WO2017190272A1 - 一种干扰消除方法及基站 - Google Patents

一种干扰消除方法及基站 Download PDF

Info

Publication number
WO2017190272A1
WO2017190272A1 PCT/CN2016/080888 CN2016080888W WO2017190272A1 WO 2017190272 A1 WO2017190272 A1 WO 2017190272A1 CN 2016080888 W CN2016080888 W CN 2016080888W WO 2017190272 A1 WO2017190272 A1 WO 2017190272A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
base station
interfering base
user equipment
interfering
Prior art date
Application number
PCT/CN2016/080888
Other languages
English (en)
French (fr)
Inventor
邓天乐
王新征
周凯捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/080888 priority Critical patent/WO2017190272A1/zh
Publication of WO2017190272A1 publication Critical patent/WO2017190272A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an interference cancellation method and a base station.
  • Time Division Duplex is one of the full-duplex communication technologies used in mobile communication systems.
  • the uplink signal and the downlink signal of the neighboring base stations in the communication system using TDD use the same frequency spectrum, and the uplink and downlink signals are distinguished only by time slots. Therefore, in order to avoid interference between adjacent base stations using TDD, in general, the communication system configures the same time slot ratio for uplink and downlink signals of neighboring base stations using the same spectrum.
  • the time slot ratio of the signal transmission on the base station needs to be dynamically adjusted. Once the time slot ratio of the adjacent base stations using the same spectrum is different, There is a case where one base station transmits an uplink signal in one slot and another base station transmits a downlink signal. Since these signals are transmitted through the air interface resources, the base station transmitting the uplink signal will receive the signal generated by the base station transmitting the downlink signal, so that the signal transmitted by one base station will interfere with the signal received by the other base station.
  • the embodiment of the invention discloses an interference cancellation method and a base station, which are used for canceling interference of a signal transmitted by one base station on a signal received by another base station.
  • the first aspect discloses an interference cancellation method, which is applied to an interfered base station, and receives a first signal including a primary signal through an air interface resource, and a time slot between the interfered base station and the interference base station in a time slot in which the first signal is received.
  • the ratio is different, that is, when the signal transmitted by the interfering base station and the signal transmitted by the interfering base station are different in the time slot in which the first signal is received, that is, the interfering base station transmits the downlink signal in the time slot in which the first signal is received, and the uplink signal is transmitted by the interfering base station.
  • the first signal further includes an interference signal, acquiring a second signal from the interfering base station, and performing channel estimation using the second signal to obtain a channel frequency response between the interfering base station and the interfered base station, and determining according to the channel frequency response and the second signal.
  • Interfering with the signal eliminating the first letter
  • the interference signal in the number obtains the main signal, and the channel is equalized by the main signal to obtain the signal sent by the second user equipment to the interfered base station in the time slot in which the first signal is received.
  • the second signal is all or part of the signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, and the interfering base station is any base station adjacent to the interfered base station and using the same spectrum, the first user equipment
  • the user equipment is in the coverage of the interfering base station
  • the second user equipment is the user equipment in the coverage of the interfering base station.
  • the first user equipment and the second user equipment are different user equipments.
  • the air interface resource may be a resource that carries a wireless signal in 2G, 3G, 4G, or 5G, such as a time slot resource in 2G, a code resource in 3G, and a time-frequency resource in 4G.
  • the second signal is obtained from the interfering base station, and the second signal is obtained from the interfering base station through the interface, and the interface may be a fiber interface or a core network interface.
  • the channel frequency response may be multiplied by the second.
  • the signal gets an interference signal. Since the second signal is the entire signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, the interfered base station does not need to perform signal reconstruction, and the processing procedure of the interfered base station can be reduced.
  • the second signal when the second signal is a partial signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, and the second signal is a frequency domain signal, the second signal needs to be reconstructed first. Interfering with the third signal sent by the base station to the first user equipment, and then multiplying the channel frequency response by the third signal to obtain an interference signal. Since the second signal is a part of the signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, the amount of data transmitted by the interfering base station to the interfered base station can be reduced.
  • the second signal when the second signal is the entire signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, the second signal may include the service data sent by the interfering base station to the first user equipment.
  • the pilot value is a value of the pilot.
  • the time-frequency position where the pilot is located is the time domain resource of the pilot and the location or index of the frequency domain resource.
  • the time-frequency resource occupied by the service data is the time domain occupied by the service data.
  • acquiring the second signal from the interfering base station may be sent by the receiving interfering base station.
  • the second signal does not need to be sent by the interfering base station to obtain the acquisition request, and may reduce the processing procedure of the interfered base station; or may first send a signal acquisition request to the interfering base station, and receive the second signal sent by the interfering base station, where the signal acquisition request may indicate interference
  • the base station sends the second signal to the interfered base station, and the interfered base station can acquire according to the need, which can improve the control capability of the interfered base station.
  • the interfered base station may receive the slot ratio of the interfering base station sent by the interfering base station, and may also receive the slot ratio of the interfering base station sent by the third user equipment by using the physical channel or the preset format, and The time slot ratio of the interfering base station sent by the network device may be received, where the third user equipment is a user equipment that is in the coverage of the interfering base station and the interfered base station at the same time, and the slot ratio of the interfering base station is the interference of the third user equipment.
  • the network device may be a Single Radio Controller (SRC), or may be a wireless network controller similar to the Universal Mobile Telecommunications System (UMTS) (Radio Network).
  • SRC Single Radio Controller
  • UMTS Universal Mobile Telecommunications System
  • the network node or the network element of the controller, the RNC may also be other network nodes or network elements that have an interface connection with the interfered base station and can acquire the slot ratio of the interfering base station. Therefore, the interfered base station can obtain the slot ratio of the interfering base station, and determine whether the interfering base station causes interference to the interfered base station when performing interference cancellation. The interfered base station receives the slot ratio of the interfering base station sent by the interfering base station or the network device through the interface.
  • the second aspect discloses a base station comprising means for performing the interference cancellation method provided by the first aspect or any of the possible implementations of the first aspect.
  • a third aspect discloses a base station comprising a processor, a memory, a first transceiver, and a second transceiver. among them:
  • a first transceiver configured to receive, by the air interface resource, a first signal including a primary signal and send the signal to the processor
  • a set of program code is stored in the memory, and the processor is used to call the program code stored in the memory to perform the following operations:
  • the interfering base station is any base station adjacent to the base station and using the same frequency spectrum
  • the second transceiver obtains the second signal from the interfering base station and sends the second signal to the processor, where the second signal is all or part of the signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, where the first user equipment is Interfering with user equipment within the coverage of the base station;
  • the processor is also used to call program code stored in memory to perform the following operations:
  • the main signal is channel equalized.
  • a fourth aspect discloses a readable storage medium storing program code for performing an interference cancellation method disclosed in the first aspect of the embodiments of the present invention or any of the possible implementations of the first aspect.
  • the interfered base station when the interfered base station receives the signal sent by the user equipment in the coverage of the interfered base station, and determines that the time slot ratio of the interfering base station adjacent to the interfered base station and the interfered base station is different, The interfering base station acquires a signal and uses the signal to cancel the interference signal generated by the interfering base station, thereby eliminating interference of the signal transmitted by one base station to the signal received by the other base station, so that the base station can accurately determine the signal to be received.
  • FIG. 1 is a schematic diagram of a CRAN architecture disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of an interference cancellation method according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a time-frequency resource used by an interfering base station according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of signal processing disclosed in an embodiment of the present invention.
  • Embodiments of the present invention disclose an interference cancellation method and a base station, which are used to cancel interference of a signal transmitted by one base station to a signal received by another base station. The details are described below separately.
  • the techniques described herein can be used in various communication systems, such as 2G systems such as Global System for Mobile communications (GSM), and 3G systems such as Wideband Code Division Multiple Access Wireless (WCDMA).
  • GSM Global System for Mobile communications
  • WCDMA Wideband Code Division Multiple Access Wireless
  • a 4G system such as a Long Term Evolution (LTE) system, a 5G communication system evolved by LTE, and a communication network in which a wireless local area network (WLAN) and a cellular network are integrated.
  • LTE Long Term Evolution
  • 5G communication system evolved by LTE
  • WLAN wireless local area network
  • NR/NRAT new radio access technology
  • the embodiments of the present invention refers to various emerging communication technologies including a 5G communication system.
  • the base station may be a Base Transceiver Station (BTS) in GSM, a Node B (NodeB) in WCDMA, or an evolved Node B in LTE (eNB or e- NodeB, evolved Node B), or similar base station equipment in a 5G communication system.
  • BTS Base Transceiver Station
  • NodeB Node B
  • eNB evolved Node B
  • e- NodeB evolved Node B
  • the communication system is equivalent to the concept of the communication network, and the embodiment of the present invention will be uniformly described by using a communication system.
  • the UE involved in the embodiments of the present invention may include a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to the wireless modem, and various forms of user equipment, mobile stations (mobile Station, MS), terminal, terminal equipment, etc., are referred to as “user equipment” or “UE” in this application for convenience of description.
  • FIG. 1 is a schematic diagram of a CRAN architecture disclosed in an embodiment of the present invention.
  • the Cloud Radio Access Network (CRAN) architecture includes a controller and at least two Remote Radio Heads (RRHs).
  • Figure 1 illustrates the case where three RRHs are included, with RRH1 and RRH2 in cell 1 and RRH3 in cell 2.
  • CRAN Cloud Radio Access Network
  • the RRH is used to perform some signal processing on the received signal, for example, down-conversion, sampling to obtain a baseband signal, performing a preliminary operation such as a Cyclic Prefix (CP) on the baseband signal, and transmitting the processed signal to the controller.
  • the controller is configured to further process the signals transmitted by the RRH, for example, to combine signals from the RRH of the same cell.
  • the controller is further configured to send the signal or data sent by the RRH in one cell to the RRH in another cell, thereby implementing communication between the RRHs in the neighboring cell.
  • the gap ratio is different.
  • the RRH transmitting the downlink signal may interfere with the RRH transmitting the uplink signal, so that the RRH receiving signal for transmitting the uplink signal is reduced. accuracy.
  • the embodiment of the present invention can also be applied to base station interference cancellation of other communication networks.
  • DRAN distributed radio access network
  • LTE long term evolution
  • the base station transmitting the downlink signal may interfere with the base station transmitting the uplink signal, so that the accuracy of receiving the signal by the base station transmitting the uplink signal is reduced.
  • the base station may include a baseband unit (BBU) and a radio radio unit (RRU), and the base stations that are geographically close to each other can communicate with each other through the X2 interface, and the interface can be connected through the optical fiber. It can be transferred through the core network.
  • BBU baseband unit
  • RRU radio radio unit
  • the user equipment in the coverage of the interfering base station is referred to as the first user equipment
  • the user equipment in the coverage of the interfering base station is referred to as the second user equipment, and is simultaneously in the coverage of the interfering base station and interfered.
  • the user equipment within the coverage of the base station is referred to as a third user equipment.
  • the first user equipment, the second user equipment, and the third user equipment are different user equipments, which are not described in the following description.
  • FIG. 2 is a schematic flowchart of an interference cancellation method according to an embodiment of the present invention.
  • the embodiment of the present invention is an RRH that transmits an uplink signal from a CRAN architecture, or a base station that transmits an uplink signal in a DRAN architecture or a similar base station device in another network architecture, that is, is described by the perspective of the interfering base station.
  • the interference cancellation method may include the following steps.
  • the interfered base station receives the first signal including the primary signal by using the air interface resource.
  • the interfered base station may receive the first signal by using the air interface resource.
  • the first signal includes a primary signal, and the primary signal is obtained according to a signal sent by the second user equipment to the interfered base station, and a channel frequency response between the interfered base station and the second user equipment, for example, the primary signal is equal to the second user.
  • the product of the signal transmitted by the device and the frequency response of the channel is equal to the second user.
  • the interfered base station determines that the first signal further includes an interference signal.
  • the interfered base station determines whether the time slot ratio of the interfered base station is the same as the time slot ratio of the interfering base station, and the time slot ratio and interference of the interfered base station.
  • the time slot ratio of the base station is different, it indicates that the interfering base station causes interference to the interfered base station, that is, the first signal further includes an interference signal;
  • the time slot ratio of the interfered base station is the same as the time slot ratio of the interfering base station , indicating that the interfering base station does not cause interference to the interfered base station, that is, the first signal includes only the main signal, and the first signal is channel-equalized, and the signal sent by the second user equipment to the interfered base station is obtained, for example:
  • the signal is divided by the channel frequency response between the interfered base station and the second user equipment.
  • the interfering base station is any base station adjacent to the interfered base station and using the same frequency spectrum.
  • the interference signal is obtained according to a signal sent by the interfering base station to the first user equipment, and a channel frequency response between the interfering base station and the interfered base station.
  • the interfered base station acquires a second signal from the interfering base station.
  • the second signal is obtained from the interfering base station through the interface, and the second signal may be all signals sent by the interfering base station to the first user equipment in the time slot in which the first signal is received. Or part of the signal.
  • the intercepted base station may acquire the second signal by using an interface with the interfering base station, for example, the X2 interface, or obtain the second signal forwarded by the core network device by using an interface with the core network device.
  • the type of the core network device is not particularly limited in the embodiment of the present invention.
  • the second signal when the second signal is the entire signal that the interfering base station sends to the first user equipment in the time slot in which the first signal is received, the second signal may include the service data and pilot information that the interfering base station sends to the first user equipment.
  • the information and the control information when the second signal is a part of the signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, the second signal may include the pilot information and the control information sent by the interfering base station to the first user equipment.
  • the pilot information may include a pilot value and a time-frequency location where the pilot is located, and the control information may include a modulation and coding manner of the service data and a time-frequency resource occupied by the service data.
  • the second signal may be sent by the interfering base station to the interfered base station through the interface, or may be sent by the interfering base station to the interfering base station, and then sent by the interfering base station to the interfered base station.
  • the signal acquisition request may instruct the interfering base station to send the second signal to the interfered base station.
  • the interfered base station performs channel estimation by using the second signal to obtain a channel frequency response between the interfering base station and the interfered base station.
  • channel estimation is performed by using the second signal, and a channel frequency response between the interfering base station and the interfered base station is obtained.
  • the interfered base station determines the interference signal according to the channel frequency response and the second signal.
  • the interference signal is determined by the channel frequency response and the second signal, and the second signal is the intra-slot interference of the first signal received by the interfered base station.
  • the channel frequency response may be multiplied by the second signal to obtain an interference signal, and when the second signal is a time slot in which the first signal is received, the interfering base station.
  • the second signal is used to reconstruct the third signal sent by the interfering base station to the first user equipment, that is, the first user is sent by using the interfering base station.
  • a part of the signal of the device reconstructs all signals transmitted by the interfering base station to the first user equipment, and multiplies the channel frequency response by the third signal to obtain an interference signal.
  • the second signal is not a frequency domain signal
  • the second signal is first converted into a frequency domain signal to perform the above operation.
  • the interfered base station cancels the interference signal in the first signal to obtain a main signal.
  • the interference signal is subtracted from the first signal, and the interference information in the first signal can be eliminated, that is, the interference of the interfering base station to the interfered base station is eliminated.
  • the interfered base station performs channel equalization on the primary signal.
  • the primary signal is not the signal sent by the second user equipment to the interfered base station, but is based on the signal sent by the second user equipment to the interfered base station, and the channel frequency response between the interfered base station and the second user equipment.
  • the interfered base station when the interfered base station receives the signal transmitted by the user equipment in the coverage of the interfered base station, and determines the slot ratio of the interfering base station adjacent to the interfered base station and the interfered base station. At different times, the signal can be acquired from the interfering base station, and the interference signal generated by the interfering base station is cancelled by the signal, so that the interference of the signal sent by one base station to the signal received by the other base station can be eliminated, so that the base station can accurately determine the to be received. signal.
  • FIG. 5 is a schematic diagram of a time-frequency resource used by an interfering base station according to an embodiment of the present invention.
  • the interfering base station will be 1, 1, A3, 1, 3, A2, 1, 4, A1, 2, 3, A4, 3, 2, A5.
  • the meaning of the above information is symbol index + subcarrier index + data on the time-frequency resource (which may be service data or pilot). It is also possible to agree to transmit data on different subcarriers (from small to large) on a symbol, and subcarriers that are not occupied are replaced with special symbols.
  • the data thus transmitted may be A3BA2A1BBA4BBA5BB, where B represents a resource whose corresponding time-frequency resource is not occupied.
  • FIG. 6 is a schematic diagram of signal processing disclosed in an embodiment of the present invention.
  • the "Channel Coding" module in Figure 6 includes a Cyclic Redundancy Check (CRC) and rate matching operation.
  • CRC Cyclic Redundancy Check
  • OFDM Orthogonal Frequency Division Multiplexing
  • the interfering base station needs to transmit the signal to the first user equipment and the second user equipment sends the signal to the interfered base station.
  • the processing is performed in sequence; before the interfering base station sends the signal to the interfered base station, the signals may be processed in sequence according to all the steps shown in FIG. 6, or the signal may be followed by the front shown in FIG. Part of the steps are processed.
  • the interfered base station also needs to obtain the time slot ratio of the interfering base station, which may be that the interfering base station actively sends the interfering base station through the interface; or the interfering base station broadcasts in a broadcast manner and is simultaneously in the interfering base station.
  • the third user equipment is sent to the interfered base station by using a physical channel or a preset format; or the network device is actively sent to the interfered base station through the interface, where the network The device has an interface connection with the interfered base station, and can acquire the slot ratio of the interfering base station.
  • FIG. 3 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station may include:
  • the receiving unit 301 is configured to receive the first signal by using the air interface resource, where the first signal includes a main signal;
  • the determining unit 302 is configured to: when the time slot ratio between the base station and the interfering base station is different in the time slot in which the first signal is received, determine that the first signal further includes an interference signal, where the interfering base station is adjacent to the base station and uses the same spectrum Any base station;
  • the obtaining unit 303 is configured to acquire a second signal from the interfering base station, where the second signal may be all or part of the signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, where the first user equipment is in the coverage of the interfering base station.
  • the second signal may be all or part of the signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, where the first user equipment is in the coverage of the interfering base station.
  • the estimating unit 304 is configured to perform channel estimation by using the second signal acquired by the obtaining unit 303 to obtain a channel frequency response between the interfering base station and the base station;
  • the determining unit 302 is further configured to determine, according to the channel frequency response estimated by the estimating unit 304 and the second signal acquired by the acquiring unit 303, the interference signal;
  • the eliminating unit 305 is configured to cancel the interference signal determined by the determining unit 302 in the first signal received by the receiving unit 301 to obtain a main signal;
  • the equalization unit 306 is configured to perform channel equalization on the main signal obtained by the cancellation unit 305.
  • the determining unit 302 determines, according to the channel frequency response and the second signal, the interference signal includes:
  • the channel frequency response is multiplied by the second signal to obtain an interference signal.
  • the determining unit 302 determines, according to the channel frequency response and the second signal, the interference signal includes:
  • the second signal is a part of the signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, and the second signal is a frequency domain signal
  • the second signal is used to reconstruct the interfering base station to send to the first user equipment.
  • the third signal is multiplied by the third frequency signal to obtain an interference signal.
  • the second signal when the second signal is all the signals sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, the second signal may include the service data sent by the interfering base station to the first user equipment. , pilot information and control information;
  • the second signal When the second signal is a part of the signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, the second signal may include the pilot information sent by the interfering base station to the first user equipment and the control information;
  • the pilot information may include a pilot value and a time-frequency location where the pilot is located, and the control information may include a modulation and coding mode of the service data and a time-frequency resource occupied by the service data.
  • the acquiring unit 303 when acquiring the second signal from the interfering base station, may include:
  • the fetch request is used to instruct the interfering base station to send the second signal to the base station.
  • the obtaining unit 303 is further configured to:
  • the third user equipment Receiving, by the third user equipment, the slot ratio of the interfering base station that is sent by using the physical channel or the preset format, the third user equipment is in the coverage of the interfering base station and the base station, and the slot ratio of the interfering base station is the interference of the third user equipment.
  • the network device and the base station are connected through the interface and can acquire the slot ratio of the interfering base station.
  • step 201 For a detailed description of the receiving unit 301, refer to the description of step 201, and details are not described herein.
  • the determining unit 302 determines whether the time slot ratio of the base station is the same as the time slot ratio of the interfering base station, when the time slot ratio of the base station and the interfering base station When the time slot ratio is different, it indicates that the interfering base station causes interference to the base station, that is, the first signal is determined to include the interference signal; when the time slot ratio of the base station is the same as the time slot ratio of the interfering base station, the interfering base station is indicated.
  • the first signal is only included in the main signal, and then the equalization unit 306 performs channel equalization on the first signal to obtain a signal sent by the second user equipment to the base station, for example, the first signal is divided by Channel frequency response between the base station and the second user equipment.
  • the interfering base station is any base station adjacent to the base station and using the same frequency spectrum.
  • the interference signal is obtained according to a signal sent by the interfering base station to the first user equipment, and a channel frequency response between the interfering base station and the base station.
  • the obtaining unit 303 can be described in step 203, and details are not described herein.
  • the detailed description of the estimating unit 304 can be seen in the description of step 204, and details are not described herein.
  • step 205 For a detailed description of the determination of the interference signal by the determining unit 302 according to the channel frequency response and the second signal, refer to the description of step 205, which is not described herein.
  • equalization unit 306 For a detailed description of the equalization unit 306, refer to the description of step 207, and details are not described herein.
  • the base station when the base station receives a signal transmitted by a user equipment that is within the coverage of the base station, and determines that the time slot ratio of the interfering base station adjacent to the base station is different from that of the base station, the signal may be acquired from the interfering base station. And using the signal to eliminate the interference signal generated by the interfering base station, thereby eliminating The interference of a signal transmitted by one base station to a signal received by another base station, so that the base station can accurately determine the signal to be received.
  • FIG. 4 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the base station may include a processor 401, a memory 402, a first transceiver 403, and a second transceiver 404.
  • the first transceiver 403 may be used for signal transmission between the base station and the user equipment, and the second transceiver
  • the device 404 is used for signal transmission between the base station and other network devices, wherein:
  • the first transceiver 403 is configured to receive the first signal through the air interface resource and send the signal to the processor 401, where the first signal includes a main signal;
  • a set of program codes is stored in the memory 402, and the processor 401 is configured to call the program code stored in the memory 402 to perform the following operations:
  • the interfering base station is any base station adjacent to the base station and using the same frequency spectrum
  • a second transceiver 404 configured to acquire a second signal from the interfering base station and send the signal to the processor 401, where the second signal is all or part of the signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, first
  • the user equipment is a user equipment that is in the coverage of the interfering base station; wherein the second transceiver 404 may be a communication interface between the base station and the interfering base station; or may be a communication interface between the base station and the core network device.
  • the processor 401 is further configured to call the program code stored in the memory 402 to perform the following operations:
  • the main signal is channel equalized.
  • the processor 401 determines, according to the channel frequency response and the second signal, the interference signal by:
  • the channel frequency response is multiplied by the second signal to obtain an interference signal.
  • the processor 401 determines, according to the channel frequency response and the second signal,
  • the way to determine the interference signal is:
  • the second signal is a part of the signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, and the second signal is a frequency domain signal
  • the second signal is used to reconstruct the interfering base station to send to the first user equipment.
  • the third signal is multiplied by the third frequency signal to obtain an interference signal.
  • the second signal when the second signal is all the signals sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, the second signal may include the service data sent by the interfering base station to the first user equipment. , pilot information and control information;
  • the second signal When the second signal is a part of the signal sent by the interfering base station to the first user equipment in the time slot in which the first signal is received, the second signal may include the pilot information sent by the interfering base station to the first user equipment and the control information;
  • the pilot information may include a pilot value and a time-frequency location where the pilot is located, and the control information may include a modulation and coding mode of the service data and a time-frequency resource occupied by the service data.
  • the manner in which the second transceiver 503 acquires the second signal from the interfering base station is:
  • the second transceiver 503 is further configured to:
  • the third user equipment Receiving, by the third user equipment, the slot ratio of the interfering base station that is sent by using the physical channel or the preset format, the third user equipment is in the coverage of the interfering base station and the base station, and the slot ratio of the interfering base station is the interference of the third user equipment.
  • the network device and the base station are connected through the interface and can acquire the slot ratio of the interfering base station.
  • the base station when the base station receives a signal transmitted by the user equipment in the coverage of the base station, and determines that the time slot ratio of the interfering base station adjacent to the base station is different from that of the base station, the signal may be acquired from the interfering base station. And using the signal to eliminate the interference signal generated by the interfering base station, thereby eliminating The interference of a signal transmitted by one base station to a signal received by another base station, so that the base station can accurately determine the signal to be received.
  • a readable storage medium storing program code for performing an interference cancellation method corresponding to FIG. 2 of the embodiment of the present invention
  • the readable storage medium may be non-volatile of.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Flash disk, Read-Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种干扰消除方法及基站,该方法包括:通过空口资源接收包括主信号的第一信号;当接收第一信号的时隙内被干扰基站与干扰基站间的时隙配比不同时,确定第一信号还包括干扰信号,干扰基站是与被干扰基站相邻且使用同一频谱的任一基站;从干扰基站获取第二信号,第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的全部或部分信号,第一用户设备处于干扰基站覆盖范围内;使用第二信号进行信道估计以获得干扰基站与被干扰基站间的信道频率响应;根据信道频率响应和第二信号确定干扰信号;消除第一信号中的干扰信号以获得主信号;将主信号进行信道均衡。本发明实施例,可以消除一个基站发送的信号对另一个基站接收的信号的干扰。

Description

一种干扰消除方法及基站 技术领域
本发明涉及通信技术领域,尤其涉及一种干扰消除方法及基站。
背景技术
时分双工(Time Division Duplex,TDD)是移动通信系统中使用的全双工通信技术中的一种。采用TDD的通信系统中的相邻基站的上行信号和下行信号使用相同的频谱,只通过时隙区分上下行信号。因此,为了避免采用TDD的相邻基站间的干扰,通常情况下,通信系统为使用同一频谱的相邻基站的上下行信号配置相同的时隙配比。
然而,当每个基站上需要传输的上下行业务量不同时,为了满足业务需求需要动态调整基站上信号传输的时隙配比,一旦使用同一频谱的相邻基站的时隙配比不同,将存在某个时隙内一个基站传输上行信号,另一个基站传输下行信号的情况。由于这些信号是通过空口资源传输的,因此,传输上行信号的基站将会接收到传输下行信号的基站产生的信号,以致一个基站发送的信号将会对另一个基站接收的信号造成干扰。
发明内容
本发明实施例公开了一种干扰消除方法及基站,用于消除一个基站发送的信号对另一个基站接收的信号的干扰。
第一方面公开一种干扰消除方法,该方法应用于被干扰基站,通过空口资源接收包括主信号的第一信号,当接收第一信号的时隙内被干扰基站与干扰基站间的时隙配比不同,即接收第一信号的时隙内干扰基站传输的信号和被干扰基站传输的信号流向不同时,也即是接收第一信号的时隙内干扰基站传输下行信号以及被干扰基站传输上行信号时,确定第一信号还包括干扰信号,将从干扰基站获取第二信号,使用第二信号进行信道估计得到干扰基站与被干扰基站间的信道频率响应,根据信道频率响应和第二信号确定干扰信号,消除第一信 号中的干扰信号得到主信号,将主信号进行信道均衡可以得到接收第一信号的时隙内第二用户设备发送给被干扰基站的信号。其中,第二信号是接收第一信号的时隙内干扰基站发送给第一用户设备的全部或部分信号,干扰基站是与被干扰基站相邻且使用同一频谱的任一基站,第一用户设备是处于干扰基站覆盖范围内的用户设备,第二用户设备是处于被干扰基站覆盖范围内的用户设备,第一用户设备与第二用户设备是不同的用户设备。其中,空口资源可以为2G、3G、4G、5G等中承载无线信号的资源,如2G中的时隙资源、3G中的码资源、4G中的时频资源等。其中,从干扰基站获取第二信号时,是通过接口从干扰基站获取第二信号的,接口可以为光纤接口,也可以为核心网接口。
在一个实施例中,当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的全部信号,且第二信号为频域信号时,可以将信道频率响应乘以第二信号得到干扰信号。由于第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的全部信号,因此,被干扰基站不需要进行信号重构,可以减少被干扰基站的处理过程。
在一个实施例中,当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的部分信号,且第二信号为频域信号时,先需要使用第二信号重构出干扰基站发送给第一用户设备的第三信号,之后再将信道频率响应乘以第三信号得到干扰信号。由于第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的部分信号,因此,可以减少干扰基站发送给被干扰基站的数据量。
在一个实施例中,当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的全部信号时,第二信号可以包括干扰基站发送给第一用户设备的业务数据、导频信息和控制信息;而当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的部分信号时,第二信号可以包括干扰基站发送给第一用户设备导频信息和控制信息;导频信息可以包括导频值和导频所在的时频位置,控制信息可以包括业务数据的调制编码方式和业务数据占用的时频资源。其中,导频值为导频的取值,导频所在的时频位置是导频所在的时域资源和频域资源的位置或索引,业务数据占用的时频资源是业务数据占用的时域资源和频域资源的位置或索引。
在一个实施例中,从干扰基站获取第二信号,可以是接收干扰基站发送的 第二信号,不需要被干扰基站发送获取请求,可以减少被干扰基站的处理过程;也可以是先向干扰基站发送信号获取请求,并接收干扰基站发送的第二信号,信号获取请求可以指示干扰基站将第二信号发送给被干扰基站,被干扰基站可以根据需要去获取,可以提高被干扰基站的控制能力。
在一个实施例中,被干扰基站可以接收到干扰基站发送的干扰基站的时隙配比,也可以接收到第三用户设备通过物理信道或预设格式发送的干扰基站的时隙配比,还可以接收到网络设备发送的干扰基站的时隙配比,第三用户设备是同时处于干扰基站和被干扰基站的覆盖范围内的用户设备,干扰基站的时隙配比是第三用户设备通过干扰基站的广播信息获取的,网络设备可以是融合无线网络控制器(Single Radio Controller,SRC),也可以是一些类似通用移动通信系统(Universal Mobile Telecommunications System,UMTS)中的无线网络控制器(Radio Network Controller,RNC)的网络节点或网元,还可以是其他一些与被干扰基站存在接口连接且能获取干扰基站时隙配比的网络节点或网元。因此,被干扰基站可以得到干扰基站的时隙配比,用于进行干扰消除时确定干扰基站是否对被干扰基站造成干扰。其中,被干扰基站是通过接口接收干扰基站或网络设备发送的干扰基站的时隙配比的。
第二方面公开一种基站,该基站包括用于执行第一方面或第一方面的任一种可能实现方式所提供的干扰消除方法的单元。
第三方面公开一种基站,该基站包括处理器、存储器、第一收发器和第二收发器。其中:
第一收发器,用于通过空口资源接收包括主信号的第一信号并发送给处理器;
存储器中存储有一组程序代码,处理器用于调用存储器中存储的程序代码执行以下操作:
当接收第一信号的时隙内基站与干扰基站间的时隙配比不同时,确定第一信号还包括干扰信号,干扰基站是与基站相邻且使用同一频谱的任一基站,;
第二收发器,从干扰基站获取第二信号并发送给处理器,第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的全部或部分信号,第一用户设备是处于干扰基站覆盖范围内的用户设备;
处理器还用于调用存储器中存储的程序代码执行以下操作:
使用第二信号进行信道估计,以获得干扰基站与基站间的信道频率响应;
根据信道频率响应和第二信号,确定干扰信号;
消除第一信号中的干扰信号,以获得主信号;
将主信号进行信道均衡。
第四方面公开一种可读存储介质,该可读存储介质存储了基站用于执行本发明实施例第一方面或第一方面的任一种可能实现方式所公开的干扰消除方法的程序代码。
本发明实施例中,当被干扰基站接收处于被干扰基站覆盖范围内的用户设备发送的信号,且确定与被干扰基站相邻的干扰基站与被干扰基站的时隙配比不同时,可以从干扰基站获取信号,并利用该信号将干扰基站产生的干扰信号消除,从而可以消除一个基站发送的信号对另一个基站接收的信号的干扰,以便基站能够准确地确定要接收的信号。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种CRAN架构示意图;
图2是本发明实施例公开的一种干扰消除方法的流程示意图;
图3是本发明实施例公开的一种基站的结构示意图;
图4是本发明实施例公开的另一种基站的结构示意图;
图5是本发明实施例公开的一种干扰基站使用的时频资源的示意图;
图6是本发明实施例公开的一种对信号处理的示意图。
具体实施方式
本发明实施例公开了一种干扰消除方法及基站,用消除一个基站发送的信号对另一个基站接收的信号的干扰。以下分别进行详细说明。
本文中描述的技术可用于各种通信系统,例如全球移动通信系统(Global System for Mobile communications,GSM)等2G系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)等3G系统,长期演进(Long Term Evolution,LTE)系统等4G系统,LTE后续演进的5G通信系统,以及无线局域网(WLAN,wireless local area network)与蜂窝网络融合的通信网络等。特别地,本发明实施例中所述的新无线接入技术(new radio access technology,NR/NRAT)是指包括5G通信系统在内的各种新出现的通信技术。
本发明实施例涉及的基站可以是GSM中的基站收发台(Base Transceiver Station,BTS),也可以是WCDMA中的节点B(NodeB),还可以是LTE中的演进型节点B(eNB或e-NodeB,evolved Node B),或者5G通信系统中的类似基站设备等。
本发明实施例中,通信系统与通信网络的概念等同,本发明实施例中将统一以通信系统来进行说明。
本发明实施例所涉及到的UE可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备,移动台(mobile station,MS),终端(terminal),终端设备(terminal equipment)等等,为方便描述,本申请中,称为“用户设备”或“UE”。
为了更好地理解本发明实施例公开的一种干扰消除方法及基站,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种CRAN架构示意图。如图1所示,该云无线接入网(Cloud Radio Access Network,CRAN)架构包括控制器和至少两个远程射频头(Remote Radio Head,RRH)。图1示意出了包括三个RRH的情况,RRH1和RRH2处于小区1,RRH3处于小区2。RRH用于对接收的信号进行一些信号处理,例如:下变频、采样得到基带信号,对基带信号进行去循环前缀(Cyclic Prefix,CP)等初步操作,并将处理后的信号发送到控制器,控制器用于对RRH发送的信号进行进一步处理,例如,合并来自同一个小区的RRH的信号。控制器还用于将一个小区中RRH发送的信号或数据发送个另一个小区中的RRH,从而实现相邻小区中RRH之间的通信。然而,当处于不同小区且使用同一频谱的两个相邻RRH的时 隙配比不同,即一个RRH用于传输上行信号且另一个RRH用于传输下行信号时,传输下行信号的RRH会对传输上行信号的RRH产生干扰,以致降低了传输上行信号的RRH接收信号的准确性。
可以理解,本发明实施例还可以适用于其他通信网络的基站干扰消除。例如,在分布式无线接入网(Distributed Radio Access Network,DRAN)架构中,例如LTE系统中,当使用同一频谱的两个相邻基站的时隙配比不同,即一个基站用于传输上行信号且另一个基站用于传输下行信号时,传输下行信号的基站会对传输上行信号的基站产生干扰,以致降低了传输上行信号的基站接收信号的准确性。在DRAN架构中,基站可以包括基带单元(Baseband Unit,BBU)和射频拉远单元(Remote Radio Unit,RRU),地理位置靠近的基站间可以通过X2接口相互通信,该接口可以通过光纤连接,也可以通过核心网转接。
本发明实施例中,将干扰基站覆盖范围内的用户设备称为第一用户设备,将被干扰基站覆盖范围内的用户设备称为第二用户设备,将同时处于干扰基站覆盖范围内和被干扰基站覆盖范围内的用户设备称为第三用户设备。其中,第一用户设备、第二用户设备、第三用户设备是不同的用户设备,后续描述中不再赘述。
基于上述网络架构,请参阅图2,图2是本发明实施例公开的一种干扰消除方法的流程示意图。其中,本发明实施例是从CRAN架构中传输上行信号的RRH,或者DRAN架构中传输上行信号的基站或其他网络架构中的类似基站设备,即被干扰基站的角度来描述的。如图2所示,该干扰消除方法可以包括以下步骤。
201、被干扰基站通过空口资源接收包括主信号的第一信号。
本实施例中,当处于被干扰基站覆盖范围内的第二用户设备向被干扰基站发送信号时,被干扰基站可以通过空口资源接收第一信号。其中,第一信号包括主信号,主信号是根据第二用户设备发送给被干扰基站的信号,以及被干扰基站与第二用户设备间的信道频率响应得到的,例如:主信号等于第二用户设备发送的信号与该信道频率响应的乘积。
202、当接收第一信号的时隙内被干扰基站与干扰基站间的时隙配比不同时,被干扰基站确定第一信号还包括干扰信号。
本实施例中,被干扰基站通过空口资源接收到第一信号之后,将判断被干扰基站的时隙配比是否与干扰基站的时隙配比相同,当被干扰基站的时隙配比与干扰基站的时隙配比不同时,表明干扰基站给被干扰基站造成了干扰,也即是第一信号还包括干扰信号;当被干扰基站的时隙配比与干扰基站的时隙配比相同时,表明干扰基站没有给被干扰基站造成干扰,也即是第一信号只包括主信号,将对第一信号进行信道均衡,可以得到第二用户设备发送给被干扰基站的信号,例如:第一信号除以被干扰基站与第二用户设备间的信道频率响应。其中,干扰基站是与被干扰基站相邻且使用同一频谱的任一基站。其中,干扰信号是根据干扰基站发送给第一用户设备的信号,以及干扰基站与被干扰基站间的信道频率响应得到的。
203、被干扰基站从干扰基站获取第二信号。
本实施例中,确定第一信号还包括干扰信号之后,将通过接口从干扰基站获取第二信号,第二信号可以为接收第一信号的时隙内干扰基站发送给第一用户设备的全部信号或部分信号。其中,被干扰基站可以通过与干扰基站之间的接口,例如X2接口获取第二信号;也可以通过与核心网设备之间的接口,获取核心网设备转发的第二信号。本发明实施例对核心网设备的类型不做特别限定。
本实施例中,当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的全部信号时,第二信号可以包括干扰基站发送给第一用户设备的业务数据、导频信息和控制信息,当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的部分信号时,第二信号可以包括干扰基站发送给第一用户设备导频信息和控制信息,导频信息可以包括导频值和导频所在的时频位置,控制信息可以包括业务数据的调制编码方式和业务数据占用的时频资源。
本实施例中,第二信号可以是干扰基站通过接口直接发送给被干扰基站发送的,也可以是被干扰基站向干扰基站发送信号获取请求,之后由干扰基站通过接口发送给被干扰基站的。其中,信号获取请求可以指示干扰基站将第二信号发送给被干扰基站。
204、被干扰基站使用第二信号进行信道估计,以获得干扰基站与被干扰基站间的信道频率响应。
本实施例中,从干扰基站获取到第二信号之后,将利用第二信号进行信道估计,可以得到干扰基站与被干扰基站间的信道频率响应。
205、被干扰基站根据信道频率响应和第二信号,确定干扰信号。
本实施例中,得到干扰基站与被干扰基站间的信道频率响应之后,将通过该信道频率响应和第二信号确定干扰信号,当第二信号为被干扰基站接收第一信号的时隙内干扰基站发送给第一用户设备的全部信号,且第二信号为频域信号时,可以将信道频率响应乘以第二信号得到干扰信号,当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的部分信号,且第二信号为频域信号时,先使用第二信号重构出干扰基站发送给第一用户设备的第三信号,即使用干扰基站发送给第一用户设备的部分信号重构出干扰基站发送给第一用户设备的全部信号,并将信道频率响应乘以第三信号得到干扰信号。其中,当第二信号不是频域信号时,需要先将第二信号转换为频域信号再执行上述操作。
206、被干扰基站消除第一信号中的干扰信号,以获得主信号。
本实施例中,得到干扰信号之后,将干扰信号从第一信号减去,可以消除第一信号中的干扰信息,也即是消除干扰基站对被干扰基站的干扰。
206、被干扰基站将主信号进行信道均衡。
本实施例中,由于主信号不是第二用户设备发送给被干扰基站的信号,而是根据第二用户设备发送给被干扰基站的信号,以及被干扰基站与第二用户设备间的信道频率响应得到的,因此,将主信号进行信道均衡得到接收第一信号的时隙内第二用户设备发送给被干扰基站的信号,例如:主信号除以第二用户设备与被干扰基站间的信道频率响应。
在图2所描述的干扰消除方法中,当被干扰基站接收处于被干扰基站覆盖范围内的用户设备发送的信号,且确定与被干扰基站相邻的干扰基站与被干扰基站的时隙配比不同时,可以从干扰基站获取信号,并利用该信号将干扰基站产生的干扰信号消除,从而可以消除一个基站发送的信号对另一个基站接收的信号的干扰,以便基站能够准确地确定要接收的信号。
举例说明,请参阅图5,图5是本发明实施例公开的一种干扰基站使用的时频资源的示意图。如图5所示,干扰基站将1,1,A3,1,3,A2,1,4,A1,2,3,A4,3,2,A5 发送给被干扰基站。其中,上述信息的含义是符号索引+子载波索引+该时频资源上的数据(可以是业务数据,也可以是导频)。也可以约定好先传一个符号上的不同子载波(按编号从小到大)上的数据,没被占用的子载波用特殊符号代替。于是传递的数据可以是A3BA2A1BBA4BBA5BB,其中,B表示对应的时频资源没被占用的资源。
请参阅图6,图6是本发明实施例公开的一种对信号处理的示意图。图6中的“信道编码”模块包括了加循环冗余校验(Cyclic Redundancy Check,CRC)和速率匹配操作。当上行和下行均采用正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)时,干扰基站将信号发送给第一用户设备以及第二用户设备将信号发送给被干扰基站之前,均需要对信号按照图6所示的全部步骤依次进行处理;而干扰基站将信号发送给被干扰基站之前,可以对信号按照图6所示的全部步骤依次进行处理,也可以对信号按照图6所示的前面的部分步骤进行处理。
在一个实施例中,被干扰基站还需要获取干扰基站的时隙配比,可以是干扰基站主动通过接口发送给被干扰基站的;也可以是干扰基站以广播方式广播之后,被同时处于干扰基站和被干扰基站覆盖范围内的第三用户设备监听到之后,第三用户设备通过物理信道或预设格式发送给被干扰基站的;还可以是网络设备主动通过接口发送给被干扰基站,该网络设备与被干扰基站之间有接口连接,并且能够获取干扰基站的时隙配比。
基于图1所示的网络架构,请参阅图3,图3是本发明实施例公开的一种基站的结构示意图。如图3所示,该基站可以包括:
接收单元301,用于通过空口资源接收第一信号,第一信号包括主信号;
确定单元302,用于当接收第一信号的时隙内基站与干扰基站间的时隙配比不同时,确定第一信号还包括干扰信号,干扰基站是与该基站相邻且使用同一频谱的任一基站;
获取单元303,用于从干扰基站获取第二信号,第二信号可以为接收第一信号的时隙内干扰基站发送给第一用户设备的全部或部分信号,第一用户设备是处于干扰基站覆盖范围内的用户设备;
估计单元304,用于使用获取单元303获取的第二信号进行信道估计,以获得干扰基站与基站间的信道频率响应;
确定单元302,还用于根据估计单元304估计的信道频率响应和获取单元303获取的第二信号,确定干扰信号;
消除单元305,用于消除接收单元301接收的第一信号中的确定单元302确定的干扰信号,以获得主信号;
均衡单元306,用于将消除单元305得到的主信号进行信道均衡。
作为一种可能的实施方式,确定单元302根据信道频率响应和第二信号,确定干扰信号包括:
当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的全部信号,且第二信号为频域信号时,将信道频率响应乘以第二信号,得到干扰信号。
作为一种可能的实施方式,确定单元302根据信道频率响应和第二信号,确定干扰信号包括:
当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的部分信号,且第二信号为频域信号时,使用第二信号重构干扰基站发送给第一用户设备的第三信号,并将信道频率响应乘以第三信号,得到干扰信号。
作为一种可能的实施方式,当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的全部信号时,第二信号可以包括干扰基站发送给第一用户设备的业务数据、导频信息和控制信息;
当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的部分信号时,第二信号可以包括干扰基站发送给第一用户设备导频信息和控制信息;
其中,导频信息可以包括导频值和导频所在的时频位置,控制信息可以包括业务数据的调制编码方式和业务数据占用的时频资源。
作为一种可能的实施方式,获取单元303从干扰基站获取第二信号可以包括:
接收干扰基站发送的第二信号;或者
向干扰基站发送信号获取请求,并接收干扰基站发送的第二信号,信号获 取请求用于指示干扰基站将第二信号发送给基站。
作为一种可能的实施方式,获取单元303还用于:
接收第三用户设备通过物理信道或预设格式发送的干扰基站的时隙配比,第三用户设备处于干扰基站和基站的覆盖范围内,干扰基站的时隙配比是第三用户设备通过干扰基站的广播信息获取的;或者
接收干扰基站发送的干扰基站的时隙配比;或者
接收网络设备发送的干扰基站的时隙配比,网络设备与基站通过接口连接且能够获取干扰基站的时隙配比。
其中,接收单元301的详细描述可以见步骤201的描述,在此不在赘述。
本实施例中,接收单元301通过空口资源接收到第一信号之后,确定单元302将判断基站的时隙配比是否与干扰基站的时隙配比相同,当基站的时隙配比与干扰基站的时隙配比不同时,表明干扰基站给基站造成了干扰,也即是确定第一信号还包括干扰信号;当基站的时隙配比与干扰基站的时隙配比相同时,表明干扰基站没有给基站造成干扰,也即是确定第一信号只包括主信号,之后均衡单元306将对第一信号进行信道均衡,可以得到第二用户设备发送给基站的信号,例如:第一信号除以基站与第二用户设备间的信道频率响应。其中,干扰基站是与基站相邻且使用同一频谱的任一基站。其中,干扰信号是根据干扰基站发送给第一用户设备的信号,以及干扰基站与基站间的信道频率响应得到的。
其中,获取单元303从干扰基站获取第二信号的详细描述可以见步骤203的描述,在此不在赘述。
其中,估计单元304的详细描述可以见步骤204的描述,在此不在赘述。
其中,确定单元302根据信道频率响应和第二信号确定干扰信号的详细描述可以见步骤205的描述,在此不在赘述。
其中,消除单元305的详细描述可以见步骤206的描述,在此不在赘述。
其中,均衡单元306的详细描述可以见步骤207的描述,在此不在赘述。
在图3所描述的基站中,当基站接收处于基站覆盖范围内的用户设备发送的信号,且确定与基站相邻的干扰基站与基站的时隙配比不同时,可以从干扰基站获取信号,并利用该信号将干扰基站产生的干扰信号消除,从而可以消除 一个基站发送的信号对另一个基站接收的信号的干扰,以便基站能够准确地确定要接收的信号。
基于图1所示的网络架构,请参阅图4,图4是本发明实施例公开的另一种基站的结构示意图。如图4所示,该基站可以包括处理器401、存储器402、第一收发器403和第二收发器404,第一收发器403可以用于基站与用户设备之间的信号传输,第二收发器404用于基站与其他网络设备之间的信号传输,其中:
第一收发器403,用于通过空口资源接收第一信号并发送给处理器401,第一信号包括主信号;
存储器402中存储有一组程序代码,处理器401用于调用存储器402中存储的程序代码执行以下操作:
当接收第一信号的时隙内基站与干扰基站间的时隙配比不同时,确定第一信号还包括干扰信号,干扰基站是与基站相邻且使用同一频谱的任一基站;
第二收发器404,用于从干扰基站获取第二信号并发送给处理器401,第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的全部或部分信号,第一用户设备是处于干扰基站覆盖范围内的用户设备;其中,第二收发器404可以是所述基站与干扰基站之间的通信接口;也可以是所述基站与核心网设备之间的通信接口。
处理器401还用于调用存储器402中存储的程序代码执行以下操作:
使用第二信号进行信道估计,以获得干扰基站与基站间的信道频率响应;
根据信道频率响应和第二信号,确定干扰信号;
消除第一信号中的干扰信号,以获得主信号;
将主信号进行信道均衡。
作为一种可能的实施方式,处理器401根据信道频率响应和第二信号,确定干扰信号的方式为:
当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的全部信号,且第二信号为频域信号时,将信道频率响应乘以第二信号,得到干扰信号。
作为一种可能的实施方式,处理器401根据信道频率响应和第二信号,确 定干扰信号的方式为:
当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的部分信号,且第二信号为频域信号时,使用第二信号重构干扰基站发送给第一用户设备的第三信号,并将信道频率响应乘以第三信号,得到干扰信号。
作为一种可能的实施方式,当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的全部信号时,第二信号可以包括干扰基站发送给第一用户设备的业务数据、导频信息和控制信息;
当第二信号为接收第一信号的时隙内干扰基站发送给第一用户设备的部分信号时,第二信号可以包括干扰基站发送给第一用户设备导频信息和控制信息;
其中,导频信息可以包括导频值和导频所在的时频位置,控制信息可以包括业务数据的调制编码方式和业务数据占用的时频资源。
作为一种可能的实施方式,第二收发器503从干扰基站获取第二信号的方式为:
接收干扰基站发送的第二信号;或者
向干扰基站发送信号获取请求,并接收干扰基站发送的第二信号,信号获取请求用于指示干扰基站将第二信号发送给基站。
作为一种可能的实施方式,第二收发器503,还用于:
接收第三用户设备通过物理信道或预设格式发送的干扰基站的时隙配比,第三用户设备处于干扰基站和基站的覆盖范围内,干扰基站的时隙配比是第三用户设备通过干扰基站的广播信息获取的;或者
接收干扰基站发送的干扰基站的时隙配比;或者
接收网络设备发送的干扰基站的时隙配比,网络设备与基站通过接口连接且能够获取干扰基站的时隙配比。
关于该基站执行的干扰消除方法的具体描述,或者改基站内的各装置的功能的具体描述可以参照本发明其他实施例的相关内容,在此不做赘述。
在图5所描述的基站中,当基站接收处于基站覆盖范围内的用户设备发送的信号,且确定与基站相邻的干扰基站与基站的时隙配比不同时,可以从干扰基站获取信号,并利用该信号将干扰基站产生的干扰信号消除,从而可以消除 一个基站发送的信号对另一个基站接收的信号的干扰,以便基站能够准确地确定要接收的信号。
在一个实施例中,一种可读存储介质,该可读存储介质存储了基站用于执行本发明实施例图2所对应的干扰消除方法的程序代码,该可读存储介质可以是非易失性的。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(Read-Only Memory,ROM)、随机存取器(Random Access Memory,RAM)、磁盘或光盘等。
以上对本发明实施例所提供的干扰消除方法及基站进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (18)

  1. 一种干扰消除方法,其特征在于,所述方法应用于被干扰基站,包括:
    通过空口资源接收第一信号,所述第一信号包括主信号;
    当接收所述第一信号的时隙内所述被干扰基站与干扰基站间的时隙配比不同时,确定所述第一信号还包括干扰信号,所述干扰基站是与所述被干扰基站相邻且使用同一频谱的任一基站;
    从所述干扰基站获取第二信号,所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一用户设备的全部或部分信号,所述第一用户设备是处于所述干扰基站覆盖范围内的用户设备;
    使用所述第二信号进行信道估计,以获得所述干扰基站与所述被干扰基站间的信道频率响应;
    根据所述信道频率响应和所述第二信号,确定所述干扰信号;
    消除所述第一信号中的所述干扰信号,以获得所述主信号;
    将所述主信号进行信道均衡。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述信道频率响应和所述第二信号,确定所述干扰信号包括:
    当所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一用户设备的全部信号,且所述第二信号为频域信号时,将所述信道频率响应乘以所述第二信号,得到所述干扰信号。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述信道频率响应和所述第二信号,确定所述干扰信号包括:
    当所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一用户设备的部分信号,且所述第二信号为频域信号时,使用所述第二信号重构所述干扰基站发送给所述第一用户设备的第三信号,并将所述信道频率响应乘以所述第三信号,得到所述干扰信号。
  4. 根据权利要求1所述的方法,其特征在于,当所述第二信号为接收所述 第一信号的时隙内所述干扰基站发送给第一用户设备的全部信号时,所述第二信号包括所述干扰基站发送给所述第一用户设备的业务数据、导频信息和控制信息;
    当所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一用户设备的部分信号时,所述第二信号包括所述干扰基站发送给所述第一用户设备导频信息和控制信息;
    其中,所述导频信息包括导频值和导频所在的时频位置,所述控制信息包括所述业务数据的调制编码方式和所述业务数据占用的时频资源。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述从所述干扰基站获取第二信号包括:
    向所述干扰基站发送信号获取请求,并接收所述干扰基站发送的第二信号,所述信号获取请求用于指示所述干扰基站将所述第二信号发送给所述被干扰基站。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    接收第二用户设备通过物理信道或预设格式发送的所述干扰基站的时隙配比,所述第二用户设备处于所述干扰基站和所述被干扰基站的覆盖范围内,所述干扰基站的时隙配比是所述第二用户设备通过所述干扰基站的广播信息获取的;或者
    接收所述干扰基站发送的所述干扰基站的时隙配比;或者
    接收网络设备发送的所述干扰基站的时隙配比,所述网络设备与所述被干扰基站通过接口连接,并能够获取所述干扰基站的时隙配比。
  7. 一种基站,其特征在于,包括:
    接收单元,用于通过空口资源接收第一信号,所述第一信号包括主信号;
    确定单元,用于当接收所述第一信号的时隙内所述基站与干扰基站间的时隙配比不同时,确定所述第一信号还包括干扰信号,所述干扰基站是与所述基站相邻且使用同一频谱的任一基站;
    获取单元,用于从所述干扰基站获取第二信号,所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一用户设备的全部或部分信号,所述第一用户设备是处于所述干扰基站覆盖范围内的用户设备;
    估计单元,用于使用所述获取单元获取的第二信号进行信道估计,以获得所述干扰基站与所述基站间的信道频率响应;
    所述确定单元,还用于根据所述估计单元估计的信道频率响应和所述获取单元获取的第二信号,确定所述干扰信号;
    消除单元,用于消除所述接收单元接收的第一信号中的所述确定单元确定的干扰信号,以获得所述主信号;
    均衡单元,用于将所述消除单元获得的主信号进行信道均衡。
  8. 根据权利要求7所述的基站,其特征在于,所述确定单元根据所述信道频率响应和所述第二信号,确定所述干扰信号包括:
    当所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一用户设备的全部信号,且所述第二信号为频域信号时,将所述信道频率响应乘以所述第二信号,得到所述干扰信号。
  9. 根据权利要求7所述的基站,其特征在于,所述确定单元根据所述信道频率响应和所述第二信号,确定所述干扰信号包括:
    当所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一用户设备的部分信号,且所述第二信号为频域信号时,使用所述第二信号重构所述干扰基站发送给所述第一用户设备的第三信号,并将所述信道频率响应乘以所述第三信号,得到所述干扰信号。
  10. 根据权利要求7所述的基站,其特征在于,当所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一用户设备的全部信号时,所述第二信号包括所述干扰基站发送给所述第一用户设备的业务数据、导频信息和控制信息;
    当所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一 用户设备的部分信号时,所述第二信号包括所述干扰基站发送给所述第一用户设备导频信息和控制信息;
    其中,所述导频信息包括导频值和导频所在的时频位置,所述控制信息包括所述业务数据的调制编码方式和所述业务数据占用的时频资源。
  11. 根据权利要求7-10任一项所述的基站,其特征在于,所述获取接收单元具体用于:
    向所述干扰基站发送信号获取请求,并接收所述干扰基站发送的第二信号,所述信号获取请求用于指示所述干扰基站将所述第二信号发送给所述基站。
  12. 根据权利要求7-11任一项所述的基站,其特征在于,所述获取单元还用于:
    接收第二用户设备通过物理信道或预设格式发送的所述干扰基站的时隙配比,所述第二用户设备处于所述干扰基站和所述基站的覆盖范围内,所述干扰基站的时隙配比是所述第二用户设备通过所述干扰基站的广播信息获取的;或者
    接收所述干扰基站发送的所述干扰基站的时隙配比;或者
    接收网络设备发送的所述干扰基站的时隙配比,所述网络设备与所述基站通过接口连接,并能够获取所述干扰基站的时隙配比。
  13. 一种基站,其特征在于,包括处理器、存储器、第一收发器和第二收发器,其中:
    所述第一收发器,用于通过空口资源接收第一信号并发送给所述处理器,所述第一信号包括主信号;
    所述存储器中存储有一组程序代码,所述处理器用于调用所述存储器中存储的程序代码执行以下操作:
    当接收所述第一信号的时隙内所述基站与干扰基站间的时隙配比不同时,确定所述第一信号还包括干扰信号,所述干扰基站是与所述基站相邻且使用同 一频谱的任一基站;
    所述第二收发器,从所述干扰基站获取第二信号并发送给所述处理器,所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一用户设备的全部或部分信号,所述第一用户设备是处于所述干扰基站覆盖范围内的用户设备;
    所述处理器还用于调用所述存储器中存储的程序代码执行以下操作:
    使用所述第二信号进行信道估计,以获得所述干扰基站与所述基站间的信道频率响应;
    根据所述信道频率响应和所述第二信号,确定所述干扰信号;
    消除所述第一信号中的所述干扰信号,以获得所述主信号;
    将所述主信号进行信道均衡。
  14. 根据权利要求13所述的基站,其特征在于,所述处理器根据所述信道频率响应和所述第二信号,确定所述干扰信号的方式为:
    当所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一用户设备的全部信号,且所述第二信号为频域信号时,将所述信道频率响应乘以所述第二信号,得到所述干扰信号。
  15. 根据权利要求13所述的基站,其特征在于,所述处理器根据所述信道频率响应和所述第二信号,确定所述干扰信号的方式为:
    当所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一用户设备的部分信号,且所述第二信号为频域信号时,使用所述第二信号重构所述干扰基站发送给所述第一用户设备的第三信号,并将所述信道频率响应乘以所述第三信号,得到所述干扰信号。
  16. 根据权利要求13所述的基站,其特征在于,当所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一用户设备的全部信号时,所述第二信号包括所述干扰基站发送给所述第一用户设备的业务数据、导频信息和控制信息;
    当所述第二信号为接收所述第一信号的时隙内所述干扰基站发送给第一用户设备的部分信号时,所述第二信号包括所述干扰基站发送给所述第一用户设备导频信息和控制信息;
    其中,所述导频信息包括导频值和导频所在的时频位置,所述控制信息包括所述业务数据的调制编码方式和所述业务数据占用的时频资源。
  17. 根据权利要求13-16任一项所述的基站,其特征在于,所述第二收发器从所述干扰基站获取第二信号的方式为:
    向所述干扰基站发送信号获取请求,并接收所述干扰基站发送的第二信号,所述信号获取请求用于指示所述干扰基站将所述第二信号发送给所述基站。
  18. 根据权利要求13-17任一项所述的基站,其特征在于,所述第二收发器还用于:
    接收第二用户设备通过物理信道或预设格式发送的所述干扰基站的时隙配比,所述第二用户设备处于所述干扰基站和所述基站的覆盖范围内,所述干扰基站的时隙配比是所述第二用户设备通过所述干扰基站的广播信息获取的;或者
    接收所述干扰基站发送的所述干扰基站的时隙配比;或者
    接收网络设备发送的所述干扰基站的时隙配比,所述网络设备与所述基站通过接口连接,并能够获取所述干扰基站的时隙配比。
PCT/CN2016/080888 2016-05-03 2016-05-03 一种干扰消除方法及基站 WO2017190272A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/080888 WO2017190272A1 (zh) 2016-05-03 2016-05-03 一种干扰消除方法及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/080888 WO2017190272A1 (zh) 2016-05-03 2016-05-03 一种干扰消除方法及基站

Publications (1)

Publication Number Publication Date
WO2017190272A1 true WO2017190272A1 (zh) 2017-11-09

Family

ID=60202622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080888 WO2017190272A1 (zh) 2016-05-03 2016-05-03 一种干扰消除方法及基站

Country Status (1)

Country Link
WO (1) WO2017190272A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022227482A1 (zh) * 2021-04-25 2022-11-03 中国电信股份有限公司 干扰消除的方法、装置、系统和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1929323A (zh) * 2005-09-07 2007-03-14 大唐移动通信设备有限公司 时隙cdma系统抑制交叉时隙干扰的方法
CN1956342A (zh) * 2005-10-28 2007-05-02 北京邮电大学 Tdd-cdma基站间干扰消除和边缘小区间用户干扰消除方法
CN100592663C (zh) * 2005-11-30 2010-02-24 大唐移动通信设备有限公司 消除交叉时隙干扰的方法及装置
CN102946296A (zh) * 2012-10-31 2013-02-27 深圳市海思半导体有限公司 干扰信号重构方法和终端
CN104639476A (zh) * 2014-10-31 2015-05-20 上海华为技术有限公司 抑制td-lte交叉时隙干扰的方法和上行基站

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1929323A (zh) * 2005-09-07 2007-03-14 大唐移动通信设备有限公司 时隙cdma系统抑制交叉时隙干扰的方法
CN1956342A (zh) * 2005-10-28 2007-05-02 北京邮电大学 Tdd-cdma基站间干扰消除和边缘小区间用户干扰消除方法
CN100592663C (zh) * 2005-11-30 2010-02-24 大唐移动通信设备有限公司 消除交叉时隙干扰的方法及装置
CN102946296A (zh) * 2012-10-31 2013-02-27 深圳市海思半导体有限公司 干扰信号重构方法和终端
CN104639476A (zh) * 2014-10-31 2015-05-20 上海华为技术有限公司 抑制td-lte交叉时隙干扰的方法和上行基站

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022227482A1 (zh) * 2021-04-25 2022-11-03 中国电信股份有限公司 干扰消除的方法、装置、系统和存储介质

Similar Documents

Publication Publication Date Title
US11316639B2 (en) Systems and methods for mapping DMRS configuration to phase noise tracking pilot for improved receiver performance
US10411871B2 (en) Wireless communication method, device, and system
US11736250B2 (en) Method for transmitting reference signal, and communication device
CN108282324B (zh) 无线通信系统中的方法和节点
JP6204926B2 (ja) チャネル推定のための方法および装置
US11871445B2 (en) Method and device in nodes used for wireless communication
EP3529946B1 (en) Methods and apparatuses for downlink tracking reference signal configuration
EP3639452B1 (en) Method of frequency resource allocation
EP3961961A1 (en) Uplink data transmission method and related devices
JP2023014231A (ja) ユーザ装置、無線通信方法、無線基地局及び無線通信システム
US11425587B2 (en) Method and device in a node used for wireless communication
CN111245750B (zh) 频偏估计方法、装置及存储介质
EP3513536B1 (en) System and method for signal density reduction in frequency domain
CN110999175A (zh) 无线通信方法
WO2018088486A1 (ja) 無線通信システム、及び参照信号送信方法
WO2020164323A1 (zh) 传输探测参考信号的方法、装置和系统
US20190253845A1 (en) Apparatuses, methods and computer programs for grouping users in a non-orthogonal multiple access (noma) network
US20210045111A1 (en) Method and device used in wireless communication nodes
WO2014114106A1 (zh) 无线收发设备的上行数据接收方法和装置
WO2018127138A1 (zh) 一种参考信号配置的方法、基站、用户设备和系统
WO2017190272A1 (zh) 一种干扰消除方法及基站
US20240015740A1 (en) Method and apparatus for downlink transmission in physical downlink control channel
CN112425079B (zh) 预编码中的参考信号的处理
RU2772976C1 (ru) Пользовательский терминал и способ радиосвязи
CN117998617A (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16900794

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16900794

Country of ref document: EP

Kind code of ref document: A1