base station to perform processing for suppressing cross-slot interference.
  • the configuration information of the intra-frequency neighboring cell may be different according to requirements, and the content may be different.
  • the configuration information of the intra-frequency neighboring cell includes the basic midamble code or the intra-frequency neighbor cell parameter number, the distance from the neighboring base station to the local base station, or the transmission delay of the neighboring base station signal to the local base station, and the same-frequency neighboring cell.
  • the configuration information of the same-frequency neighboring cell includes the basic midamble code or Co-frequency neighbor cell parameter number, intra-frequency neighbor cell slot configuration information (such as downlink transition point), distance from neighboring base station to the base station, or transmission delay of the neighboring base station signal to the base station, and spread spectrum used by the neighboring cell Correspondence between code, midamble K, spreading code and basic midamble code cyclic shift.
  • the RNC can be configured in the following manner: After the base station is put into use, the RNC successfully completes the cell establishment configuration for the base station under its jurisdiction, that is, after the base station has determined its own uplink and downlink transition point, the RNC judges whether there is a cross between the adjacent base stations. When determining the cross-slot configuration of the neighboring cell, a message procedure of the RNC to the base station is added to indicate the required information to the base station, so that the base station can suppress according to the originally obtained information of the base station and the indicated information. Processing of cross-slot interference. For the addition of the message, the operation and maintenance channel signaling may be implemented, or may be implemented by the Iub interface BAP signaling, and the present invention does not limit the specific implementation manner of the message addition.
  • the RNC needs to support the reconfiguration process to notify the base station to update the information to ensure effective interference cancellation.
  • the reconfiguration process includes performing uplink and downlink time slot reconfiguration according to changes in cell service characteristics, and then notifying the base station of its own configuration change, and notifying the existence of the base of the cross slot. Reconfiguration information of the neighboring cell.
  • the present invention provides the base station with relevant information required for the cross-slot interference cancellation process by means of the above-mentioned method of adding a message, so that the system does not need to consider the limitation of the cross-slot disable when performing resource allocation. The specific steps of this method are as follows -
  • the RNC determines the slot configuration of each cell under its jurisdiction according to the cell service characteristics, such as the downlink switching point;
  • the RNC notifies the time slot configuration of each cell of the base station under the control by the cell establishment process
  • the RNC determines whether there is a cross-slot according to the slot configuration of each cell under its jurisdiction. When it is determined that there is an inter-slot, that is, there is cross-slot interference from the neighboring base station, as shown in FIG. 7, the base station is notified. The configuration information of the neighboring cell, so that the base station can determine whether the interference is from the neighboring base station or the neighboring cell; when it is determined that there is no cross-slot, the base station notifies the corresponding message according to the prior art, and then according to the prior art The method performs joint detection, and the present invention will not be described in detail.
  • the configuration information of the intra-frequency neighboring cell that is notified to the base station includes:
  • the slot configuration information of the intra-frequency neighboring cell is used by the base station of the local cell to determine whether there is a cross-slot interference and a location where the cross-slot interference exists.
  • the most important of the time slot configuration information is the uplink and downlink switching points of the same-frequency neighboring cell.
  • the slot configuration information of the intra-frequency neighboring cell may include the neighbor cell number and the slot number of the cross-slot in the neighboring cell.
  • the time slot configuration information of the cell may also include the neighbor cell number, the time slot number of each time slot, and the uplink and downlink directions. At this time, the base station of the cell judges according to the time slot number of each time slot of the corresponding neighboring cell and its uplink and downlink direction. Whether there is cross-slot interference and the location where cross-slot interference exists.
  • Some other information supporting the same-frequency neighboring base station using the extended joint detection technology mainly: I) The transmission delay of the neighboring base station signal to the base station
  • the distance between the base stations is determined. Therefore, the time delay can be obtained by using the distance information between the base stations, and then the delay is directly notified to the base station, or only the distance between the base station and its neighboring base stations can be notified to the base station.
  • the base station calculates the transmission delay according to the distance; of course, it can also be obtained by other methods, for example, the base station self-measures the pilot signal of the neighboring cell base station, but this needs to know the pilot code SYNC used by the neighboring cell base station. And this information, like the midamble code, can be obtained by the cell parameter number message. Therefore, the base station can edit the neighbor cell parameters by notification.
  • the self-measurement obtains the transmission delay of the neighboring base station signal to the base station.
  • the transmission delay is used to more accurately intercept the channel response of each code channel from the total channel response of the channel estimation result, so that the code channel or the code channel maximum set used by the neighboring cell can be more accurately determined.
  • the RNC may directly notify the scrambling code or the basic Midamble code to the base station, or may only notify the cell parameter number to the base station, and each base station obtains the scrambling code and the basic Midamble code according to the cell parameter number.
  • the cell parameter number has a fixed correspondence with the scrambling code, the basic Midamble code, etc., and the content indication that requires less information to be transmitted can be selected from the perspective of reducing the load of the signal.
  • the correspondence between the spreading code and the basic Midamble code cyclic shift includes adopting a default correspondence or adopting a predetermined correspondence.
  • the spreading coefficient used by the downlink time slot of the neighboring cell and the Midamble K, and the correspondence between the spreading code and the cyclic shift of the basic Midamble code are used for joint detection of the extension.
  • the information provided in the above b) is different: adding information: IV) a spreading code of the same-frequency neighboring cell; The spreading factor is not provided in the above III).
  • the RNC allocates resources according to the cell service characteristics, and does not need to consider avoiding the occurrence of cross-slot interference.
  • R C repeats the above items 1-4, performs cell reconfiguration, and notifies the base station and the base station having the cross slot in the updated information of the own cell and its intra-frequency neighboring cell. Since the TDD system can flexibly configure the slot switching point according to the change of the uplink and downlink services, in this information, the content of the neighboring cell slot configuration information and the downlink slot type change frequently. Therefore, to reduce the signaling load, the reconfiguration process may include only slot configuration information and slot type information. As shown in FIG. 8, it shows a process in which the radio network controller provides an updated slot configuration and slot type to the base station to reconfigure the neighbor cell configuration information by adding a reconfiguration message.
  • the above method of the present invention is to keep the existing time slot CDMA system protocol substantially unchanged.
  • the neighbor cell message configuration process is added, so that the method of the present invention is convenient to implement.
  • the RNC may perform the cross-slot judgment after determining the uplink and downlink time slot configuration of the cells under its jurisdiction according to the cell service characteristics, and the cell establishment process for the base station without the cross-slot. Notifying the base station of the cell to be configured with its own configuration information; and, for the base station having the cross-slot, or notifying the configuration information of the base station itself by the cell establishment process, after the cell is successfully established, the neighboring cell configuration information process is notified.
  • the configuration information of the neighboring cell of the base station is extended, or the content of the cell configuration information is extended to be added to the neighboring cell configuration information, so that the configuration information of the cell base station itself and its neighboring cell is notified together through the cell establishment process.
  • the cell slot configuration changes the above steps are repeated, and the RNC performs reconfiguration.
  • the RNC may not perform cross-slot judgment, or expand the cell configuration information content to join the neighbor cell configuration information, so that the cell base stations themselves are controlled by the cell establishment process.
  • the configuration information of the intra-frequency neighboring cell is sent to each cell base station, or the configuration information of the cell base station itself is notified by the cell establishment process, and the configuration information of the neighboring cell is notified by the neighbor cell configuration information process.
  • each base station since each base station notifies the configuration information of the own cell and the configuration information of the neighboring cell, the amount of information transmitted will be large, and the load of the signaling will be large.
  • the base station base station performs the configuration information of the neighboring cell and the configuration information of the neighboring cell.
  • the above steps are repeated, and the RNC performs reconfiguration.
  • the spreading coefficient SF, midamble K, and the corresponding relationship between the spreading code and the basic midamble code cyclic shift in the first mode are used to determine the code channel configuration information of the neighboring cell in combination with the multi-cell channel estimation result.
  • the code channel configuration information of the neighboring cell is determined by the spreading code used by the neighboring cell, the midamble K:, and the corresponding relationship between the spreading code and the cyclic shift of the basic midamble code.
  • Step 2 multi-cell channel estimation.
  • the "multi-code set channel estimation method" disclosed in the Chinese Patent Application No. 03100670.1 can be used to obtain the channel estimation result of each neighboring cell and improve the accuracy of the channel estimation. It is necessary to know the configuration information of the neighboring cell when performing multi-cell channel estimation, and the more important one is the training sequence used by the neighboring cell (ie, a midamble code, also referred to as a "channel estimation code"), such as an intermediate code.
  • a midamble code also referred to as a "channel estimation code”
  • the training sequence is generated as follows: For the same time slot of the same cell, given a basic midamble code m p, different users use different cyclically shifted versions of the same basic midamble code m f as its training.
  • the sequence m ⁇ , where k l, ..., K:.
  • the "multi-code set channel estimation method" disclosed in the Chinese Patent Application No. "03100670.1” is a multi-code set channel estimation code response signal when working for the same-frequency multi-cell after obtaining the basic midamble code used by the neighboring cell.
  • multi-code set signal the multi-code set joint channel iterative estimation method based on the finite time position decision feedback processing is used to simultaneously perform channel estimation calculation on multiple midamble codes, and obtain each The channel estimation result of the cell. Based on the known midamble codes and corresponding channel estimates, the interference of each midamble code can be calculated.
  • the multi-cell of the channel estimation is a neighboring cell, and the neighboring cell includes the local cell where the user to be detected is located and the cell that is the most adjacent to the local cell in the geographical location.
  • the channel response h ( ) of each code channel can be more accurately located and extracted, thereby improving the single code of each cell.
  • the accuracy of the channel estimation is improved, and the accuracy of the multi-code set channel estimation result is improved.
  • the channel response h w of each code channel is: where, the window length W represents the time width of the channel response, and the superscript T represents the transposition.
  • the channel response vector is represented by the values on the W taps where the chips are spaced apart.
  • the multi-cell channel estimation here can also use the above documents.
  • the single-cell channel estimation method described in 1 performs single-cell channel estimation for each cell to obtain a channel estimation result of each cell, that is, obtains a channel response h (4) of each cell code channel.
  • the code channel configuration information of the intra-frequency neighboring cell is determined to determine the code channel participating in the following code channel grouping.
  • the first method is to directly obtain the spreading code of the intra-frequency neighboring cell through the Iub interface NBAP signaling or the operation and maintenance channel notification, and then obtain the corresponding neighbor according to the corresponding relationship between the corresponding midamble K, the spreading code and the basic midamble code cyclic shift.
  • the second method is to obtain the code channel configuration information of the neighboring cell by judging the result of the multi-cell channel estimation. Determining the channel of each code channel from the total channel response vector according to the multi-cell channel estimation result obtained in the second step, that is, the total channel response vector of the neighboring cell and the transmission delay obtained in the first step response.
  • the code channel or code used by the neighboring cell can be determined by each channel channel response. The maximum set of tracks, thereby obtaining the spreading codes of the code channels that are used or may be used, to obtain the code channel configuration information of the neighboring cells.
  • the configuration information of the code channel of the neighboring cell can be determined.
  • the largest set of code channels used by the neighboring cell is obtained. At this time, each code channel in the maximum concentration of the code channel can be included in the code channel range to be used.
  • Step 4 code channel grouping
  • the code channels of the neighboring cells participating in the code channel packets determined in the above third step are performed. Grouping.
  • the specific scheme of the code channel grouping is as follows:
  • the first scheme is based on the grouping method of the cell to which the code track belongs. There are several co-frequency cells set up in several groups, then the code channel in each group is the code channel of the corresponding cell.
  • the code channel participating in the code channel grouping is a pre-allocated code channel of each neighboring cell.
  • the code channel participating in the code channel grouping may be the obtained code channel or the code channel maximum set of each neighboring cell. Wherein, when the maximum set of code channels of the neighboring cell is obtained, all code channels with the largest concentration of code channels can be involved in the code channel grouping.
  • the packets obtained by the code channel grouping by the above scheme may all be selected to participate in the joint detection. It can also be partially selected to participate in joint testing.
  • the second scheme is a grouping method based on code channel power or amplitude.
  • Channel response of each code channel obtained by the total channel response vector obtained from the multi-cell channel estimation result, or the channel response h (fc) of each code channel and each obtained in the above step 3.
  • the spreading code of the code channel obtains the combined channel response of each code channel according to the above formula (2), and the amplitude or power of each code channel signal can be estimated (the amplitude can be obtained by squared). Then group according to the strength of the amplitude or power.
  • the amplitude or power of the code channel signal is greater than the threshold value, and the code value is weaker than the threshold value, and the code channel with strong amplitude or power is a group, and the power or amplitude is weak.
  • the code channel is another group.
  • the third scheme is a grouping method based on code channel correlation.
  • the channel response 11 « of each code channel obtained by the multi-cell channel estimation result, or the channel response of each code channel and the spreading code of each code channel obtained in the above third step, according to the above formula (2) The combined channel response of each code channel is obtained, the correlation between each code channel in the multi-cell signal is estimated, and then all the code channels are grouped according to the strength of the correlation. For example, a threshold value of correlation is determined, a correlation between code channels is greater than the threshold value, and a value lower than the threshold value is weak, and a code channel with strong correlation is divided into a group, and a code with weak correlation is used. The road is divided into another group.
  • the correlation of multiple code channels can be average correlation, maximum correlation, or minimal correlation.
  • Step 5 joint detection.
  • the joint detection result is obtained by performing joint detection on the multi-cell channel estimation result, all the code channels of the current cell, and the adjacent cell code channels participating in the joint detection determined in the fourth step.
  • the joint detection method may be an interference cancellation method, a linear block equalization method, or a mixture of the two.
  • the code channel that participates in joint detection for the code channel grouping may be matched and filtered before being jointly detected, and then subjected to activation detection processing, and will pass
  • the activated detection code track is activated as a code channel participating in the joint detection.
  • the method of the present invention will be described in detail below by taking the TD-SCDMA system as an example.
  • the TD-SCDMA system is a time division CDMA system.
  • the first time slot is always downlink, and is used for transmitting information such as broadcast.
  • the second time slot is for uplink, and the transition points of the other time slots are variable.
  • the present application only considers the cross-slot interference between the base station and the base station, that is, only considers the interference of the downlink signal of the same-frequency neighboring cell base station to the uplink signal received by the base station of the local cell. It is assumed here that the spreading code has a fixed correspondence with the basic midamble code cyclic shift, and the spreading code of the neighboring cell is obtained by direct notification of the lub interface BAP signaling or the operation and maintenance channel.
  • A. And d are the transmission matrix and transmission data of the user's own cell respectively; A' and d ' are the transmission matrix and transmission data of the i-th ( ⁇ 1 , 2 ) neighboring cell respectively; n . It is to remove interference and noise power (such as white noise) after interference from two adjacent cells.
  • Step 31 The base station of the cell obtains the configuration information of the current cell and the configuration information of the same-frequency neighboring cell, where the configuration information of the same-frequency neighboring cell can be obtained through the lub interface NBAP signaling or the operation and maintenance channel.
  • the configuration information of the intra-frequency neighboring cell includes: a basic midamble code, a scrambling code, a midamble K value (ie, a number of channel responses of a code channel in one slot), a spreading coefficient SF, a spreading code, and a basic midamble code loop.
  • the corresponding relationship of the shift, the transmission delay of the base station signal to the base station of the neighboring cell, and the time slot configuration of the neighboring cell mainly the uplink and downlink transition points.
  • the basic midamble code and the scrambling code are in one-to-one correspondence with the cell parameter ID, as shown in FIG. 13, and therefore can also be obtained by notifying the obtained cell parameter number Cell Parameter ID.
  • this step can be achieved by the following steps:
  • Step S101 The radio network controller RNC configures the slot configuration of the cell under its jurisdiction according to the service characteristics of each cell, such as the network performance indicator, the system load condition, and the service ratio of each cell, and the downlink transition point is determined.
  • Step S102 The RNC establishes a cell in the Node B by using the cell establishment request shown in FIG. 4, and the Node B reserves the necessary resources and configures the new cell according to the parameters given in the message. A response message is established for the RNC-cell.
  • the RNC establishes the cell under its jurisdiction through the process of cell establishment, and configures its cell number, absolute frequency point number, maximum transmit power, configuration of the synchronization channel, configuration information of the common channel where the broadcast is located, time slot configuration information, and the like.
  • Step S103 The RNC determines whether there is an intersecting slot between the cells
  • step S104 when the cross-slot is not present, the RC notifies the base station of the corresponding message according to the prior art, and then performs joint detection according to the prior art. This case is not described in detail in the present application;
  • the RC informs the cell base station of the configuration information of the same-frequency neighboring cell through the neighboring cell configuration information process, where the configuration information of the neighboring cell includes:
  • the base station can obtain a signal propagation delay according to the distance from the neighboring base station.
  • Uplink and downlink slot configuration information of the neighboring base station cell such as slot number, slot direction, activation or not. Since the uplink and downlink of the TDD system can be flexibly adjusted according to the service ratio, the value may change at a certain frequency.
  • the slot configuration information of the obtained neighbor base station cell is used to determine an intra-frame uplink and downlink transition point, and the occurrence of the intersecting time slot is determined.
  • a slot type of a downlink slot of a neighboring base station which is mainly used to indicate a correspondence relationship of resources in a slot, including a spreading coefficient SF and a midamble K used in the slot, and a cyclic shift of the spreading code and the intermediate code.
  • Step S104 in FIG. 11 is a new signaling procedure added in the method of the present invention, and is mainly used for the RNC to notify the base station of the slot configuration information of its neighboring cell. It is included in both the configuration and reconfiguration process.
  • Step S105 the RNC runs to perform radio resource allocation.
  • the RNC repeats the above step S101, performs cell reconfiguration, and notifies the updated information of each base station cell itself and the updated information of the neighboring cell to Each base station. Since the present application only considers the cross-slot interference between the base station and the base station, the same-frequency neighboring cell that causes the cross-slot interference to the base station that receives the uplink signal is a cell that transmits the downlink signal, and for the TD-SCDMA system.
  • the downlink spreading factor is 1 or 16, where the spreading factor is 16.
  • the present application considers the cross-slot interference of the base station to the base station, and the delay value of the neighboring cell base station is fixed and the number is small, so the NBAP signaling or the operation and maintenance channel notification can be notified through the Iub interface, so that the joint detection can be better. Ground burst interference is suppressed.
  • Step 32 Perform data segmentation on the multi-user signal e, that is, divide the regular slot burst structure shown in FIG. 5, and the intermediate code portion of the three intra-frequency neighbor cells corresponds to the middle of the three code sets.
  • the segmented data symbol portion e d is sent to the matched filter.
  • Step 33 According to the slot configuration information obtained in step 31, whether there is a cross slot, and a location of the cross slot, so that the base station of the cell knows whether there is a cross slot interference and a location where the cross slot interference exists;
  • step 34 multi-cell channel estimation is performed.
  • the time slot with cross-slot interference obtained in step 33 is used for channel estimation by using the multi-code set channel estimation method for the total intermediate code portion e m obtained in step 32, and the channels of three intra-frequency cells can be respectively obtained.
  • the estimation result that is, the total channel response vector of each cell (for details, see: CN03100670.1, 2003.05.09 "Slot Code Division Multiple Access System Multi-Code Set Channel Estimation Method").
  • Step 35 Determine configuration information of each code channel included in a code channel or a maximum code channel of the same-frequency neighboring cell to determine a code channel of the code channel group.
  • the scrambling code obtained in step 31 the spreading coefficient, the midamble K, the correspondence between the spreading code and the basic midamble code cyclic shift, and the delay information of the neighboring cell base station to the base station of the own cell are used through the multi-cell.
  • the channel estimation result is judged to obtain the code channel configuration information used by the intra-frequency neighboring cell.
  • the channel estimation result obtained in step 34 is that all the code channel channel responses of the neighboring cells are arranged in order. If the channel response of each code channel is to be correctly intercepted, it is necessary to know that each code channel channel is ringing. The location should be. The location of each code channel channel response is related to the delay between midamble K and other cell users to the cell. Therefore, the delay information is obtained for intercepting the correct channel channel response from the multi-cell channel estimation result (which is very useful).
  • the spreading code and the basic midamble code are cyclically shifted.
  • the correspondence of the bits may determine the spreading code of the corresponding code channel used or the spreading code of each code channel in the maximum concentration of the code channel.
  • the correspondence between the spreading code and the cyclic shift of the basic midamble code may adopt a correspondence defined according to the default mode of 3GPP 25.221.
  • Step 36 code channel grouping.
  • the code channel or the code channel maximum set used by the intra-frequency neighboring cell obtained in step 35 is grouped, and the adjacent cell code channel participating in the following multi-cell joint detection is determined.
  • the code channel can be divided into three groups according to the number of cells.
  • the grouped total received signal e d can be expressed as:
  • the second grouping method based on the code channel amplitude or power, if the combined channel response of each code channel is obtained according to the channel estimation result h w , the amplitude or power of each code channel signal is estimated therefrom;
  • the strength of the power divides all the code channels into two groups, and divides the code channel to be detected (referred to as joint detection) and the interference code channel with stronger power into the code channel group participating in the joint detection, and will not include the user to be detected and the power.
  • the weaker interference code channels are assigned to the interference code channel group.
  • the grouped total received signal e d can be expressed as:
  • a s and ⁇ are transmission matrices and transmission data of the joint detection code channel group;
  • a ⁇ d is a transmission matrix and transmission data of the interference code channel group.
  • the combined channel response of each code channel is first obtained by the channel estimation result h w of each neighboring cell, and then all non-to-be-detected user code channels and users to be detected are estimated The mean of the correlation of all the code channels, and then divide all the code channels into two groups according to the strength of the correlation mean, and all the code channels of the user to be detected and all the code channels with the correlation with the code channel average are assigned to In the code channel group participating in the joint detection, the remaining ones do not contain the users to be detected and average The less correlated code channels are assigned to the interference code group.
  • the grouped total received signal e d can be expressed as -
  • a s and ⁇ are the transmission matrix and transmission data of the joint detection code channel group;
  • a / and d / are the transmission matrix of the interference code channel group and the transmission data (the second and third grouping methods, after grouping
  • the total received signal e d uses the same expression).
  • the maximum set of the code channels used by the neighboring cells is obtained by the above method.
  • all code channels included in the maximum set of code channels are used as adjacent cell code channels participating in multi-cell joint detection.
  • step 37 the transfer matrix A in the equations (8)-(10) is used (according to the formula (2), obtained by h «).
  • the corresponding transmission matrix A in equations (8)-(10) is constructed according to the grouping method employed. If the first grouping method is adopted, the constructed transmission matrix A is the transmission matrix of the three cells A «),
  • the constructed transmission matrix A is A s (the transmission matrix participating in the matrix operation code group in the joint detection), Aj (the transmission of the interference code group not participating in the matrix operation in the joint detection) matrix).
  • the constructed transmission matrix A when using the first grouping method, the transmission matrices Ao, k, and ⁇ 2 of the three cells are sent to step 38 for matched filtering and step 39 for multi-cell joint detection, respectively, in the second or In the third grouping method, A s sends step 38 to perform matched filtering, and A s , and sends step 39 to perform multi-cell joint detection.
  • Step 38 matching filtering.
  • the process of finding ⁇ in the equation is the matching filtering process of this step.
  • e is the data symbol portion e d after data segmentation
  • A is the constructed matrix.
  • a in the matching filtering process is A Q , Aj, A 2 .
  • a in the matching filtering process is A s . Is the covariance matrix of the colored noise sequence n.
  • step 39 matrix processing is performed to finally complete multi-cell joint detection.
  • Multi-cell joint detection is performed for different code channel grouping methods, different transmission matrices constructed, and matched filtering results, that is, according to the transmission matrix A obtained in step 37, a matrix is obtained by using one of the formulas (4) Then, the operation of the formula (3) is completed on the basis of the matched filter 1 obtained in step 38.
  • the code channel participating in the joint detection is all the code channels of the cell and the code channels of the intra-frequency neighboring cells participating in the joint detection determined by a code channel grouping method.
  • step 40 may be added to perform activation detection on the matched filtered code channel, and then The active code channel retained after the activation detection process is used as a code channel participating in the joint detection, and the transmission matrix VIII is modified according to the determined activation code channel participating in the joint detection.
  • the joint detection can adopt the method of "linear block equalization + interference cancellation", that is, the joint detection method using linear block equalization in three groups, and the joint detection method using interference cancellation between the three groups.
  • linear block equalization + interference cancellation that is, the joint detection method using linear block equalization in three groups, and the joint detection method using interference cancellation between the three groups.
  • the interference recovery is performed by the detected group results, and the interference of the interfering cell 1 and the interfering cell 2 to the user of the cell is respectively obtained, and A 2 d 2 .
  • Step 4) Perform joint detection of linear block equalization on the net signal of the packet to be detected by the user, and obtain a transmission signal result d Q (formula (3)) of the user to be detected.
  • Step 4) The d Q obtained is relative to d obtained directly by the method of joint detection by single cell in step 1. Because it eliminates the interference of the same frequency neighbor cell, it will be much more accurate.
  • the above process uses only one interference cancellation. In an actual system, multiple interference cancellations can be used as needed to achieve the desired performance.
  • the second offset is obtained more accurate data for the interfering cell ( ⁇ , d 2 respectively execute the above process ( ⁇ , d 2, and then recovered by subtracting 4, d 2 e d in interference from ⁇ , A 2 d 2 , Get the net signal, and then perform joint detection of linear block equalization on the obtained net signal, and the obtained d Q will be more accurate.
  • the d is the joint detection output, which is the demodulated transmission data.
  • the specific implementation method that needs to be cancelled one or more times can be done by setting the number of iterations and looping through the "linear block equalization + interference cancellation" step.
  • the number of iterations is the number of interference cancellations. Proceed as follows: 1) performing a single-cell joint detection on each packet by using a linear block equalization method, detecting each grouping result, determining whether the number of iterations is reached, and if so, outputting the detection result of the packet to be detected by the user, otherwise performing step 2);
  • the joint detection method of linear block equalization is performed on the code channel groups participating in the joint detection.
  • a s , Ai obtained when constructing the transmission matrix A, where A s is a transmission matrix constructed by the current user code channel of the current cell plus the power or correlation of the cell or the neighboring cell, for multi-user joint detection ;
  • is the transmission matrix of the code channel structure of other users or neighboring cells of the cell with low power or correlation, which is used to calculate ⁇ .
  • the soft output value estimated from the demodulated transmitted data d s according to equation (3) is: where the matrix is given by (select one of the methods):
  • the covariance matrix R n in which the colored noise interferes can be calculated by the interference code channel grouping and the background noise, and the expression is:
  • Another method is to treat the co-channel interference in the interference code channel packet as a simplified processing of white noise, as shown in the following equation (14):
  • Steps 37, 38, 39, 40 of Figure 10 are collectively referred to as the multi-cell joint detection process of the method of the present invention. That is, step 5 in Fig. 6.
  • the method of the present invention can be applied to a time slot CDMA system or a wireless communication system using a similar signal structure, or can be extended to a non-CDMA time division duplex communication cellular system with an antenna number of 2 or more.
  • Joint detection can be applied to the number of code channels participating in the joint detection in a range larger than the spreading factor and less than or equal to the number of antennas multiplied by the spreading factor.
  • the system notifies the configuration information of the neighboring cell of the base station to be obtained.
  • the simplification is mainly embodied in the fact that the slot type information, that is, the spreading coefficient, the midamble K, the corresponding relationship between the spreading code and the channel estimation code can be omitted.

Description

时隙 CDMA系统抑制交叉时隙千扰的方法 技术领域
本发明涉及时隙 CDMA系统, 尤其涉及时隙 CDMA系统抑制交叉时隙 干扰的方法。
背景技术
时分双工 CDMA/TDMA移动通信系统由于其可以灵活控制和改变上下 行数据传输时段的长短比例而被广泛用于非对称业务的数据传输。 其中, 上 下行业务在同一载波不同时隙中被承载, 通过指定上下行时隙数量可以灵活 调节上下行业务的承载能力, 使之与业务上下行比例相匹配, 可以让因业务 的不对称性带来的系统容量损失降至最低, 提升系统的容量, 获得最佳的频 谱利用率。
然而, 在同频工作的情况下, 如果邻小区根据业务流量的需要, 时隙划 分不一致, 即釆用不同的上下行转换点, 则一些时隙可能在邻小区承载不同 方向的业务, 我们把这样的时隙称为交叉时隙。 所谓的交叉时隙干扰是指, 一个小区的下行或上行信号会对另一同频邻小区的上行或下行信号造成干 扰。如图 1所示, 虚线框内的时隙在小区 1用做上行, 在小区 2中用做下行。 对于小区 1的基站, 在接收本小区的上行信号时, 可能收到来自小区 2基站 下行信号的强干扰, 将这种干扰称为基站与基站的交叉时隙干扰; 对位于两 个小区边界的终端, 例如, 小区 2的终端 A, 可能收到小区 1的终端 B上行 信号的干扰, 将这种干扰称为终端与终端的交叉时隙干扰。 其中, 由于基站 发射功率大, 天线增益高, 且路径损耗小, 所以基站对基站的干扰更为突出, 会使得交叉时隙中承担上行业务的小区几乎不能工作, 严重影响通信质量, 系统性能明显下降。
通常, 为了尽量避免相邻小区间的交叉时隙干扰, 一种方式是, 由无线 网络控制器 (RNC)控制使相邻基站采用相同的帧同步以及相同的上下时隙转 换点。 如图 2所示, 其给出了现有技术为了避免出现交叉时隙而采用相同时 隙转换点的配置方式的流程图。 但利用这种方式, 由于不同的小区上下行业 务非对称特性不完全相同, 所以相同的转换点的配置方式不能有效地利用频 率资源。 另一种方式是, 对于采用不同时隙转换点配置的方式, 当出现交叉 时隙时, 通常 RNC在分配资源时, 采用牺牲容量的方式, 即尽量避免使用交 叉时隙资源。 如图 3所示, 其给出了现有技术中为了避免交叉时隙干扰而采 用牺牲容量的配置方式的流程图。 但这两种方式都将无法实现对系统资源的 充分利用。
而且, 现有技术中, RNC通过如图 4所示的小区建立过程, 通知其所辖 的某一基站 (Node B)其本身的配置信息, 如小区编号, 绝对频点号, 最大发 射功率, 同步信道的配置, 广播所在的公共信道的配置信息, 时隙配置信息 等信息, 其中与本文相关的主要是时隙配置信息, 包括, 时隙个数, 时隙方 向 (用于上行还是下行), 时隙状态(是否激活)。通过上述小区建立的过程, 基站对本小区的帧结构, 即时隙转换点的位置就可以确定了。 但是, 在目前 的系统中, 基站仅能获得其自身的配置信息,无法得知其邻小区的配置信息, 从而无法采用相应的方法抑制或消除交叉时隙干扰。在现有时隙 CDMA系统 中, 通常采用联合检测技术抑制干扰, 主要是符号间干扰和多址干扰, 以提 高码分多址系统的性能。 联合检测方法是利用本小区所有用户的发送信号及 其信道响应的信息, 把信号检测当作一个统一的相互关联的联合检测过程来 完成。
目前的接收机算法大多是单小区联合检测算法。 该算法仅利用本小区所 有用户发送信号的结构信息(包括扩频码和信道响应),将其它小区的干扰信 号都当成是时间的高斯白噪声进行处理。 所以, 单小区联合检测算法能够较 强地抑制符号间干扰和本小区多址干扰。
TD-SCDMA系统的单小区联合检测的具体过程如下:
首先得到时隙 CDMA系统单小区接收机接收到的信号模型- e = Ad + n ( \
其中, e为接收机收到信号的采样数据, d为发送数据, n为接收到的噪 声, 矩阵 A为传输矩阵。 传输矩阵 A由各个码道的组合响应向量 构成, k 是码道编号, 假设总共有 L个码道 (根据》^可以计算 A矩阵, ^是矩阵中分 布在对角线上的各个块中的一列,具体计算方法可参考专利号为 02148622.0、 发明名称为 "在联合检测系统中应用长小区化码的方法"的中国专利文件)。 每个向量 ^对应为一个码道编号为 k的码道的组合信道响应- bw=c«eh« k=1...L (2) 其中, 是对应的码道编号为 k的码道的扩频码, ©是卷积运算符, h« 是对应的码道编号为 k的码道的信道响应, 利用 midamble (中间码)进行信 道估计得到。
然后利用上述信息就可以进行联合检测。 联合检测算法有多种, 可以是 干扰抵消的方法, 可以是线性块均衡的方法, 也可以是两者方法的混合。 对 线性块均衡的方法, 经解调后的发送数据 d估计的软输出值为:
d = (T)_1A*TR-1e (3) 其中, 矩阵 T由下式给出:
Figure imgf000005_0001
式中, A*T是传输矩阵 A的共轭转置矩阵, Rd -^d'd , 是数据序列 d 的协方差矩阵, d*T是矩阵 d 的共轭转置序列, 对于相互独立的数据序列, Rd = I ; R"=^n-n"}, 是噪声序列 n的协方差矩阵, η*τ是矩阵 n的共轭转 置序列。 对于相互独立且平稳的噪声序列 (如白噪声) Rn = a2I, I表示单位 矩阵。
在 = 1和 Rn = a2I的条件下, (3)、 (4)式可以简化表示为:
d = (T)-1A*Te (5)
MF
T = Α*ΤΑ ZF-BLE
Α*τΑ + σ2] MMSE-BLE
(6)
(4)、 (6)式中的 F即匹配滤波,对应的就是匹配滤波的方法; ZF-BLE 即迫零线性块均衡(Zero-Forcing Block Liner Equaliaer)的方法, 对应的是最 大似然的线性解; MMSE-BLE 即最小均方误差线性块均衡 (Zero-Forcing Block Liner Equaliaer) 的方法, 对应的是最小均方误差的线性解。 上述三种 求解 T的方法择其一即可, 通常选择第二种 ZF-BLE或第三种 MMSE-BLE 方法。
但在同频组网的情况下, 同频邻小区信号之间存在着较强的相互干扰, 且同频邻小区之间的干扰对系统的性能有非常重要的影响, 尤其是在同频邻 小区的交界处, 同频干扰往往是最重要的干扰, 此时, 单小区联合检测的方 法对同频邻小区的干扰将无能为力, 在存在同频邻小区干扰时, 系统性能将 明显下降。
针对同频邻小区之间所产生的干扰, 在本申请人的、 申请号为
200410080196.6的中国专利申请中,提出了一种 "时隙码分多址系统多小区 联合检测方法", 其利用本申请人在申请号为 "03100670.1 "、 题为 "时隙码 分多址系统多码集信道估计方法"的中国专利申请中公开的多码集信道估计 方法对各个邻小区进行信道估计, 采用适当的码道分组, 通过信道估计结果 和码道分组的结果进行联合检测。 所述的多小区联合检测方法充分利用了多 个小区信号的结构信息, 对同频邻小区的多址干扰进行有效的抑制, 提高了 在同频邻小区工作时的系统性能。 然而, 由于没有考虑交叉时隙干扰, 所以 在如图 1所示的情况下, 该方法没有充分利用交叉时隙的可提供的信息, 应 用效果不是很好。
发明内容
本发明的目的在于提供一种可抑制基站与基站的交叉时隙干扰的联合检 测方法, 以提高时隙 CDMA系统在交叉时隙工作时的系统性能。
为实现上述目的,本发明提供一种时隙 CDMA系统抑制交叉时隙干扰的 方法, 包括:
基站根据本小区配置信息和同频邻小区的配置信息确定存在交叉时隙的 位置, 并对交叉时隙进行多小区信道估计, 得到信道估计结果;
基站确定同频邻小区的码道配置信息, 对所确定的码道进行分组, 确定 参与联合检测的同频邻小区的码道;
基站根据多小区信道估计结果、 以及确定的参与联合检测的各基站的码 道进行联合检测, 获得检测数据。
进一步地, 基站获得本小区配置信息和同频邻小区的配置信息是这样实 现的: 无线网络控制器获取基站本小区的配置信息和同频邻小区的配置信息, 并通知基站。
更进一步地, 无线网络控制器通知基站本小区的配置信息和同频邻小区 的配置信息是通过两条消息实现的。
再进一步地,无线网络控制器通知基站同频邻小区的配置信息是通过 Iub 接口 NBAP信令或者操作维护通道实现的。
更进一步地, 无线网络控制器通知基站本小区的配置信息和同频邻小区 的配置信息是这样实现的:
. 对各小区基站配置的信息进行扩展, 增加同频邻小区的配置信息; 无线网络控制器通过一条消息通知基站本小区的配置信息和同频邻小区 的配置信息。
再进一步地, 所述的无线网络控制器通过一条消息通知基站本小区的配 置信息和同频邻小区的配置信息是通过 Iub接口 NBAP信令实现的。
进一步地, 所述同频邻小区的配置信息包括: 时隙配置信息、 同频邻小 区基站到达本基站的距离或同频邻小区基站信号到达本基站的传输时延信 息、 同频邻小区的参数编号或基本 Midamble码和下行时隙采用的时隙类型, 所述的时隙类型包括扩频系数, Midamble K, 以及扩频码与基本 Midamble 码循环移位的对应关系。
更进一步地, 基站对交叉时隙进行多小区信道估计, 得到信道估计结果 进一步地包括: 基站根据同频邻小区的时隙配置信息, 确定交叉时隙存在的 位置, 然后根据基本 midamble 码或由同频邻小区的参数编号确定的基本 midamble码, 利用多小区信道估计方法对存在交叉时隙干扰的时隙进行多小 区信道估计, 获取信道估计结果。
更进一步地, 基站确定同频邻小区的码道配置信息, 对所确定的码道进 行分组, 确定参与联合检测的同频邻小区的码道进一步地包括: 基站根据同 频邻小区基站信号到本基站的传输时延或根据相邻基站到达本基站的距离求 得的传输时延、 midamble K、 扩频系数、 和扩频码与基本 midamble码循环移 位的对应关系、 以及上述的信道估计结果, 通过激活检测确定同频邻小区被 使用的码道或码道的最大集, 其中码道最大集中的所有码道均列为同频邻小 区被使用的码道。
进一步地, 所述同频邻小区的配置信息包括: 时隙配置信息、 相邻基站 到达本基站的距离或邻小区基站信号到本基站的传输时延、 同频邻小区的参 数编号或基本 midamble码、 同频邻小区使用的扩频码、 midamble K以及扩 频码与基本 midamble码循环移位的对应关系。
更进一步地, 基站对交叉时隙进行多小区信道估计, 得到信道估计结果 进一步地包括: 基站根据时隙配置信息, 确定交叉时隙存在的位置, 根据在 基本 midamble码或由同频邻小区的参数编号确定的基本 midamble码, 利用 多小区信道估计方法对存在交叉时隙干扰的时隙进行多小区信道估计, 获取 信道估计结果。
更进一步地, 基站确定同频邻小区的码道配置信息, 对所确定的码道进 行分组, 确定参与联合检测的邻小区的码道进一步地包括: 基站对同频邻小 区使用的扩频码、 midamble K、扩频码与基本 midamble码循环移位的对应关 系确定同频邻小区的码道配置信息, 从而确定同频邻小区被使用的码道。
再进一步地, 在 TD-SCDMA系统中, 同频邻小区的配置信息还包括扰 码, 所述的扰码能通过所述基本 Midamble码或邻小区的参数编号得到。
再进一步地, 所述扩频码与基本 midamble 码循环移位对应关系采用 3GPP25.221 缺省方式定义的形式。
再进一步地, 所述的时隙配置信息包括: 同频邻小区编号、 同频邻小区 出现交叉时隙的时隙号; 或者包括: 同频邻小区编号、 各时隙的时隙号及其 上下行方向。
再进一步地, 所述的传输时延是通过配置测量命令, 使基站通过测量同 频邻小区的导频信号而获得。
进一步地, 基站确定同频邻小区的码道进行分组是基于码道所属小区对 同频邻小区的码道进行的, 码道分组数与同频邻小区个数相同, 每个分组内 的码道是对应小区的码道。
进一步地, 基站对确定地同频邻小区码道进行分组是基于码道幅度或功 率对同频邻小区的码道进行的, 按码道幅度或功率的强弱分成参与联合检测 的码道分组和干扰码道分组。 更进一步地, 所述的按码道幅度或功率的强弱分组, 包括: 由相邻小区 的信道估计结果, 或由相邻小区的信道估计结果得到的各码道的组合信道响 应, 估算出各码道信号的幅度或功率; 将待检测的码道, 以及幅度或功率大 于门限值的干扰码道, 分到参与联合检测的码道分组中, 将不包含待检测用 户的且幅度或功率低于门限值的干扰码道分到干扰码道分组中。
进一步地, 基站确定同频邻小区的码道进行分组是基于码道相关性对同 频邻小区的码道进行的, 按码道相关性的强弱分成参与联合检测的码道分组 和干扰码道分组。
更进一步地, 所述的按码道相关性的强弱分组, 包括: 由相邻小区的信 道估计结果、 或由相邻小区的信道估计结果得到的各码道的组合信道响应, 估算多小区信号中各个码道之间的相关性; 将所有待检测的码道和相关性大 于门限值的干扰码道, 分到参与联合检测的码道分组中, 将不包含待检测用 户的且相关性低于门限值的干扰码道分到干扰码道分组中。
再进一步地, 所述码道之间的相关性包括平均相关性、 最大相关性和最 小相关性, 是从中选择一种相关性并按大小进行分组。
进一步地, 在基站根据多小区信道估计结果、 以及确定的参与联合检测 的各基站的码道进行联合检测中, 所述的确定的参与联合检测的各基站的码 道是: 所选取的参与联合检测的各基站的码道进行匹配滤波以及激活检测处 理后保留下来的激活码道。
进一步地, 基站根据多小区信道估计结果、 以及确定的参与联合检测的 各基站的码道进行联合检测采用的方法是: 基站在各分组内采用单小区 "线 性块均衡"和在分组间采用 "干扰抵消"的方法。
更进一步地,在各分组内采用单小区 "线性块均衡"和在分组间采用 "干 扰抵消"的方法进一步地包括:
对各个分组分别进行单小区联合检测, 检测出各分组结果;
当干扰抵消的次数达到设定的次数时, 输出待检测用户所在分组的检测 结果;
当干扰抵消的次数未达到设定的次数时, 检测出的各分组结果恢复各个 分组信号响应引起的干扰分量, 接收信号抵消非本组的干扰分量, 获得各组 的净信号; 然后将净信号作为下一步处理的分组结果。
再进一步地, 对各个分组分别进行单小区联合检测, 检测出各分组结果 还进一步地包括:
利用各个相邻小区的信道估计结果计算各个码道的组合信道响应; 由该组合信道响应构造出各个相邻小区的传输矩阵;
通过与从接收信号中分割出的数据部分进行匹配滤波, 和对匹配滤波的 结果进行单小区 "线性块均衡"获得各分组的联合检测结果。
又进一步地, 通过与从接收信号中分割出的数据部分进行匹配滤波, 和 对匹配滤波的结果进行单小区 "线性块均衡"获得各分组的联合检测结果进 一步包括:
对匹配滤波的结果进行激活检测, 并根据激活检测结果重新构造传输矩 阵, 然后再进行单小区 "线性块均衡"获得各分组的联合检测结果。
进一步地, 基站根据多小区信道估计结果、 以及确定的参与联合检测的 各基站的码道进行联合检测采用的方法是: 对参与联合检测的码道分组釆用 线性块均衡的联合检测方法。
更进一步地, 对参与联合检测的码道分组采用线性块均衡的联合检测方 法进行检测进一步包括:
利用各个码道的组合信道响应构造出参与联合检测码道分组的传输矩阵 和干扰码道分组的传输矩阵;
将参与联合检测码道分组的传输矩阵、 有色噪声干扰的协方差矩阵与从 接收信号中分割出的数据部分进行匹配滤波;
利用线性块均衡的联合检测算法对匹配滤波结果进行联合检测, 将获得 的发送数据估计的软输出值作为检测数据输出。
再进一步地, 所述的有色噪声干扰的协方差矩阵, 是用所述的干扰码道 分组的传输矩阵与所述的背景噪声计算得到的。
再进一步地, 所述的有色噪声干扰的协方差矩阵, 是将干扰码道分组中 的同频干扰当作白噪声处理后得到的, 包括: 计算干扰码道分组中各码道的 功率和; 计算功率和与背景噪声功率的和。
更进一步地, 对参与联合检测的码道分组采用线性块均衡的联合检测方 法进行检测进一步包括- 利用各个码道的组合信道响应构造出参与联合检测码道分组的传输矩阵 和干扰码道分组的传输矩阵;
将参与联合检测码道分组的传输矩阵、 有色噪声干扰的协方差矩阵与从 接收信号中分割出的数据部分进行匹配滤波;
基站对匹配滤波输出结果进行激活检测, 根据激活检测结果重新构造传 输矩阵;
利用线性块均衡的联合检测算法对所述根据激活检测结果构造的传输矩 阵进行联合检测, 将获得的发送数据估计的软输出值作为检测数据输出。
本发明利用交叉时隙所提供的信息, 使得码道分组更为准确, 从而使得 多小区联合检测方法能够很好抑制基站与基站的交叉时隙干扰, 提高时隙
CDMA系统在交叉时隙工作时的系统容量和稳定性。
附图说明
图 1是相互之间存在交叉时隙的两个小区的时隙配置图;
图 2是现有技术中, 为了避免出现交叉时隙而采用相同时隙转换点的配 置方法的流程图;
图 3是现有技术中, 为了避免交叉时隙干扰而釆用牺牲容量的配置方法 的流程图;
图 4是现有技术中小区建立的流程图;
图 5是 TD-SCDMA业务时隙突发结构;
图 6是时隙 CDMA系统抑制交叉时隙干扰方法的一种实施方式的流程示 意框图;
图 7是本发明的一种邻小区信息配置过程的示意图;
图 8是本发明的一种邻小区信息重配置过程的示意图;
图 9是三个同频邻小区的分布结构图;
图 10是时隙 CDMA系统抑制交叉时隙干扰的联合检测实施例系统流程 图;
图 11是本发明 RNC向基站配置信息的一种方式的流程图;
图 12给出了 3GPP25.221缺省方式下定义的扩频码与中间码的对应关系。 图 13给出了 3GPP25.223中小区参数编号与上、 下行导频码、 扰码、 基 本 midamble码的对应关系示意图。
具体实施方式
下面参照附图详细说明本发明。 所给出的附图仅用于说明, 并不限制本 发明。 如图 6所示, 本发明提供的抑制交叉时隙干扰的联合检测方法, 包括 如下步骤:
第 1步,本小区基站获取其自身的配置信息以及同频邻小区的配置信息。 交叉时隙干扰是影响相邻转换点灵活配置的主要限制因素。 为了克服交 叉时隙干扰, 需要修改现有信令, 如通过增加消息或对原有的消息内容进行 扩展, 使得基站不仅能够获得自身的配置信息, 而且能够获得邻小区的一些 必要的配置信息, 以便基站能够进行抑制交叉时隙干扰的处理。
同频邻小区的配置信息根据需要不同, 内容可以不同。 第一种方式, 同 频邻小区的配置信息包括基本 midamble码或同频邻小区参数编号、相邻基站 到本基站的距离或相邻基站信号到本基站的传输时延、 同频邻小区时隙配置 信息 (如上下行转换点)、 扩频系数 SF、 midamble K、 扩频码与基本 midamble 码循环移位的对应关系; 第二种方式, 同频邻小区的配置信息包括基本 midamble码或同频邻小区参数编号、同频邻小区时隙配置信息 (如上下行转换 点)、 相邻基站到本基站的距离或相邻基站信号到本基站的传输时延、 邻小区 使用的扩频码、 midamble K、扩频码与基本 midamble码循环移位的对应关系。
RNC可以通过下述方式进行配置:在基站投入使用, RNC对其所辖基站 成功完成小区建立配置后, 即基站已经确定了自己的上下行转换点后, RNC 判断相邻基站间是否存在交叉时隙, 当判断邻小区出现交叉时隙配置时, 将 增加一个 RNC到基站的消息过程, 以指示所需信息给基站, 使得基站能够根 据原来所获得的本基站的信息以及所指示的信息进行抑制交叉时隙干扰的处 理。 对于增加消息, 可以采用操作维护通道信令实现, 也可以通过 Iub接口 BAP信令实现, 本发明不限制消息增加的具体实现方式。 同时当小区配置 信息发生变化后, RNC需要支持重配置过程通知基站更新信息, 以保证有效 进行干扰消除。 该重配置过程包括根据小区业务特性的变化而进行上下行时 隙重新配置, 然后通知基站其本身配置的改变, 并且通知存在交叉时隙的基 站其邻小区的重配置信息。 本发明通过上述增加消息的方式向基站提供进行 交叉时隙干扰消除处理所需的相关信息, 使得系统在进行资源分配时不用考 虑交叉时隙禁用的限制。 该方式的具体步骤如下-
1. RNC根据小区业务特性确定其所辖各小区的时隙配置, 如上下行转 换点;
2. RNC通过小区建立过程通知所辖基站各小区自身的时隙配置;
3. RNC 根据其所辖各小区的时隙配置判断是否出现交叉时隙, 当判断 存在交叉时隙, 即存在来自相邻基站的交叉时隙干扰时, 如图 7所示, 通知 基站其同频邻小区的配置信息, 以便基站可以判断干扰是来自邻基站还是邻 区的 UE; 当判断不存在交叉时隙时,则按照现有技术的方式通知基站相应的 消息, 然后按照现有技术的方法进行联合检测, 这种情况本发明不再详细说 明。
其中, 通知给基站的同频邻小区的配置信息包括:
a. 同频邻小区的时隙配置信息, 用于本小区基站判断是否存在交叉时隙 干扰以及交叉时隙干扰所存在的位置。 其中时隙配置信息中最主要的是同频 邻小区的上下行切换点。 另外, 同频邻小区的时隙配置信息可以包括邻小区 编号、 邻小区出现交叉时隙的时隙号, 这时本小区基站不需再进行交叉时隙 干扰及其位置的判断; 同频邻小区的时隙配置信息也可以包括邻小区编号、 各时隙的时隙号及其上下行方向, 这时, 本小区基站根据相应邻小区的各时 隙的时隙号及其上下行方向判断是否存在交叉时隙干扰以及交叉时隙干扰所 存在的位置。
b. 支持同频邻基站采用扩展的联合检测技术的一些其他信息, 主要有: I) 相邻基站信号到达本基站的传输时延
由于网络建立后, 基站间的距离就确定了, 所以可以通过基站间的距离 信息获得该时延, 然后将该时延直接通知给基站, 也可以只将基站与其相邻 基站的距离通知给基站, 由各基站根据该距离来计算传输时延; 当然, 也可 以通过其他的方法, 例如通过基站自行测量邻小区基站的导频信号来获得, 但这需要知道邻小区基站使用的导频码 SYNC,而这个信息与 midamble码一样, 可以通过小区参数编号消息获得。 因此, 基站可以通过通知的邻小区参数编 号, 经自行测量而获得相邻基站信号到达本基站的传输时延。 所述的传输时 延用于从信道估计结果的总的信道响应中更准确截取各码道的信道响应, 从 而能更准确地确定邻小区所使用的码道或码道最大集。
II) 邻小区所使用的扰码或基本 Midamble码
RNC可以直接通知扰码或基本 Midamble码给基站, 也可以只通知小区参 数编号给基站, 由各基站根据小区参数编号得到扰码和基本 Midamble码。 通 常, 小区参数编号和扰码、 基本 Midamble码等有固定的对应关系, 从减少信 令的负荷角度可以选择需要传输信息量少的内容指示。
III) 邻小区下行时隙所使用的扩频系数和 Midamble K、 以及扩频码和基 本 Midamble码循环移位的对应关系
针对出现交叉时隙的情况, 需要确定邻小区下行时隙釆用的预定时隙类 型, 即扩频系数和 Midamble K, 和扩频码和基本 Midamble码循环移位的对应 关系, 并通知给基站。 这里扩频码和基本 Midamble码循环移位的对应关系包 括采用缺省的对应关系或采用预定的对应关系。 邻小区下行时隙所使用的扩 频系数和 Midamble K、 以及扩频码和基本 Midamble码循环移位的对应关系用 于进行扩展的联合检测。
当采用上述第二种方式, 在直接通知同频邻小区的扩频码的情形下, 上 述 b) 中提供的信息有所不同: 增加信息: IV) 同频邻小区的扩频码; 另外, 在上述 III) 中不提供扩频系数。
4. RNC根据小区业务特性进行资源分配, 而不需要考虑避免交叉时隙 干扰的出现。
当上述第 3项中的信息内容发生变化时, R C重复上述第 1-4项, 进行 小区重配置, 将本小区及其同频邻小区更新后的信息通知给存在交叉时隙的 基站。 由于 TDD系统可以根据上下行业务的变化灵活配置时隙转换点, 所以 在这些信息中,通常邻小区时隙配置信息及下行时隙类型的内容变化较频繁。 因此, 为降低信令负荷, 重配置过程中可仅仅包含时隙配置信息和时隙类型 信息。 如图 8所示, 其示出了通过增加重配置消息, 无线网络控制器向基站 提供更新的时隙配置和时隙类型, 对邻小区配置信息进行重配置的过程。
本发明的上述方法,是在保持现有时隙 CDMA系统协议基本不变的情况 下, 增加邻小区消息配置过程, 使得本发明的方法便于实施。
另外,也可以采用其它的方式。例如,对于本发明的上述方法,其中 RNC 可以在根据小区业务特性确定其所辖各小区的上下行时隙配置之后就进行交 叉时隙判断, 对不存在交叉时隙的基站, 通过小区建立过程通知所辖小区基 站其本身的配置信息; 而对存在交叉时隙的基站, 或者先通过小区建立过程 通知所辖小区基站本身的配置信息, 在小区建立成功后, 再通过邻小区配置 信息过程通知基站其邻小区的配置信息,或者对小区配置信息内容进行扩展, 使其加入邻小区配置信息, 从而使得通过小区建立过程一起通知所辖小区基 站本身及其邻小区的配置信息。当小区时隙配置发生变化时则重复上述步骤, RNC进行重配置。
另外, 对于本发明的上述方法, RNC也可以不进行交叉时隙判断, 或者 对小区配置信息内容进行扩展, 使其加入邻小区配置信息, 从而使得通过小 区建立过程将所辖各小区基站本身及其同频邻小区的配置信息一起发送给各 小区基站, 或者通过小区建立过程通知所辖小区基站本身的配置信息, 而通 过邻小区配置信息过程通知邻小区的配置信息。 但这时, 由于对每个基站都 通知本小区的配置信息及邻小区的配置信息, 所以传输的信息量会很大, 信 令的负荷也会很大。 这种方法是将判断是否存在交叉时隙及存在交叉时隙的 位置交由各小区基站根据其所获得的本身的配置信息及其邻小区的配置信息 来进行。 当小区时隙配置发生变化时则重复上述步骤, RNC进行重配置。
上述第一种方式中的扩频系数 SF、 midamble K,扩频码与基本 midamble 码循环移位的对应关系用于结合多小区信道估计结果来确定邻小区的码道配 置信息。 在上述第二种方式中, 通过邻小区使用的扩频码、 midamble K:、 以 及扩频码与基本 midamble码循环移位的对应关系确定邻小区的码道配置信 息。
第 2步, 多小区信道估计。
由于在同频情况下, 多个小区的 midamble码会混叠在一起, 造成相互干 扰, 导致信道估计结果变差。 为此, 可以采用申请号为 "03100670.1 " 的中 国专利申请中公开的 "多码集的信道估计方法", 以得到各个邻小区的信道估 计结果并提高信道估计的准确性。 进行多小区信道估计时需要知道邻小区的配置信息, 其中比较重要的是 邻小区所使用的训练序列(即 midamble码, 也称为 "信道估计码"), 如中间 码。 该训练序列是这样生成的: 对于同一个小区的同一个时隙, 给定一个基 本的 midamble码 mp, 不同的用户采用这个相同的基本 midamble码 mf的不 同循环移位版本作为它的训练序列 m^, 其中 k=l,...,K:。.这些训练序列的不同 循环移位版本 m^, k=l,...,K, 被称作一个码集, 多个小区就有多个码集。
申请号为 "03100670.1 "的中国专利申请所公开的 "多码集信道估计方 法"是在获得邻小区所使用的基本 midamble码后,针对同频多小区工作时存 在多码集信道估计码响应信号(即 midamble码的接收信号, 简称"多码集信 号")的情况,采用基于有限时间位置判决反馈处理的多码集联合信道迭代估 计方法,对多个 midamble码同时进行信道估计计算, 得到各个小区的信道估 计结果。 根据已知的各 midamble码及对应的信道估计, 就可以计算出各 midamble码的干扰。 通过门限处理及多次迭代, 最终得到去掉干扰的较为准 确的各小区信道估计值, 使得信道估计结果更为准确。 其中, 信道估计的多 小区是邻小区, 邻小区包括待检测用户所在的本小区及与本小区在地域位置 上最相邻的小区。
另外, 利用第 1步中获得的传输时延信息, 在进行上述的多码集信道估 计过程中,可以更准确地定位和提取各码道的信道响应 h( ), 从而提高各小区 的单码集信道估计的准确性, 进而提高多码集信道估计结果的准确性。
其中, 根据时隙 CDMA进行信道估计的方法, 即 Steiner估计器, 详细 内容参见文献 KB. Steiner, and P. W. Baier, "Low Cost Channel Estimation in the Uplink Receiver of CDMA Mobile Radio Systems," FREQUENZE, 47(1993)11-12), 各码道的信道响应 hw为: 其中, 窗长 W表示信道响应的时间宽度, 上标 T表示转置。信道响应矢 量就是用以码片为间隔的 W个抽头上的值来表示的。
当然, 当对结果要求不高时, 这里的多小区信道估计也可以用上述文献
1 中所述的单小区信道估计方法对各小区分别进行单小区信道估计而得到各 小区的信道估计结果, 即得到各小区码道的信道响应 h(4)。 第 3步, 确定同频邻小区的码道配置信息, 以确定参与下面码道分组的 码道。
第一种方法是通过 Iub接口 NBAP信令或操作维护通道通知直接获得同 频邻小区的扩频码, 然后根据相应的 midamble K、 扩频码与基本 midamble 码循环移位的对应关系获得相应邻小区的码道配置信息, 这时邻小区的扩频 码对应的码道均参与码道分组。
第二种方法是通过多小区信道估计结果进行判断来获得邻小区的码道配 置信息。 根据在第 2步中所获得的多小区信道估计结果,即邻小区的总的信道 响应矢量以及在第 1步中所获得的传输时延,从总的信道响应矢量中确定各码 道的信道响应。 在扩频系数已知的情况下,由于基本 midamble码的循环移位 与各码道的信道响应有确定的对应关系,因此, 通过各码道信道响应可以确定 邻小区被使用的码道或码道的最大集, 从而获得各个被使用或可能被使用的 码道的扩频码, 得到邻小区的码道配置信息。 当各码道信道响应与码道一一 对应时, 即可确定邻小区的码道的配置信息。 当各用户信道响应与码道不是 一一对应时, 则获得邻小区被使用的码道的最大集。 这时, 可以将码道最大 集中的各个码道均列入被使用的码道范围中。
第 4步, 码道分组
由于多个同频邻小区将存在大量的码道, 为了能够以较低的代价和良好 的性能实现联合检测, 对在上述第 3步中所确定的参与码道分组的邻小区的 码道进行分组。 码道分组的具体方案如下:
第一种方案是基于码道所属小区的分组方法。 有几个同频小区就设成几 个组, 那么每组内的码道就是相应小区的码道。
对于同频邻小区使用的扩频码通过 Iub接口 NBAP信令或操作维护通道 直接获得的情况下,参与进行码道分组的码道是各个邻小区预先分配的码道。 当邻小区的码道配置信息通过多小区信道估计进行判断而获得的情况下, 参 与进行码道分组的码道可以是获得的各个邻小区的码道或码道最大集。其中, 当获得的是邻小区的码道最大集时, 可以使码道最大集中的所有码道都参与 码道分组。
由上述方案进行码道分组所得到的各分组,可以全部被选参与联合检测, 也可以部分被选参与联合检测。
第二种方案是基于码道功率或幅度的分组方法。,通过由多小区信道估计 结果得到的总的信道响应矢量而得到的各码道的信道响应!》«,或者由各码道 的信道响应 h(fc)以及在上述第 3 步中获得的各码道的扩频码, 根据上述公式 (2) 而得到各码道的组合信道响应 ^, 可以估算出各码道信号的幅度或功 率(幅度通过求平方可以获得功率)。然后依据幅度或功率的强弱来进行分组。 例如确定一个幅度或功率的门限值, 码道信号的幅度或功率大于该门限值为 强, 低于该门限值为弱, 幅度或功率强的码道为一组, 功率或幅度弱的码道 为另一组。
第三种方案是基于码道相关性的分组方法。 首先通过由多小区信道估计 结果得到的各码道的信道响应11«, 或者由各码道的信道响应 以及在上述 第 3步中获得的各码道的扩频码, 根据上述公式(2)而得到各码道的组合信 道响应 ^, 估算出多小区信号中各个码道之间的相关性, 然后按照相关性的 强弱对所有码道进行分组。 例如确定一个相关性的门限值, 码道间相关性大 于该门限值的为强, 低于该门限值的为弱, 相关性强的码道分为一组, 相关 性弱的码道分为另一组。 多个码道的相关性可以是平均的相关性、 最大的相 关性或者是最小的相关性。
也可以采用上述方法的混合方法分组, 或基于其它原则的分组。
第 5步, 联合检测。 利用上述多小区信道估计结果、 对本小区的所有码 道以及在第 4步中确定的参与联合检测的邻小区码道进行联合检测, 获得联 合检测结果。
如背景技术中所述的, 联合检测方法可以是干扰抵消方法, 可以是线性 块均衡的方法, 也可以是两者混合的方法。 例如, 我们可以在各个分组内采 用线性块均衡的联合检测方法,而在不同的码道分组间采用干扰抵消的方法。
需要进一步说明的是, 在本发明的多小区联合检测方法中, 对于经码道 分组而成为参与联合检测的码道, 在进行联合检测前可以经过匹配滤波, 然 后再经激活检测处理, 将通过激活检测保留下来的激活码道作为参与联合检 测的码道。
下面以 TD-SCDMA系统为例对本发明的方法进行详细说明。 TD-SCDMA系统是一个时分的 CDMA系统, 在一个子帧内, 第一时隙 总是下行, 用于传输广播等信息。 第二时隙是用于上行, 其余时隙上下行的 转换点可变。 本申请仅考虑基站与基站之间的交叉时隙干扰, 即仅考虑同频 邻小区基站的下行信号对本小区基站接收的上行信号的干扰。 这里假设扩频 码与基本 midamble码循环移位有固定的对应关系,且邻小区的扩频码是由 lub 接口 BAP信令或操作维护通道直接通知而获得的。
下面结合图 10并以图 9所示的三个同频相邻小区为例,具体说明本发明 的实现方法。 根据公式(1 ) 的原理, 本小区加上两个同频邻小区的多用户信 号 e可以表示为- e = A0d0 +VA,.d,. +n0
^ (7)
其中, A。和 d。分别是本用户本小区的传输矩阵和发送数据; A'和 d'分别 是第 i ( ^12 ) 个邻小区的传输矩阵和发送数据; n。是除去相邻 2个小区干 扰后的干扰和噪声功率 (如白噪声)。
步骤 31,本小区基站获得本小区的配置信息以及同频邻小区的配置信息, 其中同频邻小区的配置信息可以通过 lub接口 NBAP信令或操作维护通道获 得。 所述同频邻小区的配置信息包括:基本 midamble码, 扰码, midamble K 值 (即一个时隙中码道的信道响应的个数), 扩频系数 SF,扩频码与基本 midamble码循环移位的对应关系,邻小区基站信号到本小区基站的传输时延, 以及邻小区的时隙配置, 主要是上下行转换点。 其中基本 midamble码、 扰码 与小区参数编号 Cell Parameter ID是一一对应的, 如图 13所示, 因此也可以 通过通知得到的小区参数编号 Cell Parameter ID而获得。
如图 11所示, 本步骤可以通过下述步骤来实现:
步骤 S101, 无线网络控制器 RNC根据各小区的业务特性, 如各个小区的 网络性能指标、 系统负荷情况和业务比例等参数, 配置其所辖小区的时隙配 置, 如上下行转换点, 即确定帧内上下行时隙的比例, 进而确定各个时隙的 方向;
步骤 S102, RNC通过图 4所示的小区建立请求来让 Node B中建立一个小 区, Node B保留必需的资源并根据消息中给出的参数对新小区进行配置后, 给 RNC—个小区建立响应消息。 这样 RNC通过小区建立的过程, 依次建立其 所辖的小区, 并配置其小区编号, 绝对频点号, 最大发射功率, 同步信道的 配置, 广播所在的公共信道的配置信息, 时隙配置信息等;
步骤 S103 , RNC判断各小区之间是否存在交叉时隙;
步骤 S104, 当没有出现交叉时隙时, 则 R C按照现有技术的方式通知基 站相应的消息, 然后按照现有技术进行联合检测, 这种情况本申请不再详述; 当出现交叉时隙时, R C通过邻小区配置信息过程, 通知小区基站其同频邻 小区的配置信息, 所述邻小区的配置信息包括:
I)相邻基站到本基站的传输时延。一般一个基站的相邻小区基站为 6个。 在网络结构确定后, 小区基站的位置基本固定, 该距离变化的可能性较小。 基站可根据与邻基站的距离获得信号传播时延。
II) 邻基站使用的扰码或基本 midamble码, 以用于小区基站进行多小区 信道估计和扩展的联合检测。 该值相对较固定。
III)邻基站小区的上下行时隙配置信息, 如时隙序号、 时隙方向、 激活 与否等信息。 由于 TDD系统上下行可以根据业务比例灵活调整, 该值将可能 以一定的频率变化。 通过所获得的邻基站小区的时隙配置信息用于确定帧内 上下行转换点, 并判断出现的交叉时隙。
IV)邻基站小区下行时隙的时隙类型, 其主要用于指明时隙内资源的对 应关系, 包括该时隙使用的扩频系数 SF和 midamble K, 以及扩频码与中间码 的循环移位对应关系。 例如, 采用 3GPP25.221缺省方式定义的扩频码与中间 码的对应关系, 当扩频系数 SF=16, K=16时, 该对应关系如图 12所示。 这些 参数本身是相对固定的, 但当一个时隙上下行方向配置改变, 例如一个时隙 由上行变为下行时, 这些参数需要随之进行重新配置。
图 11中的步骤 S104是本发明的方法中增加的新的信令过程, 主要用于 RNC通知基站其邻小区的时隙配置信息。其包含于配置和重配置两个过程中。
步骤 S105, RNC运行, 进行无线资源分配;
当有小区的时隙配置信息及下行时隙的时隙类型发生变化时, RNC重复 上述步骤 S101, 进行小区重配置, 将各基站小区本身更新后的信息及其邻小 区更新后的信息通知给各基站。 由于本申请只考虑基站与基站的交叉时隙干扰, 因此对于接收上行信号 的基站, 对其造成交叉时隙干扰的同频邻小区都是发送下行信号的小区, 而 对于 TD-SCDMA系统来说,下行扩频系数为 1或 16,这里取扩频系数为 16。
在本申请人的专利申请号为 200410080196.6的 "时隙码分多址系统多小 区联合检测方法"中较难获得时延信息, 因此应用于交叉时隙时效果不好。 但本申请考虑到基站对基站的交叉时隙干扰, 而邻小区基站的时延数值固定 且数目少, 因此可以通过 Iub接口 NBAP信令或操作维护通道通知, 从而在 进行联合检测时可以较好地抑制交叉时隙干扰。
步骤 32, 对该多用户信号 e进行数据分割, 即对图 5中所示的常规时隙 突发结构进行分割, 三个同频相邻小区的中间码部分对应的是三个码集的中 间码信号 因而接收到的总的中间码部分为 em=eml+em2+em3, 将分割出的中间码部分 (中间码的接收信号或称中间码的响应信号)送多 小区信道估计, 将分割出的数据符号部分 ed送匹配滤波。
步骤 33, 根据在步骤 31中获得的时隙配置信息 断是否存在交叉时隙, 以及存在交叉时隙的位置, 从而使得本小区基站知道是否存在交叉时隙干扰 以及交叉时隙干扰存在的位置;
步骤 34, 进行多小区信道估计。 在步骤 33中得到的存在交叉时隙干扰 的时隙, 对在步骤 32中得到的总的中间码部分 em采用多码集信道估计方法 进行信道估计, 可以分别得到三个同频小区的信道估计结果, 即各小区的总 的信道响应矢量(具体方法见: CN03100670.1 , 2003.05.09 "时隙码分多址 系统多码集信道估计方法")。
步骤 35, 确定同频邻小区的码道或码道最大集中所包含各码道的配置信 息, 以确定参与码道分组的码道。
如前所述, 使用在步骤 31中获得的扰码、 扩频系数、 midamble K、 扩频 码与基本 midamble码循环移位的对应关系、邻小区基站到本小区基站的时延 信息通过多小区信道估计结果进行判断来获得同频邻小区使用的码道配置信 息。
在步骤 34 中所得到的信道估计结果是邻小区所有码道信道响应按顺序 排列构成的,如果要从中正确截取各码道的信道响应,必须知道各码道信道响 应的位置。各码道信道响应的位置与 midamble K和其他小区用户到本小区的 时延都有关系。 因此获得了时延信息对于从多小区信道估计结果中截取正确 的码道信道响应¾( 有很大作用。
截取了码道信道响应 hw后,利用所截取的码道信道响应 h(i), 根据在步骤 31中所取得的扰码、 扩频系数和 midamble K, 扩频码与基本 midamble码循 环移位的对应关系可以确定对应的被使用的码道的扩频码或码道最大集中各 个码道的扩频码。例如,扩频码与基本 midamble码循环移位的对应关系可以 采用按照 3GPP25.221 缺省方式定义的对应关系。
步骤 36, 码道分组。 对步骤 35中所获得的同频邻小区被使用的码道或 码道最大集进行分组, 确定参与进行下面的多小区联合检测的邻小区码道。
若按照前述本发明的第一种基于码道所属小区的分组方法, 可以将码道 按小区个数分成三个组。 在这种分组方式下, 按公式(7) 的原理, 分组后的 总接收信号 ed可以表示为:
Figure imgf000022_0001
若按照第二种基于码道幅度或功率的分组方法, 如先根据信道估计结果 hw得到各码道的组合信道响应 ^, 再由此估算出各码道信号的幅度或功率; 然后, 依据功率的强弱将所有码道分成两组, 将待检测 (指联合检测) 的码 道以及功率较强的干扰码道分到参与联合检测的码道组中, 将不包含待检测 用户且功率较弱的干扰码道分到干扰码道组中。 在这种分组方式下, 按公式 (7) 的原理, 分组后的总接收信号 ed可以表示为:
Figure imgf000022_0002
其中, As和^是参与联合检测码道组的传输矩阵和发送数据; A^d是 干扰码道组的传输矩阵和发送数据。
若按照第三种基于码道相关性的分组方法, 首先由各邻小区的信道估计 结果 hw得到各码道的组合信道响应 ^, 再由此估算所有非待检测用户码道 与待检测用户所有码道的相关性的均值, 再按照相关性均值的强弱将上述所 有码道分成两组, 将待检测用户的所有码道和所有与其码道平均的相关性较 强的码道分到参与联合检测的码道组中, 将剩下的不包含待检测用户且平均 的相关性较弱的码道分到干扰码道组中。在这种分组方式下, 按公式(7)的 原理, 分组后的总接收信号 ed可以表示为-
Figure imgf000023_0001
其中, As和^是参与联合检测码道组的传输矩阵和发送数据; A /和 d /是 干扰码道组的传输矩阵和发送数据 (第二种与第三种分组方法, 对分组后的 总接收信号 ed采用了相同的表达式)。
当扩频码与基本 midamble码循环移位的对应关系不是一一对应时,这时 通过上述方法获得的是邻小区被使用码道的最大集。 在这种情况下, 将码道 最大集中包括的所有码道都作为参与进行多小区联合检测的邻小区码道。
步骤 37,利用 ^构造式 (8)-(10)中的传输矩阵 A (根据公式(2), 由 h«获 得 )。 根据所采用的分组方法, 构造式 (8)-(10)中相应的传输矩阵 A。 如采 用第一种分组方法, 构造的传输矩阵 A就是三个小区的传输矩阵 A«)、
A2。如采用第二、第三种分组方法, 构造的传输矩阵 A就是 As (参与联合检 测中矩阵运算码道组的传输矩阵)、 Aj (不参与联合检测中矩阵运算的干扰码 道组的传输矩阵)。 构造的传输矩阵 A, 在釆用第一种分组方法时, 三个小区 的传输矩阵 Ao、 k、、 Α2分别送步骤 38进行匹配滤波和步骤 39进行多小区联 合检测, 在采用第二或第三种分组方法时, As送步骤 38进行匹配滤波, As、 送步骤 39进行多小区联合检测。
步骤 38, 匹配滤波。 在求发送数据 d估计的软输出值的公式 (3 ) 中, 求出式中的^ ^^ 的过程就是本步骤的匹配滤波过程。 其中的 e就是经数据 分割后的数据符号部分 ed, A是构造的矩阵。 对于第一种分组方法, 匹配滤 波过程中的 A就是 AQ、 Aj, A2, 对于第二种、 第三种分组方法, 匹配滤波过 程中的 A就是 As。 是有色噪声序列 n的协方差矩阵。
步骤 39, 进行矩阵处理, 最终完成多小区联合检测。 针对不同的码道分 组方法、 所构造的不同传输矩阵、 以及匹配滤波结果完成多小区联合检测, 即根据在步骤 37中所获得的传输矩阵 A, 利用公式(4) 中的一种方法得到 矩阵 T,再在步骤 38获得的匹配滤波 一 的基础上完成公式(3 )的运算。 其中参与联合检测的码道为本小区的所有码道以及按一种码道分组方法确定 的参与联合检测的同频邻小区的码道。 为了进一步以较低的代价和良好的性能实现联合检测, 在使参与联合检 测的码道经上述步骤 38进行匹配滤波后, 可以增加步骤 40, 对匹配滤波后 的码道进行激活检测, 然后将经激活检测处理后保留下来的激活码道作为参 与联合检测的码道, 同时根据所确定的参与联合检测的激活码道修正传输矩 阵八。
对于第一种码道分组方法, 联合检测可以采用 "线性块均衡 +干扰抵消" 的方法, 即三个分组内采用线性块均衡的联合检测方法, 三个分组间采用干 扰抵消的联合检测方法。 包括-
1 )各个分组对总接收信号 用线性块均衡的联合检测方法进行各自分组 的检测, 即对各分组采用单小区联合检测算法进行检测, 根据公式(8), ed= A0do+A1d1+A2d2+n0, 当对干扰小区 1作单小区联合检测时, 认为: ε^Α^ (A0d0+A2d2+n0) = ^^ + 11! , ηι为非干扰小区 1信号的干扰, 利用单小区联 合检测方法(公式 (3))得到 d 同理可以得到 d2
2) 由检测出的各组结果进行干扰恢复, 分别得到干扰小区 1、 干扰小区 2对本小区本用户的干扰入^、 A2d2
3)从总的接收信号 ed中抵消掉非本组的干扰八^^ A2d2, 获得本组的净 信号: A0d0+n0=ed - (Aidi+A2d2);
4)对待检测用户所在分组的净信号进行线性块均衡的联合检测,得到待 检测用户的发送信号结果 dQ (公式(3))。步骤 4)获得的 dQ相对于直接在步 骤 1中用单小区联合检测的方法求得的 d。, 由于消除了同频邻小区干扰, 将 准确得多了。
上述过程只使用了一次干扰抵消。 在实际系统中, 可根据需要使用多次 干扰抵消以获得所需性能。 如二次抵消就是针对 (^、 d2分别按上述过程执行 得到较准确的干扰小区数据(^、 d2, 再从 ed 中减去由 4、 d2恢复出的干扰 ΑΛ, A2d2, 得到净信号, 再对得到的净信号进行线性块均衡的联合检测, 得到的 dQ将更为准确。 该 d。就是联合检测输出, 是解调出的发送数据。
需要抵消一次或多次时的具体实施方法, 可通过设置迭代次数并循环执 行 "线性块均衡 +干扰抵消"步骤来完成。迭代次数即为干扰抵消的次数。步 骤如下: 1)用线性块均衡方法对各个分组分别进行单小区联合检测, 检测出各分 组结果, 判断是否达到迭代次数, 如果是则输出待检测用户所在分组的检测 结果, 否则执行步骤 2);
2) 由检测出的各分组结果恢复各个分组信号响应引起的干扰分量;
3)接收信号抵消非本组的干扰分量, 获得各组的净信号;
4)将净信号作为下一步处理的分组结果, 返回步骤 1)。
在采用第二种和第三种码道分组方法时, 对参与联合检测的码道组, 采 用线性块均衡的联合检测方法进行检测。 在构造传输矩阵 A时所获得的 As、 Ai,其中 As是由本小区本用户码道加上本小区或邻小区功率或相关性大的码 道构造的传输矩阵, 用于多用户联合检测; ^是本小区其它用户或邻小区功 率或相关性小的码道构造的传输矩阵, 用于计算^。
由此, 根据公式 (3)经解调后的发送数据 ds估计的软输出值为: 其中, 矩阵 由下式给出 (选择其中一种方法):
Figure imgf000025_0001
其中有色噪声干扰的协方差矩阵 R n可以由干扰码道分组及背景噪声来 计算, 其表达式为:
R„ =E{n-n*T}=E{(Aid/ +n0)-(Aid/ +n0 Jr} = A;A +σ21 (13)
R"的具体计算通常有两种方法:
一种方法严格按公式 (13)计算,即首先由干扰码道分组中码道的组合信道 响应 (定义见 (2)式),构造干扰码道分组的传输矩阵 A/,然后计算 AA)T和背景 噪声功率 2, 最后求得^=^^^"^21
另一种方法是将干扰码道分组中的同频干扰当作白噪声的简化处理, 如 下式 (14):
R„ =E{n-n*T}= E{(A7d; + n。 )· (Ad, + n。 )叮 } = A, A;T + σ21 « σ!21 + σ21 = (σ,2 + σ2 )1
(14) 即计算干扰码道分组中各码道的功率并求和,得到 ^(^1也是 AA' 的对 角阵), 然后计算背景噪声功率0 "2, 最后求得^ ^+^)1。 图 10中步骤 37、 38、 39、 40被总称为本发明方法的多小区联合检测过 程。 即图 6中的步骤 5。
本发明的方法可以用于时隙 CDMA系统或采用类似信号结构的无线通 信系统,也可以扩展到天线数大于等于 2的非 CDMA时分双工通信蜂窝系统, 由于引入了多天线空分的效果, 参与联合检测的码道数目在大于扩频系数, 小于等于天线数乘以扩频系数的范围内都可以应用联合检测。 如时分双工 TDMA系统, 其可以视为上述描述中 SF=1 的特例, 因此也可以将邻小区的 信号引入联合检测。当天线数大于 1时,首先分别计算第 k个接收天线的 和 (A")trR-v , 进行合并, 然后按照公式(11 )进行联合检测。 此时, 系统通知 基站邻小区的配置信息得到简化, 主要体现在可以省略时隙类型信息, 即, 扩频系数, midamble K, 扩频码与信道估计码的对应关系。
当然, 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的 情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形, 但这些相应的改变和变形都应属于本发明所要求的保护范围。

Claims

权利 要 求 书
1.一种时隙 CDMA系统抑制交叉时隙干扰的方法, 包括:
基站根据本小区配置信息和同频邻小区的配置信息确定存在交叉时隙的 位置, 并对交叉时隙进行多小区信道估计, 得到信道估计结果;
基站确定同频邻小区的码道配置信息, 对所确定的码道进行分组, 确定 参与联合检测的同频邻小区的码道;
基站根据多小区信道估计结果、 以及确定的参与联合检测的各基站的码 道进行联合检测, 获得检测数据。
2. 根据权利要求 1所述的方法, 其特征在于, 基站获得本小区配置信息 和同频邻小区的配置信息是这样实现的:
无线网络控制器获取基站本小区的配置信息和同频邻小区的配置信息, 并通知基站。
3. 根据权利要求 2所述的方法, 其特征在于, 无线网络控制器通知基站 本小区的配置信息和同频邻小区的配置信息是通过两条消息实现的。
4. 根据权利要求 3所述的方法, 其特征在于, 无线网络控制器通知基站 同频邻小区的配置信息是通过 lub接口 BAP信令或者操作维护通道实现的。
5. 根据权利要求 2所述的方法, 其特征在于, 无线网络控制器通知基站 本小区的配置信息和同频邻小区的配置信息是这样实现的:
对各小区基站配置的信息进行扩展, 增加同频邻小区的配置信息; 无线网络控制器通过一条消息通知基站本小区的配置信息和同频邻小区 的配置信息。
6. 根据权利要求 5所述的方法, 其特征在于, 所述的无线网络控制器通 过一条消息通知基站本小区的配置信息和同频邻小区的配置信息是通过 lub 接口 NBAP信令实现的。
7. 根据权利要求 1所述的方法, 其特征在于, 所述同频邻小区的配置信 息包括: 时隙配置信息、 同频邻小区基站到达本基站的距离或同频邻小区基 站信号到达本基站的传输时延信息、 同频邻小区的参数编号或基本 Midamble 码和下行时隙采用的时隙类型,所述的时隙类型包括扩频系数, Midamble K, 以及扩频码与基本 Midamble码循环移位的对应关系。
8. 根据权利要求 7所述的方法, 其特征在于,
基站对交叉时隙进行多小区信道估计,得到信道估计结果进一步地包括: 基站根据同频邻小区的时隙配置信息, 确定交叉时隙存在的位置, 然后根据 基本 midamble码或由同频邻小区的参数编号确定的基本 midamble码, 利用 多小区信道估计方法对存在交叉时隙干扰的时隙进行多小区信道估计, 获取 信道估计结果。
9.根据权利要求 7所述的方法, 其特征在于,
基站确定同频邻小区的码道配置信息, 对所确定的码道进行分组, 确定 参与联合检测的同频邻小区的码道进一步地包括: 基站根据同频邻小区基站 信号到本基站的传输时延或根据相邻基站到达本基站的距离求得的传输时 延、 midamble K、 扩频系数、 和扩频码与基本 midamble码循环移位的对应关 系、 以及信道估计结果, 通过激活检测确定同频邻小区被使用的码道或码道 的最大集, 其中码道最大集中的所有码道均列为同频邻小区被使用的码道。
10. 根据权利要求 1所述的方法, 其特征在于,
所述同频邻小区的配置信息包括: 时隙配置信息、 相邻基站到达本基站 的距离或同频邻小区基站信号到本基站的传输时延、 同频邻小区的参数编号 或基本 midamble码、 同频邻小区使用的扩频码、 midamble K以及扩频码与 基本 midamble码循环移位的对应关系。
11. 根据权利要求 10所述的方法, 其特征在于,
基站对交叉时隙进行多小区信道估计,得到信道估计结果进一步地包括: 基站根据时隙配置信息, 确定交叉时隙存在的位置, 根据在基本 midamble码 或由同频邻小区的参数编号确定的基本 midamble码,利用多小区信道估计方 法对存在交叉时隙干扰的时隙进行多小区信道估计, 获取信道估计结果。
12. 根据权利要求 10所述的方法, 其特征在于,
基站确定同频邻小区的码道配置信息, 对所确定的码道进行分组, 确定 参与联合检测的同频邻小区的码道进一步地包括: 基站对同频邻小区使用的 扩频码、 midamble K、扩频码与基本 midamble码循环移位的对应关系确定邻 小区的码道配置信息, 从而确定同频邻小区被使用的码道。
13. 根据权利要求 7或 10所述的方法, 其特征在于,
在 TD-SCDMA系统中, 同频邻小区的配置信息还包括扰码, 所述的扰 码能通过所述基本 Midamble码或邻小区的参数编号得到。
14.根据权利要求 7或 10所述的方法, 其特征在于,
所述扩频码与基本 midamble码循环移位对应关系釆用 3GPP25.221 缺省 方式定义的形式
15.根据权利要求 7或 10所述的方法, 其特征在于,
所述的时隙配置信息包括: 同频邻小区编号、 同频邻小区出现交叉时隙 的时隙号; 或者包括: 同频邻小区编号、 各时隙的时隙号及其上下行方向。
16. 根据权利要求 7或 10所述的方法, 其特征在于,
所述的传输时延是通过配置测量命令, 使基站通过测量同频邻小区的导 频信号而获得。
17.根据权利要求 1所述的方法, 其特征在于,
基站确定同频邻小区的码道进行分组是基于码道所属小区对同频邻小区 的码道进行的, 码道分组数与同频邻小区个数相同, 每个分组内的码道是对 应小区的码道。
18.根据权利要求 1所述的方法, 其特征在于,
基站对确定地同频邻小区码道进行分组是基于码道幅度或功率对同频邻 小区的码道进行的, 按码道幅度或功率的强弱分成参与联合检测的码道分组 和干扰码道分组。
19.根据权利要求 18所述的方法, 其特征在于,
所述的按码道幅度或功率的强弱分组, 包括: 由相邻小区的信道估计结 果, 或由相邻小区的信道估计结果得到的各码道的组合信道响应, 估算出各 码道信号的幅度或功率; 将待检测的码道, 以及幅度或功率大于门限值的干 扰码道, 分到参与联合检测的码道分组中, 将不包含待检测用户的且幅度或 功率低于门限值的干扰码道分到干扰码道分组中。
20.根据权利要求 1所述的方法, 其特征在于,
基站确定同频邻小区的码道进行分组是基于码道相关性对同频邻小区的 码道进行的, 按码道相关性的强弱分成参与联合检测的码道分组和干扰码道 分组。
21.根据权利要求 20所述的方法, 其特征在于,
所述的按码道相关性的强弱分组, 包括: 由相邻小区的信道估计结果、 或由相邻小区的信道估计结果得到的各码道的组合信道响应, 估算多小区信 号中各个码道之间的相关性; 将所有待检测的码道和相关性大于门限值的干 扰码道, 分到参与联合检测的码道分组中., 将不包含待检测用户的且相关性 低于门限值的干扰码道分到干扰码道分组中。
22. 根据权利要求 21所述的方法, 其特征在于,
所述码道之间的相关性包括平均相关性、 最大相关性和最小相关性, 是 从中选择一种相关性并按大小进行分组。
23.根据权利要求 1所述的方法, 其特征在于,
在基站根据多小区信道估计结果、 以及确定的参与联合检测的各基站的 码道进行联合检测中, 所述的确定的参与联合检测的各基站的码道是: 所选 取的参与联合检测的各基站的码道进行匹配滤波以及激活检测处理后保留下 来的激活码道。
24.根据权利要求 1所述的方法, 其特征在于,
基站根据多小区信道估计结果、 以及确定的参与联合检测的各基站的码 道进行联合检测采用的方法是: 基站在各分组内采用单小区 "线性块均衡" 和在分组间采用 "干扰抵消"的方法。
25.根据权利要求 24所述的方法, 其特征在于,
在各分组内采用单小区 "线性块均衡"和在分组间釆用 "干扰抵消"的 方法进一步地包括:
对各个分组分别进行单小区联合检测, 检测出各分组结果;
当干扰抵消的次数达到设定的次数时, 输出待检测用户所在分组的检测 结果;
当干扰抵消的次数未达到设定的次数时, 检测出的各分组结果恢复各个 分组信号响应引起的干扰分量, 接收信号抵消非本组的干扰分量, 获得各组 的净信号; 然后将净信号作为下一步处理的分组结果。
26.根据权利要求 25所述的方法, 其特征在于, 对各个分组分别进行单小区联合检测, 检测出各分组结果还进一步地包 括- 利用各个相邻小区的信道估计结果计算各个码道的组合信道响应; 由该组合信道响应构造出各个相邻小区的传输矩阵;
通过与从接收信号中分割出的数据部分进行匹配滤波, 对匹配滤波的结 果进行单小区 "线性块均衡"获得各分组的联合检测结果。
27.根据权利要求 26所述的方法, 其特征在于,
通过与从接收信号中分割出的数据部分进行匹配滤波, 和对匹配滤波的 结果进行单小区 "线性块均衡"获得各分组的联合检测结果进一步包括: 对匹配滤波的结果进行激活检测, 并根据激活检测结果重新构造传输矩 阵, 然后再进行单小区 "线性块均衡"获得各分组的联合检测结果。
28.根据权利要求 1所述的方法, 其特征在于,
基站根据多小区信道估计结果、 以及确定的参与联合检测的各基站的码 道进行联合检测采用的方法是: 对参与联合检测的码道分组采用线性块均衡 的联合检测方法。
29. 根据权利要求 28所述的方法, 其特征在于,
对参与联合检测的码道分组采用线性块均衡的联合检测方法进行检测进 一步包括:
利用各个码道的组合信道响应构造出参与联合检测码道分组的传输矩阵 和干扰码道分组的传输矩阵; '
将参与联合检测码道分组的传输矩阵、 有色噪声干扰的协方差矩阵与从 接收信号中分割出的数据部分进行匹配滤波;
利用线性块均衡的联合检测算法对匹配滤波结果进行联合检测, 将获得 的发送数据估计的软输出值作为检测数据输出。
30.根据权利要求 29所述的方法, 其特征在于,
所述的有色噪声干扰的协方差矩阵, 是用所述的干扰码道分组的传输矩 阵与所述的背景噪声计算得到的。
31. 根据权利要求 29所述的方法, 其特征在于,
所述的有色噪声干扰的协方差矩阵, 是将干扰码道分组中的同频干扰当 作白噪声处理后得到的, 包括: 计算干扰码道分组中各码道的功率和; 计算 功率和与背景噪声功率的和。
32.根据权利要求 28所述的方法, 其特征在于,
对参与联合检测的码道分组采用线性块均衡的联合检测方法进行检测进 一步包括- 利用各个码道的组合信道响应构造出参与联合检测码道分组的传输矩阵 和干扰码道分组的传输矩阵;
将参与联合检测码道分组的传输矩阵、 有色噪声干扰的协方差矩阵与从 接收信号中分割出的数据部分进行匹配滤波;
基站对匹配滤波输出结果进行激活检测, 根据激活检测结果重新构造传 输矩阵;
利用线性块均衡的联合检测算法对所述根据激活检测结果构造的传输矩 阵进行联合检测, 将获得的发送数据估计的软输出值作为检测数据输出。
PCT/CN2006/002309 2005-09-07 2006-09-07 Method for restraining cross-slot interference in slot cdma system WO2007028335A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/066,176 US7978624B2 (en) 2005-09-07 2006-09-07 Method for restraining cross-slot interference in slot CDMA system
EP06775619.7A EP1931154B1 (en) 2005-09-07 2006-09-07 Method for restraining cross-slot interference in slot cdma system
JP2008529452A JP4637956B2 (ja) 2005-09-07 2006-09-07 タイムスロットcdmaシステムにおいてクロースタイムスロットによる干渉を抑止する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510098767.3 2005-09-07
CN2005100987673A CN1929323B (zh) 2005-09-07 2005-09-07 时隙cdma系统抑制交叉时隙干扰的方法

Publications (1)

Publication Number Publication Date
WO2007028335A1 true WO2007028335A1 (en) 2007-03-15

Family

ID=37835378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/002309 WO2007028335A1 (en) 2005-09-07 2006-09-07 Method for restraining cross-slot interference in slot cdma system

Country Status (6)

Country Link
US (1) US7978624B2 (zh)
EP (1) EP1931154B1 (zh)
JP (1) JP4637956B2 (zh)
KR (1) KR100989398B1 (zh)
CN (1) CN1929323B (zh)
WO (1) WO2007028335A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2237637A1 (en) * 2007-12-18 2010-10-06 ZTE Corporation Method of uplink multi-cell joint detection in a time division -synchronous code division multiple access system
CN102932300A (zh) * 2011-08-08 2013-02-13 鼎桥通信技术有限公司 基于多载波的独立训练序列信道分配方法及移动通信系统
US10090956B2 (en) 2009-06-16 2018-10-02 Qualcomm Incorporated Mechanisms for information exchange across cells to facilitate reception in a heterogeneous network

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100375560C (zh) * 2004-09-13 2008-03-12 大唐移动通信设备有限公司 多载波时分双工移动通信系统灵活支持非对称业务的方法
CN100464603C (zh) * 2005-06-16 2009-02-25 上海原动力通信科技有限公司 一种采用同频组网的数字蜂窝通信系统中越区切换的方法
CN101056118B (zh) * 2006-04-14 2010-08-11 鼎桥通信技术有限公司 一种在多小区联合检测中共享相邻小区信息的方法
KR100893736B1 (ko) * 2007-09-20 2009-04-17 한국전자통신연구원 광대역 단일 반송파 이동통신용 채널 사운딩 시스템 및방법
US7949005B2 (en) * 2007-09-25 2011-05-24 Intel Corporation Device, system, and method of wireless communication of base stations
CN104734833B (zh) * 2007-12-04 2019-04-23 蔚蓝公司 抑制小区间干扰的方法和装置
US20090161647A1 (en) * 2007-12-20 2009-06-25 Russ Mestechkin Td-scdma uplink processing
CN101282273B (zh) * 2008-05-27 2010-11-10 杭州华三通信技术有限公司 基带epcn系统中的时隙分配方法和设备
CN101631316B (zh) * 2008-07-16 2011-07-06 中国移动通信集团公司 在tdd系统中提高频谱利用率的方法和设备
CN101630960B (zh) * 2008-07-18 2014-06-18 俊茂微电子(上海)有限公司 用于通信设备的联合检测方法和装置以及通信设备
MX2011001323A (es) 2008-08-07 2011-03-29 Sharp Kk Aparato de estacion base pequeño aparato de estacion base, aparato de estacion movil y sistema de comunicacion movil.
WO2010039076A1 (en) * 2008-10-03 2010-04-08 Telefonaktiebolaget L M Ericsson (Publ) Joint detection for a code division multiple access communication network
CN101772222B (zh) * 2008-12-29 2013-03-20 中兴通讯股份有限公司 获取相邻基站所属小区mbsfn配置信息的方法和系统
KR20100099838A (ko) * 2009-03-04 2010-09-15 삼성전자주식회사 인지 무선 기반의 무선통신 시스템에서 공존 비콘 프로토콜패킷 전송 장치 및 방법
US9357554B2 (en) 2009-03-11 2016-05-31 Huawei Technologies Co., Ltd. Method and apparatus for coexistence of multiple operating entity systems
CN101990233B (zh) * 2009-07-30 2013-06-05 中兴通讯股份有限公司 Td-scdma系统中联合检测复位的方法、装置及系统
US20110194630A1 (en) * 2010-02-10 2011-08-11 Yang Hua-Lung Systems and methods for reporting radio link failure
CN102195671B (zh) * 2010-03-12 2014-07-02 中国移动通信集团公司 同频多小区联合检测方法及检测系统
WO2011113198A1 (en) 2010-03-17 2011-09-22 Qualcomm Incorporated Apparatus and method for interference mitigation
CN102237928B (zh) * 2010-05-07 2014-11-19 华为技术有限公司 一种信号的传输方法、装置和系统
US9629012B2 (en) * 2010-09-20 2017-04-18 Empire Technology Development Llc Dynamic mobile application quality-of-service monitor
CN102457972B (zh) * 2010-11-01 2014-06-25 中国移动通信集团上海有限公司 一种不同时隙配比的同频组网方法及装置
CN102149099B (zh) * 2011-04-08 2014-02-12 电信科学技术研究院 一种进行小区间干扰协调的方法及装置
WO2012135978A1 (en) * 2011-04-08 2012-10-11 Telefonaktiebolaget L M Ericsson (Publ) Reducing interference caused by an atmospheric duct in a wireless communication system
WO2013040754A1 (en) * 2011-09-20 2013-03-28 St-Ericsson Sa Method, apparatus, receiver, computer program and storage medium for joint detection
CN103067311B (zh) * 2011-10-18 2015-06-10 联发科技(新加坡)私人有限公司 盲信道冲激响应合并方法和系统
CN103379520B (zh) * 2012-04-26 2016-02-17 电信科学技术研究院 一种进行干扰控制的方法和设备
KR101882669B1 (ko) * 2012-05-11 2018-07-30 노키아 솔루션스 앤드 네트웍스 오와이 이종 네트워크에서 업링크-다운링크 간섭을 완화시키는 방법
US9119074B2 (en) * 2012-06-05 2015-08-25 Qualcomm Incorporated Uplink downlink resource partitions in access point design
CN103517281A (zh) * 2012-06-20 2014-01-15 电信科学技术研究院 干扰信息的反馈及干扰控制方法和装置
KR20150082213A (ko) * 2012-11-02 2015-07-15 엘지전자 주식회사 간섭 제거 수신 방법 및 단말
WO2014107883A1 (en) 2013-01-11 2014-07-17 Empire Technology Development Llc Elimnating crossed timeslots interference
CN104322130B (zh) * 2013-01-21 2018-10-19 华为技术有限公司 干扰抑制方法、数据传输方法、装置、用户设备和基站
CN103973610B (zh) * 2013-01-25 2017-11-24 华为技术有限公司 无线收发设备的上行数据接收方法和装置
EP3114892B1 (en) * 2014-03-06 2018-10-31 Telefonaktiebolaget LM Ericsson (publ) Configuration of wireless terminals based upon discovery of other wireless terminals in the vicinity using short range communications
CN104202776B (zh) * 2014-04-24 2019-03-08 江苏鑫软图无线技术股份有限公司 Td-lte同频相邻小区上下行混合配置组网干扰信号消除方法
US9866596B2 (en) 2015-05-04 2018-01-09 Qualcomm Incorporated Methods and systems for virtual conference system using personal communication devices
US9906572B2 (en) * 2015-08-06 2018-02-27 Qualcomm Incorporated Methods and systems for virtual conference system using personal communication devices
US10015216B2 (en) 2015-08-06 2018-07-03 Qualcomm Incorporated Methods and systems for virtual conference system using personal communication devices
US9894680B1 (en) * 2016-03-23 2018-02-13 Sprint Spectrum L.P. Systems and methods for adjusting subframe transmissions based on uplink data rate
WO2017190272A1 (zh) * 2016-05-03 2017-11-09 华为技术有限公司 一种干扰消除方法及基站
US20180270835A1 (en) * 2017-03-17 2018-09-20 Mediatek Inc. Techniques of cross-link interference mitigation in flexible duplex
CN110740023B (zh) * 2018-07-20 2022-04-29 中兴通讯股份有限公司 控制信令的发送方法及装置、服务基站、存储介质
CN112994820B (zh) * 2019-12-16 2023-04-18 华为技术有限公司 一种光纤链路检测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1445950A (zh) 2002-11-13 2003-10-01 大唐移动通信设备有限公司 在联合检测系统中应用长小区化码的方法
US20040100928A1 (en) * 2002-11-27 2004-05-27 International Business Machines Corporation Code-division-multiple-access (DS-CDMA) channels with aperiodic codes
CN1520077A (zh) 2003-01-21 2004-08-11 大唐移动通信设备有限公司 时隙码分多址系统多码集信道估计方法
CN1543749A (zh) * 2001-08-17 2004-11-03 ��������λ�Ƽ���˾ 在一个使用码分多址的分时双工通信系统中交叉小区用户设备干扰的降低
CN1555145A (zh) * 2003-12-24 2004-12-15 大唐移动通信设备有限公司 时分双工码分多址系统中使用交叉时隙资源的方法及装置
CN1753322A (zh) 2004-09-24 2006-03-29 大唐移动通信设备有限公司 时隙码分多址系统多小区联合检测方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466557B1 (en) * 1997-07-14 2002-10-15 Sanyo Electric Co., Ltd. Transmission channel allocation method and allocation apparatus
US6334057B1 (en) * 1998-06-30 2001-12-25 Telefonaktiebolaget Lm Ericsson (Publ) Channel allocation in a telecommunications system with asymmetric uplink and downlink traffic
JP2000261412A (ja) * 1999-03-06 2000-09-22 Matsushita Electric Ind Co Ltd 干渉信号除去装置
US20040116122A1 (en) * 2002-09-20 2004-06-17 Interdigital Technology Corporation Enhancing reception using intercellular interference cancellation
US20050111408A1 (en) * 2003-11-25 2005-05-26 Telefonaktiebolaget Lm Ericsson (Publ) Selective interference cancellation
CN1264379C (zh) * 2003-12-05 2006-07-12 大唐移动通信设备有限公司 时分双工移动通信系统中上下行资源的分配方法和装置
US7813457B2 (en) * 2003-12-29 2010-10-12 Intel Corporation Device, system and method for detecting and handling co-channel interference
US20050152279A1 (en) * 2004-01-13 2005-07-14 Robertson Brett L. Downlink power control in wireless communications networks and methods
CN100385818C (zh) * 2005-05-26 2008-04-30 上海原动力通信科技有限公司 在时分双工码分多址系统中进行相邻小区联合检测的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1543749A (zh) * 2001-08-17 2004-11-03 ��������λ�Ƽ���˾ 在一个使用码分多址的分时双工通信系统中交叉小区用户设备干扰的降低
CN1445950A (zh) 2002-11-13 2003-10-01 大唐移动通信设备有限公司 在联合检测系统中应用长小区化码的方法
US20040100928A1 (en) * 2002-11-27 2004-05-27 International Business Machines Corporation Code-division-multiple-access (DS-CDMA) channels with aperiodic codes
CN1520077A (zh) 2003-01-21 2004-08-11 大唐移动通信设备有限公司 时隙码分多址系统多码集信道估计方法
CN1555145A (zh) * 2003-12-24 2004-12-15 大唐移动通信设备有限公司 时分双工码分多址系统中使用交叉时隙资源的方法及装置
CN1753322A (zh) 2004-09-24 2006-03-29 大唐移动通信设备有限公司 时隙码分多址系统多小区联合检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. STEINER; P. W. BAIER: "Low Cost Channel Estimation in the Uplink Receiver of CDMA Mobile Radio Systems", FREQUENZE, vol. 47, 1993, pages 11 - 12
See also references of EP1931154A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2237637A1 (en) * 2007-12-18 2010-10-06 ZTE Corporation Method of uplink multi-cell joint detection in a time division -synchronous code division multiple access system
EP2237637A4 (en) * 2007-12-18 2014-01-01 Zte Corp UPLINK MULTICELL COMBINED DETECTION METHOD IN SYNCHRONOUS CODE DIVISION MULTIPLE ACCESS SYSTEM AND TIME DISTRIBUTION
US10090956B2 (en) 2009-06-16 2018-10-02 Qualcomm Incorporated Mechanisms for information exchange across cells to facilitate reception in a heterogeneous network
CN102932300A (zh) * 2011-08-08 2013-02-13 鼎桥通信技术有限公司 基于多载波的独立训练序列信道分配方法及移动通信系统
CN102932300B (zh) * 2011-08-08 2015-05-20 鼎桥通信技术有限公司 基于多载波的独立训练序列信道分配方法及移动通信系统

Also Published As

Publication number Publication date
JP4637956B2 (ja) 2011-02-23
KR20080043874A (ko) 2008-05-19
CN1929323B (zh) 2011-04-06
EP1931154A1 (en) 2008-06-11
JP2009507438A (ja) 2009-02-19
US20090010228A1 (en) 2009-01-08
EP1931154A4 (en) 2014-07-02
US7978624B2 (en) 2011-07-12
KR100989398B1 (ko) 2010-10-25
EP1931154B1 (en) 2017-06-14
CN1929323A (zh) 2007-03-14

Similar Documents

Publication Publication Date Title
WO2007028335A1 (en) Method for restraining cross-slot interference in slot cdma system
TWI511493B (zh) 在一無線通信系統中之頻道估計及資料偵測之方法及在一無線通信系統中之器件
JP5523442B2 (ja) 無線通信システムにおいて基地局間干渉を低減させる装置及び方法
CN101128056B (zh) 一种协作式小区间干扰消除方法
US20060215611A1 (en) Radio communication apparatus, radio communication method, communication channel assigning method and assigning apparatus
KR100961307B1 (ko) 인접 셀로부터 이동 단말기의 채널 임펄스 응답 추출방법및 시스템
WO2006032211A1 (en) Multicell joint detection method in slotted code division multiple access system
KR20120086304A (ko) 감소된 복잡도의 협력 멀티포인트 수신
KR20070001417A (ko) 통신 시스템에서 링크의 상태 보고 방법 및 시스템
JP2008547253A (ja) 電気通信システムでハンドオーバーを行う方法
US20170041085A1 (en) Method and user equipment for removing interference in wireless communication system
WO2014114106A1 (zh) 无线收发设备的上行数据接收方法和装置
US8892140B2 (en) Bi-directional training in dual networks system
CN102891740B (zh) 基于盲干扰对齐的小区间干扰抑制方法
Penttinen et al. Performance model for orthogonal sub channel in noise-limited environment
JP5675193B2 (ja) 基地局、通信方法及び集積回路
Majeed et al. Advanced receiver design for interfering small cell deployments in LTE networks
Zhang et al. Outage Capacity Analysis for Cognitive Non-Orthogonal Multiple Access Downlink Transmissions Systems in the Presence of Channel Estimation Error.
Situ et al. The feasibility of NOMA in C-V2X
Bergström Analysis of interference and performance in heterogeneously deployed LTE systems
KR20050079856A (ko) 셀룰러 오에프디엠에이 시스템에서의 소프트 핸드오버장치 및 방법
Vidal et al. Multihop networks for capacity and coverage enhancement in TDD/UTRAN
JPWO2006090812A1 (ja) 伝送路推定装置、cdma受信装置、および伝送路推定方法
Sharawi RF planning and optimization for LTE Networks
KR101694985B1 (ko) 부분공간 간섭 정렬 방법 및 간섭 정렬 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2008529452

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2006775619

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006775619

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 633/MUMNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020087008378

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006775619

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12066176

Country of ref document: US